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A B S T R A C T

Apis mellifera ssp. sicula, also known as the Sicilian black honeybee, is a Slow Food Presidium that produces
honey with outstanding nutraceutical properties, including high antioxidant capacity. In this study, we used
high-resolution proteomics to profile the honey produced by sicula and identify protein classifiers that distinguish
it from that made by the more common Italian honeybee (Apis mellifera ssp. ligustica).
We profiled the honey proteome of genetically pure sicula and ligustica honeybees bred in the same

geographical area, so that chemical differences in their honey only reflected the genetic background of the two
subspecies, rather than botanical environment. Differentially abundant proteins were validated in sicula and
ligustica honeys of different origin, by using the so-called “rectangular strategy”, a proteomic approach commonly
used for biomarker discovery in clinical proteomics. Then, machine learning was employed to identify which
proteins were the most effective in distinguishing sicula and ligustica honeys. This strategy enabled the identi-
fication of two proteins, laccase-5 and venome serine protease 34 isoform X2, that were fully effective in pre-
dicting whether honey was made by sicula or ligustica honeybees.
In conclusion, we profiled the proteome of sicula honey, identified two protein classifiers of sicula honey in

respect to ligustica, and proved that the rectangular strategy can be applied to uncover biomarkers to ascertain
food authenticity.

1. Introduction

Honey is a sweet and viscous natural substance produced by bees to
nourish the colony, and which has been consumed by humans since
ancient times, as a nutritional product and also for its medical properties
(Ranneh et al., 2021; Mandal and Mandal, 2011). Nowadays, the nu-
traceutical properties of honey are widely appreciated, with antioxidant,

anti-inflammatory, antibacterial and antidiabetic properties described
(Ranneh et al., 2021; Israili, 2014; Erejuwa et al., 2012; Ahmed et al.,
2018). In this regard, over the last few years there has been growing
interest in the nutraceutical properties of honey produced by Apis mel-
lifera ssp. sicula, also known as the Sicilian black honeybee. This sub-
species differs from Apis mellifera ssp. ligustica, which is the most widely
distributed subspecies in Italy (also known as the Italian honeybee)
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(Sinacori et al., 1998). The Apis mellifera ssp. sicula originated from an
African lineage; which eventually became widespread in the Sicilian
area (Franck et al., 2000). Compared to ligustica, the Sicilian black
honeybee has a dark abdomen and small wings (Sinacori et al., 1998;
Ruttner, 1988), it is more resistant to extreme temperatures (Attanzio
et al., 2016); has better skills in pollination, and shows higher physical
and immunological resistance to pathogens such as varroa mites and
viruses that commonly affect commercial honey bees (Franck et al.,
2000). The Sicilian black honeybee risked extinction when ligustica was
imported from Northern Italy for honey production, but inclusion of this
species and its honey as a the Slow Food Presidium project in 2012 has
contributed to its genetic preservation and a growing appreciation of its
exceptional nutraceutical properties. Analysis of the chemical compo-
sition of sicula honey revealed that it had a higher phenolic content and
antioxidant capacity than honey from other subspecies (Mannina et al.,
2015; Bambina et al., 2023; Lo Dico et al., 2019), with the antioxidant
capacity mainly due to its ability to reduce free radicals (Attanzio et al.,
2016). Moreover, sicula honey showed high antimicrobial activity
against different microorganisms, including Escherichia coli and Salmo-
nella serovar Infantis (Coniglio et al., 2013). The unique nutraceutical
properties of sicula honey, together with its outstanding organoleptic
characteristics, position it on the market as an asset whose value will
potentially increase in the next years, reaching a value similar to that of
most expensive honeys worldwide.
Honey is one of the most adultered food (Lang, 2013), which usually

occurs by addition of cheap and low-quality sweeteners or by blending
an expensive honey with a low-cost honey (Se et al., 2019; Calle et al.,
2023). Only few Sicilian producers breed genetically pure sicula, while
most of them still use ligustica for honey production. In the case price of
sicula honey will rise, as it is currently forecasted, it will become an
attractive target to counterfeit and it is easy to speculate that cheaper
ligustica honey may be subjected to fraudulent mislabeling as sicula.
Indeed, mislabeling of the animal species used in a food product is
another common example of food fraud (Moore et al., 2012). In addition
to the negative effects that such fraud can cause to both farmers and the
consumers, it may have detrimental effects on the safeguard of the
Sicilian black honeybee, and therefore methods to distinguish sicula
from ligustica honey are needed. In the last years, mass spectrometry has
provided some of the most powerful tools for food authentication, as it
allows the detection and identification of chemical markers of specific
foods, such as honey (Lo Dico et al., 2019; Dou et al., 2023; Bocian et al.,
2019). Proteomics, which is the mass spectrometry-based identification
and quantification of proteins in complex biological samples, is exten-
sively used in food research nowadays (Afzaal et al., 2022; Ortea et al.,
2016). Proteins act as an indicator of origin, properties, and processes
conducted on food, and also as classifiers of different but related animal
species (Barik et al., 2013).
In this report, we characterized sicula honey by using high-resolution

quantitative proteomics and set up a workflow that identified protein
classifiers able to distinguish sicula honey from ligustica honey, even
when sicula and ligustica honeys were of a different botanical origin.
These findings may be developed into tools to ascertain the authenticity
of sicula honey.

2. Materials and methods

2.1. Collection of honey samples

Six Apis mellifera ssp. ligustica queen bees were imported from
Northern Italy (Apicoltura Ortolani, Reda di Faenza – RA) and six queen
bees from genetically pure Apis mellifera ssp. sicula were imported from
the islands of Lampedusa and Linosa (Associazione Apistica Spazio
Miele). Morphometric characteristic analysis was performed by the
Council for Agricultural Research and Economics (CREA) Bologna
(Italy) to ensure that the honeybees used in this study truly belonged to
ligustica and sicula subspecies (Supplementary material). Colonies of Apis

mellifera ssp. sicula and Apis mellifera ssp. ligusticawere grown in the area
of Mazara del Vallo (Sicily, Italy), in close proximity to each other (about
60 m apart) to ensure that honey produced by both types of bees had the
same botanical source, thereby minimizing their diversity due to envi-
ronmental differences. Honey was extracted and filtered through a
strainer into jars, which were kept at room temperature (RT) until
sample preparation for proteomic analysis.
For the analysis of sicula and ligustica honey produced in different

geographical areas, sicula honey samples were from Apicoltura Amodeo
Carlo (C.da Madonna Diana, 90,018 Termini Imerese, PA) Nettare di
Sicilia s.a.s. (C.da Cammarella, 90,022 Caltavuturo, PA) and La Mantia
Giuseppe (fondo micciulla 26, 90135, Palermo.). Samples of ligustica
honey were from Apicoltura Ortolani (Via Cangia 15 Reda di Faenza,
48018), Apicoltura Gardi-Petrarchini (str. Perugia Ponte Valleceppi 112,
06,135 Perugia) and Apicoltura Cantoni e Ottani (via Meucci 11, 40,017
San Giovanni in Persiceto, BO).

2.2. Protein extraction from honey

Acetone precipitation was used to extract proteins from honey, as
previously described (Bocian et al., 2019). Each sample was diluted with
ddH₂O in 1:10 ratio (w/v), incubated for 5 min at 35 ◦C and vortexed to
homogenize the mixture. 2 ml of each sample were diluted with 5 vol-
umes of cold acetone overnight at − 20 ◦C. Then, honey samples were
centrifuged for 30 min at 10,000 x g, supernatants were discarded, and
protein pellets dried to let residual acetone evaporate. Proteins were
collected with 300 µl of STET buffer (50 mM Tris, pH 7,5, 150 mMNaCl,
2 mM EDTA, 1 % Triton) containing EDTA-free protease inhibitor
cocktail (1:25, Thermo Fisher Scientific, Waltham, Massachusetts, US).
Protein concentration was measured by using a Pierce Bicinchoninic
Acid (BCA) assay kit (Thermo Fischer Scientific, Waltham, Massachu-
setts, US) and a plate reader from Tecan (Männedorf, CH).

2.3. SDS-PAGE analysis and Coomassie blue staining

30 µg of protein extracted from the different honey samples was
loaded onto acrylamide gels and analysed by SDS-PAGE electrophoresis.
Gels were washed three times in ddH₂O and then stained with Coomassie
Blue (QC Colloidal Coomassie Stain, BioRad, Hercules, California, US)
for 15 min in the dark while shaking. Stained gels were destained in
ddH₂O and were imaged using ChemiDoc Imaging System (BioRad).

2.4. Sample preparation and LC-MS/MS analysis

For each sample, 10 µg of protein was subjected to filter-aided
sample preparation (FASP − with 10 kDa Vivacon 500 spin filter col-
umns from Sartorius, Göttingen, Germany) (Wisniewski et al., 2009).
Briefly, samples were loaded onto a 10 kDa Vivacon spin column and
concentrated by centrifugation (14,000 x g; 10 min). Samples were then
reduced and alkylated with dithiothreitol (DTT, Sigma-Aldrich, part of
Merck Group, St. Louis, Missouri, US) in 200 µl of UA buffer (8 M Urea in
0.1 M Tris/HCl, pH 8.5) and alkylated with 50 mM iodoacetamide (IAA)
(Sigma-Aldrich). After reduction and alkylation, samples were washed
three times and sequentially digested with LysC (1:50 enzyme to protein
ratio, from Promega, Madison, Wisconsin, US) and trypsin (1:100
enzyme to protein ratio, Promega). Then, peptides were eluted from
filter columns by centrifugation (14,000 x g; 60 min) and acidified with
20 µl of 8 % formic acid. Peptides were desalted by stop-and-go
extraction (STAGE) on reverse phase tips packed with Empore C18
disks in-house (Sigma-Aldrich), as previously described (Rappsilber
et al., 2003). Peptides were eluted; vacuum-dried and resuspended in 20
µl 0.1 % formic acid. After measuring their concentration by Nanodrop
2000 (Thermo Scientific), 1 µg of peptides were separated using a
nanoLC system (Vanquish Neo UHPLC, Thermo Scientific) equipped
with an Acclaim PEPMap C18 column (25 cm x 75 µm ID, Thermo
Scientific) in a 130 min binary gradient of water and acetonitrile
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containing 0.1 % formic acid. Separated peptides were ionized using a
nano electrospray ion source and analysed into an Exploris 480 mass
spectrometer (Thermo Fischer Scientific) for tandem mass spectrometry
analysis.

2.5. Proteomic data analysis

Honey proteins were identified and quantified with label-free
quantification (LFQ) using two different data acquisition approaches:
(i) data-dependent acquisition (DDA) and (ii) data-independent acqui-
sition (DIA). DDAwas performed using anMS1 full scan (300–1450m/z)
at a resolution of 120,000, an automatic gain control (AGC) of 1 x 106

ions and a maximum injection time of 50 ms, followed by sequential
fragmentation of the most abundant precursors for a cycle time of 1 s.
Precursors were filtered according to 1 x 104 intensity threshold, 2–6
charge state and a dynamic exclusion of 60 s. Fragmentation was per-
formed at 30 % higher-energy collisional dissociation (HCD) and frag-
ments were identified at a resolution of 15,000 and an AGC of 1 x 105.
The data were analysed using the software MaxQuant (version 2.0.1)
and an Apis mellifera RefSeq protein reference database (https://ftp.ncbi.
nlm.nih.gov/genomes/refseq/invertebrate/Apis_mellifera/latest_asse
mbly_versions/GCF_003254395.2_Amel_HAv3.1/GCF_003254395.2_A
mel_HAv3.1_protein.faa.gz) with standard settings. (ii) DIA was per-
formed using an MS1 full scan followed by 60 sequential DIA windows
with an overlap of 1 m/z and window placement optimization option
enabled. Full scans were acquired with a resolution of 120000, AGC of 3
x 106, and maximum injection time of 50 ms. Afterwards, 60 isolation
windows were scanned with a resolution of 30,000, an AGC of 8 x 105

andmaximum injection time was set as auto to achieve the optimal cycle
time. Collision-induced dissociation fragmentation was induced with 30
% of the normalized HCD. The data were analysed using the software
DIA-NN (version 1.8.1) and a predicted library generated from in silico
digestion of the Apis mellifera proteome (RefSeq protein reference
database − https://ftp.ncbi.nlm.nih.gov/genomes/refseq/invertebr
ate/Apis_mellifera/latest_assembly_versions/GCF_003254395.2_Amel_
HAv3.1/GCF_003254395.2_Amel_HAv3.1_protein.faa.gz), with cleav-
ages at K* and R*, two missed cleavages allowed and a minimal peptide
length set at 6 residues. The reference proteome of Apis mellifera con-
sisted of 9919 proteins, with 4,246,929 precursors generated by the in
silico digestion. For both DDA and DIA, LFQ values were log2 trans-
formed, a two-sided Student’s t-test and false discovery rate (FDR) for
multiple testing correction were used to evaluate proteins differentially
abundant in the honey produced by sicula and ligustica.

2.6. Machine learning for the identification of a sicula honey proteomic
signature

LFQ protein intensities were Z-score normalized within groups and
missing intensities were replaced with 0 using Perseus software version
1.6.1.3 (Tyanova and Cox, 2018). After Z-scoring; changes in protein
abundance were evaluated by a Student t-test, with false discovery rate
(FDR) correction for multiple hypothesis testing. Unsupervised clus-
tering was applied to differentially abundant proteins (q < 0.05) using
pheatmap (1.0.12) and factoextra (1.0.7) packages in R studio (4.2.2)
with standard parameters. A clustered heatmap and principal compo-
nent analysis (PCA) were plotted using integrated tools.
The Boruta algorithm was employed to select relevant features for

honey classification by machine learning (Kursa and Rudnicki, 2010).
The 19 important features identified by the Boruta algorithm were
iteratively added to a Random Forest ensemble method according to
their importance. The dataset was shuffled and 66 % of our dataset
samples were employed to train the Random Forest model, and the
remaining 33 % of samples used to test the prediction model. The pre-
diction ability of the trained algorithm was evaluated by a confusion
matrix. In addition, the algorithmwas used to seek howmany and which
features were necessary to discriminate between sicula and ligustica

honeys with full accuracy by using this model. The resulting dataset,
comprising two protein classifiers, was used for PCA and hierarchical
clustering analysis.

3. Results

3.1. Quantitative proteomic analysis identifies differences in honey
produced by Apis mellifera ssp. Sicula and ligustica of the same botanical
origin

3.1.1. Protein extraction from honey
Acetone precipitation was used to extract proteins from honey prior

to tryptic digestion and mass spectrometry analysis. This yielded an
average of 1727.5 µg of protein per g of honey (Fig. 1A). This method
was more effective in extracting proteins from honey than others tested,
including dialysis through filter columns (Supplementary Figure S1).
Protein yield did not differ significantly between sicula and ligustica
honey (Fig. 1A). Honey proteins were analysed by sodium dodecyl-
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie
blue staining which allowed separation and visualization of individual
proteins in the complex honey mixture. This analysis confirmed that
acetone precipitation enabled effective extraction of proteins from
honey, and that sicula and ligustica honeys displayed a similar pattern of
protein bands, with two major bands running slightly below 50 kDa and
at around 70 kDa, with other less intense bands between 10 kDa and 20
kDa, and at 30 kDa, 75 kDa and 150 kDa (Fig. 1B).

3.1.2. Assessment of different data acquisition strategies for analysis of
honey proteins
Honey proteins from sicula and ligustica were applied to a high-

resolution mass spectrometry-based workflow, which comprised
tryptic digestion on filter columns (FASP − (Wisniewski et al., 2009) and
protein analysis via LC-MS/MS followed by label-free quantification.
Protein detection and quantification were performed by using either
data-dependent acquisition (DDA) or data independent acquisition
(DIA). DDA performs a first MS scan to determine mass-to-charge ratio
(m/z) and abundance of peptide ions entering the mass spectrometer at
each time, then selects the most intense peptide ions for subsequent
fragmentation and sequence determination. This method, which is very
accurate for quantification of the most abundant proteins in a complex
protein sample, is quite limited for identification of low abundance
proteins. In comparison, DIA is not limited to sequencing of the most
abundant peptides, but fragments and sequences all peptides within a
defined m/z window regardless of their intensity. This makes DIA
particularly advantageous for detection of low-abundance proteins. DIA
identified and quantified 168 different proteins present in both sicula
and ligustica, which was 3-fold more proteins than were identified by
DDA (Fig. 2A, Fig. 2B and Supplemental Table). 30 of these 168 proteins
were also identified by DDA (Fig. 2B). Intriguingly, DDA identified 25
proteins that were not detected by DIA. This indicated that, although
DIA was clearly more effective than DDA for characterizing the honey
proteome, the two analyses were complementary, and together identi-
fied and quantified almost 200 proteins present in both species (Fig. 2B).

3.1.3. High-resolution mass spectrometry-based analysis of honey proteins
from sicula and ligustica
A similar number of proteins were detected in sicula and ligustica

honey, irrespective of whether samples analysed by DIA or DDA (Fig. 2C
and 2D). Then, we evaluated differences in the relative abundance of
proteins extracted from sicula and ligustica honey. Out of the 168 pro-
teins detected by DIA in both sicula and ligustica honey, 26 proteins were
differentially abundant (Fig. 2E, Supplemental Table). Levels of 24
proteins were higher in sicula honey (Fig. 2E, Table 1), including
phospholipase A1 (A0A7M7MR18), laccase-5 (A0A7M7RC42), bee-milk
protein (A0A7M7SQQ4) and venom serine protease isoform X2
(A0A7M7L3N3). 2 proteins were more abundant in ligustica honey:

G. Biundo et al. Food Research International 194 (2024) 114872 

3 

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/invertebrate/Apis_mellifera/latest_assembly_versions/GCF_003254395.2_Amel_HAv3.1/GCF_003254395.2_Amel_HAv3.1_protein.faa.gz
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/invertebrate/Apis_mellifera/latest_assembly_versions/GCF_003254395.2_Amel_HAv3.1/GCF_003254395.2_Amel_HAv3.1_protein.faa.gz
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/invertebrate/Apis_mellifera/latest_assembly_versions/GCF_003254395.2_Amel_HAv3.1/GCF_003254395.2_Amel_HAv3.1_protein.faa.gz
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/invertebrate/Apis_mellifera/latest_assembly_versions/GCF_003254395.2_Amel_HAv3.1/GCF_003254395.2_Amel_HAv3.1_protein.faa.gz
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/invertebrate/Apis_mellifera/latest_assembly_versions/GCF_003254395.2_Amel_HAv3.1/GCF_003254395.2_Amel_HAv3.1_protein.faa.gz
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/invertebrate/Apis_mellifera/latest_assembly_versions/GCF_003254395.2_Amel_HAv3.1/GCF_003254395.2_Amel_HAv3.1_protein.faa.gz
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/invertebrate/Apis_mellifera/latest_assembly_versions/GCF_003254395.2_Amel_HAv3.1/GCF_003254395.2_Amel_HAv3.1_protein.faa.gz


Fig. 1. Protein extraction from sicula and ligustica honey. A. Proteins were extracted from honey produced by Apis mellifera ssp. sicula or ligustica through acetone
precipitation and quantified by BCA assay. Histograms show the yield of extracted proteins. A two-sided Student t-test was used to evaluate differences in protein
content between honey produced by each subspecies (ns, p > 0.05). B. SDS-PAGE analysis and Coomassie blue staining of proteins extracted from sicula or lig-
ustica honey.

Fig. 2. High-resolution proteomic characterization of sicula and ligustica honey. A. After extraction by acetone precipitation, proteins from sicula honey were
digested by FASP and applied to LC-MS/MS. Proteins were identified and quantified using two different approaches: data-dependent acquisition (DDA) and data-
independent acquisition (DIA). Histograms show the average number of proteins identified and quantified in sicula honey by DIA or DDA (151 ± 11 and 45 ± 4,
respectively; *** p < 0.005; n = 6). B. Venn diagrams showing the number of proteins found by DIA and/or DDA data acquisition methods in sicula honey. C-D.
Proteins from sicula and ligustica honey were analysed by LC-MS/MS followed by DIA or DDA. Histograms show the number of proteins detected in sicula honey and
ligustica honey by DIA (151 ± 11 and 143 ± 7, respectively) and DDA (45 ± 4 and 44 ± 4, respectively). A two-sided Student t-test was used to evaluate statistical
differences in the number of proteins detected and quantified in sicula or ligustica honey (ns p > 0.05). E. Volcano plot showing Log2 of relative abundance ratio
(sicula/ligustica, acquired by DIA) versus − Log10 p-value of change for 168 proteins detected in sicula and ligustica honey. The black hyperbolas indicate the false
discovery rate (FDR). Proteins displayed above the FDR curves were considered significantly different between honey of sicula and ligustica. Proteins significantly
more abundant in sicula honey are displayed as filled blue dots,and proteins more abundant in ligustica honey as filled red dots. Proteins below the FDR curve did not
significantly differ in the honey of sicula and ligustica, and they are represented by open grey circles. F. Volcano plot showing Log2 of relative abundance ratio (sicula/
ligustica, acquired by DDA) versus − Log10 p-value of change for 46 proteins detected in sicula and ligustica honey. Proteins significantly more abundant in sicula honey
are displayed as filled blue dots, and proteins more abundant in ligustica honey as filled red dots, while proteins that did not significantly differ are represented by
open grey circles.
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glucose oxidase (Q9U8X6) and glucose dehydrogenase isoform X1
(A0A7M7RBJ1) (Table 2). When data were acquired by DDA, 56 pro-
teins were detected and quantified in the honey of sicula and ligustica,
with 11 proteins differentially abundant (Fig. 2F, Supplemental Table).
5 proteins were higher in sicula honey (Table 3), including phospholi-
pase A1 (A0A7M7MR18), phospholipase A1 isoform (A0A7M7IQ52)
and venom serine protease 34 isoform X2 (A0A7M7L3N3), three

proteins that were also found to be more abundant by DIA. On the other
hand, DDA found levels of 6 proteins higher in ligustica honey (Table 4),
including glucose oxidase (Q9U8X6).

3.2. Proteomic analysis of sicula and ligustica honey from different
geographical areas

When bees were kept in the same area and honeys were of same
botanical origin, proteomic analysis led to identification of a number of
proteins that were more abundant in sicula compared to ligustica. Thus,
we investigated whether these proteins could be distinctive identifiers of
sicula honey and also allow its identification over ligustica when hon-
eybees were kept in different geographical areas. In order to do so, we
analysed honeys produced by sicula in different areas of Sicily (e.g. in the
Aeolian islands Vulcano and Vulcanello, and in Palermo area) and lig-
ustica honeys produced in Northern Italy (Tuscany, Umbria and Emilia
Romagna). DIA proteomics was applied to acetone precipitated honey
proteins, as for the initial analysis. 192 proteins were detected and
quantified in both sicula and ligustica honey (Fig. 3, Supplemental
Table). Glucose dehydrogenase was the only protein more abundant in
ligustica honey, in agreement with the previous analysis (Fig. 3). 8
proteins were higher in sicula (Table 5), 4 of which [i.e. hyaluronidase
(Hya) (A0A7M7MTB6), venom serine protease 34 isoform X2
(A0A7M7L3N3), bee-milk protein (A0A7M7SQQ4) and laccase-5
(A0A7M7RC42)], were also more abundant in the previous analysis
when sicula and ligustica were kept in the same geographical area and
their honeys of the same botanical origin (compare Fig. 2E and 3).
Phospholipase A1 and Phospholipase A1 isoform, which were higher in

Table 1
Proteins significantly more abundant in the honey of Apis mellifera ssp. sicula
analysed by LC-MS/MS followed by DIA.

Protein name Uniprot-ID Difference p-value

Phospholipase A1 A0A7M7MR18 1.63 2.30E-
07

Hyaluronidase (Hya) Q08169 1.42 1.64E-
05

Venom serine protease 34 isoform X2 A0A7M7L3N3 1.01 2.32E-
05

Bee-milk protein Q4ZJX1 0.71 3.27E-
04

Uncharacterized protein LOC727028 A0A7M7FZE0 1.09 3.99E-
04

Glucose dehydrogenase [FAD,
quinone]

A0A7M7R506 1.23 4.45E-
04

Phospholipase A1 isoform A0A7M7IQ52 0.97 4.67E-
04

Laccase-5 A0A7M7RC42 1.07 4.99E-
04

Vitellogenin Q868N5 2.5 7.13E-
04

Glucose dehydrogenase [FAD,
quinone]

A0A7M7GC96 0.87 8.29E-
04

Calmodulin A0A7M7LRU3 1.35 1.24E-
03

Chymotrypsin inhibitor A0A7M7GQH1 2.14 2.09E-
03

Apolipophorins A0A7M7SQ18 2.22 3.27E-
03

Venom acid phosphatase Acph-1 Q5BLY5 1.18 5.95E-
03

Prophenoloxidase (phenoloxidase
subunit A3)

Q86MV4 1.42 8.18E-
03

Apolipophorin-III-like protein B0LUE8 0.85 1.11E-
02

UDP-glucose 6-dehydrogenase A0A7M7GZT2 1.78 1.21E-
02

NPC intracellular cholesterol
transporter 2

A0A7M7G1N6 2.59 1.23E-
02

Bee-milk protein A0A7M7SQQ4 3.37 1.50E-
02

40S ribosomal protein S28 A0A7M7GS09 1.32 1.68E-
02

Odorant binding protein 14 precursor A0A8U0WQC3 1.95 1.74E-
02

DNA topoisomerase A0A7M7RC27 1.78 2.75E-
02

Uniprot-ID: accession number of the protein. Difference: log2 transformed mean
ratio of label-free quantification intensities between Apis mellifera ssp. sicula and
ligustica (n= 6). p-value: p-value of intensities change between Apis mellifera ssp.
sicula and ligustica (n = 6).

Table 2
Proteins significantly more abundant in the honey of Apis mellifera ssp. ligustica
analysed by LC-MS/MS followed by DIA.

Protein name Uniprot-ID Difference p-value

Glucose oxidase Q9U8X6 − 0.89 9.62E-
05

Glucose dehydrogenase [FAD, quinone]
isoform X1

A0A7M7RBJ1 − 0.5 1.76E-
03

Uniprot-ID: accession number of the protein. Difference: log2 transformed mean
ratio of label-free quantification intensities between Apis mellifera ssp. sicula and
ligustica (n= 6). p-value: p-value of intensities change between Apis mellifera ssp.
sicula and ligustica (n = 6).

Table 3
Proteins significantly more abundant in the honey of Apis mellifera ssp. sicula
analysed by LC-MS/MS followed by DDA.

Protein name Uniprot-ID Difference p-value

Phospholipase A1 A0A7M7MR18 0.98 8.94E-
04

Venom serine protease 34 isoform X2 A0A7M7L3N3 0.89 3.19E-
03

Phospholipase A1 isoform A0A7M7IQ52 0.93 4.20E-
03

Chitinase-like protein Idgf4 isoform
X2

A0A7M7M4R3 0.51 2.02E-
03

Uncharacterized protein A0A7M7LN70 0.66 1.41E-
02

Uniprot-ID: accession number of the protein. Difference: log2 transformed mean
ratio of label-free quantification intensities between Apis mellifera ssp. sicula and
ligustica (n= 6). p-value: p-value of intensities change between Apis mellifera ssp.
sicula and ligustica (n = 6).

Table 4
Proteins significantly more abundant in the honey of Apis mellifera ssp. ligustica
analysed by LC-MS/MS followed by DDA.

Protein name Uniprot-ID Difference p-value

Alpha-mannosidase A0A7M7MGK9 − 0.53 3.31E-
03

Glucose dehydrogenase [FAD,
quinone] isoform X2

A0A7M7IL97 − 0.78 1.21E-
02

Carboxypeptidase Q A0A7M7LQ78 − 0.88 3.42E-
02

Major royal jelly protein MRJP6 A0A8U0WQ84 − 0.98 6.80E-
03

Major royal jelly protein 5 A0A8U0WQ67 − 0.78 2.28E-
03

Glucose oxidase O97432 − 0.86 1.47E-
03

Uniprot-ID: accession number of the protein. Difference: log2 transformed mean
ratio of label-free quantification intensities between Apis mellifera ssp. sicula and
ligustica (n= 6). p-value: p-value of intensities change between Apis mellifera ssp.
sicula and ligustica (n = 6).
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sicula in all previous datasets, were still more abundant in sicula honey,
although this did not reach significance when the more stringent false-
discovery rate (FDR) correction for multiple hypothesis testing was
applied (Fig. 3). In conclusion, proteomics revealed a number of proteins
that were consistently higher in sicula honey compared to ligustica
regardless of their botanical origin and the geographical area in which
the honeys were produced.

3.3. Identification of a proteomic signature of sicula honey

3.3.1. Selection of sicula honey protein classifiers by using a “rectangular”
proteome profiling strategy
Proteomics has been largely used for unbiased identification of

protein biomarkers associated with specific conditions or diseases
(Bader et al., 2020; Geyer et al., 2017). A common workflow for such
hypothesis-free biomarker discovery comprises proteome profiling of

biological samples (e.g. plasma, biopsies, etc.) collected from a study
cohort that shares a specific condition and from a control cohort. This
analysis enables selection of candidate proteins associated with the
condition, which are eventually validated in a different cohort by
orthogonal means, including immunoassays (Geyer et al., 2017). This
workflow, which goes from the identification of a large number of
proteins through proteomics to the validation of a small number of them
by immuoassays, is referred to as the “triangular” strategy of biomarker
discovery. In the last decade, advances in mass spectrometers resolution,
development of more powerful methods for proteomic data acquisition
and for in silico model predictions have allowed a “rectangular” strategy
for biomarker discovery. When using this approach, a large amount of
proteomic data obtained in an initial proteome profiling is subsequently
validated by shotgun proteomics in a different study cohort. This strat-
egy has the advantage of enabling discovering and validation of several
protein biomarkers and patterns characteristic of a particular condition,
rather than the single biomarker candidates that arise from the “trian-
gular” strategy.
We applied a “rectangular“ strategy to identify proteins able to

discriminate sicula from ligustica honey (Fig. 4A). First, we assessed
whether sicula and ligustica honeys clustered together based on 30 pro-
teins that were differently abundant in the two datasets (i.e. honey
proteomes from sicula and ligustica bees of same or different origin), after
protein intensities were Z-scored and a Student t-test with FDR correc-
tion applied. 26 of these proteins were more abundant in sicula honey (e.
g. hyaluronidase, bee milk protein, etc.) and 4 proteins in ligustica (e.g.
glucose dehydrogenase) (Fig. 4B). Unsupervised clustering and principal
component analysis clearly separated honeys produced by the two
honeybee subspecies, both when they were of the same botanical origin
and when they were produced in different geographical areas (Fig. 4B
and 4C).

3.3.2. Classification of sicula honey by machine learning
Next, we used machine learning to assess which of this collection of

30 proteins could be used to classify sicula honey compared to ligustica.
First, to determine whether these proteins could be an important feature
for honey classification, we employed the Boruta algorithm (Kursa and
Rudnicki, 2010). The main idea of this approach was to compare the
importance of these proteins as real predictor variables with the so-

Fig. 3. Proteomic analysis of honey produced by sicula and ligustica in different botanical areas. Volcano plot showing Log2 of relative abundance ratio
(sicula/lingustica) versus − Log10 p-value of change for 192 proteins detected in sicula and ligustica honey. The black hyperbolas indicate the FDR. Levels of proteins
displayed above the FDR curves were considered significantly different in honey of sicula and ligustica. Proteins significantly more abundant in sicula honey are
displayed as filled blue dots and proteins more abundant in ligustica honey as filled red dots. Proteins below the FDR curve did not significantly differ in the honey of
sicula and ligustica, and are represented by open grey circles.

Table 5
Proteins significantly more abundant in the honey of sicula compared to ligustica
of different botanical origin, analysed by LC-MS/MS followed by DIA.

Protein name Uniprot-ID Difference p-value

Laccase-5 A0A7M7RC42 1.31 1.08E-
03

Lysozyme (EC 3.2.1.17) A0A7M7R3V2 1.57 1.38E-
03

Omega-conotoxin-like protein 1 H9KQJ7 1.82 1.29E-
03

Chitinase-like protein ldgf4 isoform
X2

A0A7M7M4R3 1.25 1.99E-
03

Venom serine proase 34 isoform X2 A0A7M7L3N3 1.75 3.85E-
03

Bee-milk protein A0A7M7SQQ4 3.07 9.83E-
03

Hyaluronidase (Hya) (EC 3.2.1.35) A0A7M7MTB6 1.19 2.21E-
03

Bee-milk protein A0A7M7MQN8 1.28 1.09E-
03

Uniprot-ID: accession number of the protein. Difference: log2 transformed mean
ratio of label-free quantification intensities between Apis mellifera ssp. sicula and
ligustica (n = 6). p-value: p-value of intensities change between Apis mellifera
ssp. sicula and ligustica (n = 6).
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called random shadow variables. The Boruta algorithm confirmed the
importance of 19 proteins as classifiers of sicula honey (Fig. 5A). Next, to
further reduce the number of candidate protein classifiers to those with a
highest predicted capability to distinguish between sicula and ligustica
honey, we iteratively added important proteins, according to the Boruta
algorithm, to a Random Forest ensemble method. By this, we found that
laccase-5 and venom serine protease 34 isoform X2 were sufficient to
create a model that was fully accurate in discriminating between sicula
and ligustica honey (Fig. 5B). In line with this, unsupervised clustering
and PCA analysis further confirmed an optimal separation of sicula and

ligustica honeys, regardless of their origin, based on these two protein
classifiers (Fig. 5C and D).

4. Discussion

The Apis mellifera ssp. sicula, also known as the Sicilian black hon-
eybee, is a Sicilian native subspecies which was appointed a Slow Food
Presidium in 2012, thereby contributing to its genetic preservation.
Various beneficial pharmacological properties of sicula honey have been
demonstrated and, as a consequence, interest in this honey has increased

Fig. 4. Identification of protein classifiers to distinguish sicula honey from ligustica honey A. Schematic representation of the “rectangular strategy” used to
identify protein classifiers of sicula honey. B. Protein intensities were Z-scored and proteins that differed significantly in abundance between sicula honey and ligustica
honey (q < 0.05) were used for hierarchical clustering. As shown by the heat map, sicula and ligustica honeys each clustered together and were clearly separated. C.
Principal component analysis of 22 honeys (sicula or ligustica of same or different origin) showed good separation of sicula and ligustica honeys (large points represent
the median value of each group).
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considerably, and its commercial value is expected to grow in the near
future (Attanzio et al., 2016; Mannina et al., 2015; Bambina et al., 2023;
Tenore et al., 2012). As its price will rise, we expect that sicula honey
will be subjected to food fraud. Given that only few producers breed the
Sicilian black honeybee and keep it genetically pure on small islands
around Sicily, while most Sicilian producers still use ligustica for honey
production, the risk that ligustica honey will be sold as sicula is very high.
Clearly, methods to discriminate honey made by the two subspecies are
needed to protect producers and consumers from food fraud, and also to
safeguard the Apis mellifera ssp. sicula from extinction. In this study, we
characterized the proteome of honey produced by the Sicilian black
honeybee and identified proteins that can distinguish sicula from lig-
ustica, and may be utilized for ascertaining its authenticity. This prote-
omic signature may also shed light on the peculiar behaviors of the

Sicilian black honeybee, such as its high immunological resistance to
Varroa. Our approach detected and quantified almost 200 bee proteins
contained in the honey which is an unprecedented high number. By
matching peptides detected by mass spectrometry with the honeybee
proteome, our method selectively identified honeybee proteins rather
than botanical proteins contained in the honey. We used a two-phase
design to carry out this study. First, we applied proteomics to honeys
harvested from colonies of sicula and ligustica that were grown in close
proximity to each other. We expect that, in such a case, proteomic dif-
ferences between sicula and ligustica honey would only reflect the
different genetic background of these two subspecies, rather than
external agents (e.g. botanical origin). Then, to confirm that some pro-
teins can be distinctive of sicula honey regardless of its origin, we
repeated the analysis on sicula and ligustica honeys produced in different

Fig. 5. Machine learning identifies laccase-5 and venom serine protease 34 isoform X2 as sufficient to fully discriminate between sicula and ligustica
honey. A. Feature selection based on the Boruta algorithm. The horizontal axis is the name of each variable (proteins that differed in abundance between sicula and
ligustica honey) and the vertical axis is the Z-score of each variable. The green boxplots represent the important variables and the red represent unimportant variables.
The blue boxplots correspond to minimal, average, and maximum Z-score of a shadow attribute, which are automatically generated by the algorithm. B. Confusion
matrix that evaluates the performance of a supervised machine learning model based on abundance of laccase 5 and venom serine protease 34 isoform X2 to predict
sicula over ligustica honey. C-D. Heatmap showing hierarchical clustering and principal component analysis of sicula and ligustica honeys based on abundance of
laccase 5 and venom serine protease 34 isoform X2.
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geographical areas. The first analysis revealed that levels of 24 proteins
were higher in sicula honey. Among them, there were several lyases,
hydrolases and oxidases that may exert antioxidant and anti-
inflammatory effects (Naqvi et al., 2023). In addition, this analysis
found that vitellogenin was more abundant in sicula honey than ligustica.
Vitellogenin plays a crucial role in the bee immune system. Similar to
other insects, bees can recognize specific pathogens and transfer im-
mune elicitors such as pathogen fragments into developing oocytes,
thereby priming offspring immunity. This process, known as trans-
generational immune priming, is mediated by vitellogenin that trans-
ports immune elicitors and favors transmission of immune resistance to
the offspring (Dickel et al., 2022; , 2023; Salmela et al., 2015). Vitello-
genin is currently used to “vaccinate” honeybees, and its higher levels in
sicula honey suggest a higher production of vitellogenin by the Sicilian
black honeybees, which, in turn, may explain its increased resistance to
varroasis and virosis (Franck et al., 2000). Finally, to identify protein
classifiers that could distinguish sicula from ligustica honey, we utilized a
workflow commonly used for discovery of biomarkers associated with
human health. Based on this workflow, known as the “rectangular”
strategy for biomarker discovery, candidate protein biomarkers that
emerged from the proteomic analysis of sicula and ligustica honeys of
same geographical origin were validated by a sequential proteomic
analysis of sicula and ligustica honeys of different geographical origin.
This analysis, which was complemented by machine learning to assess
the importance of candidate proteins to serve as predictive classifiers,
identified a proteomic signature of sicula honey comprising 19 proteins,
2 of which, laccase-5 and venom serine protease isoform X2, were able
to fully predict sicula honey in our model. This represents a first step
towards the development of tools to prove its authenticity over ligustica
honey, in line with the aims of the “Slow Food” project to safeguard food
biodiversity and the related growing interest in identifying and using
biomarkers for more accurate and objective measurements of food’s
provenance and quality. Our work could be developed by establishing
methods for determining absolute concentration of laccase-5 and venom
serine protease isoform X2 in sicula honey, as well as a concentration
threshold for these two proteins above which sicula honey could be
considered “authentic”. Furthermore, evaluation of the peptide library
generated by our mass spectrometry analysis could lead to the identi-
fication of unique peptides of sicula honey that may be used as additional
markers, in a similar manner as unique peptides were selected as
authentication markers for mānuka honey (Bong et al., 2021). These
mass spectrometry-based approaches could be coupled with other
methods for honey authentication, including identification of DNA sig-
natures and sugar profiling. In the future, such an integrated strategy
could be used for conclusive identification of sicula honey.

5. Conclusions

After near extinction, Apis mellifera ssp. sicula became a Slow Food
“presidium” in 2012, and its honey has been reported to have beneficial
nutraceutical properties. For this reason, the commercial value of sicula
honey is predicted to raise in the coming years. To date, only a limited
number of producers can access genetically pure sicula, as they breed it
on small islands surrounding Sicily, thereby preventing its hybridization
with the more common ligustica. It is speculated that once the value of
sicula honey increases, cheaper ligustica honey will be mislabeled as
sicula honey, and tools to discriminate the two will be needed to prevent
fraud. For this reason we sought protein biomarkers that could distin-
guish sicula honey from ligustica. To do so, we used the innovative
“rectangular strategy” proteomic workflow, commonly used for clinical
biomarker discovery, and coupled this with machine learning. Our
analysis identified two honey proteins, laccase-5 and venom serine
protease isoform X2, that were able to distinguish sicula honey from
ligustica regardless of their botanical origin or the geographical area in
which honeys were produced. Mass spectrometry-based or antibody-
based assays for an easy detection and quantification of these two

proteins could be developed and used, either alone or in combination
with other techniques for honey authentication, to ascertain the
authenticity of sicula honey.
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González, M., & Palma, M. (2023). Rapid and automated method for detecting and
quantifying adulterations in high-quality honey using Vis-NIRs in combination with
machine learning. Foods, 12.

Moore, J. C., Spink, J., & Lipp, M. (2012). Development and application of a database of
food ingredient fraud and economically motivated adulteration from 1980 to 2010.
Journal of Food Science, 77, R118–R126.

Dou, X., Zhang, L., Yang, R., Wang, X., Yu, L., Yue, X., Ma, F., Mao, J., Wang, X.,
Zhang, W., & Li, P. (2023). Mass spectrometry in food authentication and origin
traceability. Mass Spectrometry Reviews, 42, 1772–1807.

Bocian, A., Buczkowicz, J., Jaromin, M., Hus, K. K., & Legáth, J. (2019). An effective
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