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Abstract The ESR model proposes a new theoretical perspective which incorporates
the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) in
a noncontextual framework, reinterpreting quantum probabilities as conditional on
detection instead of absolute. We have provided in some previous papers mathemati-
cal representations of the physical entities introduced by the ESR model, namely ob-
servables, properties, pure states, proper and improper mixtures, together with rules
for calculating conditional and overall probabilities, and for describing transforma-
tions of states induced by measurements. We study in this paper the relevant physical
case of the quantum harmonic oscillator in our mathematical formalism. We reinter-
pret the standard quantum rules for probabilities, provide new expressions for abso-
lute probabilities, and show how the standard state transformations must be modified
according to the ESR model.

Keywords Quantum mechanics · Harmonic oscillator · State transformations · ESR
model

1 Introduction

A crucial and problematical feature of the standard interpretation of quantum me-
chanics (QM) is nonobjectivity of physical properties, which follows from a series of
“no-go theorems”, the most important of which are the Bell–Kochen–Specker [1, 2]

S. Sozzo (�)
Center Leo Apostel (CLEA), Brussels Free University (VUB), Brussels, Belgium
e-mail: ssozzo@vub.ac.be

S. Sozzo
Department of Mathematics and Physics, University of Salento, Lecce, Italy
e-mail: Sozzo@le.infn.it

mailto:ssozzo@vub.ac.be
mailto:Sozzo@le.infn.it


Found Phys (2013) 43:792–804 793

and Bell [3, 4] theorems. To be precise, if one adopts a minimal “realistic” posi-
tion, according to which individual examples of physical systems can be produced
[5, 6], one can supply an operational definition of objectivity by stating that a physi-
cal property E (e.g., the value of an observable) is objective for a given state S of a
physical system Ω if for every individual example of Ω in the state S the result of
an ideal measurement of E does not depend on the measurement context. Then, the
Bell–Kochen–Specker theorem provides examples of physical systems and states in
which there are nonobjective properties (contextuality of QM), while the Bell theo-
rem shows that contextuality may occur also at a distance (nonlocality of QM), both
features supporting the standard assumption in QM that for every state there are phys-
ical properties that are not objective.

Nonobjectivity of physical properties has many puzzling consequences. In partic-
ular, it entails the objectification problem [5, 7], i.e., the main and unsolved problem
of the quantum theory of measurement [5, 8, 9], hence several known paradoxes
(Schödinger’s cat, Wigner’s friend, etc.). The debate about the above problems and
the foundations of QM is still alive, as witnessed by some recent publications on these
issues [10, 11].

Trying to avoid the problems above, the author has recently published together
with another author several papers [12–26] in which an ESR (extended semantic
realism) model is elaborated whose mathematical apparatus embodies the mathe-
matical apparatus of QM but quantum probabilities are reinterpreted as conditional
on detection rather than absolute. The ESR model consists of a microscopic and a
macroscopic part. The former is a noncontextual (hence local) hidden variables the-
ory, according to which physical properties are objective and the no-go theorems do
not hold because of the aforesaid reinterpretation of quantum probabilities. The latter
can instead be presented as a self-consistent theory, without mentioning the hidden
variables, even if the hidden variables are needed if one has to prove objectivity or to
justify the assumptions introduced at a macroscopic level. The new theory introduces
a distinction between absolute and conditional on detection probabilities that does
not occur in QM. Hence the predictions of the ESR model about the results of exper-
iments checking absolute probabilities are generally different from the predictions
of QM (even if the difference depends on some parameters, the detection probabili-
ties, which may make it so small that it remains unnoticed at the experimental level).
On the contrary, the predictions of the ESR model about the results of experiments
checking conditional on detection probabilities (as Aspect’s, or similar subsequent
experiments; see, e.g., [27] and references therein) coincide with the predictions of
QM [20]. There are however physical situations in which the difference between the
two theories may become relevant and one can contrive experiments to check which
predictions better fit experimental data [20, 23, 25, 26].

The main features of the ESR model can be summarized as follows.

(i) Each generalized observable is represented by a pair, consisting of the standard
quantum representation and a (commutative) family of positive operator valued
(POV) measures parametrized by the set of all pure states of the physical sys-
tem that is considered. Moreover, a generalized projection postulate (GPP) rules
the transformations of pure states induced by nondestructive idealized measure-
ments [18, 19, 21, 25, 26].
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(ii) The traditional Bell inequalities, modified Bell inequalities and quantum predic-
tions hold together in the ESR model because they refer to different parts of the
picture of the physical world supplied by the model [16, 17, 20, 23, 25].

(iii) Each proper mixture is represented by a family of pairs, each pair consist-
ing of a density operator and a convex combination of detection probabilities,
parametrized by the set of all macroscopic properties characterizing the physical
system that is considered. Moreover, a generalized Lüders postulate (GLP) that
generalizes GPP rules the general transformations of proper mixtures induced
by nondestructive idealized measurements [22, 24–26].

(iv) Each improper mixture is represented by a single density operator, as in QM
[26].

(v) The different representations of proper and improper mixtures avoid some deep
interpretative problems that arise in QM. Furthermore, an experiment with
proper mixtures can be envisaged in which the predictions of the ESR model are
different from the predictions of QM, thus discriminating empirically between
the two theories [24, 26].

In this paper, we consider a “case study”, that is, we apply the mathematical for-
malism put forward in (i)–(iv) to the study of the quantum harmonic oscillator in the
ESR model. We chose this example for both its simplicity and the range of its appli-
cations [28–30]. Hence, after briefly resuming the essentials of the ESR model that
are required for our purposes, namely, the mathematical representations of pure states
and generalized observables (Sect. 2), we derive rules for calculating conditional and
overall probabilities for the energy and position observables of the harmonic oscilla-
tor. We show that these rules generalize the standard quantum rules in this specific
example (Sect. 3). We finally consider the transformations of pure states induced by
idealized measurements of energy and position, and point out that some interesting
conclusions and predictions can be attained also in this case.

We stress that the results obtained in the present paper on the quantum harmonic
oscillator refer to idealized, or perfectly efficient, measurements. The difference be-
tween the predictions of the ESR model and the predictions of standard QM thus de-
pends on the intrinsic detection probabilities. Nevertheless, this does not imply that
in every experiment improving efficiencies may lead to results contradicting QM.
According to the ESR model, there might be indeed two kinds of experiments, those
checking absolute probabilities and those checking conditional on detection prob-
abilities. Experiments of the first kind will yield results that might differ from the
results predicted by QM. Experiments of the second kind will yield results agreeing
with QM.

2 The ESR Model

In the next sections, we summarize the basics of the ESR model that are needed in
the following [13, 14, 19–21, 25, 26].
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2.1 Basic Notion and Fundamental Equations

According to the ESR model, a physical system Ω is operationally defined by a pair
(Π,R), with Π a set of preparing devices and R a set of measuring apparatuses.
Every preparing device, when activated, prepares an individual example of Ω (which
can be identified with the preparation act itself if one wants to avoid any ontological
commitment). Every measuring device, if activated after a preparing device, yields
an outcome, that we assume to be a real number.

In the theoretical description a physical system Ω is characterized by a set U of
physical objects and a set E of microscopic properties at a microscopic level, and by
a set S of states and a set O0 of generalized observables at a macroscopic level.

Physical objects are operationally interpreted as individual examples of Ω , while
microscopic properties are purely theoretical entities (the hidden variables of the
model). Every physical object x ∈ U is associated with a set of microscopic proper-
ties (the microscopic properties possessed by x) which is called the microscopic state
of x and also is a theoretical entity.

States are operationally interpreted as classes of probabilistically equivalent
preparing devices, following standard procedures in the foundations of QM [31, 32].
Every device π ∈ S ∈ S , when constructed and activated, prepares an individual ex-
ample of Ω , hence a physical object x, and one briefly says that “x is (prepared)
in the state S”. Analogously, generalized observables are operationally interpreted
as classes of probabilistically equivalent measuring apparatuses. Every A0 ∈ O0 is
obtained by considering an observable A in the set O of all observables of QM and
adding a no-registration outcome a0 ∈ �, a0 /∈ Ξ to the set Ξ of all possible values
of A on the real line �, so that the set of all possible values of A0 is Ξ0 = {a0} ∪ Ξ .1

The set F0 of all (macroscopic) properties of Ω is then defined as follows,

F0 = {
(A0,X) | A0 ∈ O0, X ∈ B(�)

}
, (1)

where B(�) is the σ -algebra of all Borel subsets of �. Hence the subset

F = {
(A0,X) | A0 ∈ O0, X ∈ B(�), a0 /∈ X

} ⊂ F0 (2)

is in one-to-one correspondence with the set G = {(A,X) | A ∈ O, X ∈ B(�)} of all
properties associated with observables of QM.

A measurement of a property F = (A0,X) ∈ F0 on a physical object x in the state
S is then described as a registration performed by means of a dichotomic registering
device whose outcomes are denoted by yes and no. The measurement yields outcome
yes/no (equivalently, x displays/does not display F ), if and only if the value of A0
belongs/does not belong to X.

1Two remarks are important at this stage. Firstly, the choice of a0 is arbitrary, which implies that A can be
generalized in different ways. We shall presently see, however, that physical probabilities do not depend
on the choice of a0. Secondly, when the spectrum of the self-adjoint operator Â representing the quantum
observable A coincides with �, the condition a0 /∈ Ξ cannot be fulfilled. In this special case, one can
consider a bijective function f : � −→ �∗, with �∗ a proper Borel subset of �, and then substitute A

with f (A). Alternatively, one can simply place a0 in the nondiscrete part of the spectrum of Â because

the orthogonal projection operator P Â(X) associated with the Borel set X by the spectral decomposition
of Â reduces to 0 whenever X = {a0}.
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The connection between the microscopic and the macroscopic part of the ESR
model is established by introducing the following assumptions.

(i) A bijective mapping ϕ : f ∈ E −→ F ∈ F ⊂ F0 exists.
(ii) If s is the microscopic state of a physical object x, and an idealized measurement

of a macroscopic property F = ϕ(f ) is performed on x, then s determines a
probability pd

s (F ) that x be detected, and x displays F if it is detected and f ∈ s,
does not display F if it is not detected or f /∈ s. For the sake of simplicity, we
will consider only idealized measurements in the following.

The ESR model is deterministic if pd
s (F ) ∈ {0,1}, probabilistic otherwise. In the

former case it is necessarily noncontextual, hence physical properties are objective,
because the outcome of the measurement of a macroscopic property on a physical
object x depends only on the microscopic properties possessed by x and not on the
measurement context. In the latter case one can recover noncontextuality by adding
further hidden variables which do not correspond to microscopic properties in F to
the microscopic properties in E [20].

By using the connection between the microscopic and the macroscopic part of the
ESR model one can show [20] that, whenever the property F = (A0,X) ∈ F (hence
a0 /∈ X) is measured on a physical object x in the (macroscopic) state S, the overall
probability pt

S(F ) that x display F is given by

pt
S(F ) = pd

S(F )pS(F ). (3)

The symbol pd
S(F ) in Eq. (3) denotes the probability that x be detected whenever

it is in the state S (detection probability) and F is measured. The value of pd
S(F ) is

not fixed for a given generalized observable A0 because it may depend on F , hence
on X. But the connection of microscopic with macroscopic properties via ϕ implies
that pd

S(F ) depends only on the features of the physical objects in the state S, hence
it does not occur because of flaws or lack of efficiency of the apparatus measuring F .

The symbol pS(F ) in Eq. (3) denotes instead the conditional probability that x

display F when it is detected.
Equation (3) only applies to properties in F . But if we consider the measurement

of a property F = (A0,X) ∈ F0 \ F (hence a0 ∈ X), it is physically reasonable to
assume that, for every S ∈ S ,

pt
S(F ) = 1 − pt

S

(
Fc

) = 1 − pd
S

(
Fc

)
pS

(
Fc

)
, (4)

with Fc = (A0, (� \ X)) ∈ F . Hence we mainly deal with properties in F in the
following.

The crucial feature of Eq. (3) is that it implies that three basic probabilities occur
in the ESR model. We cannot supply as yet any theory which allows us to predict
the value of pd

S(F ). We can however consider pd
S(F ) as an unknown parameter to

be determined empirically, and then introduce theoretical assumptions that connect
the ESR model with QM, enabling us to provide mathematical representations of the
physical entities introduced in the ESR model together with explicit expressions of
pt

S(F ) and pS(F ).
Let us begin with pS(F ). The following statement expresses the fundamental as-

sumption of the ESR model.
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Assumption AX If S is a pure state and F ∈ F , the probability pS(F ) can be eval-
uated by using the same rules that yield the probability of F in the state S according
to QM.

Assumption AX allows one to recover the basic formalism of QM in the frame-
work of the ESR model but modifies its standard interpretation. Indeed, according to
QM, whenever an ensemble ES of physical objects in a state S is prepared and ideal
measurements of a property F are performed, all physical objects in ES are detected,
hence the quantum rules yield the probability that a physical object x display F if
x is selected in ES (absolute probability). According to Assumption AX, instead, if
S is pure, the quantum rules yield the probability that a physical object x display F

if idealized measurements of F are performed and x is selected in the subset of all
objects of ES that are detected (conditional probability).

For the sake of simplicity, we limit ourselves here to consider pure states only
from now on. Proper and improper mixtures have been analysed both from a physical
and a mathematical point of view in the ESR model [23–26], and they brought in
conceptually unexpected novelties, as we have seen in Sect. 1. However, they are not
relevant for our purposes in this paper.

2.2 Mathematical Representations

Let us resume the mathematical representations of the physical entities introduced in
the ESR model. We present them in an axiomatic form, but they can be deduced from
the basics of the ESR model resumed in Sect. 2.1 [19, 21, 24–26].

Pure States Each physical system Ω is associated with a (separable) complex
Hilbert space H . Let V be the set of all unit vectors of H . Then, each pure state S

of Ω is represented by a unit vector |ψ〉 ∈ V , as in standard QM.

Generalized Observables Let A ∈ O be an observable of QM and let A0 be the
generalized observable obtained from A as specified in Sect. 2.1. We denote by Â

the self-adjoint operator representing A in QM and by P Â the projection valued (PV)
measure associated with Â by the spectral theorem,

P Â : X ∈ B(�) 	−→ P Â(X) =
∫

X

dP Â
λ ∈ L (H ), (5)

(where L (H ) is the set of all orthogonal projection operators on H ). Then, the
generalized observable A0 is represented by the pair

(
Â,T Â

)
, (6)

where the second element of the pair is a family T Â = {T Â
ψ }|ψ〉∈V of positive oper-

ator valued (POV) measures

T Â
ψ : X ∈ B(�) 	−→ T Â

ψ (X) ∈ B(H ) (7)

(where B(H ) is the set of all bounded operators on H ) defined as follows

T Â
ψ (X) =

{∫
X

pd
ψ(Â, λ)dP Â

λ if a0 /∈ X

I − ∫
�\X pd

ψ(Â, λ)dP Â
λ if a0 ∈ X,

(8)
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(where I is the identity operator on H ). The real-valued function pd
ψ(Â, ·) in Eq. (8)

is such that, for every |ψ〉 ∈ H , 〈ψ |pd
ψ(Â, λ)

dP Â
λ

dλ
|ψ〉 is measurable on �. Moreover,

for every |ψ〉 ∈ V , the POV measure T Â
ψ is commutative, that is, for every X,Y ∈

B(�), T Â
ψ (X)T Â

ψ (Y ) = T Â
ψ (Y )T Â

ψ (X).

Properties Let F = (A0,X) ∈ F0 be a property of Ω . Then, F is represented by
the pair (P Â(X), {T Â

ψ (X)}|ψ〉∈V ). The first element of the pair coincides with the
representation in QM of the property (A,X). The second element is instead a family
of effects defined by Eq. (8).

Conditional Probabilities Let F = (A0,X) ∈ F . Then, the conditional probability
that a physical object x in the pure state S represented by the unit vector |ψ〉 ∈ V
display the property F when x is detected is given by

pS(F ) = 〈ψ |P Â(X)|ψ〉. (9)

The probability in Eq. (9) obviously coincides with the conditional probability
pS(A0,X) that an idealized measurement of the generalized observable A0 on x in
the state S yield an outcome that lies in the Borel set X when x is detected.

Overall Probabilities Let F = (A0,X) ∈ F . Then, the overall probability that a
physical object x in the pure state S, represented by the unit vector |ψ〉 ∈ V , display
the property F is given by

pt
S(F ) = 〈ψ |T Â

ψ (X)|ψ〉. (10)

The probability in Eq. (10) obviously coincides with the overall probability
pt

S(A0,X) that an idealized measurement of the generalized observable A0 on x

in the state S yield an outcome that lies in the Borel set X.
Summing up, the representation of a pure state in the ESR model coincides with

the standard representation of a pure state in QM. The representations of a generalized
observable or of a property is provided instead by means of a pair. In both cases, the
first element of the pair coincides with a standard representation in QM and is used
to evaluate conditional probabilities, while the second element is a family which is
used to evaluate overall probabilities.

State Transformations To close up, we recall the generalized projection postulate
that rules the transformations of pure states induced by idealized nondestructive mea-
surements.

GPP Let S be a pure state represented by the unit vector |ψ〉, and let an idealized
nondestructive measurement of a physical property F = (A0,X) ∈ F0 be performed
on a physical object x in the state S. Let the measurement yield the yes outcome.
Then, the state S(F ) of x after the measurement is a pure state represented by the
unit vector

∣∣ψ(F)
〉 = T Â

ψ (X)|ψ〉
√

〈ψ |T Â†
ψ (X)T Â

ψ (X)|ψ〉
. (11)
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Let the measurement yield the no outcome. Then, the state S′(F ) of x after the mea-
surement is a pure state represented by the unit vector

∣∣ψ ′(F )
〉 = T Â

ψ (� \ X)|ψ〉
√

〈ψ |T Â†
ψ (� \ X)T Â

ψ (� \ X)|ψ〉
. (12)

Equations (11) and (12) generalize the projection postulate of QM.

2.3 Physical Predictions

As we have anticipated in Sect. 1, the ESR model and QM may yield coincident or
different predictions, depending on the kind of the physical experiment that is con-
sidered. Indeed, Eq. (3) together with Assumption AX show that the predictions of
the ESR model are theoretically different from those of QM as far as experiments
checking overall probabilities are concerned. The predictions of the ESR model co-
incide instead with the predictions of QM in the case of experiments that actually
check conditional on detection probabilities, as Aspect’s and similar subsequent ex-
periments [20]. From a practical point of view, however, the differences between the
predictions of the two theories depend on the values of the detection probabilities,
and we have as yet no theory which allows us to calculate these probabilities. In this
sense, one could say that the ESR model is incomplete. But, one can consider the
detection probabilities in Eqs. (3) and (4), or the real valued functions pd

ψ(Â, ·) in
Eq. (8), as unknown parameters that can be determined experimentally and then in-
serted into the equations of the ESR model. This is a common procedure in many the-
ories (see, for example, the free parameters in the minimal standard model), and does
not prevent the ESR model from offering a new perspective and yielding new pre-
dictions. In particular, even if the detection probabilities are not explicitly predicted
by the ESR model, assumption AX implies restrictions on them which have physical
consequences that can be experimentally checked, as upper bound on the efficiencies
of experimental devices [16, 17, 20, 23, 25]. Moreover, a neat distinction is predicted
between the experimental results testing proper and improper mixtures [26]. From a
theoretical point of view has some important implications. Indeed, it shows that con-
textuality and nonlocality are not unavoidable consequences of the mere formalism
of QM, as commonly maintained:2 they also depend on the standard interpretation of
quantum probabilities as absolute, and can be avoided if this interpretation is mod-
ified, as the ESR model does. Moreover, the objectification problem does not occur
and quantum probabilities admit an epistemic interpretation. Obviously, there could
be cases in which the foregoing parameters are close to 1, hence the difference be-
tween the predictions of the ESR model and those of QM is negligible and remains
unnoticed. But, we have recently proved that there are also physically relevant situa-
tions in which this difference may be significant and can be experimentally checked
[20, 23, 25, 26].

2This does not mean that well-established “no-go theorems”, as Bell–Kochen–Specker’s and Bell’s, are
wrong. It means instead that their proofs also depend on implicit interpretative assumptions, and that they
can be circumvented if these assumptions are changed.
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Secondly, we stress that, since we consider only idealized, or perfectly efficient,
measurements, the detection probabilities, thus the functions pd

ψ(Â, ·), depend only
on the intrinsic features of the physical objects that are prepared in the state S repre-
sented by the unit vector |ψ〉, hence they do not depend on flaws or lacks of efficiency
of the concrete apparatuses measuring these objects. However, one can straightfor-
wardly extend the mathematical representation of the generalized observables in the
ESR model if one wants to take into account nonideal measurements of this kind.

3 The Quantum Harmonic Oscillator in the ESR Model

In this section, we apply the formalism reported in Sect. 2 to the description of an
important physical system, namely the one-dimensional harmonic oscillator.

The simplest example of such a system is a particle P of mass m moving in a
potential V (q) = 1

2mω2q2, where ω is an angular frequency and q is a generalized
coordinate. But quantum harmonic oscillators appear everywhere, from state solid
physics to quantum field theory [29] and quantum computation [30]. We therefore
intend to write down here the explicit expressions of conditional on detection prob-
abilities, the overall probabilities and the state transformations provided by the ESR
model for this kind of systems. As predicted by the theory, the former probabilities
formally coincide with quantum probabilities but bear a different physical interpre-
tation. The latter probabilities and the state transformations are instead formally dif-
ferent from their counterparts in QM, but may be identified with them FAPP (for all
practical purposes) if some detection probabilities are sufficiently small.

Let us preliminarily recall some elementary properties of the aforesaid sys-
tem [28].

The observable energy H of the harmonic oscillator is represented by the Hamil-

tonian operator Ĥ = P̂ 2

2m
+ 1

2mω2Q̂2 in QM, while the observables position and
momentum are represented by the self-adjoint operators Q̂ = ∫

� |q〉〈q|dq and P̂ =
∫
� |p〉〈p|dp, respectively. The spectrum of Ĥ is given by Ξ = {En = �ω(n +

1
2 )}n∈N0 , and the eigenvectors of Ĥ are provided by the recursive formula |φn〉 =

1√
n! (a

†)n|φ0〉, where a† is a ladder operator. In the {|q〉}q∈� representation, we have

φn(q) = 〈q|φn〉 =
(

mω

π�

) 1
4 1√

2nn!e
− mω

2�
q2

Hn

(√
mω

�
q

)
, (13)

where {Hn(
√

mω
�

q)}n∈N0 are the Hermite polynomials.

Let us now come to the description of the quantum harmonic oscillator in the ESR
model. Here the observable energy H is replaced by a generalized energy H0, in
which a no-registration outcome h0 is added to the eigenvalues E0,E1, . . . ,En, . . .

of the Hamiltonian operator Ĥ . The generalized energy H0 is represented by the pair
(Ĥ , {T Ĥ

ψ }ψ∈V ), where, for every |ψ〉 ∈ V , the POV measure T Ĥ
ψ is defined by

T Ĥ
ψ (X) =

{∑
n,En∈X pd

ψ(Ĥ ,En)|φn〉〈φn| if h0 /∈ X

I − ∑
n,En∈�\X pd

ψ(Ĥ ,En)|φn〉〈φn| if h0 ∈ X,
(14)

where, of course, pd
ψ(Ĥ ,En) = pd

S((H, {En})).
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The conditional on detection probability pS(H0,En) that an idealized measure-
ment of the generalized energy H0 on the particle P in the pure state S represented
by the unit vector |ψ〉 yield the outcome En when P is detected coincides with the
conditional on detection probability pS((H0, {En})) that a measurement of the prop-
erty (H0, {En}) yield outcome yes. Because of assumption AX we obtain

pS(H0,En) = 〈ψ |φn〉〈φn|ψ〉 = ∣∣〈φn|ψ〉∣∣2
, (15)

which coincides with the standard quantum formula for probability. Analogously, the
overall probability pt

S(H0,En) coincides with pt
S((H0, {En})) and is given by

pt
S(H0,En) = pd

ψ(Ĥ ,En)
∣∣〈φn|ψ〉∣∣2

. (16)

Furthermore, the overall probability pt
S(H0, h0) that P be not detected by an ideal-

ized measurement of the generalized observable H0 coincides with pt
S((H0, {h0}))

and is given by

pt
S(H0, h0) =

∑

n∈N0

(
1 − pd

ψ(Ĥ ,En)
)∣∣〈φn|ψ〉∣∣2

. (17)

By comparing Eqs. (15) and (16) one gets that they can be identified FAPP
whenever the measurement procedure is not idealized and introduces an efficiency
e < pd

ψ(Ĥ ,En). Similarly, pt
S(H0, h0) could be indistinguishable from lack of effi-

ciency in real measurement procedures.
Let us come to the formulas that describe the state transformations. Let an ideal-

ized measurement of the generalized energy H0 on the particle P in the pure state S

represented by the unit vector |ψ〉 give the outcome En. Such a measurement is equiv-
alent to a measurement of the property (H0, {En}) which yields answer yes. Hence,
by applying GPP in Sect. 2, Eq. (11), the final state of P after the measurement is a
pure state Sn = S((H0, {En})) represented by the unit vector

∣∣ψ
((

H0, {En}
))〉 = |ψn〉 = eiθn |φn〉. (18)

This vector coincides with the one obtained by applying the projection postulate of
QM. If the particle P in the pure state S is instead not detected by the idealized
measurement of H0, then the final state of P is a pure state S0 = S((H0, {h0})) rep-
resented by the unit vector

∣∣ψ
((

H0, {h0}
))〉 = |ψ0〉 =

∑
n∈N0

(1 − pd
ψ(Ĥ ,En))〈φn|ψ〉|φn〉

√∑
n∈N0

(1 − pd
ψ(Ĥ ,En))2|〈φn|ψ〉|2

. (19)

Let us now consider the position observable Q of QM. This observable is replaced
in the ESR model by a generalized position Q0, in which a no-registration outcome
q0 is added to the spectrum � of the position operator Q̂. The generalized position

Q0 is represented by the pair (Q̂, {T Q̂
ψ }ψ∈V ), where, for every |ψ〉 ∈ V , the POV

measure T
Q̂
ψ is defined by

T
Q̂
ψ (X) =

{∫
X

pd
ψ(Q̂, q)|q〉〈q|dq if q0 /∈ X

I − ∫
�\X pd

ψ(Q̂, q)|q〉〈q|dq if q0 ∈ X.
(20)
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The conditional on detection probability pS(Q0,X) that an idealized measure-
ment of the generalized position Q0 on the particle P in the pure state S represented
by the unit vector |ψ〉 yield an outcome that lies in the Borel set X when P is de-
tected coincides with the conditional on detection probability that a measurement of
the property (Q0,X) yield the outcome yes. Because of Assumption AX we obtain

pS(Q0,X) = 〈ψ |P Q̂(X)|ψ〉 =
∫

X

∣∣ψ(q)
∣∣2dq, (21)

which coincides with the standard quantum formula for probability. Analogously, the
overall probability pt

S(Q0,X) is given by

pt
S(Q0,X) =

∫

X

pd
ψ(Q̂, q)

∣∣ψ(q)
∣∣2dq (22)

if q0 /∈ X, while it is given by

pt
S(Q0,X) = 1 −

∫

�\X
pd

ψ(Q̂, q)
∣
∣ψ(q)

∣
∣2dq (23)

if q0 ∈ X.
Finally, let us show that also the formulas for the state transformations are gener-

ally different in the ESR model. Indeed, let q0 ∈ X and let an idealized nondestructive
measurement of the property (Q0,X) be performed on the particle P in the pure state
S represented by the unit vector |ψ〉 which yields the outcome yes. Then, by applying
GPP in Sect. 2, Eq. (11) one gets that the final state of P after the measurement is a
pure state S((Q0,X)) represented by the unit vector

∣∣ψ(X)
〉 =

∫
X

pd
ψ(Q̂, q)ψ(q)|q〉dq

√∫
X
(pd

ψ(Q̂, q))2|ψ(q)|2dq
. (24)

If the particle P in the pure state S is instead not detected by the idealized measure-
ment of Q0, the final state of P is a pure state T0 = S((Q0, {q0})) represented by the
unit vector

∣∣ψ
((

Q0, {q0}
))〉 = |χ0〉 =

∫
�(1 − pd

ψ(Q̂, q))ψ(q)|q〉dq
∫
�(1 − pd

ψ(Q̂, q))2|ψ(q)|2|q〉dq
. (25)

By comparing the vectors in Eqs. (19) and (25), we see that they are generally dif-
ferent. This result shows that, if the particle P is not detected by an idealized nonde-
structive measurement of a given observable, then its final state generally depends on
the observable, and may be different if a different observable is considered.

For the sake of completeness, we also report the expectation values of the general-
ized observable H0 and Q0 in the pure state S represented by the unit vector |ψ〉, and
compare them with the expectation values of the observables H and Q, respectively,
in the same state. By assuming h0 ∈ � and q0 ∈ �, We get

〈H0〉ψ = h0p
t
S(H0, h0) +

∑

n∈N0

Enp
t
S(H0,En)

= h0 +
∑

n∈N0

(En − h0)p
d
ψn(Ĥ )

∣∣〈φn|ψ〉∣∣2 (26)
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〈Q0〉ψ = q0p
t
S(Q0, q0) +

∫

�
qpd

ψ(Q̂, q)
∣∣ψ(q)

∣∣2dq

= q0 +
∫

�
(q − q0)p

d
ψ(Q̂, q)

∣∣ψ(q)
∣∣2dq, (27)

〈H 〉ψ = 〈ψ |Ĥ |ψ〉 =
∑

n∈N0

En

∣∣〈φn|ψ〉∣∣2
, (28)

〈Q〉ψ = 〈ψ |Q̂|ψ〉 =
∫

�
q
∣∣ψ(q)

∣∣2dq. (29)

As expected, Eqs. (26) and (27) are generally different from Eqs. (28) and (29), re-
spectively. However, if one puts h0 = 0 and q0 = 0 (see footnote 1) one gets

〈H 〉ψ − 〈H0〉ψ =
∑

n∈N0

En

(
1 − pd

ψ(Ĥ ,En)
)∣∣〈φn|ψ〉∣∣2

(30)

〈Q〉ψ − 〈Q0〉ψ =
∫

�
(
1 − pd

ψ(Q̂, q)
)∣∣ψ(q)

∣∣2dq (31)

which exhibits the relationships between the expectation values considered above.
We conclude this section with a final comment on the results achieved on the

quantum harmonic oscillator. As we have observed in Sect. 2.3, the possibility of
discriminating between the ESR and standard QM representations of the observables
energy and position of the quantum harmonic oscillator crucially depends on the nu-
merical values of the detection probabilities pd

ψ(Ĥ ,En) and pd
ψ(Q̂, q), respectively.

These parameters are not predicted by the ESR model. The only conditions required
by the model is that they are such that the conditional on detection expectation values
coincide with standard quantum expectation values. But, the detection probabilities
can be determined experimentally and then inserted into Eqs. (30) and (31). If one
is now able to perform measurements that are close to ideality, hence if one limits
the effects due to flaws or lacks of efficiency, one can then determine these intrinsic
parameters by counting the number of physical objects that are prepared in the state
S represented by the unit vector |ψ〉 and the number of physical objects that are not
detected by the corresponding measurements. Of course, this procedure may be ex-
perimentally difficult. Notwithstanding this, we have recently proved that new kind
of experimental check can be envisaged for specific physical examples, namely, pairs
of spin-1/2 quantum particles in the singlet spin state [20, 23, 25] and ensembles
of spin-1/2 quantum particles in proper mixtures [26]. Similar reasonings apply to
the quantum harmonic oscillator, and we plan to discuss this issue in a forthcoming
paper.
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