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Abstract. Numerical simulations of components subjected to cyclic thermo-mechanical loads require an 
accurate modelling of their cyclic plasticity behaviour. Combined models permit to capture monotonic 
hardening as well as cyclic hardening/softening phenomena, that occur in reality. In principle the 
durability assessment of a component under thermal loads can be performed only if the cyclic behaviour is 
simulated until complete material stabilization. As materials stabilize approximately at half the number of 
cycles to failure, it follows that in case of small plastic strains a huge number of cycles must be considered 
and an unfeasible simulation time would be required. Accelerated models have thus been proposed in 
literature. The aim of this work is that of comparing the different acceleration techniques in the case a 
round mould for continuous casting loaded thermo-mechanically. It can be observed that the usual 
approach of using the stabilized stress-strain curve already from the first cycle could lead to relevant 
errors. An alternative method is that of increasing the value of the parameter that controls the speed of 
stabilization in the combined model. This approach permits the number of cycles to reach stabilization to 
be drastically reduced, without affecting the overall mechanical behaviour. Based on this approach, a
simple design rule, that can be adopted, particularly when relatively small plastic strains occur, is finally 
proposed.

1 Numerical simulation of mechanical 
components under thermal loads
The choice of a suitable cyclic plasticity model to be 
used in numerical simulation of components subjected 
to cyclic thermo-mechanical loads is a crucial aspect in 
design. Some of typical examples are discussed in [1,
2, 3]. In fact, to perform a reliable thermal fatigue 
analysis a model able to capture accurately the 
behaviour of the material observed during experimental 
testing is required. On the other hand, durability 
assessment of a component under thermal loads can be 
done only if complete material stabilization is reached
[4]. As materials stabilize approximately at half 
number of cycles to failure, it follows that in case of 
small plastic strain a huge number of cycles must be 
considered and an unfeasible computational time 
would be required.

In a recent work [5] dealing with a thermo-
mechanical analysis of a squared mould showed that a
huge number of cycles (around 60567) must be 
performed to reach the stabilized condition. Since the 
geometry of the squared mould requires a 3D finite 
element (FE) simulation, even taking into account 
symmetries and optimizing the mesh, ≈15 min is
needed to compute 1 cycle or ≈630 day to obtain final 

results, according to the value (b≈4) of the speed of 
stabilization of the mould alloy, see Fig. 1. Therefore, 
to overcome this problem, some alternative models 
(accelerated, stabilized), proposed in [6], have been 
adopted and compared. It has been shown that 
accelerated models gave the most conservative results, 
as the lowest value of number of cycle to failure was 
obtained. On the other hand, in that work it was not 
possible to make a comparison with the combined 
(complete) model because a too long computational 
time was necessary to reach stabilization.

Fig. 1. Possible strategy to reduce the computational time.

Fig. 1 presents schematically the desirable diagram
required to perform a correct design of the component. 
In principle the basic idea of the accelerated techniques
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is that of moving from point A to point B (i.e. from the 
purple “unfeasible” zone, characterized by too long 
computation time, to the white area, where this time is 
acceptable). This goal can be obtained by increasing a 
parameter of the material model, which governs the 
speed of stabilization. On the other hand, also too high 
speed of stabilization must be avoided, as it could lead 
to convergence problems and “unrealistic” results. 

In order to perform a complete validation, a similar 
component with a simpler geometry (i.e. round mould) 
is considered in this work. Due to axi-symmetry, a 
plane model can be used thus permitting a faster 
simulation to be performed. The component behaviour 
can be followed till stabilization adopting the
combined model. This case can be then taken as a 
reference to compare different accelerated models 
proposed in literature. The aim of this work is to 
validate the “design diagram” shown in Fig. 1, which
permits a suitable speed of stabilization to be set-up, in 
order to reach stabilized conditions in a feasible
computational time without affecting the consequent 
durability assessment.

2 Accelerated cyclic plasticity models
A combined (kinematic and isotropic) model captures
simultaneously monotonic hardening (elasto-plastic) 
and cyclic hardening/softening behaviour of a material. 
The yield surface can be represented as [7]:

                ( ) ( ) 0:
2
3

0 =−−−− σRXSXS (1)

where S is the deviatoric stress tensor, X is the back 
stress tensor, R is the drag stress and σ0 is the initial 
yield stress. In this case, the yield surface both 
translates (controlled by X) and expands (controlled by 
R) with the plastic strain εp.

Different kinematic models have been proposed in 
literature to relate X to εpl [7]. Chaboche model
(nonlinear kinematic) assumes that the increment of the 
back stress dX is expressed as a function of the plastic 
strain increment dεpl and the accumulated plastic strain 
dεpl,acc [7]:
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where C is the hardening modulus and γ is the non-
linear recovery parameter that controls the decrease 
rate of the hardening modulus as plastic strain 
accumulates. The model with one pair of (C1, γ1) is 
known as the Armstrong and Frederick model. In 
addition, considering γ=0 the Prager model (i.e. linear 
kinematic) is obtained and relation (2) can be 
expressed as [7]:

                                 pllind3
2d εX C= (3)

The nonlinear isotropic model controls the 
homothetic expansion of the yield surface [7]:

                              ( ) accpl,dd εRRbR −= ∞ (4)

where R∞ is the saturated drag stress, b is the 
parameter that controls the speed of hardening (R∞>0)
or softening (R∞<0). Integration of (4) gives expression 
that links R∞ to εpl,acc [7]:

                          ( )[ ]accpl,exp1 εbRR −−= ∞ (5)

Stabilized condition is obtained when R reaches R∞.
Cyclic hardening/softening behaviour of a material is 
mainly governed by the speed of stabilization b and the 
accumulated plastic strain εpl,acc. When the accumulated 
plastic strain is relatively small, a huge number of 
cycles is required to reach the stabilized condition as 
already shown in Fig. 1.

Some accelerated methods have thus been proposed 
in literature. In particular, in presence of creep and
thermal fatigue, authors such in [8, 9, 10] suggest only 
a limited number of cycles to be simulated; even if this 
procedure seems not well defined, it has to be 
considered that the presence of visco-elasticity 
generally strongly reduces the stabilization time. On 
the other hand, some authors [11, 12] use the kinematic 
model with stabilized material condition from the 
beginning of simulation, at the same time neglecting
the initial transient cyclic deformation. If creep 
constitutes the damage criteria, a more rigorous 
approach was proposed in [13], where an extrapolation 
technique is developed to speed up the simulation. An 
alternative approach was suggested in [6]. Since the 
accumulated plastic strain (see Eq. 5) depends on 
loading condition and cannot be changed, it was 
proposed to accelerate material stabilization by 
increasing (10-200 times) the speed of stabilization b.

3 Case study: round mould under 
variable thermal flux
A mould is a part of the continuous casting process 
where solidification of steel starts. During
solidification, a huge thermal flux, q, is transferred 
from the molten steel, that is in contact to the inner 
surface, to the water-cooled outer surface of the mould, 
see Fig. 2. The thermal flux distribution varies between 
two conditions: q=0 when the plant is turned-off due to 
maintenance and q=qmax when the plant operates [5].

Fig. 2. Description of a mould and of its working condition.
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Generally, moulds are constituted by a hollow tube 
of copper alloys while according to the geometry of the 
final product, different types of cross sections (square, 
rectangular or rounded) can be adopted. Copper alloys 

are used because they provide the best combination of
high thermal conductivity and adequate mechanical 
properties.

Table 1. Material properties for CuAg0.1 [15].

Temp.
(oC)

E
(MPa)

Es
(MPa)

σ0
(MPa)

σ0*
(MPa)

C1
(MPa)

γ1 C2
(MPa)

γ2 C3
(MPa)

γ3 Clin
(MPa)

R∞
(MPa)

b

20 119988 114763 113 86 25880 1627 24460 1624 15620 315.4 37439 -68 2.352

250 106080 94758 110 57 31310 1708 10240 343.6 5256 1748 18039 -75 3.894

300 oC 103800 94793 108 50 13170 1092 10700 398.2 10650 1155 18466 -77 5.293

In this work, a round mould 1000 mm long, 16 mm 
thick and with 200 mm inner diameter was studied,
similarly to the component described in [14]. As  
material, it was assumed a CuAg0.1 alloy, whose 
properties, listed in Tab. 1, were experimentally 
obtained in [15, 16, 17].

3.1. Numerical simulation – FEM model

A two dimensional (2D) model was adopted due to axi-
symmetry, thus strongly decreasing the computational 
time. The finite element model (FEM) had 760 
elements and 2487 nodes. As can be seen in Fig. 3, the 
mesh was refined in the meniscus area close to the 
liquid free surface where the maximum thermal 
gradients occur

3.1.1 Thermal analysis and results

A thermal analysis was performed considering the 
thermal flux acting on the inner surface and imposing 
convection on the outer surface of the mould to 
simulate a water cooling. In the FEM model 8-node 
elements were used. The thermal flux proposed in [14]
was 50% increased to reach a maximum temperature 
close to 300 oC for which material parameters are 
available in [15]. The convection coefficient is 48000 
W/m2K and temperature of the cooling water is 40 °C.
Variation of the thermal flux schematically presented 
in Fig. 2 was simulated by a sequence of steady state 
analyses. A nonlinear solution was carried out to 
simulate the temperature dependence of thermal 
properties.

Fig. 3. FEM model a), temperature distribution b), and 
equivalent plastic strain c).

The highest temperatures and thermal gradients occur 
in the region close to meniscus. The maximum 
temperature 298 oC occurs in the position labelled with 
“A” (see Fig. 3b) that is also a representative point for 
the calculation presented in the following section.

3.1.2 Mechanical analysis and results

Temperature distribution calculated previously in the 
thermal analysis was the input data for the mechanical 
analysis. Since the component is free to expand, no 
mechanical constraints were imposed on the numerical 
model. The nonlinear mechanical analysis was 
performed assuming temperature dependence of 
material parameters and considering combined 
(nonlinear kinematic + nonlinear isotropic) model with 
parameters taken from [15].

The component is cyclically loaded until 
stabilization by using different material models. The 
comparison is performed considering the equivalent 
strain range ∆εeq. Before proceeding with simulations, 
a criterion that defines when material stabilization 
actually occurs needs to be established.

Normalized maxima of the stress evolution as a 
function of the accumulated plastic strain are
considered [7, 18]: 

A

T oC

A A

a) b) c)
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where σmax,i, σmax,1 σmax,s are the maximum stress for 
the Nth number of cycle, first and stabilized, 
respectively. Assuming that the plastic strain range ∆εpl
is constant over cycles (see [7]):

                             Nplaccpl, 2 εε ∆≈ (7)

the following relation proposed in [18] could be 
introduced:

                                   52 pl ≈∆ Nb ε (8)

Eq. (8) assumes that a value close to 5 is good 
saturation criterion of the exponent in Eq. (6). The 
criterion adopted to determine the stabilized condition 
of a material is:

                                 993.0
1max,max,

1max,max, ≈
−
−
σσ
σσ

s

i (9)

Fig. 4. Combined model: maximum stress a) and strain range b) versus number of cycles.

Fig. 5. Combined model: stress-strain cycles: axial direction a) and hoop direction b).

Results obtained with the combined model were 
compared with those achieved considering accelerated 
models with 8 different values of parameter ba: 10b,
20b, 30b, 100b, 200b, 300b, 421b and 0.01b, covering 
a wider range with respect to that proposed in  [6, 18]. 
Prager and nonlinear kinematic models with initial (E,
σ0) and stabilized (Es, σ0*) condition (where yield stress 
and Young’s modulus were determined from 1st and 
stabilized cycle, respectively) were also implemented 
for comparison.

Firstly, the combined model was analysed. 
Adopting the stabilization criterion given by Eq. (9),
the material stabilizes within 537 cycles. This results 

can be argued also from Fig. 4 and 6. Fig. 4a presents 
hoop, axial, radial and von Mises maximum stresses 
(computed at the critical point A) versus the number of 
cycles. It can be observed that a biaxial state of stress 
occurs. In Fig. 4b, the three components of strain range 
and the equivalent strain range, determined according 
to [4], versus the number of cycles are presented. It can 
be noticed that the hoop strain range is almost constant, 
whereas the other two components increase until 
stabilization. This behaviour can be clearly observed 
also in Fig. 5, where hoop and axial stress-strain 
evolution is presented. For the sake of clarity, only the 

a) b)

a) b)
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first five cycles, the 100th, the 200th, the 300th, the 400th

and the final stabilized cycles are presented. 
Results obtained with several accelerated models 

are under investigation hereinafter. According to [6], 
stabilization of material can be reached in a shorter 
simulation time by increasing the original value of 
speed of stabilization b to ba. On the other hand, in the 
same work [6] it was observed that in some cases,
particularly when softening occurs, the accelerated 
solution can also be completely incorrect.

In this work a wide span of cases with different 
values of ba were thus considered (ba=10b, 20b, 30b,
100b, 200b, 300b). The lower bound case ba=0.01b
was also investigated. In this case, stabilization is 
reached in 8 cycles. This is due to the criterion defined 
by Eq. (9). Theoretically, models with speed of 
stabilization that tends towards zero requires a number 
of cycles to stabilization that tends towards infinite.
Nevertheless, as in this case the contribution of the 
nonlinear isotropic model is negligible, cyclic decrease 
of stress from cycle to cycle is smaller than tolerance 
and therefore a fast stabilization seems to occur. The 
upper bound case (ba=421b) was also investigated.

Fig. 6 shows a comparison between these cases in 
term of the maximum von Mises stress in each cycle. 
The number of cycles of each curve are normalized 
with respect to the corresponding number of cycles to 
stabilization Nstab in order to emphasize differences 
among the models occurring in first few cycles. 
Despite the different behaviour at the beginning, all the 
accelerated models reach almost the same value of von 
Mises stress. Obviously in the case ba=0.01b a higher 
value of Von Mises stress is reached. In fact, as already 
explained, softening does not occur.

Fig. 6. Maximum von Mises stress evolution up to 
stabilization.

The evolution of the equivalent strain range from 
first to stabilized cycle is presented in Fig. 7. The 
equivalent strain range is calculated for all accelerated 
models and compared with results calculated 
considering the combined model (see Tab. 2). Results 
obtained with the combined model show a well know 
“s-shaped” curve which corresponds to the adopted 
nonlinear isotropic model. Quite similar “s-shaped”
curves are also obtained with the accelerated models 
with a moderately increased speed of stabilization 

(ba=10b÷30b), while this shape is lost for higher values 
of ba (ba=100b÷300b). Similar behaviour is observed 
also for the bound case ba=0.01b, for which, as already 
shown, the model reaches stabilization in few cycles.

Fig. 7. Equivalent strain range versus number of cycles to 
stabilization.

In Fig. 7 also the case ba=421b is reported,
representing the upper bound. In fact, for higher values 
of ba numerical problems do not permit the 
convergence to be reached. Due to the high speed of 
stabilization, the model wants to reach stabilization 
almost immediately somehow neglecting the nonlinear 
kinematic model that controls the monotonic 
hardening. 

Fig. 8 shows the correlation between speed of 
stabilization and number of cycles to stabilization. As 
can be observed, plotting the data on a log-log scale 
gives almost a linear relation between b and Nstab.
Accelerated models with ba=0.01b and ba=421b
obviously deviate from this trend. 

Fig. 8. Correlation between the speed of stabilization and 
number of cycles to stabilization. 

Fig. 9 presents a “design diagram” calculated with
Eq. (8) which correlates b, N and ∆εpl, which is 
computed in the first cycles. All the three components 
of plastic strain range (∆εpl,a=0.0554% axial direction, 
∆εpl,θ=0.0734% hoop direction and ∆εpl,r=0.1289% 
radial direction) calculated by FE after the 5th cycle are 
considered and therefore three curves are presented.

1 Nstab0.5Nstab
N

Nstab

Upper bound 

Lower bound
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Table 2. Number of cycles to stabilization and ∆εeq for point A (T=300 oC).

Combined
model

Accelerated models Non. Kin 
initial

Non. Kin. 
stabilized

Prager 
model

10b 20b 30b 100b 200b 300b 421b 0.01b

Nstab 537 68 34 21 8 6 4 10 8 8 10 5

Δεeq
(%) 0.4003 0.4020 0.4019 0.4017 0.4002 0.4005 0.3984 0.3967 0.3391 0.3392 0.3658 0.3574

Δe
(%) 0.41 0.40 0.36 -0.02 0.5 -0.48 -0.91 -15.30 -15.26 -8.60 -10.71

As can be noticed results obtained with all 
accelerated models except the two bound cases 
(ba=0.01b and ba=421b) show a good agreement with the 
adopted relation. 

Fig. 9. Design diagram for T=300 oC.

As pointed out in Section 2, very often in literature it 
is suggested to perform the simulation only for few 
cycles. As shown in Fig. 7, this approach in this case 
would introduce a significant error. For instance, the 
value of the equivalent strain range obtained after 10 
cycles is about 15% lower than the value obtained in 
stabilized condition. It follows that, entering in the 
Manson-Coffin curve [16], the number of cycles to 
failure would be overestimated. Also the usual approach 
of adopting the kinematic model in the stabilized 
condition could rise significant errors. Fig. 10 shows the 
equivalent strain range for all the adopted models. The 
case of the Prager and nonlinear kinematic (initial and 
stabilized) models also reported. The Prager model is 
often proposed in literature because parameter Clin can be 
estimated by simply using monotonic uniaxial test. In the 
initial and stabilized nonlinear kinematic models the 
yield stress and the Young’s modulus are estimated at 
the beginning of loading and at stabilization, 
respectively. Therefore, model parameters E and σ0 are 
replaced by Es and σ0* estimated from stabilized cycles, 
while kinematic variables (Ci, γi) remain unaffected. All
these approaches are based on a kinematic model and 
therefore capture only the monotonic hardening 
behaviour.

Fig. 10. Comparison between all adopted cyclic plasticity 
models in terms of equivalent strain range.  

Tab. 2 summarizes the results shown in Fig.10. As 
can be noticed, neglecting the bound cases (ba=0.01b and 
ba=421b), Δεeq does not show a dependence with the 
speed of stabilization and its value substantially 
coincides with that obtained with the combined model. A
relative error Δe=(Δεeq,a-Δεeq,c)/Δεeq,c is calculated where 
Δεeq,a and Δεeq,c are the equivalent strain ranges for the 
considered accelerated and combined model, 
respectively. In the case of ba=10b÷300b the error 
remains always in the range of -0.48÷0.5%. Result 
obtained with the nonlinear kinematic model that 
considers initial condition of a material (Non. Kin. 
initial) and neglects stabilized condition gives a high 
relative error (-15.26%) with respect to all adopted 
models. A quite similar error (-15.3%) is calculated with 
the accelerated model when ba=0.01b, since the model
stabilized after 8 cycles. Due to the strong simplification, 
Prager and nonlinear kinematic-stabilized (Non. Kin. 
stabilized) models provide, instead, a smaller but still 
significant relative error (-8.6% and -10.71%). This 
result is in good agreement with the conclusions in [6],
where it was observed that the direct use of the stabilized 
model could lead to heavy mistakes. Based on the 
obtained results, it is possible to conclude that neglecting
the initial as well as stabilized condition of material 
could give misleading results that can heavily affect
durability assessment, in particular over-estimating the 
life of the component.

As the computation time is almost proportional to the 
number of cycles to stabilization, it is possible to 

Δεpl,a-5=0.0587

Δεpl,θ-5=0.0759

Δεpl,r-5=0.1347
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conclude that the accelerated model permits a strong 
reduction of the computational effort, keeping the same 
accuracy as the combined model.

4 Design rule for practical use in FEM 
modelling
As Eq. (8) shows, for decreasing values of plastic strain 
range ∆εpl, the number of cycles to reach stabilization 
Nstab increases proportionally. This case obviously falls 
in the “unfeasible” purple area depicted in Fig.1. It is of 
practical interest to assess a design rule to deal with 
these cases. For this purpose, the thermal flux proposed 
in [14] was only 30% increased to reach a maximum 
temperature close to 250 °C for which material
properties are available.

Firstly, the numerical simulation with the combined 
model was performed up to the complete stabilization 
(1033 cycles) in order to have the reference case, see 
Tab. 3. The ratio between the equivalent plastic strain 
range ∆εeq,pl and the equivalent strain range ∆εeq was 
0.57, while in the previous case this ratio was 0.64 (as 
expected, in the latter case the component is less 
plastically strained). The three components (axial, hoop 
and radial) of the plastic strain range computed after 5 
cycles were used to evaluate the corresponding curves,
according to Eq. (8), see Fig. 11. 

Fig. 11. Design diagram for T=250 oC.

Entering in the design diagram with the number of 
cycles to stabilization considered feasible to perform the 
numerical simulation, the speed of stabilization to be 
used in the accelerated model could be obtained. For 
example, assuming Nstab=40 gives ba=200 (the curve 
relative to the axial strain component was used), see Fig 
11. Running the FE analysis with the accelerated model 
with ba=200 and performing a simulation of 40 cycles, a 
value of equivalent strain range ∆εeq=0.3144% was 
obtained. With respect to the combined model, which 
requires to simulate 1033 cycles, in this case an error of
only 2.27% was obtained with a huge reduction of the 
computational effort.

Table 3. Number of cycles to stabilization and 
∆εeq for point A (T=250 oC).

Combined model Accelerated model

b≈4 ba=200

Nstab 1033 40

Δεeq (%) 0.3075 0.3144

Δe (%) − 2.27

5 Conclusions
The choice of the adopted cyclic plasticity model in 

numerical simulations is an important design aspect,
particularly when dealing with components under cyclic 
thermo-mechanical loading. In principle, the material 
model should follow quite accurately the cyclic 
evolution of the material behaviour and the numerical 
simulation has to be performed up to stabilization. Quite 
often this goal is unfeasible and it is thus necessary to 
refer to simplified models or to acceleration techniques.

In this work, several models (combined, accelerated, 
Prager, nonlinear kinematic initial and stabilized models) 
have been considered and compared in terms of the 
equivalent strain range. Based on the obtained results, it 
is possible to conclude that the use of too simplified 
models (Prager, nonlinear kinematic initial and 
stabilized) neglecting initial or stabilized conditions may 
be inadequate, as they could lead to overestimate the 
fatigue life of the component. On the other hand, 
accelerated models give results that are always close to 
the fully-stabilized combined model, assumed as 
reference.

A design rule is finally proposed. According to this 
approach, particularly useful when the plastic strain 
range induced by the thermo-mechanical loads is 
relatively small, few cycles of simulation have to be 
firstly performed. According to the obtained value of 
plastic strain range and to the computational time, a 
curve can be calculated, permitting a suitable value of 
increased speed of stabilization to be introduced in the 
model to perform the final FEM analysis.
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