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Abstract
Here we introduce an “alternative” version of the standard traditional amortization
plan, where sequences of non-random time-varying periodic interest rates replace the
usual constant periodic effective rate, while preserving all the other classical rules.
In particular, we use two of these sequences coherently generated by two different
specific hyperbolic instantaneous intensity functions. We found that the two standard
amortization plans obtained through this approach match perfectly with the two main
amortization plans recently proposed under the simple capitalization law. This match-
ing provides thus a clear link between the traditional scheme and the new wave of
proposals in simple regime.

Keywords Amortization plan · Instantaneous interest rate · Simple capitalization
law · Compound capitalization law

JEL Classification G21 · G28 · G51

1 Premise

All over the world it has long been peacefully accepted that mortgage amortization
plans determine a financial “equivalence” (between the obligations of the lender and
the borrower) in the regime of compound interest according to some specific tested
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rules (which we may label “traditional”)1. However, in recent times, plans with “equi-
librium” (at the beginning or at the end of the contract) in the regime of simple interest
have been proposed.2 An issue that according to some authors (especially in Italy but
not only3), allows to avoid the phenomenon of the so-called “anatocism”, forbidden in
some legislations4. Nevertheless, in our contribution the question of legal legitimacy of
these proposals is not explored, but the focus is on the analysis of their mathematical-
financial aspects and on some important links with the compound regime.

Our purpose therefore is notmerely to propose new types of amortization plans from
a technical point of view. It is rather to demonstrate that, once traditional rules have
been accepted (i.e. consistent with to the so-called STAPs, Standardized Traditional
Amortization Plans5), the plans proposed in the framework of simple interest law
(obeying their specific rules, hence not traditional) may be obtained using sequences of
non-random time-varying interest rate respecting the traditional rules in the compound
regime.6

2 Introduction

After this premise, we recall that a STAP is the result of the application of a few
concise rules to a list of contractual parameters, including in particular the constant
interest rate. As mentioned, we propose to use an alternative parameter to the constant
interest rate, i.e. a sequence of interest rates, which vary over time in a deterministic
way, within the same framework and the same logic of the STAP. In this way, we
obtain an “alternative version” of such STAPs, which turn out to numerically coincide
with some constant interest rate plans according to the law of simple interest.

More specifically, in the loan time horizon (0, T ), we choose a pair of hyperbolic
functions of instantaneous interest rates which generate two different sequences of
interest rates: one of decreasing rates starting from a given initial level and, the other
one of increasing rates which, at the end of the contract, reach a certain final level. By
applying the same rules of the classic STAP using these sequences, two different amor-

1 For further details on the topic of debt amortization scheme see, among the many classic references,
Bortot et al. (1993); Cacciafesta (2015); Daaboni and de Ferra (1993); Moriconi (1994).
2 Actually, some scholars of the past had already dealt with the topic. See, for instance, J. Ward, A Com-
pendium of Algebra (1695), and A. Casano, Elementi di Algebra, Palermo, Reale Stamperia e Libreria,
(1845).
3 See, for instance Annibali et al. (2016), Cacciafesta (2015), Fersini and Olivieri (2015), Marcelli et al.
(2019) and Mari and Aretusi (2018) as for Italian contributions; see, for instance Faro (2014), Medina
(2011), Monzeglio (2022), Saccardo et al. (2009), Sinclair (2016), as for foreign papers.
4 In particular, according to Annibali et al. (2016), Annibali et al. (2020), andMari andAretusi (2018),Mari
and Aretusi (2019), the purpose of alternative amortization procedures, recently proposed, is to “purify”
the fundamental quantities of a classic amortization plan from the anatocistic effect.
5 The question of the legitimacy of STAPs has been extensively discussed in the document recently pub-
lished by A.M.A.S.E.S. (Association for Mathematics Applied to Social and Economics Sciences) to which
we refer (see Pressacco et al. (2022).
6 We are well aware that plans with deterministically variable interest rates are not usually traded on the
market, but as mentioned, our goal here is to discuss the consequences of this choice in the recent new
proposals. In fact, in our opinion, these new approaches become compatible with the legislation provided
that the constant rate is replaced with sequences of non-random interest rates that vary over time.
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tization schemes are then obtained. We call them Variable Decreasing STAP (shortly
VD-STAP) and Variable Increasing STAP (VI-STAP), to underline the dependence
on the variable decreasing or increasing sequence of interest rates, respectively. The
main result of our paper is that these schemes are able to reproduce, respectively, the
Mari-Aretusi plan (MAP) and that of Annibali et al (AnnP). Here, in particular, we
concentrate on the case of plans with constant instalments. In this frame, we signal
that, although both MAP and AnnP are constructed in the simple interest regime, with
the same set of parameters (and in particular with the same constant interest rate),
they provided a different value of constant instalments and thus different plans. Our
V-STAPs are able to replicate both, but by applying (non-random) floating interest
rates in a continuous compound framework and thus complying with the no-arbitrage
principle, helping, in our opinion, to clarify the real reason behind that difference.

The plan of the paper is as follows: in Sect. 3 we quickly recall the logic of Stan-
dardized Traditional Amortization Plans (STAP). Section4 introduces the V-STAPs,
which are STAPs where non-random time-varying interest rates enter in the rules in
place of the constant one. From a technical point of view, a specific functional form
of the intensity function (in a compound interest framework) has now to be chosen
(Sect. 5) in order to get a sequence of interest rates to be used in the amortization plan
over the time horizon of the loan. This choice has been discussed in two subsections:
in 5.1 we treat the case of a given hyperbolic monotonic decreasing intensity function;
within this choice, given an initial level of the interest rate, we obtain a sequence of
decreasing interest rates and of corresponding discount factors; we then check that
the condition of “decomposability” obviously holds; plans constructed in this frame-
work are called intuitively V(ariable)D(ecreasing)-STAPs; after that, we apply this
sequence of interest rates in order to construct plans with constant principal repay-
ments or with constant instalments: these examples are provided in Sect. 5.2; the same
approach is then followed in Sect. 5.3 where we choose another specific hyperbolic
intensity function, this time monotonic increasing. In this case, we obtain a sequence
of increasing interest rates up to a specific final level and it is again checked that
the condition of “decomposability” clearly holds; the corresponding plans are named
VI(ncreasing)-STAPs and the related examples are given in Sect. 5.4. Section6 is
then devoted to a short recall of amortization schemes in simple interest capitalization
law: more precisely, Sects. 6.1 and 6.2 briefly recall the Mari-Aretusi (MAP) pro-
posal and the Annibali et al (AnnP) one, respectively. Then, Sect. 7 is dedicated to the
comparison between V-STAPs, MAP and AnnP, namely between plans with variable
interest rates under compound interest law and plans with constant interest rate under
simple interest law. To be more specific, in paragraph 7.1, through a comparative anal-
ysis of VD-STAP and MAP, we introduce a theorem that establishes the coincidence
between these two plans; we then prove this theorem in the subsequent Sect. 7.3, by
taking advantage of the characteristics of the capitalization factors in the sequence
with decreasing rates (as detailed in paragraph 7.2). We follow the same logic also
for the comparison between VI-STAP and AnnP in paragraph 7.4, introducing their
corresponding coincidence theorem, proved in paragraph 7.6 after having studied the
properties of capitalization factors in the sequence with increasing rates (as elabo-
rated in paragraph 7.5). Paragraph 7.7 is allocated for a quick Cor1summary of our
findings, as well as the presentation of a significant corollary: if the constant interest
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rate of MAP and AnnP is identical, then the VD and VI sequences can be viewed as
twin sequences. This observation could also account for the divergence in the value
of instalments between these two plans, even though both are formulated under the
framework of simple interest law and with the same contractual parameters. Finally,
Sect. 8 is dedicated to a quick comment on the concept of financial equivalence and its
use in the amortization plans analysed here. The conclusions follow in final Sect. 9.

3 The logic of standardized traditional amortization plans (STAP)

In this section we recall the procedure to build the so-called Standardized Traditional
Amortization Plans (STAP, or PAST in the original formulation; for details see Pres-
sacco et al. (2022); Pressacco and Ziani (2020)).

In this framework, a few rules are applied to a list of contractual parameters in order
to design amortizing schemes.7

More precisely, we define the list of parameters L := (D0, k, ki, N ), where:

– D0, principal amount at time t0;
– k, frequency of instalments per year;
– N = T · k, total number of instalments, given the loan term T (years);
– ki effective interest rate referred to the frequency k, that is to the constant time
interval 1/k between two consecutive payments; in particular, it is:

ki = j · 1/k (1)

with j constant nominal interest rate stated in the loan agreement.

Now, the rules in a STAP are, for all h = 1, . . . , N :

R1: Rh = Ch + Ih
R2: Dh = Dh−1 − Ch

R3: Ih = ki · Dh−1

R1 means that each instalment Rh , paid by the borrower at the date th , consists of
two elements: Ch , loan repayment and Ih , interest accrued in the h-th interval (that is
between two consecutive dates (th−1, th)) and payable in th .

R2 states that, at each date th , the dynamics of the outstanding balance Dh is driven
only by the corresponding repayment of the loan.

R3 defines the interest accrued in the h-th interval as the product of the capital
available (portion of the outstanding principal not yet reimbursed) at the beginning of
the period, Dh−1 times the effective interest rate for the period, ki .

Another particular parameter has to be chosen by the counterparties: i.e. a sequence
of principal reimbursements C = (C1, . . . ,Ch, . . . ,CN ) or, alternatively, a sequence
of instalmentsR = (R1, . . . , Rh, . . . , RN ). To any choice there corresponds a different

7 These schemes are, in our opinion, consistent with Italian laws.
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STAP (STAP with constant repayments Ch = C , STAP with constant instalments
Rh = R, or any other STAP with other kinds of feasible sequences).

We underline that both C and R must verify their respective feasibility conditions.
In particular, for C it is:

N∑

h=1

Ch = D0 (2)

so that it is guaranteed that the principal has been completely repaid at the final date8.
For R, it is:

N∑

h=1

Rh · v(t0, th) = D0 (3)

where v(t0, th) = 1

(1 + ki)h−0 (assuming t0 = 0) is the discount factor, under the

compound interest law, of the interval (t0, th) with the effective constant periodic
interest rate ki . This condition states that the sum of the present value of instalments
must be equal to the principal amount at time t0 and it is the “natural” consequence
of STAP’s rules and in particular, of the idea that accrued interests are periodically
payable.9

The application of the three rules to the list of parameters draws a STAP perfectly
consistent with the idea that the interest accrued in each period becomes payable at
the end of the same period.10

We stress again that the Standardization in STAP regards the fact that the interval
between two consecutive payments is constant and equal to 1/k; moreover, it is Tra-
ditional because, besides following the above mentioned rules, it applies the formula
(1), i.e. that the effective interest rate of the single period ki is given by the product of
the constant nominal interest rate j times the length of the period 1/k.11

Remark 1 For simplicity and unless otherwise specified, henceforthwe consider k = 1
(one instalment per year) so that, according to (1), it is:

ki := 1i = i = j (4)

The time interval is then (th−1 − th) = 1 (year) so that t0 = 0, t1 = 1, . . . , tN = N .

8 Here, it is also required that Ch ≥ 0 for all h = 1, . . . , N − 1 and CN > 0: the first condition, in order
to avoid an increasing outstanding balance which, in turn, generates interest on interest and, therefore, an
Footnote 7 continued
illicit “anatocism” (at least, in violation of Italian law; on the point, see Pressacco et al. (2022)); the second,
in order to guarantee that the duration of the loan is not shorter of the contractual one.
9 The further required condition, similar to the one on C, is that for each h = 1, . . . , N − 1, both Rh ≥ Ih
and RN > IN , in order to avoid the production of negative principal repayments. Also on this point, see
Pressacco et al. (2022).
10 If this approach is accepted, the STAP is definitely lawful (for details see Pressacco et al. (2022),
irrespective of the sequence C or R chosen.
11 Here the usual day convention 30/360 is accepted.
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Table 1 Table describing the
amortization plan
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tN CN IN RN DN

Since this scheme considers the case of a constant interest rate until the loanmatures,
we underline this fact by renaming it C-STAP, where C stands for Constant interest
rate.

The C-STAP (but in general, any kind of amortizing plan) can be also summarized
in a numerical table that reports the dynamics of the four fundamental quantities: Ch ,
Ih , Rh , and Dh according to the rules introduced above (Table 1).

4 STAPwith non-random time-varying interest rates

Let us now propose an “alternative” version of a STAP considering non-random time-
varying interest rates in place of a constant fixed interest rate. We call this scheme
V-STAP, where V stands for Variable just to distinguish from C-STAP.

In this scenariowe introduce an instantaneous interest intensity that varies according
to any non-negative function r(t), defined on the interval (0, T ). The parameter list
and the rules remain substantially the same as those of the C-STAP, except for R3
which now becomes, for all h = 1, . . . , N :

R3-V : Ih = kih · Dh−1

where kih = ki(h − 1, h) is the effective k−periodic interest rate of the h-th period
generated from a given function r(t). This rule still states that the interest accrued in
the h-th interval is given by the product of the capital available at the beginning of the
period, Dh−1 times, in this case, the effective interest rate for the specific h-th period,
kih . Thus, R3-V is only formally different from R3 because it basically follows the
same logic.

Remark 2 It should be noted that while ki in R3 is (k−specific) constant over time
up to the final maturity, kih is (k−specific) constant only in the h-th period (each of
length 1/k), and is variable across periods.

Remark 3 For k = 1 (one instalment per year), it is:

kih := 1ih = ih (5)
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and for h = 1, . . . , N we have the sequence of interest rates: i1, i2, . . . , ih, . . . , iN .

Then, according to R3-V, for k = 1 it is:

I1 = i1 · D0, I2 = i2 · D1, . . . , Ih = ih · Dh−1, . . . , IN = iN · DN−1

In the next sections we derive two specific sequences of interest rates kih (for all
h = 1, . . . , N ), in particular focusing on the annual case (k = 1).

5 The sequence of non-random time-varying interest rates

We recall that, under the condition of “decomposability”12, the most general capital-
ization function u(T1, T2) that translates a financial equivalence relationship13 into a
functional form is given by:

u(T1, T2) = e
∫ T2
T1

r(t)dt (6)

where r(t) is the instantaneous interest intensity as a non-negative, integrable function
of time t ∈ [0, T ]. It corresponds to the associated discount function:

v(T1, T2) = e
− ∫ T2

T1
r(t)dt = 1

u(T1, T2)
(7)

According to the well-known result of the mean value theorem for integrals, we
define r as the constant which, in the interval (T1, T2), satisfies:

∫ T2

T1
r(t)dt = r · (T2 − T1) (8)

so that:
u(T1, T2) = er ·(T2−T1) (9)

Remark 4 Weunderline that the product of the constant instantaneous interest intensity
r by the time (T2 − T1) assumes the dimensions of a pure number (because the instan-
taneous interest intensity has the dimension of the reciprocal of time) and becomes a
rate of interest.

Passing to the natural logarithm of (9) it is straightforwardly:

ln[u(T1, T2)] = r · (T2 − T1) (10)

12 The condition of “decomposability” stands for “scindibilità” in Italian language.
13 Here we consider relations holding reflexive, symmetric and transitive properties. For details see Daboni
and De Ferra (1993), pp. 41–44.
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In this context, we look now for the link with the sequence of kih , non-random
time-varying interest rates of a V-STAP.

Let k = 1 for simplicity. Setting T1 = h−1 and T2 = h, then the annual ((T2−T1) =
1) capitalization factor is u(T1, T2) := u(h − 1, h). According to (9) it is:

u(h − 1, h) = e
∫ h
h−1 r(t)dt = erh ·1 (11)

where rh is the constant instantaneous interest intensity concerning the h-th period
(h = 1, . . . , N ) which, in that period, generates an annual capitalization factor equal
to that generated by the instantaneous variable intensity r(t).

The constant annual interest rate in a unitary period (in the year h) corresponding
to that constant intensity rh is simply the rate ih :

u(h − 1, h) − 1 = i(h − 1, h) = ih = erh ·1 − 1 (12)

So, for all h = 1, . . . , N there are sequences of instantaneous intensity rh and,
respectively, of interest rates ih , which are constant in each annual interval (h − 1, h),
but varying across periods.

In general, to each choice of a variable instantaneous intensity function r(t) on
the time interval (0, N ) there correspond different sequences of rh , of ih and of the
corresponding capitalization/discount factors which translate into a functional form
the equivalence relation induced by the specific intensity function.

In the next sections we study two different functional forms of r(t): a hyperbolic
monotonic decreasing and, respectively, increasing intensity function.

5.1 Hyperbolic monotonic decreasing intensity function

Let us consider the particular function r(t) of instantaneous interest rates:

r(t) = c

1 + c · t (13)

where c is a positive constant. The function is monotonic decreasing hyperbolic, with
r(0) = c and r(T ) = c

1+c·T , as shown in Fig. 1:
According to (6), now it is:

u(T1, T2) = e
∫ T2
T1

c
1+c·t dt (14)

Let us compute a primitive R(t) of the integrand function r(t). It turns out that:

R(t) = − ln

[
c

1 + c · t
]

= − ln[r(t)]
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Fig. 1 Monotonic decreasing hyperbolic r(t), with c = 5%; 10% and t ∈ [0, 20]

and by applying the fundamental theorem of integral calculus, it is:

∫ T2

T1
r(t)dt = −(ln[r(T2)] − ln[r(T1)])

= ln

[
1 + c · T2
1 + c · T1

] (15)

and the corresponding accumulation factor is then equal to:

u(T1, T2) = 1 + c · T2
1 + c · T1 (16)

Let us consider now T1 = h − 1 and T2 = h so that the time interval (T1, T2)
is the h-th year (of a loan transaction). Then, the capitalization factor for the period
(h − 1, h) is:

u(h − 1, h) = 1 + h · c
1 + (h − 1) · c (17)

and the interest rate of this period is u(h − 1, h) − 1 = i(h − 1, h):

ih = c

1 + (h − 1) · c (18)

Now, we have directly for h = 1, i1 = c and so, for all h = 2, . . . , N it is:

ih = i1
1 + (h − 1) · i1 (19)
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which gives the interest rate of h-th period as a function of the first-period interest
rate, i1 (initial trigger). Furthermore, for all h = 1, . . . , N − 1, it is:

ih+1 = ih
1 + ih

(20)

which gives the recursive relation holding between two consecutive periodic interest
rates.

Proof Exploiting position i1 = c, and relations (17)–(18), it is:

ih = c

1 + (h − 1) · c = c

1 + h · c ·
(

1 + h · c
1 + (h − 1) · c

)

= ih+1 · (1 + ih)

so that

ih+1 = ih
1 + ih

��

Remark 5 The sequence of annual interest rates i1, . . . , ih, . . . , iN according to (20) is,
given the value of the trigger i1, deterministically variable and decreasing. Henceforth
we refer to the amortization scheme with this sequence as VD-STAP, where D stands
for Decreasing (and V for Variable).

Remark 6 It should also be noted that, for all h = 1, . . . , N , the following equation is
obviously verified:

u(0, h) = u(0, h − 1) · u(h − 1, h) (21)

as well as, in turn, for the associate discount function:

v(0, h) = v(0, h − 1) · v(h − 1, h) (22)

In fact, on the basis of (16) and (17), it is for all h = 2, . . . , N :

(1 + h · c) = (1 + (h − 1) · c) · (1 + h · c)
(1 + (h − 1) · c) (23)

thus confirming the “decomposability” property embedded in this approach. ��

Let us now give a couple of examples of VD-STAPs with, respectively, constant
principal payments and constant instalments.
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Table 2 VD-STAP with
L := (D0 = 1000, k = 1,
i1 = 10%, N = 4) and
Ch = C = 250.00

h Ch Ih Rh Dh

0 − − − 1000.00

1 250.00 100.00 350.00 750.00

2 250.00 68.18 318.18 500.00

3 250.00 41.67 291.67 250.00

4 250.00 19.23 269.23 0

1000.00 229.08

Table 3 VD-STAP with
L := (D0 = 1000, k = 1,
i1 = 10%, N = 4),
Rh = R = 309.99

h Ch Ih Rh Dh

0 − − − 1000.00

1 209.99 100.00 309.99 790.01

2 238.17 71.82 309.99 551.85

3 264.00 45.99 309.99 287.85

4 287.84 22.14 309.99 0

1000.00 239.95

5.2 Examples

Example 1 Let us consider a mortgage with parameters L := (D0 = 1000.00, k =
1, i1 = 10%, N = 4) and Ch = C = 1000.00

4 = 250.00, constant.

Given the initial trigger rate i1 = 0.10 and according to (20), the sequence of
interest rates is: i1 = 0.10, i2 = 0.0909, i3 = 0.0833, i4 = 0.0769.

Applying now rules R1, R2 and R3-V, we obtain Table 2 describing a VD-STAP
with a sequence of constant principal reimbursements.

Example 2 Let us consider a mortgage with parameters L := (D0 = 1000.00, k =
1, i1 = 10%, N = 4), constant instalments Rh = R and interest rates ih given by
(20). These rates do not change with respect to Example 1, so we have: i1 = 0.10,
i2 = 0.0909, i3 = 0.0833, i4 = 0.0769. The value of constant instalment is given by
the following equation:

R · (v(0, 1) + v(0, 1) · v(1, 2) + . . . + v(0, 1) · v(1, 2) · v(2, 3) · v(3, 4)) = D0 (24)

with v(h − 1, h) = 1
(1+i(h−1,h))

= 1
1+ih

for h = 1, . . . , 4.

Applying now rules R1,14 R2 and R3-V, we obtain Table 3 describing a VD-STAP
with a sequence of constant instalments.

Generalizing now Eq. (24) it is, for all h = 1, . . . , N :

R · (v(0, 1)+v(0, 1) ·v(1, 2)+ . . .+v(0, 1) ·v(1, 2) · . . . ·v(N −1, N )) = D0 (25)

14 Reformulating formula R1, in order to compute Ch = R − Ih for all h = 1, . . . , N .
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Fig. 2 Monotonic increasing hyperbolic r(t), with c = 5%; 10% and t ∈ [0, 20]

with v(h − 1, h) = 1
(1+i(h−1,h))

= 1
1+ih

.

Remark 7 Note that relation (25) is the counterpart of the feasibility condition (3)
which holds in the C-STAP with a constant sequence of instalments15. In particular,
relation (25) may be rewritten as:

R ·
N∑

h=1

v(0, h) = D0 (26)

where v(0, h) is given by (22) as the “decomposability” property holds.

5.3 Hyperbolic monotonic increasing intensity function

Let us now examine another functional form of r(t) and proceed, in analogy to the
previous section, with the specification of the sequence of interest rates ih within this
new scenario. Let us then consider the function r(t) in the interval (0, N ):

r(t) = c

1 + c · (N − t)
(27)

where c is a positive constant and N = T · k (or, if k = 1, N = T ). The function
is monotonic increasing hyperbolic, with r(0) = c

1+c·N and r(N ) = c, as shown in
Fig. 2.

According to (6), now it is:

u(T1, T2) = e
∫ T2
T1

c
1+c·(N−t) dt (28)

15 It holds also in a C-STAP with any feasible sequence of Rh :
∑N

h=1 Rh · v(0, h) = D0.
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As before, let us compute a primitive R(t) of the integrand function r(t). It turns
out that:

R(t) = ln

[
c

1 + c · (N − t)

]
= ln[r(t)]

and by applying the fundamental theorem of integral calculus, it is:

∫ T2

T1
r(t)dt = ln[r(T2)] − ln[r(T1)]

= ln

[
1 + c · (N − T1)

1 + c · (N − T2)

] (29)

and the corresponding capitalization factor is equal to:

u(T1, T2) = 1 + c · (N − T1)

1 + c · (N − T2)
(30)

Considering, with timemeasured in years, T1 = h−1 and T2 = h, the capitalization
factor for the period (h − 1, h) is then:

u(h − 1, h) = 1 + (N − (h − 1)) · c
1 + (N − h) · c (31)

and the associate discount factor is:

v(h − 1, h) = 1 + (N − h) · c
1 + (N − (h − 1)) · c (32)

The interest rate of this period is, in turn, ih = i(h − 1, h) = u(h − 1, h) − 1:

ih = c

1 + (N − h) · c (33)

For h = N we have directly iN = c (final trigger). Now, for all h = 1, . . . , N − 1 it
is:

ih = iN
1 + (N − h) · iN (34)

which gives all the periodic interest rates as a function of the final trigger, iN . Still,
for h = 1, . . . , N − 1, a recursive relation holds as follows:

ih = ih+1

1 + ih+1
(35)
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Fig. 3 Comparison between ih with Hyperbolic Decreasing (bullet) and Increasing (squared) r(t), with
c = 10% and t ∈ [0, 20]

Proof Exploiting position iN = c, and relations (32)-(33), it is:

ih = c

1 + (N − h) · c = c

1 + (N − (h + 1)) · c ·
(
1 + (N − (h + 1)) · c

1 + (N − h) · c
)

= ih+1 · 1

(1 + ih+1)

so that

ih = ih+1

1 + ih+1

��
Remark 8 The sequence of annual interest rates i1, . . . , ih, . . . , iN according to (35) is,
given the value of the trigger iN , deterministically variable and increasing. Henceforth,
we refer to the amortization scheme with this sequence as VI-STAP, where I stands
for Increasing (V for Variable).

Remark 9 As may be noticed from a glance to Fig. 3, given the same level of the
constant c, such a sequence is perfectly inverted with respect to the one obtained with
the decreasing hyperbolic function r(t) of the paragraph 5.1 (cf. formulas (20) and
(35)). We will explore the features of this result in more detail in paragraph 7.7 (see
Corollary 1).

Remark 10 As in the VD-STAP, note that, for all h = 1, . . . , N , Eq. (21) (and (22))
is still verified by now applying capitalization factors provided by (30) (and (31)):

1 + N · c
1 + (N − h) · c = 1 + N · c

1 + (N − (h − 1)) · c · 1 + (N − (h − 1)) · c
1 + (N − h) · c (36)

thus confirming the “decomposability” property. ��
Let us now discuss in this framework the same examples seen for VD-STAP.
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Table 4 VI-STAP with
L := (D0 = 1000, k = 1,
iN = 10%, N = 4) and
Ch = C = 250.00

h Ch Ih Rh Dh

0 − − − 1000.00

1 250.00 76.92 326.92 750.00

2 250.00 62.50 312.50 500.00

3 250.00 45.45 295.45 250.00

4 250.00 25.00 275.00 0

1000.00 208.88

Table 5 VI-STAP with
L := (D0 = 1000, k = 1,
iN = 10%, N = 4) and
Rh = R = 304.35

h Ch Ih Rh Dh

0 − − − 1000.00

1 227.42 76.92 304.35 772.58

2 239.97 64.38 304.35 32.61

3 255.93 48.42 304.35 276.68

4 276.68 27.67 304.35 0

Sum 1000.00 217.39

5.4 Examples

Example 3 Let us consider a mortgage with parameters L := (D0 = 1000.00, k =
1, iN = 10%, N = 4) and Ch = C = 1000.00

4 = 250.00, constant. Given the
final trigger rate i4 = 0.10 and according to (35), the sequence of interest rates is:
i1 = 0.0769, i2 = 0.0833, i3 = 0.0909, i4 = 0.10.

Applying now rules R1, R2 and R3-V, we get Table 4 which describes a VI-STAP
with a sequence of constant principal reimbursements:

Compared to VD-STAP, VI-STAP features a sequence of significantly lower
instalments due to decreasing interest rates applied to the same level of decreasing
outstanding debt (cf. Table 2).

Example 4 Let us consider a mortgage with parameters L := (D0 = 1000.00, k =
1, iN = 10%, N = 4), constant instalments Rh = R and interest rates ih given by
(35). These rates do not change with respect to Example 3, so we have:i1 = 0.0769,
i2 = 0.0833, i3 = 0.0909, i4 = 0.10. By applying Eq. (24), now according to the
increasing sequence of interest rates, we obtain the value of the constant instalment
R = 304.35.

Applying now rules R1,16 R2 and R3-V, we obtain Table 5 describing a VI-STAP
with a sequence of constant instalments.

Remark 11 Also in this case, the constant instalment Rh = R satisfies relation (25)
(or the, more compact, equivalent Eq. (26)), but with a different sequence of discount

16 Reformulating formula R1, in order to compute Ch = R − Ih for all h = 1, . . . , N .
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factors v(h − 1, h) = 1
(1+i(h−1,h))

= 1
1+ih

for all h = 1, . . . , N , according to (35).
We remind that relation (25) is still the counterpart of the feasibility condition (3)
which holds in the C-STAP.

By comparing VD-STAP and VI-STAP (Tables 3 and 5), it can be noted that in the
latter there is a double effect which explains the difference: in addition to a different
sequence of interest rates, there is also a different trend in the outstanding balance,
decreasing at a faster rate, which concurs to determine a significant difference in the
sum of global interest (respectively 239.95 against 217.39). It is clear, of course, that
this is translated to a lower instalment of the VI-STAP than in the case of the VD-STAP
(respectively 304.35 against 309.99).

A final comment is in order:

Remark 12 It may be checked that, both inVD-STAP andVI-STAPwith constant prin-
cipal repayments, the sequence of Rh satisfies the corresponding feasibility condition
(25) (and the equivalent (3)).

Furthermore, it is trivial but noteworthy to point out that, both in VD-STAP and
VI-STAPwith constant instalments, the sequence of principal amount repayments also
satisfies the corresponding feasibility condition (2).

6 The amortization plan under simple interest law

New amortization plans in a simple capitalization regime have been recently proposed
byMari and Aretusi (2018), (2019) and by Annibali et al. (2016), (2020). The purpose
of those papers is to provide amortization schemes built through relations valid in
the simple capitalization regime that, in the authors’ formulation, are free of illicit
anatocism. In any case, as mentioned in the introduction, we do not deal with this
issue here. Instead, our aim is to show that these proposals coincide with our V-STAPs,
which satisfy an equivalence relation under the law of compound interest.

For the sake of simplicity, here we focus on the specific case of constant instalments
with annual frequency (k = 1). This allows us to capture the essence of the point; how-
ever, it is quite simple to generalize the approach to different frequencies, especially
infra-annual ones (k > 1) and also to situations with non-constant instalments.

In what follows, then, we use the list of parameters that has been applied in STAP:
L := (D0, k, ki, N ) considering the case of Rh = R, annual constant (k = 1). In
particular, in this context the effective annual interest rate applied is also constant
according to (4): 1i = i = j .

Let us quickly recap the rationale of the two proposals in the next sections.

6.1 Mari-Aretusi plan (MAP)

In a MAP there are the same rules as in the STAP except for R3 (accrued interest in
each period), which here is actually:

R3-MA: Ih = i · Dh−1 · v(0, h − 1)
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where v(0, h−1) = (1+(h−1)·i)−1 is the discount factor under simple capitalization
law with 1i = i = j the effective annual interest rate, constant for the entire duration
of the loan agreement.

Furthermore, the constant instalment Rh = R is the (unique) solution of the fol-
lowing equation:

D0 =
N∑

h=1

Rh · v(0, h) = R ·
N∑

h=1

(1 + h · i)−1 (37)

The solution R of Eq. (37) defines the value of the instalment which realizes “the
equivalence” at time 0 between the lender’s obligation and the overall one of the bor-
rower. More specifically: first member, value at the time 0 of the lender’s obligation
(amount of the loan); second member, value at the time 0 of the borrower’s commit-
ment, obtained by adding the “equivalent” value at time 0 of each amount Rh fixed
(defined in the contract) at time h. The “equivalent” value is obtained by applying to
the instalment the discount factor (1+h ·i)−1 characteristic of the simple capitalization
financial regime.

We underline that we used the quotation mark for equivalent, because, under the
simple interest regime, equivalence relation in complex financial operations is not
satisfied, so as it is more correct using the term “financial equilibrium”.

In order to provide their alternative plan, the authors introduce the so-called
“extended” plan which involves other three columns, besides the fundamental four:
we name them asΔh , Γh andΨh .17 For MA, these three new quantities are instrumen-
tal in the construction of their amortization plan. The evolution of such quantities is
described by the following relations,18 for all h = 1, . . . , N :

Δh = Dh · v(0, h) (38)

Γh = Δh−1 − Δh (39)

Ψh = i · h · Γh = Rh − Γh (40)

Then, rule R3-MA may be rewritten as follows:

Ih = i · Δh−1 (41)

with Δ0 = D0 and, as proved by the authors, ΔN = 0.
We now present an example of an extended plan with constant annual instalments.

Example 5 Let L := (D0 = 1000.00, k = 1, i = 10%, N = 4)with Rh = R solution
of Eq. (37):

R = 1000.00
∑4

h=1(1 + h · 0.1)−1
= 309.99

17 In their article, the authors used for them the notations D0,h , Sh , I
p
h , respectively. See Mari and Aretusi

(2019), Table 7, p. 137.
18 Here, we do not enter in details to comment the rationale of the formulas.
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Table 6 MAP with L := (D0 = 1000.00, k = 1, i = 10%, N = 4) and Rh = R = 309.99

h Ch Ih Rh Dh Δh Γh Ψh

0 − − − 1000.00 1000.00 − −
1 209.99 100.00 309.99 790.01 718.19 281.81 28.18

2 238.17 71.82 309.99 551.85 459.87 258.32 51.66

3 264.00 45.99 309.99 287.85 221.42 238.45 71.54

4 287.85 22.14 309.99 0 0 221.42 88.57

Sum 1000.00 239.95 1239.95 1000.00 239.95

Then, starting from h = 1, according to rules R1, R2, R3-MA and formulas (38),
(39), (40), it is:

I1 = 0.1 · 1000.00 = 100.00

C1 = 309.99 − 100.00 = 209.99

D1 = 1000.00 − 209.99 = 790.01

Δ1 = 790.01/(1 + 0.1) = 718.19

Γ1 = 1000.00 − 718.19 = 281.81

Ψ1 = 0.1 · 281.81 = 28.18

and iterating the procedure (i.e. I2 = 0.1 · 718.19 = 71.82, . . .), we get the extended
plan as in Table 6.

Remark 13 It is straightforward to verify that the interest quotas Ih correspond to the
product of the constant annual interest rate i = 0.1 times the quantities Δh−1.

6.2 Annibali et al Plan (AnnP)

In their paper the authors propose specific rules for the computation of the fundamental
quantities in their amortization plan.

First of all, the constant instalment Rh = R is the (unique) solution of the following
equation:

D0 · (1 + N · i) =
N∑

h=1

Rh · (1 + (N − h) · i) = R ·
N∑

h=1

(1 + (N − h) · i) (42)

where, in general, (1 + h · i) = u(0, h) is the accumulation factor in the interval
(0, h) under simple capitalization law. Note that in u(0, h) there appears 1i = i = j ,
effective annual interest rate, which is constant for the entire duration of the loan
agreement.

Meaning of Eq. (42): first member, “equivalent” value at the time N of the lender’s
obligation, obtained by applying to the initial principal the capitalization factor (1 +
N · i) characteristic of the regime of simple interest; second member, value at the time
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N of the borrower’s obligation, obtained by adding, for each Rh , the corresponding
“equivalent” value at time N . The “equivalent” value is obtained by applying to the
instalment the capitalization factor (1 + (N − h) · i) proper to the chosen financial
regime.

It has been proved19 that the solution of Eq. (42) is:

R = D0 · (1 + N · i)
N · (

1 + N−1
2

) (43)

Now, the specific rules introduced by the authors are, for all h = 1, . . . , N :

R2-Ann: Dh = R · (N − h) ·
(
1 + N−h−1

2 · i)
(
1 + N−h

2 · i)

R3-Ann: Ih = R − Ch = Dh−1 · i
1 + (N − h) · i

where Ch = Dh−1 − Dh .
In particular, R2-Ann derives from the calculation of the present value at time h, by

applying discount factors of the simple interest financial regime, of an annuity with
(N − h) constant instalments R according to (43).

We now present an example of the AnnP with constant annual instalments.

Example 6 Let L : (D0 = 1000.00, k = 1, i = 10%, N = 4) with Rh = R given by
Eq. (43):

Rh = R = 1000.00 · (1 + 4 · 0.1)
4 · (

1 + 4−1
2

) = 304.35

Let us now compute the other quantities.
As regards the first reimbursement, according to classical rule Ch = Dh−1 − Dh

and R2-Ann, it is:

C1 = D0 − D1 = 1000.00 − 304.35 · (4 − 1) ·
(
1 + 4−1−1

2 · 0.1)
(
1 + 4−1

2 · 0.1)

= 1000.00 − 772.58 = 227.42

and as for the first interest quota, according to R3-Ann, it is:

I1 = 1000.00 · 0.1
1 + (4 − 1) · 0.1 = R − C1 = 304.35 − 227.42 = 76.92

The entire plan is then given in Table 7, applying recursively rules R2-Ann and
R3-Ann.

19 See Annibali et al. (2020), p. 9. The authors refer for the solution to the book written by JohnWard titled
A Compendium of Algebra (1724), II Part, Chapters 2 and 3.

123



L. Ziani

Table 7 AnnP with
L : (D0 = 1000.00, k = 1,
i = 10%, N = 4) and
Rh = R = 304.35

h Ch Ih Rh Dh

0 − − – 1000.00

1 227.42 76.92 304.35 772.58

2 239.97 64.38 304.35 532.61

3 255.93 48.42 304.35 276.68

4 276.68 27.67 304.35 0

Sum 1000.00 217.39

7 On the relation between STAP, MAP and AnnP

7.1 A comparison betweenVD-STAP andMAP

Let us compare now VD-STAP and MAP by exploiting examples briefly described in
Tables 3 and 6, respectively.

First of all, let us remind that the constant instalment in VD-STAP is solution
of Eq. (25), which involves periodic discount factors with a sequence of decreasing
interest rates ih = ih−1

1+ih−1
and i1 = c, initial trigger rate.

On the other side, the constant instalment in MAP is solution of Eq. (37), which
involves discount factors under simple capitalization law with a constant interest rate
ih = i for all h.

Thus the underlying logic of the two plans is significantly different (interest rates,
financial regimes and rules are not comparable), yet they produce the same result both
in terms of the instalment and of all the other plan quantities (as confirmed by a glance
to Tables 3 and 6).

Highlighting the fundamentally different logic that governs the two plans, we are
now able to present the following:

Theorem 1 MAP coincides with VD-STAP if, given the same list of parameters, the
initial trigger rate i1 = c in a VD-STAP is equal to the contractual rate i in a MAP,
so that: i1 = c = i = j .20

The coincidence between the two plans emerges from the fact that each MAP
discount factor of the interval (0, h) in formula (37) coincides with the corresponding
one of the VD-STAP with variable interest rates in formula (26) (or in (25)).21

Proof of Theorem 1 is given in the subsequent Sects. 7.2 and 7.3.

7.2 Properties of capitalization factors with VD interest rates

Let us summarize results given in Sect. 5.1 in order to prove Theorem 1.
Let us assume that, for any n = 1, . . . , N (positive integer) there is a sequence of

variable decreasing periodic interest rates defined by the following rule (cf. formula

20 The latter equality comes from the fact that we are specifically dealing with the annual scenario where
k = 1.
21 As already mentioned, this property extends also to infra-annual instalments schemes.
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(19)):

in = i1
1 + (n − 1) · i1 (44)

Given the choice of i1 > 0 (trigger rate), Eq. (44) uniquely expresses each single
periodic interest rate of the sequence and, thus, the whole sequence {in} as a function
of the trigger i1.

Now, for anyvariable decreasing (VD) sequence that satisfiesEq. (44), the following
Lemma holds:

Lemma 1 For any integer n > 0, it is:

u(0, n) = (1 + n · i1) (45)

Remark 14 Note that u(0, n) = u(0, 1) · u(1, 2) · . . . · u(h − 1, h) · . . . · u(n − 1, n) =∏n
h=1(1 + ih) is the capitalization factor of the compound regime with a variable

interest rate relating to the entire interval of the first n periods.

Lemma 1 states the product of the first n periodic capitalization factors of the VD
sequence as a function of the trigger rate i1 and of the number of the periods.

Proof of Lemma 1 Equation (45) is obviously true for n = 1: (1 + i1) = (1 + 1 · i1).
Equation (45) is true for n = 2: (1+ i1) · (1+ i2) = (1+ 2 · i1). Indeed, exploiting

(44):

(1 + i1) · (1 + i2) = (1 + i1) ·
(
1 + i1

1 + i1

)
= (1 + i1) ·

(
1 + i1 + i1
1 + i1

)
= (1 + 2 · i1)

Assume now Eq. (45) is true for a given (n − 1):

u(0, n − 1) = (1 + i1) · . . . · (1 + ih) · . . . · (1 + in−1) = (1 + (n − 1) · i1)

If it is true for n − 1, exploiting the decomposability property we have:

u(0, n) = u(0, n − 1) · (1 + in) = (1 + (n − 1) · i1) · (1 + in) (46)

Now according to (44), it is:

(1 + in) =
(
1 + i1

1 + (n − 1) · i1
)

=
(
1 + (n − 1) · i1 + i1
1 + (n − 1) · i1

) (47)
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and finally:

u(0, n) = (1 + (n − 1) · i1) · (1 + in) = (1 + (n − 1) · i1) ·
(

1 + n · i1
1 + (n − 1) · i1

)

= (1 + n · i1)
(48)

��

7.3 Proof of Theorem 1

The coincidence between VD-STAP and MAP is obtained if, for any n = 1, . . . N ,
there is a coincidence between the respective discount factors of the interval (0, n).
Formally, if v(0, n) = v(0, 1) · . . . · v(h − 1, h) · . . . · v(n − 1, n), product of periodic
discount factors in compound regime with variable decreasing interest rates ih is equal
to v(0, n) = (1 + n · i)−1, discount factor in simple regime with a constant interest
rate i .

Since the coincidence between discount factors is equivalent to the coincidence
between capitalization factors of the associated laws, we now set up the system of N
equations to prove such a coincidence. In each equation, the left-hand side features the
capitalization factor relevant to the interval in the simple regime with a constant rate
i . Conversely, the right-hand side includes the capitalization factor in the compound
regime with a variable rate ih , in line with the VD assumption. Formally:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 1i = (1 + i1)
1 + 2i = (1 + i1) · (1 + i2)

. . . = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 + ni = (1 + i1) · (1 + i2) · . . . · (1 + in)
1 + (n + 1)i = (1 + i1) · (1 + i2) · . . . · (1 + in) · (1 + in+1)

. . . = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 + Ni = (1 + i1) · (1 + i2) · . . . · (1 + in) · (1 + in+1) · . . . · (1 + iN )

Lemma 1 allows us to replace each product in the right-hand side with the corre-
sponding expression as a function of the trigger i1. In this way, the system transforms
into the system in which, for any n = 1, . . . , N , relations (1 + n · i) = (1 + n · i1)
must be satisfied. The immediate solution is then i = i1.

In summary, the condition of equality between the constant contractual rate i of the
plan in the simple regime and the trigger i1 of the plan in the compound regime (with
sequence VD) produces the equality between the MAP at a constant rate in the simple
regime and the VD-STAP in compound regime.

Theorem 1 is thus demonstrated. ��

7.4 A comparison betweenVI-STAP and AnnP

Let us now compare VI-STAP and AnnP by exploiting the examples briefly described
in Tables 5 and 7, respectively.
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First of all, let us remind that the constant instalment in VI-STAP is solution of
Eq. (25), which involves periodic discount factors with a sequence of increasing inter-
est rates ih−1 = ih

1+ih
and iN = c final trigger rate.

On the other side, the constant instalment in AnnP is solution of Eq. (42), which
involves accumulation factors under simple capitalization law with a constant interest
rate ih = i for all h.

Also in this case, we emphasize that the two plans share the same values (they
produce the same result both in terms of the instalment and of all the other plan
quantities), but not the same logic, which is fully different.

We are now able to provide the following:

Theorem 2 AnnP coincides with VI-STAP if, given the same list of parameters, the
final trigger rate iN = c in the VI-STAP is equal to the contractual rate i in th AnnP,
so that: iN = c = i = j .

The coincidence between the two plans emerges from the fact that each AnnP
discount factor of the interval (0, h) in formula (42) coincides with the corresponding
one of the VI-STAP with variable interest rates in formula (26) (or in (25)).

As concerns the proof of Theorem 2, see Sects. 7.5 and 7.6.

7.5 Properties of the capitalization factors with VI interest rates

Let us summarize results given in Sect. 5.3 in order to prove Theorem 2.
Let us assume that, for any n = 1, . . . , N (positive integer) there is a sequence of

variable increasing periodic interest rates defined by the following rule (cf. formula
(34)):

in = iN
1 + (N − n) · iN (49)

Given the choice of iN > 0 (trigger rate), Eq. (49) uniquely expresses each single
periodic interest rate of the sequence and, thus, the whole sequence {in} as a function
of the trigger iN .

Now, for any variable increasing (VI) sequence that satisfies Eq. (49), the following
Lemma holds:

Lemma 2 For any integer n > 0, it is:

u(N − n, N ) = (1 + n · iN ) (50)

Remark 15 Note that u(N − n, N ) = (1+ iN−n+1) · (1+ iN−n+2) · . . . · (1+ iN−1) ·
(1+ iN ) is the capitalization factor of the compound regime with a variable increasing
interest rate of the entire interval of the last n periods.

Note that the sequence of period indices starts at (N − n + 1) and ends at N =
N − n + n.

Lemma 2 states the product of the last n periodic capitalization factors of the VI
sequence as a function of the trigger rate iN and of the number of the periods.
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Proof of Lemma 2 Equation (50) is trivially true for n = 1, that is (N − n + 1 = N ):
(1 + iN ) = (1 + 1 · iN ).

Equation (50) is true for n = 2: (1 + iN−1) · (1 + iN ) = (1 + 2 · iN ). Indeed,
exploiting (49):

(1 + iN−1) · (1 + iN ) =
(
1 + iN

1 + iN

)
· (1 + iN )

=
(
1 + iN + iN

1 + iN

)
· (1 + iN ) = (1 + 2 · iN )

Assume now Eq. (50) is true for a given (n − 1):

u(N − (n − 1), N ) = (1 + iN−n+2) · . . . · (1 + iN−1) · (1 + iN ) = (1 + (n − 1) · iN )

If it is true for n − 1, exploiting the decomposability property it is:

u(N − n, N ) = (1 + iN−n+1) · u(N − (n − 1), N ) (51)

Now according to (49), it is:

(1 + iN−n+1) =
(
1 + iN

1 + (n − 1) · iN
)

= 1 + n · iN
1 + (n − 1) · iN

(52)

and finally:
u(N − n, N ) = (1 + iN−n+1) · u(N − (n − 1), N )

= 1 + n · iN
1 + (n − 1) · iN · (1 + (n − 1) · iN )

= (1 + n · iN )

(53)

��

7.6 Proof of Theorem 2

Given this, the coincidence between the two amortization plans (in the compound
regime with a variable rate according to rule VI and in the simple regime with a
constant contractual rate with equilibrium at the final maturity N ) is obtained if, for
each n = 1, . . . , N , there is equality between capitalization factors of the interval
(N − n, N ) of the two regimes.

This translates into the following system of N equations: in each equation, on the
left-hand side, the capitalization factor (specific to the interval) in the simple regime
with a constant rate i , and on the right-hand one, the capitalization factor (for that
interval) in a compound regime with an increasing variable rate according to the
sequence i1, i2, . . . , ih, . . . , iN .
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We get the system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 1 · i = (1 + iN )

1 + 2 · i = (1 + iN−1) · (1 + iN )

. . . = . . . . . . . . . . . .

1 + 3 · i = (1 + iN−2) · (1 + iN−1) · (1 + iN )

. . . = . . . . . . . . . . . .

1 + n · i = (1 + iN−n+1) · (1 + iN−n+2) · . . . · (1 + iN−1) · (1 + iN )

. . . = . . . . . . . . . . . .

1 + N · i = (1 + i1) · (1 + i2) · . . . · (1 + in) · (1 + in+1) · . . . · (1 + iN )

Lemma 2 allows us to replace each product in the right-hand side with the corre-
sponding expression as a function of the trigger iN . In this way, the system transforms
into the system in which, for any n = 1, . . . , N , relations (1 + n · i) = (1 + n · iN )

must be satisfied. The immediate solution is then iN = i .
In summary, the condition of equality between the constant contractual rate i of the

plan in the simple regime and the trigger iN of the plan in the compound regime (with
sequence VI) produces the equality between the AnnP at a constant rate in the simple
regime and the VI-STAP in compound regime.

Theorem 2 is thus demonstrated. ��

7.7 Summary of results and the concept of twin sequences

Summing up:

– we have demonstrated that MAP with constant instalment repayments (which
achieves financial equilibrium at the initial time) in the simple regimewith constant
rate i , coincides with constant instalment STAP (financial equivalence at any time)
under compound regime following the VD rule and with trigger i1 = i .

– similarly, we have proven that AnnP constant instalment repayments (which
reaches financial equilibrium at the final maturity) in the simple regime with a
constant rate i , aligns with the constant instalment STAP under the compound
regime following the VI rule, with trigger iN = i .

Remark 16 Weemphasize that in theV-STAPmode, the sequences of variable rates are
determined by the constant rates of their corresponding plans in the simple regime. This
starts with the initial condition where the trigger rates are set equal to these constant
rates. In simpler terms, the selection of the two trigger rates, and consequently the
entire sequences of variable rates, is dictated by the given constant rate in the simple
regime.

The analysis becomes especially noteworthy if we analysed the relationship
between the two sequences, VD and VI, in scenarios where the constant contrac-
tual rates for both constant instalment amortization plans in the simple regime are
identical, or more formally when i(MAP)= i(AnnP).

We are now able to provide this result:
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Corollary 1 If i (MAP)= i (AnnP), then the sequences of variable rates in both VD and
VI STAPs, which correspond to MAP and AnnP respectively, can be considered as
twin sequences, satisfying for all n = 1, . . . , N the following relation:

in(V D) = iN−n+1(V I ) (54)

Remark 17 Observe that the sum of the indices for the rates in the twin sequences
is constant with respect to n and is equal to N + 1. This suggests that retracing the
steps in the VI sequence will yield the same sequence as advancing forward in the VD
sequence.

Proof of Corollary 1 For n = 1, the relation is immediately verified. In fact, we have:

i1(V D) = i(MAP) = i(AnnP) = iN (V I )

For 1 < n ≤ N , according to formula (44) it is:

in(V D) = i1(V D)

1 + (n − 1) · i1(V D)

and conversely, according to formula (49):

in(V I ) = iN (V I )

1 + (N − n) · iN (V I )

Let n = N − n + 1, i.e. N − n = n − 1, then it is:

iN−n+1(V I ) = iN (V I )

1 + (N − 1) · iN (V I )
= i1(V D)

1 + (n − 1) · i1(V D)

and also:

iN−n+1(V I ) = iN (V I )

1 + (N − n) · iN (V I )

��

In particular, in our sample case where N = 4 and given that i(MAP) =
i(AnnP) = 10%, we obtain the following results: according to formula (44), the
VD sequence rates are: i1(V D) = 0.10, i2(V D) = 0, 0909, i3(V D) = 0.0833,
i4(V D) = 0.0769; similarly, based on formula (49), the VI sequence rates are:
i1(V I ) = 0.0769, i2(V I ) = 0.0833, i3(V I ) = 0, 0909, i4(V I ) = 0.10. They confirm
the twin character of the variable sequences of interest rates.
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Table 8 L := (D0 = 1, 000.00,
k = 1, i = 10%, N = 4),
R = 315.47

C-STAP
h Ch Ih Rh Dh

0 − − – 1000.00

1 215.47 100.00 315.47 784.53

2 237.02 78.45 315.47 547.51

3 260.72 54.75 315.47 286.79

4 286.79 28.68 315.47 –

Sum 1000.00 261.88

Table 9 L := (D0 = 1, 000.00, k = 1, i = 10%, N = 4)

MAP or VD-STAP AnnP or VI-STAP
h Ch Ih Rh Dh Ch Ih Rh Dh

0 − − – 1000.00 − − – 1000.00

1 209.99 100.00 309.99 790.01 227.42 76.92 304.35 772.58

2 238.17 71.82 309.99 551.85 239.97 64.38 304.35 532.61

3 264.00 45.99 309.99 287.85 255.93 48.42 304.35 276.68

4 287.84 22.14 309.99 − 276.68 27.67 304.35 –

Sum 1000.00 239.95 1000.00 217.39

8 The concept of “equivalence”

BothMAPandAnnP are built using the samefinancial regime and the same contractual
input. Nevertheless, it can easily be verified that the two solutions (37) and (42) are
different. Actually, we check numerically that R is, respectively, 309.99 in MAP and
304.35 in AnnP for the same list of parameters.

The same authors highlight this difference and underline that it is due to the different
reference period of the “equivalence” between the lender’s obligation and that of the
borrower; respectively t = 0, “initial equivalence” of current values, for Mari-Aretusi
and t = T , “final equivalence” of amounts, for Annibali et al. In any case, even though
they agree in supporting the use of the simple versus compound interest regime in
their approach, each is even more determined to argue the superiority of his particular
formulation with respect to the one of the other.

In these schemes, as said before, it would be more correct to speak of “financial
equilibrium” rather than “financial equivalence”: this last property in fact concerns
exclusively relations holding reflexive, symmetric and transitive properties, character-
istic of the compound regime. Here emerges the difference between STAPs, plans in
compound interest regime, and MAP/AnnP in simple regime. In fact, the solution R
in a STAP is invariant with respect to the time where the equivalence relation is com-
puted. This is a well-known consequence of the equivalence property of the compound
interest regime (Tables 8, 9).
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Resume Finally, we resume, without comments, the core of the paper presenting the
three amortization plans with the same list of contractual parameters and constant
instalments, precisely: C-STAP, MAP or VD-STAP and AnnP or VI-STAP.

9 Conclusions

This paper offers a clear “bridge” of connection and an enlightening reading key
between the STAP (Standardized Traditional Amortization Plan) approach and the
new wave of plans proposed according to the law of simple capitalization (Simple
Interest Plans, SIPs), whose two most coherent and interesting schemes came recently
by Mari-Aretusi and by Annibali et al.

Building the bridge requires, in the STAP frame, a transition from constant periodic
effective interest rates (C-STAP) to proper time-varying sequences of such rates (V-
STAP).

The result is astonishingly straightforward: each of the twomain plans of the Simple
Interest Plan (SIP) approach perfectly match with the V-STAPs obtained by the time-
varying sequence coherently generated by a proper hyperbolic instantaneous intensity
functions defined on the time horizon (0, T ) of the plan. This approach sheds light not
only on the connection between STAPs and SIPs, but also offers a clear explanation
of the difference between the two SIPs, beyond the usual one offered by the authors
(relating to the epoch, initial or final, of financial equilibrium between the lender’s and
the borrower’s payments).
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