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Abstract: APE1 is an essential endodeoxyribonuclease of the base excision repair pathway that
maintains genome stability. It was identified as a pivotal factor favoring tumor progression and
chemoresistance through the control of gene expression by a redox-based mechanism. APE1 is
overexpressed and serum-secreted in different cancers, representing a prognostic and predictive
factor and a promising non-invasive biomarker. Strategies directly targeting APE1 functions led to the
identification of inhibitors showing potential therapeutic value, some of which are currently in clinical
trials. Interestingly, evidence indicates novel roles of APE1 in RNA metabolism that are still not
fully understood, including its activity in processing damaged RNA in chemoresistant phenotypes,
regulating onco-miRNA maturation, and oxidized RNA decay. Recent data point out a control role
for APE1 in the expression and sorting of onco-miRNAs within secreted extracellular vesicles. This
review is focused on giving a portrait of the pros and cons of the last two decades of research aiming
at the identification of inhibitors of the redox or DNA-repair functions of APE1 for the definition of
novel targeted therapies for cancer. We will discuss the new perspectives in cancer therapy emerging
from the unexpected finding of the APE1 role in miRNA processing for personalized therapy.
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1. A Brief Introduction to APE1 Biology and Different Functions

The acronym APE1/Ref1 (or more simply APE1) stands for apurinic/apyrimidinic
endodeoxyribonuclease-reduction/oxidation factor 1, which is a well-known protein with
multifunctional roles ranging from the endodeoxyribonuclease activity on DNA and RNA
to the hub role in several reduction/oxidation (redox) signaling pathways [1–3].

Historically, APE1 has been largely known for its function during the base excision
repair (BER) pathway [4], in which non-bulky DNA lesions are repaired. In the BER,
APE1 functions as the main specific endodeoxyribonuclease able to cleave abasic sites (AP),
which are generated spontaneously or by the action of specific glycosylases. The single
strand break (SSB) generated by APE1 cleavage is then brought to complete repair by other
downstream BER enzymes (i.e., Polβ, XRCC1, FEN1, and Ligase III). Recent data have
demonstrated that SSBs are also sensed by APE1 to initiate 3′-5′ SSB end resection and
to promote ATR/Chk1-mediated DNA damage response (DDR) activation [5]. Indeed,
through its exonuclease activity, APE1 generates a short ssDNA gap that, via PCNA and
APE2, becomes a longer stretch of ssDNA coated by RPA that leads to the assembly of
the ATR/Chk1 DDR complex [5,6]. Another main cellular role of APE1 is to function
as a redox hub for several transcription factors (TFs). Indeed, the reduction of some
TFs (i.e., NF-κB, p53, Hif-1α, AP-1, Pax-5/8, etc.) by APE1 allows their activation and,
consequently, the initiation of the transcription of specific genes (i.e., IL-8, SIRT-1, VEGF,
etc.). An additional role of APE1 in transcriptional regulation is due to its capacity to
stabilize G-quadruplex (G4), which are stable conformational structures in the G-rich
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DNA portion of certain human promoters [7–9]. Although, following oxidative stress,
the newly formed 8-oxoguanine (8-oxoG) can stall transcription due to its destabilizing
effect, there is evidence that its presence in some promoters may induce the formation of
BER-stabilized G4 that enhances gene expression [10,11]. In this context, the binding of
APE1 to G4 sequences promotes G4 folding. Moreover, the acetylation of APE1 (acAPE1)
enhances its residence time on DNA and stabilizes G4 structures in cells [12]. In this
way, APE1 facilitates transcription factor loading at the promoter, thus modulating gene
expression [13].

Finally, some recently characterized APE1 functions, especially those involved in
RNA metabolism [14–18], have drawn particular attention. Specifically, APE1 has been
demonstrated to be able to cleave abasic RNA [15] and damaged ribonucleotides embedded
in DNA [17,18], revealing it as an efficient endoribonuclease. Furthermore, only in the
last few years, in concomitance with its novel and unsuspected involvement in the RNA
metabolism, it has been described that APE1 can be present in subcellular condensates
formed through liquid-liquid phase separation mechanisms (LLPS) [19–21] and can be
secreted by tumoral cells through extracellular vesicles (EVs) [22].

These intriguing APE1 roles have been discovered in three decades of constant interest
in this protein, delineating them in physiological and pathological contexts and making
APE1 an attractive therapeutic target for several pathologies, including cancer [23]. How-
ever, after more than 20 years of attempts, targeting APE1 still represents an important
challenge in cancer therapy. In this review, we will focus on the dysregulation of APE1 in
cancer, and then we will describe well-known inhibitors of the main functions of APE1,
paving the way for novel functions involved in chemoresistance and potentially used as
new therapeutic targets.

2. APE1 and Cancer: A Focus on Polymorphisms and Tissue Expression

As previously discussed, being involved in such focal cellular processes, the dysregula-
tion of APE1 has a great impact on pathologies like cancer, making it an attractive therapeutical
target [2,24]. APE1 dysregulation is involved in tumor development at three different levels,
as it may concern alterations to its genetic sequence, expression, or localization [2]. It must be
clearly stated, however, that, up to now, there is not clear evidence for a driver or passenger
function of either of the above-mentioned alterations in the tumorigenic processes.

Several studies pointed out the importance of single nucleotide polymorphisms (SNPs)
on the APE1 gene in cancer pathology [25] (Figure 1). The most common and studied APE1
variant is Asp148Glu (D148E), which is present in about 48% of the population [26]. X-ray
crystallography experiments showed that this variant lacks significant structural changes
and is considered benign [27]. As a matter of fact, the protein bearing this SNP holds
normal AP endonuclease and DNA binding properties, but its 3′-RNA phosphatase and
endoribonuclease activities are affected [16,28]. The role of this polymorphism in cancer is
controversial due to several conflicting studies in the literature [26]. This common variant
has been widely studied in more than one hundred publications. Indeed, numerous studies
and meta-analyses observed an association between the D148E variant and an increased
risk of different cancers, while others reported the opposite pattern even in the same tumor
type [2,26,29].

Another biochemically studied APE1 polymorphic variant associated with cancer
development is Arg237Cys (R237C) [30,31]. This substitution, which is prevalently ob-
served in endometrial cancer [30,31], affects the functional activity of the whole protein [27].
X-ray crystal protein structure analysis revealed that this aminoacidic variation caused
significant shifts in adjacent DNA binding residues, leading to a great decrease (~3-fold) of
APE1 DNA binding ability [27]. Remarkably, this polymorphic variant showed a reduced
ability to interact with its BER partners, such as Pol β and XRCC1 [25]. For example, X-ray
data highlighted that the close lysine 244 (K244), which is implicated in the APE1-Pol
β interaction [32], was shifted in the 3D structure, affecting the protein-protein interac-
tion [27]. Moreover, the R237C variant showed reduced AP-endonuclease [25], 3′->5′
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exonuclease, and 3′-damage excision [31] activities other than a reduced incision capacity
close to nucleosomes [33].
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Figure 1. Human APE1 structure and its key residues. A schematic representation of the primary
sequence of APE1, in which the most important aminoacids are highlighted. In the first 33 residues
required for protein-protein interaction, residues K6 and K7 (green, o) are involved in the shuttling
between the nucleus and the cytoplasm. Residues K27, K31, K32, and K35 are essential for proteoso-
mal cleavage. All the above mentioned lysine residues can also be acetylated. The redox regulatory
region is included between aminoacids 35 and 125, in which the main residues involved are C65, C93,
and C99 (red). The endonuclease domain spans between 65 and 318 (residues indicated in blue, •).
Specifically, E96 is involved in divalent metal coordination, while D210 and H309 have functions
in the hydrolytic reaction. Other important residues in the endonuclease domain are D70, which
is implicated in the 3′-phosphodiesterase activity; K98, important for the nucleotide incision repair
(NIR); and F266, which is involved in the 3′-5′ exonuclease activity. Lastly, P112L, D148E, R193C/H,
R237C, and H298Y/Q (yellow, o) are some of the polymorphisms of APE1 that will be discussed in
this review. Below, the tridimensional structure of APE1 is reported (PDB ID: 7SVB). Created with
BioRender.com (accessed on 31 May 2023).

One additional endometrial tumor-associated variant is Pro112Leu (P112L) [30], which
exhibits comparable AP-endonuclease activity to the wild-type form [31].

In this review, we performed an analysis on cBioPortal to find SNPs or insertion/deletions
(IN/DELs) in the APEX1 gene that are in association with different cancer types, considering
a curated selection of non-redundant studies (213 studies selected, 69,223 samples, and
65,853 patients) (https://bit.ly/3M9Oya7 (accessed on 22 March 2023)) [34,35]. The somatic
mutation frequency of APEX1 was 0.2%, with 108 unique variants. None of the variants
detected represented a driver mutation for cancer, and most of them were sporadic. The
most frequent variants were R193C/H, D148E, and H289Y/Q. Interestingly, even though
R193C and R193H variants were detected to a comparable extent to D148E in the selected
cohort of studies, there are no published works that focus on this mutation and its functional
impact. According to the Mutation Assessor tool [36,37], R193H had a low impact on the
protein’s functional activity, while R193C might have a worse one. There were no functional
studies, even regarding H289Y/Q variants, which were predicted to have a neutral impact

BioRender.com
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on protein activity. In Table 1, we report each variant found by using the cBioPortal tool,
divided by tumor type.

Table 1. APE1 polymorphisms detected in different cancer types by using the cBioPortal tool. * stands
for type of mutation. Further information is available at https://bit.ly/3M9Oya7 (accessed on 22
March 2023).

Cancer Polymorphisms

Adrenocortical carcinoma D283H; X20_splice

Ampullary cancer M271T

Bladder cancer D15H; S146L; Q109E; E217 *

Bone cancer V131M

Breast cancer L244Tfs * 8; Q51 *; H289Y; G5A;
K7Rfs * 75; R185W; A60G

Cervical cancer R281C; K7R

Colorectal cancer

A273T; R193C; R221H; G130D; R247Q; A230D; M271I; R221H;
R181 *; E242D; R274 *; P293S; P49Qfs * 33; L220I; T233M;
N226Efs * 26; V131M; L291Vfs * 6; R221C; K63E; D210N;
R281H; X82_splice; E101D; K77N; P331H; G306S; G132D

Endometrial cancer R193H; S164L; R221H; A170V; P223L; V84I; V278D;
R281H; K228T

Gastric cancer R281C; P122A; K27N

Glioma H289Q; Q245R; G80E; D142N

Head and Neck cancer P48H

Leukemia and Lymphoma R181Q; L17P; K7R; R187H

Liver cancer G5E; W280S; L220P; W280R; D50Rfs * 28; G8R; H289Y,
N226Efs * 26; Y264_G279del

Lung cancer
G41C; V206Cfs * 11; V142Sfs * 8; E16Q; P331T; E149Q;
X147_splice; R177*; D90H; Q51 *; X237_splice; R193C; R28S;
M271del; V206Cfs * 11; S115F; G8R; I146V; D148E

Melanoma G241W; E16K; G127V; R136S; P122T; D148E; A263V; K7Rfs *
75; L108F; V69L

Oesophageal cancer E46D; D251N; M270Nfs * 14; F165V; N102I; L291Vfs * 6;
K3R; G145D

Ovarian cancer Q95 *, V168I; R193H; L291Vfs * 6

Pancreatic cancer R193C; M271del

Prostate cancer P139Q; A30T; R187H

Renal cancer E149 *

Sarcoma R187L; K35Rfs * 11; K35Q

Skin cancer P89S

APE1 overexpression, as well as its altered localization, are prominent features of sev-
eral different tumors, often with poor prognosis and malignant phenotypes. We hereafter
provide a description of how APE1 is altered in cancer and how it impacts tumorigenesis
(Table 2).

https://bit.ly/3M9Oya7
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Table 2. Overview of the dysregulation of APE1 observed in different tumors. For each cancer type,
the APE1 expression, diagnostic value, and localization are described and complemented by relevant
references. n.d.: not defined; OS: overall survival; DFS: disease-free survival; PFS: progression-free
survival; RFS: relapse-free survival; acAPE1: acetylated APE1.

Cancer Expression Diagnostic
Value Localization Refs

Bladder
cancer (Bca)

Protein overexpression,
associated with poor

survival and invasion.

Serum and
urine levels as
a diagnostic
biomarker.

• In non-invasive,
low-grade tumors,
localization is mainly
in the nucleus.

• In invasive,
high-grade tumors,
both nuclear and
cytoplasmic
localization.

[38–44]

Breast
cancer

• Conflicting data on
protein expression: in
some cases,
overexpression is
associated with a
malignant phenotype
and an unfavorable
prognosis; in other
cases, low APE1 is
associated with an
aggressive
triple-negative
phenotype;

• Deregulation of
acAPE1.

n.d. Nuclear localization. [45–50]

Cervical
cancer

High protein expression is
associated with lymph

node metastasis, EMT, and
decreasing radiosensitivity.

n.d.

• Moderate and
heterogeneous
nuclear staining;

• Radioresistant
cervical cancer cell
lines show higher
levels of cytoplasmic
APE1 and lower
levels of nuclear
proteins.

[51–54]

Colorectal
cancer
(CRC)

• Protein
overexpression in
cancer tissues is
increasing from
benign to malignant
forms;

• Overexpression of
acAPE1 in tumor
tissues is positively
correlated with 5-FU
resistance;

• Presence of both the
full-length and the
N∆33 proteins;

Serum APE1-
autoantibody

levels as a
diagnostic
biomarker.

• Nuclear and
cytoplasmic
localization;

• The acetylated form
accumulates in the
nucleus.

[55–62]

Cutaneous
Squamous

Cell
carcinoma

(cSCC)

Protein overexpression in
tumor tissues, which

promotes cell proliferation
and migration by EMT.

n.d. n.d. [63]
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Table 2. Cont.

Cancer Expression Diagnostic
Value Localization Refs

Gastric
carcinoma

mRNA and protein
upregulation are correlated

with lymph node
metastasis, depth of
invasion, and poor

prognosis.

Serum levels
as a diagnostic
biomarker for

metastasis
prediction.

Nuclear and cytoplasmic
localization. [64–67]

Glioma

• Conflicting data are
available in some
cases, APE1
overexpression is
shown, whereas in
other cases, low
mRNA and protein
expression is
associated with poor
OS;

• APE1 expression
increases following
treatment and
recurrence.

n.d. Nuclear localization. [68–73]

Head and
Neck

Squamous
Cell

carcinoma
(HNSCC)

• In oral SCC (oSCC),
protein
overexpression,
correlated with nodal
status and lymph
node invasion,
shorter OS and DFS;

• In laryngeal SCC
(LSCC): protein
overexpression in
cancer tissues;

• In sino-nasal SCC
(sSCC) and SCC with
inverted papilloma
(SCCwIP): protein
overexpression in
cancer tissues;

• In lip SCC (lSCC),
protein
overexpression in
cancer tissues.

In oSCC:
serum levels
are used as a

diagnostic
biomarker,
with high

levels
correlated

with late TNM
stages, lymph

node
metastasis,
and worse

pathologic dif-
ferentiation.

• oSCC: mainly nuclear
localization with a
weak cytoplasmic
expression;

• In sSCC and SCCwIP:
vivid nuclear
localization,
associated with
metastasis; higher
cytoplasmic staining
in sSCC, associated
with T-stage and
histological grade;

• In lSCC: nuclear
localization.

[74–80]

Liver
cancer

• mRNA and protein
overexpression,
correlated with poor
survival and cancer
aggressiveness;

• Presence of both the
full-length and the
N∆33 proteins.

Serum levels
as a diagnostic

biomarker.

• Strong nuclear and
cytoplasmic
positivity, with
higher cytosol
expression in poorly
differentiated tumors;

• In lower-grade
tumors, cytoplasmic
positivity is
associated with
mitochondrial
accumulation.

[81–86]
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Table 2. Cont.

Cancer Expression Diagnostic
Value Localization Refs

Lung
cancer

• mRNA and protein
overexpression in
NSCLC
(non-small-cell lung
cancer), are
associated with
linfonodal metastasis
and EMT promotion;

• Increase in APE1
expression after
cisplatin treatment;

• High levels of
acAPE1;

• Presence of both the
full length and N∆33
proteins.

High
post-treatment
serum levels

are associated
with lower OS.

• Nuclear and
cytoplasmic staining:
higher cytoplasmic
localization correlates
with poor prognosis;

• acAPE1 is strictly
nuclear.

[55,87–96]

Melanoma

mRNA and protein
overexpression are

associated with vascular
invasion, a high mitotic
rate, lower response to

therapy, and a poor
prognosis.

n.d. Nuclear localization. [97–100]

Oesophageal
carcinoma

(EAC)

Protein overexpression in
tumor tissues is associated

with worse OS.
n.d. Mainly nuclear

localization. [101–106]

Osteosarcoma

• Protein
overexpression in
cancer samples is
associated with poor
prognosis and
cisplatin resistance.

n.d.

• Mostly nuclear
localization and
variable cytoplasmic
staining;

• High cytoplasmic
localization correlates
with poor response to
cisplatin therapy.

[107–113]

Ovarian
cancer

Protein overexpression in
tumor tissues is associated

with advanced stages,
platinum resistance, poor

chemosensitivity,
decreased OS, and lymph

node metastasis.

n.d.

• Strong nuclear and
cytoplasmic
localization,
heterogeneous
between different
histological subtypes;

• Cytoplasmic
localization increases
from well-to-poorly
differentiated tumors,
and it is higher in
advanced stages;

• Cytoplasmic
localization is
associated with lower
PFS time and
decreased OS.

[101,114–
121]
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Table 2. Cont.

Cancer Expression Diagnostic
Value Localization Refs

Pancreatic
adenocarci-

noma
(PDAC)

• Protein
overexpression in
tumor tissues is
associated with poor
prognosis and tumor
aggressiveness;

• Elevated levels of
acAPE1;

• Presence of both the
full-length and the
N∆33 proteins.

n.d.

Strong nuclear staining in
tumor tissues, with cytosol
staining only in advanced

stages.

[55,87,101,
122–124]

Prostate
carcinoma

(PCa)

Protein overexpression in
cancer samples. n.d. Nuclear and cytoplasmic

localization. [125,126]

Salivary
gland

carcinoma

• Protein
overexpression in
tumor tissues
increases dependence
on malignant
transformation and is
correlated with
lymph node
metastasis and
invasive growth;

• Higher protein levels
in smaller tumors.

n.d.

Mainly nuclear staining,
with nuclear and cytosolic
staining in some malignant

forms.

[127,128]

In bladder cancer (BCa), several studies detected high expression levels of the APE1
protein in tumor tissues, compared to normal adjacent tissues, that were associated with
poor outcomes [39,41,44]. APE1 overexpression was also linked to lymphovascular invasion
features, as high VEGFA levels and an infiltration of CD163+ tumor-associated macrophages
(TAMs) [42]. Moreover, the cellular distribution of APE1 was variable between high- and
low-grade tumors. Whereas low-grade cancers displayed increased APE1 levels only
in the nucleus, high-grade invasive tumors showed increased positive staining even in
the cytoplasm [39]. APE1 is also a promising diagnostic biomarker in BCa, as its levels
were increased in serum and urine when compared to normal healthy controls and were
associated with tumor grade and stage, recurrence, and invasion [38,40,43]. Interestingly, a
study observed an increased secretion of APE1 in bladder tumors displaying the D148E
variant compared to the ones expressing the wild-type form, which contributed to increased
serum levels of the protein in patients [129].

Concerning hepatocellular carcinoma (HCC), APE1 was upregulated at both transcrip-
tional and translational levels compared to normal liver tissues [81–83]. Moreover, the
mRNA content increased with tumor progression and was higher in less differentiated and
more aggressive tumors [81]. Patients with higher APE1 protein levels exhibited unfavor-
able prognoses and a lower OS [82,83]. Interestingly, both APE1 truncated forms, missing
the first 33 residues (N∆33–35 kDa), and APE1 full length (37 kDa), were detected in HCC
tissue samples and HCC cell lines [84]. Moreover, the cellular distribution of APE1 was
altered, with nuclear staining only in normal liver tissues while presenting a significant
fraction of cytoplasmic positivity in tumor tissues [85]. Cytoplasmic APE1 was about three
times higher in poorly differentiated tumors and was associated with a reduced OS [85].
Noteworthy, the cytoplasmic staining was prevalently associated with APE1 mitochondrial
accumulation in grade 1 and grade 2 HCC tumors, but not in grade 3 tumors [86]. Even in
HCC, APE1 serum levels can be exploited as a novel diagnostic biomarker, correlating with
its overexpression in HCC tissues [84].
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The APE1 protein was also overexpressed in pancreatic adenocarcinoma (PDAC)
tissues and cell lines and associated with tumor aggressiveness and poor survival [122–124].
The proteolytic form of APE1 N∆33 has been detected even in PDAC tissues, with different
abundances versus adjacent non-tumor tissue [55]. Interestingly, acAPE1 was overexpressed
in PDAC tumors, while being almost undetectable in healthy pancreatic tissues [55,87].
acAPE1 has increased AP-endonuclease activity, which has been proposed as a cancer
mechanism to overcome chemotherapy genotoxic stress and uphold proliferation [87].
APE1 localization in PDAC was mainly nuclear and similar between primary tumors and
metastases [123]. An increased cytosolic localization was observed only in advanced tumor
stages and was always concurrent with nuclear localization, while the complete absence of
the cytoplasmic fraction was associated with invasion and poor differentiation [101,123].

Concerning prostate cancer (PCa), APE1 protein levels were upregulated compared to
normal or benign hypertrophy (BPH) tissue [125,126]. Moreover, higher APE1 levels were
observed in tumors bearing the TMPRSS2:ERG fusion [126]. APE1 localization was only
nuclear in normal prostate tissue and non-cancerous prostate cell lines, while there was
an increased expression in the cytoplasm compartment in tumor tissues and tumoral cell
lines [125].

APE1 overexpression occurs also in oesophageal carcinomas, like oesophageal adeno-
carcinoma (EAC) [102–104] and oesophageal squamous cell carcinoma (ESCC) [105,106],
probably as a mechanism adopted by cancer cells to survive the genotoxic effects of bile
reflux [105,106]. APE1 localization was mainly nuclear and also associated with a worse
OS in patients receiving platinum chemotherapy [101].

An in silico analysis identified APE1 as a central hub gene for gastric cancer, as its
overexpression had a great prognostic value in two analyzed datasets (GSE1611533 and
GSE54129) [64]. Indeed, APE1 is overexpressed at both transcriptional and translational
levels in gastric cancer [65,66]. APE1 staining was weak in normal, non-cancerous gastric
tissues, while it was high in tumor tissues. APE1 localization was detected both in the
nuclear and cytoplasmic compartments of tumor tissues [66]. High levels of APE1 were
also correlated with invasion and poor prognosis [66], as its serum levels are a valuable
diagnostic biomarker for lymph node metastasis prediction [67].

APE1 was also upregulated in salivary gland carcinomas, and its levels increased
depending on the malignant transformation process of the tumor [127]. APE1 overex-
pression was higher in smaller tumors displaying lymph node metastasis and invasive
growth [127,128]. APE1 localization was mainly nuclear in every salivary gland tumor
subtype analysed, except for adenoid cystic carcinomas, in which it was highlighted to
present both nuclear and cytoplasmic localization [127,128].

Furthermore, the overexpression of APE1 protein and mRNA levels was also reported
in non-small-cell lung cancers (NSCLCs) [88–91]. High APE1 expression was associated
with poor prognosis, invasion, and chemoresistance as its levels increased upon treatment
with platinum compounds [90]. Moreover, high APE1 serum levels, post-treatment, were
correlated with a poorer OS [92]. Nuclear APE1 staining was associated with favourable
patient outcomes [93], while a higher cytoplasmic localization was correlated with both
poor survival and a shorter RFS [94–96]. Although both full-length and truncated forms
were found in lung cancer, APE1 was prevalently truncated at the N-terminus in adjacent
non-tumor tissues in NSCLC [55]. Moreover, acAPE1 was overexpressed in NSCLC tumors,
with a strictly nuclear localization [55,87].

Several studies identified the overexpression of the APE1 protein in ovarian cancers,
which has been associated with advanced tumor stages and decreased OS [101,114,115].
Moreover, patients with high levels of APE1 showed more frequent resistance to platinum
therapy [101,114,116]. The interaction between APE1 and nucleophosmin 1 (NPM1) has
been extensively examined in ovarian cancer, as the levels of the two proteins were posi-
tively associated with tumor aggressiveness, malignant phenotype, lymph node metastasis,
and poor chemosensitivity [114,117]. It has been shown that compounds that impair this
interaction can exert a synergistic effect on traditional chemotherapeutic molecules [118].
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APE1 localization seemed to be heterogeneous in ovarian cancers, depending on the stage
and histological subtype [24]. Some studies showed prominent cytoplasmic staining,
which increased from well- to poorly-differentiated cancers and was higher in advanced-
stage tumors [116,117,119,120]. In non-responding cisplatin patients, the observed APE1
overexpression was mainly at the cytoplasmic level, a feature that was also observed in
cisplatin-resistant cell lines [116]. Interestingly, almost 90% of patients with abnormal levels
of cytosolic APE1 displayed an abnormal distribution of NPM1 too [117]. Additionally,
cytosolic APE1 can be considered an independent predictive factor for poor PFS and OS
in ovarian cancer [119]. Other works showed prominent nuclear APE1 staining, which in-
creased during tumorigenesis and was associated with survival time [115,121]. Additional
studies showed an increase in APE1 in both compartments, but higher nuclear staining was
associated with cancer aggressiveness, lower debulking after surgery, platinum resistance,
and lower OS [101,116].

Concerning breast cancer, different studies reported conflicting results about APE1
protein expression levels. Some works described APE1 overexpression as mostly nuclear
and associated with malignant phenotypes and an unfavourable prognosis [45–47]. Con-
trary to the pattern of increased acetylation observed in other cancer types [55,87], APE1
acetylation was lower in breast cancer compared to healthy tissues [48]. Even in this case,
the functional interaction between APE1 and NPM1 in promoting platinum resistance has
been described [49]. In contrast to these findings, another study showed that lower levels
of APE1 were associated with tumor aggressiveness and a triple-negative phenotype [50].
Interestingly, in the Ki-67 low-level expression group, lower levels of APE1 were associated
with poor OS [46].

APE1 protein levels were upregulated even in cervical tumors and were associated
with Epithelial-to-Mesenchymal transition (EMT), lymph node metastasis, and poor radio-
sensitivity [51–54]. APE1 localization was widely heterogeneous among cervical tumors,
although with a main nuclear stain [52]. Remarkably, there was a significant difference in
the subcellular localization of APE1 between radiotherapy non-responding and responding
tumor cell lines. Indeed, radio-resistant cervical tumor cell lines showed higher levels of
the cytoplasmic fraction and lower levels in the nucleus, suggesting a role for cytosolic
APE1 in radio-resistance promotion [53].

Several studies described an overexpression of APE1 in colorectal cancers (CRC),
observing a gradual increase in its expression during tumor progression [56–59] and in liver
metastasis [60]. APE1 localization was heterogeneous between CRC cells, as the protein
was found concurrently both in the nucleolus and cytoplasmic compartment, or, otherwise,
it displayed an exclusive cytoplasmic localization [56]. Even in CRC tumor samples and cell
lines, nuclear acAPE1 was overexpressed [55,61] and positively correlated with resistance
to 5-Fluorouracil (5-FU) [61]. Moreover, both full-length and truncated forms were detected
in colon cancer [55]. Interestingly, the levels of serum APE1 autoantibodies are valuable as
diagnostic biomarkers for CRC [62].

Regarding gliomas, conflicting data are available. Some studies described an over-
expression of APE1 in tumoral tissues compared to healthy ones [68,69], with a 13-fold
increase in AP-endonuclease activity in 93% of tumors [68]. Glioma radioresistant cell
lines displayed higher levels of APE1 compared to responding cell lines [70]. Indeed, an
increase in APE1 expression was observed in patients after treatment and recurrence [71].
On the other hand, different studies have evidenced low mRNA and protein expression
in adult high-grade gliomas, which was associated with poor OS [72,73]. Moreover, APE1
localization was predominantly nuclear [72].

Concerning melanoma, several studies identified APE1 overexpression at both tran-
scriptional and translational levels [97–99]. Indeed, APE1 was overexpressed in melanoma
cancer cell lines and in clinical samples, showing a prominent nuclear localization in both
cases [98,99]. High mRNA levels were associated with vascular invasion, high proliferation
rates, poor RFS, and OS [97,100]. Patients with higher levels of APE1 also showed a lower
response to therapy [100]. APE1 was also overexpressed in another skin tumor, namely



Cells 2023, 12, 1895 11 of 31

cutaneous squamous cell carcinoma (cSCC) [63], which was associated with increased
proliferation and migration by EMT [63].

APE1 was dysregulated in several head and neck squamous cell carcinomas (HNSCC).
In oral SCC (oSCC), APE1 was overexpressed at the protein level, and its high expres-
sion was significantly correlated with nodal status, shorter OS, and DFS [74,75]. APE1
localization was mainly nuclear, but translocation to the cytoplasm was observed after
cisplatin treatment [74,76]. Moreover, APE1 serum levels represent a promising diagnostic
biomarker [77]. Indeed, high levels of serum APE1 (sAPE1) were associated with late TNM
stages, lymph node metastasis, and worse pathological differentiation [77]. Patients with
lower levels of sAPE1 went through longer DFS after post-surgery cisplatin therapy and
longer OS [77]. APE1 overexpression was also observed in laryngeal SCC (LSCC) [78], in
sino-nasal SCC (sSCC), and in SCC with inverted papilloma (SCCwIP), with a vivid nuclear
localization associated with metastatization [79]. Moreover, sSCC tumors showed higher
cytoplasmatic staining compared to SCCwIP [79], which was associated with a higher
T-stage and histological grade [79]. Lastly, APE1 overexpression, also characterized by lip
SCC (lSCC), showed strong nuclear localization [80].

Furthermore, APE1 levels were upregulated in osteosarcoma and associated with
poor prognosis and cisplatin resistance [107–113]. APE1 localization was both nuclear and
cytoplasmic [107,112]. Patients with higher levels of the protein in the cytoplasmic content
were less responsive to cisplatin treatment and experienced recurrence and metastasis [107].

Therefore, in general, APE1 is significantly overexpressed in different kinds of cancers,
and subcellular distribution may significantly change depending on the specific tissue and
tumoral stage, but in which way the overexpression and localization of APE1 in tumors
are causally responsible for cancer onset and development, aggressiveness, and invasion is
still debated. Currently, knowledge about the role played by APE1 polymorphic variants
in cancer onset and progression is still unknown, as are the possible driver or passenger
functions of APE1 mutations in cancer tumorigenesis. As mentioned above, the most
accepted hypothesis regards the increased expression of APE1 in tumoral cells as they
acquire a proliferative and chemoresistant phenotype. Several studies have proposed that
the upregulation of APE1, as well as that of other BER enzymes, may underlie pro-survival
mechanisms adopted by tumors to efficiently repair DNA damage, thus contributing to
the onset of resistance mechanisms. Although the main function of APE1 is attributable to
its endoribonuclease activity, it is believed that APE1 overexpression may also contribute
to tumorigenesis through increased activity as a redox activator of several TFs, such as
NF-κB, thus leading to an increase in tumor proliferation and survival and affecting the
tumor microenvironment. We do believe that additional dysregulated functions of APE1,
including dysregulation of RNA and miRNA metabolism and regulation of G4-structures
containing promoter genes, could play an essential role in cancer development, although
more detailed investigations are needed along these lines.

In conclusion, further analysis on how and why altered APE1 expression is differen-
tially associated with cancer development and metastasis should be a central aim of further
study in the future.

3. APE1 as a Still Promising Therapeutic Target after 20 Years of Research

In the last decades, APE1 has emerged as a promising therapeutic target in cancer, ei-
ther for its role in DNA repair or in redox regulation of TF activities. In the next paragraphs,
we will dive deeper into these functions of APE1, highlighting the study progression
around the discovery of specific inhibitors, principally employed in chemotherapy (Table 3).
Finally, we will discuss the new roles of APE1 in RNA metabolism and in cell signaling
through its secretion, hypothesizing these novel functions as promising new targets in
cancer therapy.
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3.1. Targeting the APE1 Endonuclease Activity

The endonuclease function of APE1, which is essential in the BER pathway, depends on
residues sited on the C-terminal region of APE1. The most important amino acids involved
in this activity are E96, which is implied in the coordination of divalent metals, and D210
and H309, both required for the hydrolytic reaction [130] (Figure 1). Other important
residues that mediate different cleavage functions can be found in the C-terminal region
too, including: D70, involved in the 3′-phosphodiesterase activity [131], K98, required in
the Nucleotide Incision Repair (NIR) [132], and F266, implicated in the 3′-5′ exonuclease
activity [133].

Previous studies identified different compounds that inhibit the endonuclease APE1
activity in vitro and in human cells, as summarized in different reviews [134–137]. Over
the years, various groups have extensively worked towards the identification of specific
small-molecule inhibitors able to target the DNA repair function of APE1 in combination
studies, with the rationale that the blockade of APE1 endonuclease activity might have
various therapeutic applications, particularly in cancer treatment, by sensitizing cancer cells
to DNA-damaging agents and leading to tumor cell death. Although many studies support
the inhibition of APE1 as a means of complementing current chemotherapeutic regimens
and, accordingly, various chemical inhibitors have been developed, a clinical candidate has
yet to be realized. Indeed, despite their high activity in vitro, the toxicity and selectivity in
cells of the majority of the reported endonuclease inhibitors remain to be established. In
this section, we attempt to present the major APE1 inhibitors identified thus far and discuss
their activity. It is not within our scope to revisit all the inhibitors in depth; a comprehensive
list of APE1 endonuclease inhibitors is reviewed in [130,137,138]. The published approaches
utilized for the development of APE1 endonuclease inhibitors can be mainly categorized
into: (i) screening of commercially available compounds that were synthesized for targeting
other molecules; (ii) computational screening, and (iii) pharmacophore modeling.

One of the first studied molecules impairing APE1 repair activity was Methoxyamine
(MX), an alkoxyamine derivative that reacts to form an imine with the aldehyde group in
the ring-open form of the abasic lesion, thereby indirectly blocking APE1 endonuclease
activity [139,140]. Since MX was demonstrated to enhance the cytotoxicity effect of alkylat-
ing agents such as temozolomide (TMZ) in a wide variety of cancer cell lines both in vitro
and in xenograft models [141,142], it advanced to clinical trials; however, to date, clinical
studies have not shown any clear success.

A second compound that was first identified as a radio-sensitizer of HeLa cells [143]
and subsequently reported to be an inhibitor of APE1 by Luo and Kelly in 2004 [144] is
Lucanthone, or Miracil D. Lucanthone was shown to enhance the cell-killing effect of TMZ
and an alkylating agent such as methyl methanesulfonate (MMS) in culture and was further
characterized by Naidu et al. to bind to the hydrophobic pocket site of APE1 [145]. No
other studies were successively reported, but its specificity is still debated since a part of
its inhibitory effect is mediated by its ability to intercalate within DNA and through the
inhibition of topoisomerase II and possibly other cellular proteins [23].

Afterward, numerous laboratories relied on high-throughput screens (HTS), mainly
based on fluorescence assays, to identify inhibitors of APE1 endonuclease activity. In
general, the identification of the potential hits was followed by different assays aiming
to prove specificity and selectivity for APE1 inhibition, including the AP site incision
assay, the ability of the compound to bind DNA per se, and the ability to enhance the
cytotoxicity of alkylating agents (i.e., TMZ, MMS). It is worth mentioning that the inhibitors
reported so far showed affinities in the µM range that are not compatible with a suitable
pharmaceutical agent, and more importantly, none of them has been demonstrated to
have utility in pre-clinical animal cancer models. CRT0044876 (7-nitroindole- 2-carboxylic
acid) is the first biochemically and biologically reported APE1 inhibitor identified through
a fluorescein/dabcyl-based AP site incision assay [146]. Madhusudan et al. identified
the compound CRT0044876 from a screening of a collection of structurally diverse small
molecules. Despite the initial promising results obtained in the potentiation of the cell-
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killing effects of MMS and TMZ, the reproducibility of this compound has been brought
into question [23,147], and because of its poor solubility and permeability, this compound
has been further neglected until now, since its usage has been proposed conjugated with
platinum [148]. Considering the weak results obtained with CRT0044876, other screenings
were performed. Using a similar HTS approach, Seiple et al. screened the 2000-compound
NCI Diversity Set of small molecules and identified aromatic nitroso, carboxylate, sulfon-
amide, and arylstibonic acid compounds with µM affinities for the APE1 protein [149].
Again, for these compounds, the relatively high inhibitory potency observed in vitro did
not match a significant parallel effect in cells. Successively, various one-off studies did
not progress to lead optimization. For example, in 2009, prompted by the evidence that
APE1 represents an attractive therapeutic target in anticancer drug development, Zawahir
et al. utilized a pharmacophore-based approach that was used to carry out a virtual
screen of a 365,000 small molecule library [150]. The known interactions of APE1 with
AP site-containing DNA, including components of hydrophobicity, H-bond acceptor, and
negatively ionizable features, were utilized to design a virtual screen. In the same year,
Simeonov et al. employing a quantitative HTS, screened the commercially available Library
of Pharmacologically Active Compounds (LOPAC), identifying 6-hydroxy-DL-DOPA, Re-
active blue 2, and myricetin as possible APE1 inhibitors [147]. Although these approaches
predicted several potentially positive hits, they were not all tested in cell-based assays and
thus have not been evaluated for cell permeability.

Successively, Kelley’s group has also used a fluorescence-based high-throughput assay
to screen a library of 60,000 small-molecule compounds for their ability to inhibit the AP
endonuclease activity of APE1 [151]. The most promising compounds were designated as
APE1 Repair Inhibitor AR01, 02, 03, and 06. AR03 is chemically distinct from the previously
reported small-molecule inhibitors of APE1. This compound was demonstrated to inhibit
the cleavage of AP sites in vitro using whole cell extracts and to potentiate the cytotoxicity
of TMZ and MMS in glioblastoma SF767 cells. Furthermore, very recently, AR03 was
demonstrated to inhibit the exonuclease activity of APE1 in the SSB-induced ATR-Chk1
DDR pathway in human bone osteosarcoma U2OS cells, MDA-MB-231, and PANC1 [5,20].
While it is cell-permeable, its planar fused-ring structure may suggest its DNA intercalating
ability, thus potentially being non-specific.

In 2011, Mohammed et al. focused on developing APE1 inhibitors for melanoma and
glioma treatments using a structure-based drug design approach [98]. The crystal structure
of APE1 was utilized to create four pharmacophore models, including the interactions of
the previously identified inhibitor CRT0044876 with active site residues and molecular
scaffolds designed to fit the ligand binding site. From the screening of 1679 hits, the authors
identified compound 4 (N-(4-fluorophenyl)-2-(4-phenylsulfonyl-2- (p-tolyl)oxazol-5-yl)
sulfanyl-acetamide) as the one with the highest AP endonuclease inhibitory activity and
the potential to sensitize the activity of MMS and TMZ in both glioma and melanoma cell
lines but not in HUVEC cells, suggesting specificity for malignant tissue.

In 2012, a new class of inhibitors of the catalytic endonuclease function was identified
by Aiello et al. [152]. Compounds 32–35, which have a 3-benzylcarbamoyl-2-methoxybenzoic
acid structure, showed the most active and selective inhibition activity of APE1. These
compounds have the potential to be used in combination therapy with 5-fluorodeoxyuridine
for colon cancer treatment. In the same year, using docking-based virtual screening, 15 po-
tential compounds were identified as inhibitors of APE1 from a library of over 4 million
molecules [153]. Two of these compounds, 36 and 37, were found to be potent inhibitors
of the protein and could increase the toxicity of MMS. Through molecular dynamics sim-
ulations, it was discovered that these compounds may interact with the protein through
important binding modes such as hydrogen bonds with specific residues and hydrophobic
interactions by virtue of their quinoxaline core. In 2012, Simeonov’s group performed a
fully automated HTS using a kinetic fluorescence assay on the NIH Molecular Libraries
Small Molecule Repository and other collections, examining each agent at different concen-
trations [154]. They identified active APE1 inhibitors able to potentiate the genotoxic effect
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of MMS, leading to an increase in AP sites. The chemical structures of the most effective
inhibitors, namely MLS001196838, MLS000587064, MLS000737267, MLS000090966, and
MLS000863573, would have served as starting points for medicinal chemists to further
optimize them.

Another fluorescence-based quantitative HTS of 352,489 small molecules from the
NIH Molecular Libraries Small Molecule Repository was performed by Rai et al. [155].
APE Inhibitor III (N-(3-(1,3-Benzo[d]thiazol-2-yl)-6-isopropyl-4,5,6,7-tetrahydrothieno[2,3-
c]pyridin-2-yl)acetamide) has been demonstrated to potentiate MMS and TMZ activity
in HeLa cells. This compound was further used and distributed by the sellers as one of
the most promising APE1 inhibitors for both its endonuclease and exonuclease activities;
however, this compound has not significantly advanced beyond in vitro studies. Using the
crystal structure of APE1, Srinivasan et al. computationally constructed molecules that
would sterically block its endonuclease site and identified molecules that all contain the
2-methyl-4-amino-6,7-dioxoloquinoline structure [156]. The mechanism of action of the
compounds was probed by fluorescence and competition studies in T98G glioma cell lines,
which indicated for compounds 1 and 4 a direct interaction between the inhibitor and the
active site of the APE1 protein.

In 2015, a pharmacophore model for APE1 small-molecule inhibitors was used to iden-
tify new compounds by means of in silico screening of 10,159 compounds [157]. The virtual
docking assay identified four compounds with a 2-methyl-4-amino-6,7-dioxoloquinoline
core (AJAY 1–4); AJAY 4 showed the best results in the inhibition of cell growth; however,
none of the compounds have advanced in clinical studies.

Another novel in silico approach was pursued by Trilles et al., who, guided by X-ray
crystal structures of APE1 and computational docking of solvents, identified binding
hotspots for small organic molecules [158]. Accordingly, they screened a library of macro-
cycles for inhibition of APE1 endonuclease activity and identified four novel macrocycles
that they used as a starting point for designing APE1 ligands. From the initial screening of
66 compounds, only four exhibited concentration-dependent inhibition of APE1 endonu-
clease activity (MC043, MC047, MC042, and MC019). Building on these hits, additional
macrocycles were synthesized, and macrocyclic lactams 13, 21, and 24 have been demonstrated
to be more effective in inhibiting APE1 endonuclease function in combination with MMS.

Unfortunately, none of the compounds developed so far have advanced to significant
in vivo studies or clinical trials. Very recently, two works argued about the specificity
of some of the most prominent compounds that are usually sold by suppliers as APE1
inhibitors. In the work of Pidugu et al., it has been demonstrated through structural,
biophysical, and biochemical approaches that several reported small molecules are weak
APE1 inhibitors [159]. In particular, through an NMR chemical shift perturbation as-
say, they showed that CRT0044876 and three similar indole-2-carboxylic acid compounds
(5-fluoroindole-2-carboxylic acid [98], 5-nitroindole-2-carboxylic acid, and 6-bromoindole-
2-carboxylic acid) bind at a pocket of APE1 that is distal from its active site. Furthermore,
using Dynamic light scattering (DLS), they also demonstrated that CRT0044876 [146],
myricetin [147], and APE Inhibitor III [155] form colloidal aggregates that could sequester
APE1, causing non-specific inhibition. For this latter compound, Xue and Demple re-
cently questioned about the specificity of this molecule [138]. Since APE1 knock-out lines
(CH12F3 [160]) showed equal sensitivity to direct killing by APE Inhibitor III, being even
more sensitive to APE Inhibitor III than its wildtype counterpart, the authors claimed
possible off-target effects that must be taken into account when using these inhibitors at
high dosages.

3.2. Targeting the APE1 Redox Activity

Unlike the BER function, which is highly conserved from prokaryotes (E. coli exonucle-
ase III) to humans, the redox function is probably unique to mammalians [161]. Whereas the
C-terminal of APE1 is mainly involved in the regulation of endodeoxyribonuclease activity,
the N-terminal, principally consisting of an unstructured region, is strongly implicated in
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protein-protein interactions and in the activation of several TFs via a redox mechanism.
Specifically, the redox function of APE1 is exploited by cysteine residues sited at positions
65, 93, and 99 of the N-terminal region (Figure 1). These residues are involved in the redox
cycle responsible for controlling the reduced state of several TFs [161]. By reducing the TFs,
APE1 makes them able to bind DNA. APE1 then returns to its basal state through another
reduction that occurs via a thiol/sulfide exchange with thioredoxin. Among the several TFs
regulated by APE1, we include the principals such as NF-κB [162], AP-1 [162], HIF1α [163],
STAT3 [164,165], p53 [166], NRF2 [167], Pax-5 and -8 [168], and others [169]. Given the roles
of all these TFs in cellular biological processes, the effects of APE1 as a redox signaling
factor regard principally the promotion of growth, migration, DDR signaling, and survival
in tumor cells, as well as inflammation and angiogenesis in the tumor microenvironment.
Thus, inhibition of APE1 redox activity can be a target for slowing growth and progression
during tumoral processes. Indeed, the pharmacological inhibition of APE1 redox activity
causes a decrease in the ability of the TFs to bind to DNA [169–171] and thereby increases
the cancer cells’ response to chemotherapeutic agents [172,173].

Differently from the AP-endonuclease inhibitors, testing redox inhibitors resulted in
more complications during these years, due in part to the arduous modalities of detection
of the redox activity of APE1. In this paragraph, we propose a roundup of the literature on
a few redox inhibitors that have emerged on the scientific scene.

Dietary agents and several compounds from natural sources, such as soy isoflavones,
resveratrol, and curcumin, as well as the vitamins ascorbate and α-tocopherol [174], were
initially tested. Curcumin is a polyphenol with the potential for treatment or prevention
of particular human diseases such as oxidative and inflammatory conditions, metabolic
syndrome, arthritis, anxiety, hyperlipidemia, and cancer [175]. In 2017, it was demonstrated
that curcumin affected the APE1 redox function, inhibiting the transcriptional activity of
APE1 on AP-1 and NF-κB genes in vitro [176]. For its multiple anti-inflammatory, antioxi-
dant, and anti-neoplastic properties, curcumin has been enrolled in more than 300 clinical
trials. Resveratrol is a naturally occurring polyphenolic compound present in red wine
and grapes. It has been demonstrated that it exhibits a neuroprotective role in models of
central nervous system diseases, including cerebral ischemia/reperfusion injury [177]. By
inhibiting APE1 redox function, resveratrol caused a significantly diminished activity of
AP-1 and NF-κB proteins in different human cancer models, enhancing the cytotoxicity of
chemotherapy [99]. Similarly, utilizing soy isoflavones to block redox signaling through
APE1 and NF-κB dramatically increased prostate cancer cells’ sensitivity to radiation [178].

About ten years ago, the Kelley’ group synthesized a molecule that turned out to be highly
promising in the inhibition of APE1 redox activity in several cancer models [24,179]. This
molecule [(2E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)methylene]-
undecanoic acid, commonly denoted as APX3330 (or E3330), is a quinone derivative.
Several studies were then performed using different pathological models both in vitro and
in vivo, in which it was demonstrated that APX3330 selectively inhibited NF-κB-mediated
gene expression through APE1 binding [180]. In 2009, Zou et al. demonstrated that
APX3330 blocked the in vitro growth of pancreatic cancer-associated endothelial cells and
the differentiation of bone marrow-derived mesenchymal stem cells into CD31(+) endothe-
lial progeny. Specifically, the effect was attributable to a reduction of H-Ras expression and
intracellular nitric oxide (NO) levels, as well as decreased DNA-binding activity of HIF-1α.
Inhibition of the APE1 redox function by APX3330 might be a potent therapeutic strategy
in solid tumors [181]. Indeed, APX3330 showed anticancer properties in pancreatic cancer,
including inhibition of cancer cell growth and migration in several cancer cell lines and
xenograft models in mice [182]. APX3330 inhibited the proliferation, migration, and tube
formation of retinal vascular endothelial cells in vitro and reduced retinal angiomatous
proliferation and neovascularization in vivo [183]. As anticipated in the previous para-
graphs, elevated expression levels of APE1 have been correlated with more aggressive
phenotypes and a poor prognosis for NSCLC. Recently, Manguinhas et al. demonstrated
that APX3330, in combination with cisplatin, reduced H1975 cell viability, migration, and
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invasion, highlighting its use as a boost for cisplatin in NSCLC cells [184]. Moreover, the
inhibition of APE1 redox function through APX3330 combined with docetaxel treatment
decreased the proliferative rate, migration, and invasion of MDA-MB-231 breast cancer
cells [185]. The APX3330 inhibitory activity was also assessed in pathological angiogenesis,
such as retinal neovascularization [186]. Li et al. demonstrated that APX3330 treatment
suppressed experimental choroidal neovascularization in vitro and in vivo, demonstrating
that APE1 regulates multiple TFs and inflammatory molecules and is essential for CEC
angiogenesis. That could represent a novel candidate for therapeutically targeting neo-
vascular eye diseases and alleviating the burden associated with anti-VEGF intravitreal
injections [187]. Recently, it has also been demonstrated that APX3330 has the potential to
be used for the treatment of γ-herpesvirus infection and associated diseases [188].

Given its promising and potential anti-angiogenic and antineoplastic activities ob-
tained in vitro, APX3330 was enrolled in the APX_CLN_0011 Phase 1 clinical trial in 2017.
This trial (ClinicalTrials.gov (accessed on 4 April 2023) Identifier: NCT03375086) was
a multi-center, open-label, dose-escalation oncology study of APX3330 in patients with
advanced solid tumors. The study was completed in 2020, showing the assessment of
APX3330’s safety, anti-tumor activity, pharmacokinetic and pharmacodynamic profile [189],
and the recommendations for the Phase 2 study dose. Oral APX3330 demonstrated a
favorable safety and tolerability profile and was suitable for Phase 2. In 2020, APX3330
was enrolled in the ZETA-1 Phase 2 clinical trial to evaluate its safety and efficacy to treat
diabetic retinopathy and diabetic macular edema. The trial was completed this year (2023)
(ClinicalTrials.gov (accessed on 4 April 2023) Identifier: NCT03375086). Oral administration
of APX3330 and placebo has demonstrated a favorable ophthalmic and systemic safety and
tolerability profile. Additional safety data from the ongoing ZETA-1 trial will be evaluated
to further characterize the efficacy and safety of APX3330 for the oral treatment of diabetic
eye diseases.

On the basis of the results obtained with APX3330, new analogues of this inhibitor
were synthesized, including RN8–51, 10–52, and 7–60 [190]. Data have demonstrated that
especially the analogue RN8–51 decreased cancer cell growth with little apoptosis, demon-
strating itself as particularly promising for further anticancer therapeutic development.
Kelley et al. synthesized novel, second-generation APE1 redox-targeted molecules such
as APX2007, APX2009, APX2014, and APX2032 and determined whether they would be
protective against neurotoxicity induced by cisplatin or oxaliplatin while not diminishing
the platins’ antitumor effect. Specifically, they used an ex vivo model of sensory neurons in
culture, through which they demonstrated that especially APX2009 [(2E)-2-[(3-methoxy-
1,4-dioxo-1,4-dihydronaphthalen-2-yl)methylidene]-N,N-diethylpentanamide] was an ef-
fective small-molecule neuroprotective against cisplatin and oxaliplatin-induced toxicity.
APX2009 also demonstrated a strong tumor cell killing effect in monodimensional cultured
tumor cells, which was further substantiated in a more robust three-dimensional pancreatic
tumor model [179]. Together, these data suggested that the second-generation compound
APX2009 was effective in preventing or reversing platinum-induced CIPN while not af-
fecting the anticancer activity of platins [179]. Moreover, all three compounds (APX2007,
APX2009, and APX2032) demonstrated similar inhibition of NF-κB binding [179].

Finally, in 2010, Nyland et al. described a series of quinones, including benzoquinone
and naphthoquinone, analogues of APX3330, with the ability to reduce tumor growth [191].

3.3. Targeting Both the APE1 Endonuclease and Redox Activities

Very few molecules have been demonstrated to inhibit both APE1 endonuclease and
redox function. Among them, one was Gossypol [192]. Gossypol is a natural polyphenolic
aldehyde that exhibits various effects, including antioxidant, anticancer, antiviral, antipar-
asitic, and antimicrobial activities. It can directly interact with APE1 and enhance the
cell-killing effects of MMS and cisplatin. A recent clinical trial (ClinicalTrials.gov (accessed
on 4 April 2023) Identifier: NCT00540722) aimed to investigate the potential clinical benefit
of combining Gossypol with docetaxel and cisplatin in patients with NSCLC who have

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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high expression of APE1 [193]. The trial, designed as a prospective and randomized study,
did not show a significant difference between the Gossypol and placebo groups, although
the Gossypol-treated patients had better outcomes in terms of increased PFS and OS.

One additional inhibitor was AT-101, a derivative of Gossypol and an oral inhibitor
of the anti-apoptotic Bcl-2 and Bcl-xL proteins. AT-101 has been shown to exhibit potent
anticancer activity, although its chemosensitizing effects are not fully understood. Indeed,
AT-101 enhanced the sensitivity of A549 cells to cisplatin in vitro and in vivo by inhibiting
APE1-mediated IL-6/STAT3 signaling activation, suggesting its potential use in NSCLC
chemotherapy [194]. Moreover, it was also found to suppress gastric cancer cell migra-
tion and renewal and promote chemotherapeutic sensitivity in a gastric cancer model
in vivo [195]. The molecular mechanism of its anticancer activity via inhibition of the
endoribonuclease or redox activities of APE1 remains unclear.

4. Future Perspectives from Targeting the Non-Canonical Roles of APE1 in
miRNA Processing

We recently proved that APE1 contributes to the expression of chemoresistance genes
via functions in RNA metabolism involving miRNAs. We found that APE1: (i) binds
to structured RNAs, including pri-miRNAs [14,196]; (ii) is involved in the processing of
miRNAs implicated in cancer development (e.g., miR-221/222, miR-1246, miR-130b, miR-
146a) [197]; and (iii) is a central hub connecting different subnetworks of cancer-associated
proteins involved in RNA metabolism and miRNA sorting (e.g., NPM1, hnRNPA2/B1,
AUF1, FUS, and SFPQ) [196,198,199]. We demonstrated that, during genotoxic stress, nu-
clear APE1 favors the processing and stability of miRNA precursors through its association
with the DROSHA microprocessor complex, impacting, for example, the miR-221/222 axis
and, in turn, modulating the expression of the tumor suppressor PTEN [14]. Using NSCLC
cancer cell lines, we recently defined a signature of 13 miRNAs (miR-1246, miR-4488,
miR-24, miR-183, miR-660, miR-130b, miR-543, miR-200c, miR-376c, miR-218, miR-146a,
miR-92b, and miR-33a) that strongly correlate with APE1 expression in human lung can-
cer and play a central role in cancer cell proliferation and survival [197]. Whether these
APE1-regulated miRNAs are responsible for cancer cell response to genotoxic treatment
and explain the role of APE1 in chemoresistance through post-transcriptional mechanisms
is still unknown and should be addressed to understand the central role of APE1 in cancer
progression and to define new antitumor strategies. It should be defined whether APE1 rec-
ognizes specific oncogenic miRNAs alone or in combination with specific proteins through
the detection of regulatory motifs present in the miRNA structure.

5. Secreted APE1 as a Novel Prognostic Non-Invasive Biomarker of
Cancer Development

We recently showed that enzymatically active APE1 can be secreted (sAPE1) by cancer
cells through EVs, including exosomes, during genotoxic stress conditions [8]. However,
APE1’s presence in the extracellular milieu is still poorly characterized [186–188]. sAPE1
expression is actually considered a novel biomarker for the prognosis of NSCLC, as proved
in a previous study performed on NSCLC patients, in which their levels of sAPE1 were
significantly higher compared to healthy controls and were associated with a worse PFS [198].
Recently, data obtained by our research group confirmed these observations in a cohort of
HCC patients [190], in which we found that sAPE1 levels correlated with poor prognosis
and were able to discriminate between cancer patients and cirrhotic or healthy donors. The
presence of this protein in the sera of patients is not solely restricted to cancer diseases but
also in inflammatory models, such as coronary artery disease and endotoxemia [191,192].
The biological function of sAPE1 is still completely unknown. An intriguing hypothesis sees
its action as a paracrine molecule triggering cell-to-cell communication, which is important
for the local tissue microenvironment’s inflammatory response.

Evidence on the mechanisms responsible for APE1 secretion is lacking, even though
the importance of the acetylation, occurring on specific lysine residues sited in the first
33 N-terminal portions of the protein (K27, K31, K32, and K35), has been highlighted in
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cells treated with the histone deacetylase inhibitor trichostatin A [14]. It seems reasonable
that APE1 secretion might derive from EV formation via the endosomal sorting complex
(ESCRT), due to the protein lacking a classic secretory signal peptide [193]. This pathway
is responsible for the biogenesis and maturation of multivesicular bodies (MVBs), com-
posed of many intraluminal vesicles (ILVs), that are released in the extracellular milieu as
exosomes. ILV formation can occur through several mechanisms, and information about
the regulation of these processes and the possible differences between the promoted cargo
selections is still missing [194].

It is conceivable that these vesicles might be highly shuttled between cells within the
tumor mass and deliver their content to target cells. This process may fulfill the cancer
cells’ requirement for a high amount of APE1 to counteract the DNA damage inferred
by drugs in a paracrine manner, suggesting that APE1-secretion could represent a novel
damage-associated molecular pattern (DAMP) mechanism that deserves further in-depth
study to develop inhibitors that could specifically target alterations of APE1 secretion in
different cancers.

6. Conclusive Remarks and Future Perspectives

Despite the high potency of many of the compounds aforementioned, additional work
is necessary to deliver more specific inhibitors of APE1-altered functions in tumors, which
could be useful for clinical trials. While progress has certainly been made in identifying
potent APE1 inhibitors, further efforts are needed to specifically achieve selectivity and
efficacy. This will require consideration of both the abasic site binding pocket and more
distal features of the enzyme that might be important for DNA binding. X-ray crystallogra-
phy and in vivo experiments would be crucial to expedite rational inhibitor design, validate
APE1 as a target, and explore possible side effects. Moreover, knowing the multiple APE1
cellular functions and their detailed molecular mechanisms could allow us to better target
APE1 dysregulation in pathologies (Figure 2).

The discovery of novel functions for APE1 is constantly evolving. As mentioned in the
introduction, the ability of APE1 to recognize and process SSBs through its 3′-5′ exonuclease
activity [5,6] could represent an interesting target for developing new inhibitors specifically
directed against this APE1 function and able to inhibit in ultimum the promotion of the
ATR/Chk1-mediated DDR activation.

Moreover, targeting a protein-nucleic acid interaction is challenging, and this has
contributed to the limited success in developing APE1 inhibitors. New approaches are
needed for the discovery of novel and selective APE1 inhibitors. In this context, Wilson
DM III et al. proposed the application of fragment- and structure-based drug discovery
(FBDD/SBDD) methods in the quest for new clinical agents [200]. They applied the AB-
SOneStepTM platform, identifying 25 high-quality crystal structures showing unique and
diverse fragment hits bound at the endonuclease site as well as at a previously unidentified
secondary site, overall suggesting multiple novel strategies for inhibiting APE1. Indeed, in
addition to direct inhibitors of APE1 nuclease activities, inhibitors against other functions
of APE1 may also be clinically valuable. Considering the complex role of APE1, exploring
allosteric modes of inhibition, such as disrupting vital interactions between APE1 and
other cellular protein partners, might be an alternative option [118,201]. For example, we
demonstrated that the molecular association with NPM1 modulates the endonuclease ac-
tivity of APE1 [118]. HTS for the disruption of this interaction led to the discovery of three
compounds (fiduxosin, spiclomazine, and SB 206553); of these, fiduxosin and spiclomazine
displayed anti-proliferative activity and sensitized cells to bleomycin. A synergistic effect
with platinum drugs was also observed by using these inhibitors in a triple-negative breast
cancer cell model, demonstrating how APE1 could also represent a useful therapeutic
biomarker in this type of tumor [49,202]. Similarly, the disruption of other APE1 protein
interactions or functions can be taken into consideration.
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Figure 2. Illustration of the main functions of APE1 and its relative inhibitors. The DNA repair
mediated by the endonuclease activity of APE1 is inhibited by Methoxyamine, APE Inhibitor III, and
Gossypol (blue blunt arrows). The gene expression promoted by the redox activity of APE1 on TFs is
inhibited by Gossypol, curcumin, resveratrol, and APX3330 (green blunt arrows). Especially through
its N-terminal region, APE1 is involved in several PPIs, including Nucleophosmin 1 (NPM1). This
interaction is inhibited by fiduxosin, SB 206553, and spiclomazine (fuchsia blunt arrows). Recent
findings have shown that APE1 is secreted by EVs in the microambient and is involved in RNA
metabolism, including the regulation of miRNA processing. If these novel features of APE1 can
be inhibited, it is still unknown (brown blunt arrows) and an interesting starting point for future
explorations. For each inhibitor, pillows are drawn when the inhibitor has been enrolled in one or
more clinical trials. Created with BioRender.com (accessed on 31 May 2023).
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Table 3. List of the principal APE1 inhibitors. The principal APE1 inhibitors are grouped by the APE1 function inhibited, including the endonuclease activity,
the redox activity, and the protein-protein interaction. For each inhibitor, the IUPAC name, the PubChem CID, the molecular formula and weight (MW), and the
structure (obtained with PubChem Sketcher V2.4) are reported. At the end, the main references for each inhibitor are indicated. For more detailed information, refer
to the text.

APE1
Function-
Inhibited

Name IUPAC
Name PubChem CID Molecular

Formula MW (g/mol) Structure Refs

Endonuclease

Methoxyamine O-methylhydroxylamine 4113 CH5NO 47.057
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[139–141]

Lucanthone 1-[2-(diethylamino)ethylamino]-4-methylthioxanthen-
9-one 10180 C20H24N2OS 340.5
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CRT0044867 7-Nitroindole-2-carboxylic acid 81409 C9H6N2O4 206.15

Cells 2023, 12, x FOR PEER REVIEW  21  of  33 
 

 

Table 3. List of the principal APE1 inhibitors. The principal APE1 inhibitors are grouped by the APE1 function inhibited, including the endonuclease activity, the 

redox activity, and the protein-protein  interaction. For each  inhibitor, the IUPAC name, the PubChem CID, the molecular formula and weight (MW), and the 

structure (obtained with PubChem Sketcher V2.4, accessed on 17 July 2023) are reported. At the end, the main references for each inhibitor are indicated. For more 

detailed information, refer to the text. 

APE1   

Function‐ 

Inhibited 

Name 
IUPAC   

Name 
PubChem CID  Molecular Formula  MW (g/mol)  Structure  Refs 

Endonuclease 

Methoxyamine  O-methylhydroxylamine  4113  CH5NO  47.057    [139–141] 

Lucanthone 
1-[2-(diethylamino)ethylamino]-4-

methylthioxanthen-9-one 
10180  C20H24N2OS  340.5 

 

[143–145] 

CRT0044867  7-Nitroindole-2-carboxylic acid  81409  C9H6N2O4  206.15 

 

[23,146–148] 

Myricetin 
3,5,7-trihydroxy-2-(3,4,5-

trihydroxyphenyl)chromen-4-one 
5281672  C15H10O8  318.23 

 

[147] 

AR03 

2,4,9-

Trimethylbenzo[b][1,8]naphthyrid

in-5-amine 

698490  C15H15N3  237.30 

 

[151] 

APE Inhibitor III 

N-[3-(1,3-benzothiazol-2-yl)-6-

isopropyl-4,5,6,7-

tetrahydrothieno[2,3-c]pyridin-2-

yl]acetamide 

3581333  C19H21N3OS2  371.5 

 

[155,156] 

Redox  Curcumin 

(1E,6E)-1,7-bis(4-hydroxy-3-

methoxyphenyl)hepta-1,6-diene-

3,5-dione 

969516  C21H20O6  368.4 

 

[175,176] 

O
N

N

N

S

O

N

O

O

N

O

O

+-

O

O

O

O

OO

O

O

NN

N

N
S

N
S

N

O

O

O

O

O
O

O

[23,146–148]

Myricetin 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)chromen-
4-one 5281672 C15H10O8 318.23
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[147]

AR03 2,4,9-Trimethylbenzo[b][1,8]naphthyridin-5-amine 698490 C15H15N3 237.30
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[151]

APE Inhibitor III N-[3-(1,3-benzothiazol-2-yl)-6-isopropyl-4,5,6,7-
tetrahydrothieno[2,3-c]pyridin-2-yl]acetamide 3581333 C19H21N3OS2 371.5
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Curcumin (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-
diene-3,5-dione 969516 C21H20O6 368.4

Cells 2023, 12, x FOR PEER REVIEW  21  of  33 
 

 

Table 3. List of the principal APE1 inhibitors. The principal APE1 inhibitors are grouped by the APE1 function inhibited, including the endonuclease activity, the 

redox activity, and the protein-protein  interaction. For each  inhibitor, the IUPAC name, the PubChem CID, the molecular formula and weight (MW), and the 

structure (obtained with PubChem Sketcher V2.4, accessed on 17 July 2023) are reported. At the end, the main references for each inhibitor are indicated. For more 

detailed information, refer to the text. 

APE1   

Function‐ 

Inhibited 

Name 
IUPAC   

Name 
PubChem CID  Molecular Formula  MW (g/mol)  Structure  Refs 

Endonuclease 

Methoxyamine  O-methylhydroxylamine  4113  CH5NO  47.057    [139–141] 

Lucanthone 
1-[2-(diethylamino)ethylamino]-4-

methylthioxanthen-9-one 
10180  C20H24N2OS  340.5 

 

[143–145] 

CRT0044867  7-Nitroindole-2-carboxylic acid  81409  C9H6N2O4  206.15 

 

[23,146–148] 

Myricetin 
3,5,7-trihydroxy-2-(3,4,5-

trihydroxyphenyl)chromen-4-one 
5281672  C15H10O8  318.23 

 

[147] 

AR03 

2,4,9-

Trimethylbenzo[b][1,8]naphthyrid

in-5-amine 

698490  C15H15N3  237.30 

 

[151] 

APE Inhibitor III 

N-[3-(1,3-benzothiazol-2-yl)-6-

isopropyl-4,5,6,7-

tetrahydrothieno[2,3-c]pyridin-2-

yl]acetamide 

3581333  C19H21N3OS2  371.5 

 

[155,156] 

Redox  Curcumin 

(1E,6E)-1,7-bis(4-hydroxy-3-

methoxyphenyl)hepta-1,6-diene-

3,5-dione 

969516  C21H20O6  368.4 

 

[175,176] 

O
N

N

N

S

O

N

O

O

N

O

O

+-

O

O

O

O

OO

O

O

NN

N

N
S

N
S

N

O

O

O

O

O
O

O

[175,176]



Cells 2023, 12, 1895 21 of 31

Table 3. Cont.

APE1
Function-
Inhibited

Name IUPAC
Name PubChem CID Molecular

Formula MW (g/mol) Structure Refs

Redox

Resveratrol 5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol 445154 C14H12O3 228.24

Cells 2023, 12, x FOR PEER REVIEW  22  of  33 
 

 

Resveratrol 

5-[(E)-2-(4-

hydroxyphenyl)ethenyl]benzene-

1,3-diol 

445154  C14H12O3  228.24 

 

[99,177] 

APX3330 

(2E)-2-[(4,5-dimethoxy-2-methyl-

3,6-dioxocyclohexa-1,4-dien-1-

yl)methylidene]undecanoic acid 

6439397  C21H30O6  378.5 

 

[24,179–189] 

APX2009 

(2E)-N,N-diethyl-2-[(3-methoxy-

1,4-dioxonaphthalen-2-

yl)methylidene]pentanamide 

71618575  C21H25NO4  355.4 

 

[179] 

Endonuclease           

Redox 
Gossypol 

7-(8-formyl-1,6,7-trihydroxy-3-

methyl-5-propan-2-ylnaphthalen-

2-yl)-2,3,8-trihydroxy-6-methyl-4-

propan-2-ylnaphthalene-1-

carbaldehyde 

3503  C30H30O8  518.6 

 

[192,193] 

Protein‐protein 

interaction 

Fiduxosin 

5-[4-[(3aR,9bR)-9-methoxy-

3,3a,4,9b-tetrahydro-1H-

chromeno[3,4-c]pyrrol-2-yl]butyl]-

12-phenyl-8-thia-3,5,10,13-

tetrazatricyclo[7.4.0.02,7]trideca-

1(13),2(7),9,11-tetraene-4,6-dione 

172307  C30H29N5O4S  555.6 

 

[49,118, 

202] 

Spiclomazine 

8-[3-(2-chlorophenothiazin-10-

yl)propyl]-1-thia-4,8-

diazaspiro[4.5]decan-3-one 

65714  C22H24ClN3OS2  446.0 

 

[49,118, 

202] 

SB 206553 

1-methyl-N-pyridin-3-yl-6,7-

dihydropyrrolo[2,3-f]indole-5-

carboxamide 

5163  C17H16N4O  292.33 

 

[49,118, 

202] 

OO

O

O

O

O

O

O O

O

O

O

O

N

O

O

O

O

O

O

O

O

O
HN

H
O

N

O

N

N

S

N
O

N

N

O

S

N

S

C l

N

N

O
N

N

[99,177]

APX3330
(2E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-

1,4-dien-1-yl)methylidene]undecanoic
acid

6439397 C21H30O6 378.5

Cells 2023, 12, x FOR PEER REVIEW  22  of  33 
 

 

Resveratrol 

5-[(E)-2-(4-

hydroxyphenyl)ethenyl]benzene-

1,3-diol 

445154  C14H12O3  228.24 

 

[99,177] 

APX3330 

(2E)-2-[(4,5-dimethoxy-2-methyl-

3,6-dioxocyclohexa-1,4-dien-1-

yl)methylidene]undecanoic acid 

6439397  C21H30O6  378.5 

 

[24,179–189] 

APX2009 

(2E)-N,N-diethyl-2-[(3-methoxy-

1,4-dioxonaphthalen-2-

yl)methylidene]pentanamide 

71618575  C21H25NO4  355.4 

 

[179] 

Endonuclease           

Redox 
Gossypol 

7-(8-formyl-1,6,7-trihydroxy-3-

methyl-5-propan-2-ylnaphthalen-

2-yl)-2,3,8-trihydroxy-6-methyl-4-

propan-2-ylnaphthalene-1-

carbaldehyde 

3503  C30H30O8  518.6 

 

[192,193] 

Protein‐protein 

interaction 

Fiduxosin 

5-[4-[(3aR,9bR)-9-methoxy-

3,3a,4,9b-tetrahydro-1H-

chromeno[3,4-c]pyrrol-2-yl]butyl]-

12-phenyl-8-thia-3,5,10,13-

tetrazatricyclo[7.4.0.02,7]trideca-

1(13),2(7),9,11-tetraene-4,6-dione 

172307  C30H29N5O4S  555.6 

 

[49,118, 

202] 

Spiclomazine 

8-[3-(2-chlorophenothiazin-10-

yl)propyl]-1-thia-4,8-

diazaspiro[4.5]decan-3-one 

65714  C22H24ClN3OS2  446.0 

 

[49,118, 

202] 

SB 206553 

1-methyl-N-pyridin-3-yl-6,7-

dihydropyrrolo[2,3-f]indole-5-

carboxamide 

5163  C17H16N4O  292.33 

 

[49,118, 

202] 

OO

O

O

O

O

O

O O

O

O

O

O

N

O

O

O

O

O

O

O

O

O
HN

H
O

N

O

N

N

S

N
O

N

N

O

S

N

S

C l

N

N

O
N

N

[24,179–189]

APX2009 (2E)-N,N-diethyl-2-[(3-methoxy-1,4-dioxonaphthalen-
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Endonuclease Redox Gossypol
7-(8-formyl-1,6,7-trihydroxy-3-methyl-5-propan-2-

ylnaphthalen-2-yl)-2,3,8-trihydroxy-6-methyl-4-
propan-2-ylnaphthalene-1-carbaldehyde

3503 C30H30O8 518.6
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3,5,10,13-tetrazatricyclo[7.4.0.02,7]trideca-
1(13),2(7),9,11-tetraene-4,6-dione

172307 C30H29N5O4S 555.6
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Spiclomazine 8-[3-(2-chlorophenothiazin-10-yl)propyl]-1-thia-4,8-
diazaspiro[4.5]decan-3-one 65714 C22H24ClN3OS2 446.0
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[49,118,202]

SB 206553 1-methyl-N-pyridin-3-yl-6,7-dihydropyrrolo[2,3-
f]indole-5-carboxamide 5163 C17H16N4O 292.33
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A new hot topic concerns RNA G-quadruplexes (RG4s), which are disease-associated
non-canonical structures composed of stacks of guanine tetrads (called G-quartets) kept
together by Hoogsteen hydrogen bonds. RG4s are increasingly recognized as fundamental
post-transcriptional regulators of gene expression [203]. Interestingly, these elements are
widespread in the transcriptome and are particularly enriched in miRNAs [204]. The
folding of these structures can be controlled by their RBP interactors (i.e., hnRNPA2B1, FUS,
etc.), cations (i.e., K+), and small molecule ligands [205], making RG4s highly dynamic. Very
recent data underline a regulatory function played by RG4 in miRNA maturation through
DROSHA- and Dicer-inhibition [206] and a potential role in physiological and pathological
LLPS [207,208]. The presence of the RG4 structure in pre-miRNA exists in equilibrium with
the canonical stem-loop structures, and this equilibrium regulates the maturation of some
miRNAs, such as miR-92b [209]. However, mechanistic information on RG4 function in
miRNA sorting is missing, as is information on the functional role of oxidized guanine
(8-oxo) or abasic (AP) sites in the RG4-forming structures in the stability and biological
properties of the miRNAs in which these structures are present. Understanding whether
APE1 function in miRNA processing and degradation could be driven by RG4-mediated
folding will open mechanistic views as well as translational applications in cancer biology.
We are working along these lines.

Finally, this fascinating field of research relies on the findings that APE1 can be secreted
in the extracellular milieu through EVs. Understanding the intracellular routes responsible
for this secretion in cancer cells and the role of sAPE1 as a potential paracrine molecule
will open new perspectives on precision medicine.
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