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Abstract: In recent years, social platforms have become integrated in a variety of economic, political 

and cultural domains. Social media have become the primary outlets for many citizens to consume 

news and information, and, at the same time, to produce and share online a large amount of data 

and meta-data. This paper presents an innovative system able to analyze visual information shared 

by citizens on social media during extreme events for contributing to the situational awareness and 

supporting people in charge of coordinating the emergency management. The system analyzes all 

posts containing images shared by users by taking into account: (a) the event class and (b) the GPS 

coordinates of the geographical area affected by the event. Then, a Single Shot Multibox Detector 

(SSD) network is applied to select only the posted images correctly related to the event class and an 

advanced image processing procedure is used to verify if these images are correlated with the geo-

graphical area where the emergency event is ongoing. Several experiments have been carried out to 

evaluate the performance of the proposed system in the context of different emergency situations 

caused by earthquakes, floods and terrorist attacks. 

Keywords: deep neural networks; geo-validation; social media; computer vision; visual social data; 

natural disasters; feature matching; image classification; event-related images 

 

1. Introduction 

Within a relatively short time span, social platforms have intruded into all parts of 

life with potentially profound consequences. They have become integrated in a variety of 

economic, political and cultural domains and have reconfigured the entire media system, 

transforming older forms of communication and changing the information landscape. So-

cial media, in fact, have become the primary outlets for many citizens to consume news 

and information, and, at the same time, to produce and share online content (the so-called 

User Generated Content (UGC) and User Distributed Content (UDC)), both in ordinary 

and extraordinary times [1]. In this paper, the exploitation of social media content pro-

duced during extreme events, such as natural or manmade disasters, is investigated. 

Several studies have demonstrated that social media use rises during extraordinary 

situations as people seek immediate and up-to-date news [2], especially when official 

sources provide information too slowly or are unavailable. In addition, as the recent cat-

astrophic events, from the devastating California fires to the Ecuador earthquake, or the 

terrorist attacks [3] in Nice (2016), Brussels (2016), Paris (2015–2018), Strasbourg (2018) or 

Vienna (2020) have clearly confirmed, social platforms—most notably Twitter and Face-

book—represent the primary place citizens turn to interact with others and spread first-

hand information more quickly than traditional news sources. 

During extraordinary situations, social media enable citizens to play at least three 

roles: (i) first responders/volunteers; (ii) citizen journalists/reporters; and (iii) social activ-

ists [4]. These practices provide an up-to-date picture of what is happening on the ground 
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in a specific area, and could represent a useful resource for emergency operators to organ-

ize the rescue operations in a more accurate way. As explained in [5], in fact, oftentimes, 

individuals experiencing the event first-hand are on the scene of the disaster and can pro-

vide updates more quickly than traditional news sources and disaster response organiza-

tions. In this sense, some scholars have used the definition of “citizens as sensors”, as non-

specialist creators of geo-referenced information that contribute to crisis situation aware-

ness [6]. Despite a lot of evident potentials of analyzing in real-time visual information 

coming directly from the area where the event is in progress, there are also a lot of chal-

lenges using this source of data because in some cases the posts of citizens report untrue 

data such as images that refer to previous events [7], images not related to the event de-

scribed in the post [8,9], etc. 

Given the increasing availability of data and meta-data produced and distributed 

online by people affected by disasters, our study aims to develop an innovative system 

that enables the use of grassroots information as a source for emergency management. In 

particular, it collects and analyses visual data produced and shared on Twitter, a popular 

social micro-blogging platform widely spread internationally, for contributing to the gen-

eral understanding of what has happened and supporting officials to coordinate and exe-

cute a response. 

This paper presents a smart system, called Automatic Social Media Interpretation 

System (ASMIS), for the automatic analysis of visual content shared by users on Twitter 

during an emergency event (Figure 1). With the support of advanced image processing 

techniques and deep learning algorithms, the system is able to automatically select posts 

containing visual data which are related to a given type of emergency event (e.g., a flood, 

an earthquake, a terrorist attack, etc.). The final goal of the system is to provide to the 

emergency operators selected images that, after an automatic geo-validation performed 

by a matching procedure with street view data, can be used to have a quick overview of 

the event thus better organize the rescue operations. 

 

Figure 1. General overview of the ASMIS system for automatic analysis of visual content shared by 

users on Twitter during emergency events. 

The ASMIS system presents several novelties compared to the current state-of-the-

art in the field of emergency management systems based on computer vision [10] and 

social data [11–15]: 

– It exploits not only the keywords used within the tweets, but also the images shared 

by users during and immediately after the extreme event, selecting only the most 

appropriate ones and discarding those deemed uninformative and useless; 

– Contrary to other emergency management systems which are focused only on data 

coming from devices controlled by public authority (e.g., police, military, etc.), it uses 
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social media as an intelligent “geosensor” network to monitor extreme events and to 

create a sort of crowd-sourced mapping which is pivotal to support the coordination 

efforts of the humanitarian relief services (i.e., Civil Protection, Red Cross and so on); 

– It has been designed by an original pipeline and represents a system that uses data 

produced by citizens: (a) to help the authorities to allow a more accurate situational 

awareness, (b) to take informed and better decisions during emergencies and (c) to 

respond quickly and efficiently. 

– The system automatically detects the event class of the posted image and matches its 

GPS coordinates with those of the geographical area where the event occurs; 

– Since not all posts contain useful images, the system is able to match the input image 

with available images acquired from Google Street View Map or local datasets of the 

interesting geographical area to select only images correlated with the ongoing event. 

The rest of the paper is structured as follows. In Section 2, we will provide a state-of-

the-art overview of the existing emergency management systems based on social data. In 

Section 3, we will illustrate the main components of our system and, in Section 4, the ex-

perimental results will be presented. 

2. Related Works 

Social media and video/photo-sharing applications are playing an increasingly im-

portant role during and in the aftermath of an extraordinary situation. Numerous case 

studies show how citizens and public institutions are using them to spread and gather 

specific information and to support recovery actions. So far, several systems have been 

developed to satisfy emergency management needs by extracting and analyzing the con-

tent shared by users on social media platforms. The development of the so-called “Social 

Emergency Management Systems” [16] has represented a real paradigm shift in the liter-

ature on this topic because usually, in the case of disasters, citizens have always been con-

sidered as people to be rescued rather than active participants. Social platforms instead 

promote a two-way (or, to be more precise, multi-directional) communication environ-

ment, supporting interaction between citizens and emergency coordinators, and provide 

additional perspective on a certain situation. Moreover, especially when official sources 

make available relevant information too slowly, people turned to social media in order to 

obtain time-sensitive and unique information [17]. They have changed the information 

dissemination pathways in crisis and enabled the ways in which emergencies are tracked 

to be transformed. 

In general terms, the literature reveals how eyewitness content provides an up-to-

date line of communication and offers unique and relevant crisis information such as lo-

cating involved friends, sharing personal safety status, indicating collapsed buildings and 

requesting intervention from professionals. Although scholars are now engaging in a 

growing volume of research in this field, it should be pointed out that the vast majority of 

existing studies and research related to the exploitation of social content for situational 

awareness and emergency management purposes is focused on Twitter, probably due to 

the specific affordances of the platform [16,17]. Most of the approaches used in these stud-

ies show an event detection mechanism based on the extraction of textual data (see, for 

example [18]) and metadata information, such as time and date of the tweet, GPS coordi-

nates, URLs shared, etc. (see, for example [19]), to identify and process messages coming 

from the public during a crisis. 

One of the most popular platforms centered on a bottom-up approach is Twitcident 

[20], a Web-based system developed at the Delft University of Technology in the Nether-

lands. Twitcident works by first monitoring local emergency broadcasts for an incident. 

Then, once an incident is reported, it sifts through local tweets and funnels helpful logis-

tical information directly to first responders. It cuts through Twitter’s noise, and focuses 

on the most relevant aspects of an incident, using specific filters to reveal a disaster’s lo-

cation, the amount of damaged reported and if casualties have been suffered. 
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Another initiative by U.S. Geological Survey (USGS) has developed a platform called 

TED (Twitter Earthquake Detector) that can filter place, time and keywords to identify 

possible earthquakes and gather geo-located tweets about shaking, using a short-term-

average, long-term-average algorithm [21]. 

Havas et al. [22] present an architecture able to integrate user-generated data from 

social media and targeted crowdsourcing activities with remotely sensed data (satellite 

images). Posted images are not analyzed to verify their truthfulness. 

A further system that mines microblogs in real-time is ESA (Emergency Situation 

Awareness via Microbloggers), which is able to extract and visualize data related to inci-

dents and to evaluate the impact on the community. In this way, it can equip the right 

authorities and the general public with situational awareness [23]. Moreover, a solution 

has also been proposed for real-time detection of small-scale incidents in microblogs, 

based on a machine-learning algorithm which combines text classification and semantic 

enrichment of microblogs [24]. 

An additional system worth mentioning is AIDR (Artificial Intelligence for Disaster 

Response), a platform designed to perform machine learning classification of the tweets 

that people post during disasters, using a set of user-defined categories of information 

(e.g., “needs”, “damage”, etc.) [25]. 

Lagerstrom et al. [26] present a system for image classification to support emergency 

situation awareness. In particular, the authors investigate image classification in the con-

text of a bush fire emergency in the Australian state of NSW, where images associated 

with tweets during the emergency were used to train and test classification approaches. 

No geo-validation has been performed on the analyzed images. 

Kumar et al. [27] presents a deep multi-modal neural network for informative Twitter 

content classification during emergencies, while Johnson et al. [28] present a study to eval-

uate the performance of transfer learning to classify hurricane-related images posted on 

Twitter. 

One of the main limitations of the majority of existing systems is that they usually 

examine the social platform as a stand-alone information source. However, in more recent 

times, systems capable of combing grassroots data with official sources of information 

have also been developed. For example, [29] combine Federal Emergency Management 

Agency reports with related terms found in tweet messages, while [30] suggest a ranking 

and clustering method of tweets called the GeoCONAVI (Geographic CONtext Analysis 

for Volunteered Information) approach. The GeoCONAVI system integrates authoritative 

data sources with Volunteered Geographic Information (VGI) extracted by tweets and 

uses spatio-temporal clustering to support scoring and validation. Nevertheless, it is im-

portant to underline that even in the systems where the geo-social content is integrated 

with GIS data from various sources, this accomplishment usually needs an “a posteriori” 

analysis of the tweets mostly based on classification [31,32], natural language processing 

methods [33] or machine learning techniques [34]. Such “a posteriori” analysis, however, 

adds critical time overheads that delay the effective and timely response to an emergency. 

The ASyEM (Advanced System for Emergency Management) [16] is able to aggregate 

two different kinds of data: (1) text data shared online through Twitter by citizens during 

or immediately after the disaster and (2) data acquired by smart sensors (i.e., cameras, 

microphones, acoustic arrays, etc.) distributed in the environment. The main limit of the 

ASyEM is that it cannot correctly work in the absence of distributed sensors in the envi-

ronment’s area. The main severe restriction is that most existing systems based on tweet 

mining do not take into account visual items (images, video, etc.), an integral and signifi-

cant category of content shared by users to convey a richer message [35]. Visual items in 

fact are particularly important in the context of disaster management because they give 

precious additional insights into the event by providing to the operators a more accurate 

situational awareness of the event. To overcome this limitation, we developed the ASMIS 

system, which takes advantages of the existing works and enriches them through the col-
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lection and automated analysis of images shared on Twitter. Moreover, through geo-lo-

cation validation of images, the system is able also to discharge uninformative and useless 

images. 

3. The Automatic Social Media Interpretation System (ASMIS) 

The ASMIS system has been expressly designed for situational awareness applica-

tions. In particular, it is focused on the analysis of visual content shared by users on Twit-

ter during an emergency situation or a crisis event, and it is able to classify the type of 

event and perform geo-location validation. The choice to focus on Twitter is based on sev-

eral reasons strictly linked to the platform’s specific affordances: the instantaneous nature 

of tweets, which makes the platform particularly suitable for rapid communications; the 

architecture of the platform and some specific technical features, which contribute to a 

widespread dissemination of information (i.e., the possibility to share content using 

hashtags (#), an annotation format to indicate the core meaning of the tweet through a 

single keyword and to promote focused discussions, even among people who are not in 

direct contact with each other); the prevailing public nature of the great majority of the 

accounts, which makes it easier to conduct analyses that aim to retrace the spread of com-

munication flows within the platform and makes the use of tweets for research purposes 

less critical from an ethical point of view; and the fact that the platform provides an API 

(Application Programming Interface) that can be used to access, retrieve and analyze data 

programmatically. 

The logical architecture of the ASMIS system is illustrated in Figure 2. The system is 

able to present to the operator accurate information on how the event is evolving by col-

lecting useful visual data shared by users from the emergency area (and automatically 

discharging uninformative ones). The ASMIS system is composed of two main modules: 

(a) the Post Data Retriever (PDR) and (b) the Image Data Analyzer (IDA). The PDR mod-

ule is in charge of retrieving the content shared by users on Twitter during a given emer-

gency event. It uses specific APIs to establish a connection with the social platform in or-

der to extract in real-time the data stream produced by the users. 

 

Figure 2. Logical architecture of the ASMIS system for automatic analysis of visual content shared 

by users on Twitter, including the PDR (Post Data Retriever) module and the IDA (Image Data An-

alyzer) module. 

The IDA module uses a deep neural network, an improved version of the Single Shot 

Multibox Detector (SSD) network [36], for classifying all the input images, thus discarding 
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uninformative or meaningless images. The principal advantage of the use of this network 

in the proposed system is to avoid the use of datasets containing tens of thousands of 

training images (for certain types of disaster events, many images are not always available 

for network training) and to avoid the explicit selection and computation of a set of visual 

features since these are effectively computed in the SSD layers. The features for the clas-

sification layer are automatically computed by the convolutional components, thus avoid-

ing the problem of searching for the best feature class, and providing a new class of fea-

tures especially suited for a specific task. The SSD is trained by using images retrieved 

from past events. Then, it is applied to classify each input image retrieved from social user 

posts in order to select images belonging to the class of the ongoing emergency event. 

Afterwards, the classification process is followed by an image analysis process in which 

the geo-located images retrieved from the social platform are compared with the corre-

sponding images obtained from Google Street View or from other available databases at 

the same geographical coordinates. Interesting features such as SIFT, SURF, ORB and 

FAST [37–40] have been analyzed in order to find the more suitable for the image match-

ing process. Finally, selected images combined with the most relevant information con-

tained in the post (e.g., the text shared, the user’s profile, etc.), are sent to emergency op-

erators in order to have a better overview and awareness of what is happening in the 

observed geographical area. 

3.1. Post Data Retrieval 

The PDR module is in charge of extracting interesting posts shared by users on Twit-

ter. The module is hosted on an Apache server and implemented with the Python pro-

gramming language. An overview of the logical architecture of the PDR module is shown 

in Figure 3. 

 

Figure 3. Logical architecture of the PDR module. 

In order to analyze the images shared by users related to an emergency event, the 

basic workflow of the PDR module can be thought of as follows: a pattern P is a vector 

containing the GPS coordinate of the center of a geographical circular area Ci (where the 

event occurs) and radius Ri, and a set of specific keywords related to the emergency event 

(e.g., the keywords flood, inundation, river, alert, etc. can be considered as representative 

for the type of event [16]) is given in input to the system by the operator. 

𝑷 = {[𝐺𝑃𝑆([𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒], 𝑅𝑖)], [𝑓𝑙𝑜𝑜𝑑, 𝑖𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛, … … ]} (1) 
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A set of significant keywords for specific emergency events has been created consid-

ering other works in this research field; for example, during the emergency event that 

occurred in Florida due to the “Irma” Hurricane, the most popular keywords used by 

users on Twitter were “HurricaneIrma”, “IrmaHurricane”, Irma2017”, etc. 

The crawler extracts from the social stream only the posts containing one of the input 

keywords and geolocation information related to the geographical area Ci. Spider soft-

ware (i.e., an automatic software tool able to analyze the World Wide Web typically for 

indexing purposes) [16] is configured in such a way that the input stream is filtered by 

taking into account only geo-located posts. By considering the Twitter social platform, the 

spider software has been implemented by using Tweepy (Tweepy: 

http://tweepy.readthedocs.io (accessed on 27 January 2023)), a Python library for access-

ing the Twitter API. According to the Social APIs in use, the selection of a geographical 

area from which to extract tweets can be achieved by considering the GPS coordinates of 

the interested area where the event is occurring. For example, Twitter requires as input a 

bounding box of GPS coordinates [longitude, latitude] corresponding to the bottom-left 

and the top-right corners of a rectangular geographical region. Nevertheless, to make this 

operation easier and the location of the interesting area more accurate, the PDR module 

considers a circular region (with center and radius given by the operator, see Figure 4). 

All retrieved posts are then analyzed by a post scanner algorithm which selects only those 

posts which contain at least one keyword contained in P. However, the amount of data 

might be unmanageable. To allow a quick analysis of the visual data and to avoid the 

consumption of large amount of memory, all posts are stored into a graph database. The 

Neo4J graph database is used as it is highly scalable and robust [41]. Each post includes 

all the information regarding the user profile, the shared text message and all the multi-

media content attached. 

 

Figure 4. Example of a rectangular geographical region used by the Twitter social platform and the 

proposed circular interesting region. 

3.2. Image Data Analyzer 

The IDA module is composed of two sub-modules: Image Classifier and Image Geo-

validation (Figure 5). The first one classifies the images retrieved from the PDR module 

according to the class of the event they represent. For example, an image which represents 

a swollen river should be classified as an image related to a flood event and not to an 

earthquake or a fire event. All images, classified as belonging to the interesting class of 

event, will be processed by the Image Geo-validation which is in charge of evaluating if it 

is meaningful for the given event. An image matching procedure is exploited in order to 

find valid matches between input images and images retrieved from Google Street View 

or from available local datasets. The goal is to verify if it has really been taken from the 

location it shares. 
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Figure 5. Logical architecture of the IDA module with the two main sub-modules: the Image Clas-

sifier and the Image Geo-validation. 

3.2.1. Image Classifier 

The image classifier is in charge of selecting images according to the class of interest-

ing event (Figure 6). 

 

Figure 6. The Single Shot Multibox Detector (SSD) network used for event class detection. 

To reach this goal, a SSD network has been used (Figure 7) [42]. The main character-

istic of the SSD network is that, once a model has been chosen, it is truncated before the 

classification layers and additional convolutional feature layers are added at the end of 

the network. The size of the additional layers decreases progressively allowing predic-

tions at multiple scales, and each of them can produce a fixed set of predictions by using 

convolutional filters. The applied SSD uses a feed-forward convolutional neural network 

that produces a collection of events and a score indicating the presence of event class in-

stances in the input image. The shallow network layers are based on a standard deep ar-

chitecture: the VGG 31 [43]. In particular, according with the results shown in [44], a 

model characterized by 31 layers, learning rate 0.001, max-epoch 400, validation frequency 

400 and mini batch size 256 has been applied to increase sensitivity and accuracy of clas-

sification. 

A dataset composed of about 4000 images belonging to four event classes (flooding, 

earthquake, fire, terrorist attacks) has been created. The Multimodal Crisis Dataset (Cri-

sisMMD) [40] has been considered for images belong to the classes of flooding, earthquake 

and fire, while regarding the images referring to terrorist attacks these have been collected 

from the web and from the Cross-View Time Dataset [45]. 
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Figure 7. The Single-Shot Multibox Detector (SSD) network used for event type classification [37]. 

3.2.2. Image Geo-validation 

Images shared by users during an event could be a useful resource for emergency 

operators in order to get more detailed information of what is happening in a specific area. 

Nevertheless, not all images shared by users are related to the event itself. For example, 

Figure 8 shows three different images retrieved from Twitter during the earthquake that 

occurred in 2016 in central Italy. These images were collected by the PDR module because 

the text shared on the Twitter post included the hashtag #terremoto (#earthquake), which 

was one of the keywords given in input to the system to detect images belonging to this 

event class. 

 

Figure 8. Three different images retrieved from Twitter during the Italian earthquake in 2016 

(#terremoto means # earthquake). 

It is worth noting that the left image is not related to an earthquake as it represents a 

flooding. Instead, the image on the right has the meaning since it refers in some way to 

the Italian earthquake although it is not useful for the goal we want to achieve as it does 

not represent a public street (the matching with Street View is not possible). Finally, the 

middle image is completely related to the event itself and fully reflects the type of images 

we want to retrieve. The Image Geo-validation submodule is composed of two main com-

ponents: Sequence Image Generator (SIG) and Image Matching (IM) (Figure 9). 
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Figure 9. Logical architecture of the Image Geo-validation submodule. It identifies if an image is 

retrieved from a true location belongs to the monitored event. 

The SIG module (Figure 10) exploits geo-located information included in the user’s 

post to create a sequence of images acquired with different field of views around the in-

teresting location. Each single frame—that composes the image sequence—is retrieved 

from Google Street View servers (through HTTP GET requests) or from a local dataset. 

 

Figure 10. The Sequence Image Generator creates a sequence of images acquired with different field 

of views around the interesting location by extracting frames from Google Street View. 

The SIG module needs as input different parameters to regulate the “quality” of the 

frame to retrieve, e.g., the size, the pitch, the zoom, the number of images as well as the 

latitude and longitude coordinates. Moreover, the camera of the Google Street View ap-

plication is moved in the left or right direction along the vertical axis. In this way, by 

moving the camera 40 degrees to the right (or to the left), it is possible to retrieve respec-

tively 9 images. As a result, the pairwise images are overlapped by about 40% thus allow-

ing the creation of an image sequence representing the interesting area (Figure 11). Then, 

an image matching procedure is applied to compare the image posted by the users with 

each single frame that composes the extracted image sequence. In this way, it is possible 

to verify if posted images have been effectively taken in that place. At the same time, it is 
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possible to overcome problems related to the geo-location information attached to each 

post. In fact, the position shared by users while posting some content may not always be 

accurate due to the fact that the GPS signal is not always available and, in many cases, the 

device in use could get the position through a Wi-Fi network or Cell-ID. 

 

Figure 11. An example of the matching procedure between the image posted by the user and the 

image sequence extracted from Street View. 

The matching procedure extracts from the input image and from the image sequence 

specific key points, and it searches for possible correspondences. The Euclidean distance 

measure is computed between pairs of key points in order to detect the best candidate 

image among the image sequence extracted from Street View. Moreover, in order to over-

come the problem of outliers, the M-estimator SAmple Consensus (MSAC) [46] is applied 

to estimate geometric transformation from matching point pairs. The MSAC is an iterative 

method to estimate parameters of a mathematical model from a set of observed data that 

contains outliers, when outliers are to be accorded no influence on the values of the esti-

mates. Among the most diffused techniques which allow local features to be identified 

and extracted from an image, several tests have been performed by considering Scale In-

variant Features Transform (SIFT) [38], Speed-up Robust Feature (SURF) [38], Binary Ro-

bust Invariant Scalable Key points (BRISK) [38] and Oriented FAST and Rotated BRIEF 

(ORB) [40] descriptors. The goal is to select the best feature descriptor to find robust 

matches between images. BRISK and ORB were the worst due to the lower number of 

correct matches that could be found. SIFT was the best one considering the number of 

features extracted and correctly matched, while SURF showed good results although in 

some cases the matches were not very accurate (Figure 12). 

https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Outliers
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Figure 12. Examples of SIFT and SURF keypoint matching on images posted by users. (a,b) SIFT 

finds 26 correct matches and SURF finds 3 correct matches and one wrong, (c,d) SIFT finds 23 correct 

matches and SURF finds 4 correct matches, (e,f) SIFT finds 27 correct matches and SURF finds 4 

correct matches. 

4. Experimental Results 

Several experiments have been carried out to evaluate each single module which 

composes the ASMIS system in the context of different emergency situations caused by 

earthquakes, floods, hurricanes, clashes and terrorist attacks. Tests have been classified 

into two main groups: (1) tests performed during the event and (2) tests performed after 

the event. The proposed system was implemented by using the Python programming lan-

guage (3.9.5 version) and OpenCV 3.4.10 framework. The implementation of the SSD net-

work is based on Keras, the Python Deep learning API. Finally, the running environment 

was Intel Core i9-9900T, 16M cache, up to 4.40 GHz, 64 GB of RAM and a GPU NVIDIA 

GeForce 1070 Ti [47,48]. 

4.1. Data Acquisition and PDR Module Performance 

We tested the system with about 60 different searches: on average, searches lasted 

about 36 h each and were performed considering both disaster events (earthquakes, 

floods, etc.) and common places (e.g., famous streets), in order to retrieve the highest num-

ber of images coming from known places. Mainly, posts were retrieved using the native 

language of the country where the event occurred although the collection of tweets in 

many cases was obtained using the input set of keywords in the English language. 

As shown in Table 1, searches allowed collection of about 1.135K tweets on different 

types of events, out of which about 38.5% were geo-located. Moreover, the system re-



Information 2023, 14, 78 13 of 21 
 

 

trieved about 129,721 images. In this case, about 64.5% of them were geo-located. As ex-

plained in Section 3.2.2 (Image Geo-validation), we considered both tweets which share 

GPS information and tweets which contain the address of the position where the tweet 

was shared, although in the latter case they were not always accurate. The matching pro-

cedure is able to correct the location error by searching the best match into a set of contig-

uous images extracted from Street View. 

Table 1. General overview of results obtained by testing the system with 60 searches. 

Total Number of 

Searches 

Total Number of 

Tweets 

Total Number of 

GL Tweets 

Total Number of 

Images 

Total Number of 

GL Images 

60 1135K 437K 129K 83K 

Table 2 shows the type, the location, the search duration, the number and the multi-

media content of tweets retrieved by the PDR module by analyzing four different events 

occurring in 2015: the flooding in the French Riviera, the clashes in Milan during the Expo, 

the terrorist attacks in Paris and Hurricane Patricia occurring in Mexico. The system re-

trieved 10,135 images of which 4578 geo-located. 

Table 2. Description of the considered events and the related parameters. First column indicates the 

name of the event, the second and third columns indicate, respectively, the location and the geo-

graphical areas, the fourth column the search time in hours, and the fifth and sixth columns indicate, 

respectively, the number of collected tweets containing images and the number of geo-located 

tweets with images. 

Event Type Location 
Geographical 

Area 

Search  

Time (hour) 

Number of 

Tweets 

Geolocated 

Tweets 

Flood France Riviera France 36 25,225 5411 

Clash Milan Italy 24 9635 8421 

Terrorist 

attack 
Paris France 36 99,932 91,526 

Hurricane Mexico Mexico 24 32,456 3256 

First, we can see how the total number of tweets retrieved does not depend on the 

duration of the search. For example, comparing the terrorist attacks and the Riviera flood 

events that occurred in France, we can see that the last one collected a lower number of 

tweets although the duration of the search was the same. Another observation could be 

related to the type of event: in fact, the number of shared tweets depends on the type and 

the gravity of the event. In addition, the geographical area where the event occurs may 

also affect the results. Twitter is one of the most popular and widespread social platforms 

although there are some regions where it is not completely used. Finally, results depend 

also on the set of keywords which are used as input to the search: if generic keywords are 

used, the retrieved tweets could be inaccurate. For example, if the keyword “earthquake” 

is used as input to search for an earthquake event, it is almost certain that the search will 

give as output a lot of tweets although they could include unnecessary information. In 

order to face these problems, ASMIS is able to retrieve only tweets which describe the 

event. For this purpose, the hashtag trend is considered in order to optimize the ongoing 

searches. In order to compute the hashtag trend, the histogram of the most used hashtag 

shared in posts associated with flooding events is considered. For example, in the case of 

flooding events in Italy we used a set of hashtags opportunely selected by considering the 

analysis performed on a dataset of about 300,000 tweets posted by users during past flood 

events in Italy (i.e., the flood occurring in Sardinia in 2013, in Genoa in 2011 and several 

others) and considered as representative for floods. The set was composed by the follow-

ing hashtags, namely #emergenza, #allertameteo and #maltempo (in English #emergency, 

#weatheralert, #badweather). 
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4.2. IDA Module Performance 

The evaluation of the IDA module was performed in three steps. In the first, the event 

classification accuracy was computed by using random sets of images coming from the 

four different events as in Table 2. In the second, all data of the considered emergency 

situations (as exploited in Table 1) are analyzed to measure the effectiveness of the system. 

Finally, the performances of the image matching procedure in terms of positive match, 

false matches and negative matches are computed. 

The following well-known metrics were computed to highlight the goodness of the 

obtained results, i.e., Precision (P), Recall (R), F-measure (F1) and Accuracy (A): 

𝑃 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
  

𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
  

𝐹1 =
2𝑅𝑃

(𝑃 + 𝑅)
  

𝐴 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
  

where TP, TN, FP and FN represent true positive, true negative, false positive and false 

negative, respectively. In this context, P points out the level of probabilistic proximity be-

tween a recognized event and its membership class and R highlights the sensitivity level 

of the event classification; finally, F1 and A measure, respectively, the effectiveness and 

the accuracy of the event classifier. 

By considering the images of all selected emergency situations as in Table 1, the IDA 

module shows good classification performance (TP = 90,827, TN = 9657, FP = 16,345, FN = 

12,892): P = 0.84, R = 0.87 and F1 = 0.85. The system reaches an accuracy of A = 0.78. By 

considering the images coming from the four different events as in Table 2, the IDA mod-

ule shows remarkable classification performance (TP = 7354, TN = 983, FP = 975, FN = 823): 

P = 0.88, R = 0.90 and F1 = 0.89. The system reaches an accuracy of A = 0.82. In particular, 

the following per-event classification results were obtained: (a) flood—P = 0.88, R = 0.90 

and F1 = 0.88; (b) clashes—P = 0.88, R = 0.90 and F1 = 0.89; (c) terrorist attack—P = 0.89, R 

= 0.90 and F1 = 0.89; (d) hurricane—P = 0.87, R = 0.89 and F1 = 0.88. 

Moreover, it is worth noting that about 40% of the collected tweets have been consid-

ered by the system as geo-located posts and only about 30% of them contains images. 

The following keywords have been used during the experiments for the different 

classes of events: (a) flooding (#flood, # floods, #flooding, #flashflood, #rain, #weather, 

#disaster, #climatecrisis), (b) clashes in Milan (#clashes, #clashesexpo, #violence, #stone, 

#protests), (c) terrorist attacks in Paris (#terrorism, #terrorist, #attacks, #paris, #pari-

sattacks, #bataclan, #police), (d) Hurricane Patricia in Mexico (#hurricane, #hurricanepa-

tricia, #climatecrisis, #tropicalstorm, #storm, #wake, #disaster, #emergency). By consider-

ing the 4578 geo-located images, extracted from geo-located tweets coming from the four 

different events as in Table 2, the IDA module shows remarkable image matching perfor-

mance (TP = 28,214, TN = 687, FP= 623, FN = 447): P = 0.81, R = 0.86 and F1 = 0.83. The 

system reaches an accuracy of A = 0.77. 

Considering the processing time required by the IDA module, it is worth noting that 

the analysis of a single geo-located tweet containing images requires on the used compu-

tational platform about 5 msec for the classification, and about 100 msec for the feature 

extraction and matching process. 

In order to show the results of the IDA module, we outline its functioning by analyz-

ing the tweets during the terrorist attacks in Paris in 2015 (Figure 13). On the evening of 
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13 November 2015 and precisely between 10.00 and 11.00 p.m., a series of terrorists’ at-

tacks occurred in the French capital. The attacks, claimed by the Islamic State of Iraq and 

Syria terrorism group, was constituted of mass shootings, suicide bombings and hostage-

taking at four locations in Paris. About 130 people were killed by the attackers. The search 

on the given event was started in the evening—about an hour after the first attacks—and 

it lasted for 24 h. This example is the one that gave the most significant results in terms of 

number of images (about 6258) retrieved in 24h. 

 

Figure 13. Some examples of images retrieved on Twitter during terrorist attacks occurring in Paris 

(2015) and the corresponding images retrieved from Google Street View. The red X indicates that 

the ASMIS system was unable to find a correct match. 

Nevertheless, the proposed SSD network classified 1246 images as belonging to the 

given event, only 278 of which with GPS coordinates. Considering that the event occurred 

between 10.00 PM and 11.00 PM, the retrieved images were taken during the night. Nev-

ertheless, results are very good. The IDA module shows remarkable classification perfor-

mance (TP = 985, TN = 145, FP= 63, FN = 53): P = 0.91, R = 0.94 and F1= 0.92 with an accuracy 

of A = 0.89 and good image matching performances (TP = 177, TN = 41, FP = 36, FN = 24): 

P = 0.81, R = 0.88 and F1= 0.84 with an accuracy of A = 0.78. Plots in Figure 14a,b show the 

results obtained by analyzing the images through SIFT and SURF descriptors: green bars 

represent true matches while red bars represent false matches (discharged images). It is 

worth noting that better results were obtained by using SIFT descriptor. The SIFT de-

scriptor is able to correctly match 177 images (about 63%). Of the remaining 101 images, 
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65 were not found even though they represented areas in the event territory and 36 were 

correctly discarded as irrelevant to the event. 

 
(a) 

 
(b) 

Figure 14. Results obtained by matching the images using (a) SIFT and (b) SURF descriptors. Green 

bars represent true matches while red bars represent false matches (discharged images). 

Moreover, analyzing the images that the system discarded, we can explain this be-

havior due to three significant problems (see Figure 15): (i) many images were taken from 

the top of a building thus there were not Street View images which could be used to per-

form the matching procedures (left images), (ii) many images captured emergency oper-

ators’ cars with flashing lights thus reducing their quality (right image), and finally, (iii) 

many images were taken in motion thus they were quite blurry (bottom image)  
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Figure 15. An example of images retrieved from Twitter during terrorists’ attacks which have not 

been correctly matched by the ASMIS system due to low quality. 

4.3. Running Example 

In order to show the capability of the system to manage an earthquake event, a run-

ning example is pointed out. Several posts from the Twitter platform recorded during the 

2018 Italy earthquake (that hit the areas of south Italy) were used to test the ASMIS system 

by classifying the disaster event and locating its consequences on a top view map of the 

area. In Figure 16, some examples of the images shared by users are shown. 

 

Figure 16. Some examples of images posted on the Twitter platform during the 2018 Italy earth-

quake in Catania area, Sicily. 

During the event, the PDR module extracted several posts containing images. The 

input of the PDR module was an event pattern P composed of the GPS coordinates of a 

geographical area of interest (i.e., the area of Fleri, Zafferana Etnea, Catania) and a set of 

keywords, e.g., 
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𝑷 = {[𝐺𝑃𝑆([37,39′, 19𝑁; 15, 5′, 52𝐸]), 10 𝐾𝑚], [#terremoto]}  

In particular, 2576 posts were collected by the system: 172 posts contained images of 

which 56 with GPS info. All these images are processed in order to classify them and eval-

uate if they are meaningful for the event of interest (earthquake). In this regard, each input 

image is compared with the corresponding image sequence retrieved from Google Street 

View to verify if it has been really taken from the location it shares. The matching proce-

dure has been able to correctly validate 43 images (about 76%). Of the remaining 13 im-

ages, 7 were not found even though they represented areas in the event territory and 6 

were correctly discarded as irrelevant to the event. 

Figure 17 presents an example of an image collected from the posts (the Church of 

Fleri, Zafferana Etnea, Catania) and the match with the image sequence of the same loca-

tion. 

 

Figure 17. Result of the matching procedure applied to the image posted by the user and the image 

sequence extracted from Street View. 

4.4. Discussion 

Results obtained by testing the system are very promising. A total number of 60 

searches were conducted with a total of about 1.135K tweets retrieved. Despite only 38.5% 

of them being geo-located, the system was able to correctly identify the specific area where 

a given event is occurring by analyzing only tweets achieved during the first twenty time 

windows. The time window depends on the type of event and is defined by the operator. 

Moreover, this behavior can be strictly connected to the type of event analyzed. For exam-

ple, an earthquake or a terrorist attack could produce a large number of tweets in a re-

duced interval of time. Conversely, a flood or a hurricane event could spread the tweets 

over a broader timeframe. An accuracy of about 89% was achieved by analyzing the posts 

during the terrorist attacks in Paris in 2015, while an accuracy of about 82% was achieved 

by analyzing the images retrieved on four different emergency situations. This means that 

about eight images of ten are evaluated as meaningful by the system for each type of event 

analyzed. 

Nevertheless, the system also showed some limitations. The first one is given by the 

geo-location information (in particular, addresses) attached to each tweet: in many cases 

they were inaccurate thus not allowing the retrieval of the Google Street View image se-

quence. In this regard, the retrieved Twitter images were discarded although they could 

be significant for the given event. These images are maintained in a local database for 

further inspection by operators. Another limitation is related to the characteristics of the 

images themselves: the proposed system shows good results when the matching process 

occurs with images rich in details and with good resolution [49,50]. On the contrary, low-
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quality images are often discarded. Other constraints are related to the perspective of the 

images retrieved. For example, if an image is taken from the top of a building, it is very 

difficult to find similar Street View images with true matches. Another limitation is related 

to the performance of the image analysis procedure. For each image retrieved from Twit-

ter and the corresponding view retrieved from Street View, the matching procedure pro-

vides a feature extraction and a matching process. As previously explained, we performed 

tests using SIFT and SURF descriptors, while ORB and FAST were discarded since they 

produce results less accurate. Considering the processing time which includes the features 

extraction and matching process, SURF performed better than SIFT [38]. On average, 

SURF allowed the processing of an image in just 100 msec, while SIFT descriptor took 

about 80% more time [39]. Nevertheless, SIFT performed better in terms of number of 

matches finding an average of about 50 matches per image. The number decreased to 15 

with the SURF descriptor. 

5. Conclusions 

The outcomes emerging from our test scenario highlight the effectiveness of the AS-

MIS system and the great opportunities derived from the analysis of the tweets published 

online by city dwellers during and in the immediate aftermath of extraordinary events, 

such as earthquakes, floods, terrorist attacks, etc. The results are very promising and 

demonstrate not only the value of bottom-up communication practices and UGC produc-

tion, but also the capability of the system of verifying their trust by matching the visual 

content shared within the tweets with the corresponding images retrieved from Google 

Street View. 

In contrast to other emergency management platforms, ASMIS allows potentially rel-

evant images to be identified and their geo-location validated, if they were taken in a pub-

lic space, thus enabling citizens involved in the event to play an active role in all phases 

of the emergency. The data extracted from the Twitter platform and matched with the 

Google Street View images in fact provide geo-verified information and can be used to 

coordinate on-site relief and volunteer activities. 

ASMIS tries to overcome some of the main barriers (i.e., inaccuracy and unreliability) 

connected to the use of citizen-generated content for gathering information, enhancing in 

this way situational awareness and supporting decision-making. In the future, ASMIS 

could be further developed with the implementation of other kinds of visual data coming 

from different social platforms and messaging applications in order to allow the entire 

system to achieve best efficiency. Another possible future improvement of the system 

could be to try to match the visual content of discharged tweets with pre-defined labeled 

data sets of the same event class in order to acquire additional info. Then, the classification 

network can be trained with few-shot learning algorithms able to reduce the complexity 

of the training process. Furthermore, it is reasonable to suppose that, as people will ac-

quire greater digital skills, they will be able to provide more accurate and detailed content 

and information, which in turn will ensure greater system reliability and guarantee a more 

precise intervention. 
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