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Abstract: The last two decades have seen an incessant growth in the use of Unmanned Aerial Vehicles
(UAVs) equipped with HD cameras for developing aerial vision-based systems to support civilian
and military tasks, including land monitoring, change detection, and object classification. To perform
most of these tasks, the artificial intelligence algorithms usually need to know, a priori, what to look
for, identify. or recognize. Actually, in most operational scenarios, such as war zones or post-disaster
situations, areas and objects of interest are not decidable a priori since their shape and visual features
may have been altered by events or even intentionally disguised (e.g., improvised explosive devices
(IEDs)). For these reasons, in recent years, more and more research groups are investigating the design
of original anomaly detection methods, which, in short, are focused on detecting samples that differ
from the others in terms of visual appearance and occurrences with respect to a given environment.
In this paper, we present a novel two-branch Generative Adversarial Network (GAN)-based method
for low-altitude RGB aerial video surveillance to detect and localize anomalies. We have chosen to
focus on the low-altitude sequences as we are interested in complex operational scenarios where
even a small object or device can represent a reason for danger or attention. The proposed model was
tested on the UAV Mosaicking and Change Detection (UMCD) dataset, a one-of-a-kind collection
of challenging videos whose sequences were acquired between 6 and 15 m above sea level on three
types of ground (i.e., urban, dirt, and countryside). Results demonstrated the effectiveness of the
model in terms of Area Under the Receiving Operating Curve (AUROC) and Structural Similarity
Index (SSIM), achieving an average of 97.2% and 95.7%, respectively, thus suggesting that the system
can be deployed in real-world applications.

Keywords: UAVs; computer vision; anomaly detection; aerial images; low-altitude; UMCD dataset;
deep learning; GANs; AUROC; SSIM

1. Introduction

In recent years, computer vision techniques have become continuously more important
to support a wide range of application areas, including foreground detection and/or
background modeling for anti-intrusion and monitoring systems [1–5], object detection
and target recognition for security and observation systems [6–10], human action and
behavior recognition [11–16], assessment of progress of motor impairments by vision-based
rehabilitation systems able to analyze body movements over time [17–19], or to support
human-centered interfaces to drive advanced devices [20–22]. One of the application
areas where computer vision has grown the most is without doubt the development of
vision systems based on UAVs. In fact, as reported in the literature of the last 20 years,
more and more UAVs equipped mostly with HD RGB cameras are commonly used to
support innovative solutions in everyday life, such as precision agriculture [23,24], search
and rescue [25,26], fire detection [27,28], and many others. Among these solutions, those
relating to the aerial video surveillance of people, vehicles, and, events that occur on
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the ground can be considered the most active research areas. In fact, on the one hand,
an increasingly growing number of civilian applications need to perform monitoring
missions able to interpret always more complex events, e.g., identification of flooded areas,
detection of missing persons, and monitoring of quarantine zones; on the other hand,
the needs of military applications are evolving quickly, requiring smart UAVs able to
support a broad variety of dangerous missions, e.g., patrols, investigations, and protection
of critical structures.

According to an in-depth analysis of the state of the art, traditional aerial video surveil-
lance systems leverage pre-trained networks capable of recognizing and classifying a
limited number of objects or events, which is not helpful under challenging circumstances
in which unknown instances occur. Indeed, in [29], the authors present a robust multi-class
object detection method combining a deep residual network, a feature pyramid structure,
and a rotation region proposal network for extracting multiscale features and generating
candidate-oriented bounding boxes surrounding only known targets in the aerial images.
Again, in [30], the authors propose a novel Global Density Fused Convolutional Network
(GDF-Net) composed of a backbone network, a global density model, and an object detec-
tion network, detecting and localizing only well-known target categories. Finally, in [31],
the authors propose a pre-processing step and a pre-trained Convolutional Neural Net-
work (CNN) to design a sea search and rescue system detecting already known objects
of interest. Despite the excellent results obtained by these systems and their undoubted
usefulness in critical situations, the recent trends focus on developing algorithms based
on the Anomaly Detection (AD) concept. The latter moves its center of attention from
detecting a set of classes known a priori to also detecting an eventually unknown set of
objects or events that broadly differ from the others comprising the examined environment
in terms of visual appearance and occurrences. In recent years, despite the increasing
interest by the computer vision scientific community in AD applications, its usage for
solving critical tasks (e.g., IED detection) in aerial surveillance from low-altitude video
streams requires further investigations to consider all the possible challenges introduced
by different types of ground (e.g., background clutter), variable size of objects (e.g., small
objects with few pixels), and many others. Addressing such issues is the primary purpose
of the present paper.

Starting from some of our previous experiences in designing UAV-based vision systems
for aerial video surveillance [32–37] and from some interesting works in the use of the AD
techniques in aerial images [38–41], in this paper, a novel two-branch GAN-based approach
for low-altitude RGB aerial video streams to detect and localize anomalies in different types
of ground for surveillance missions is presented. Notice that in this work, we are interested
in detecting anomalies in particular operational scenarios such as analysis of the ground
where military convoys travel to determine the presence of small dangerous objects (i.e.,
IEDs), analysis of the ground surrounding field hospitals to determine the presence of
disguised small objects (i.e., traps), detection of small objects and artifacts that should not be
in a specific place and, for this reason, are potentially dangerous, and many others. To test
the proposed model, extensive experiments were conducted on the UMCD dataset [42].
To the best of our knowledge, this collection of video streams is the only one suitable to
prove the effectiveness of the proposed model due to its distinctive characteristics. More
specifically, the UMCD dataset is a collection of 50 challenging video sequences acquired
at very low altitudes (i.e., between 6 and 15 m). Moreover, the videos are acquired with
different parameters (e.g., speed, height) on different types of ground (i.e., urban, dirt,
and countryside), introducing background clutter to stress the model localization capability.
On the ground, there are natural and artificial structures (e.g., trees, buildings) to stress the
robustness of the model as well as objects of common size (e.g., vehicles, persons) and very
small objects (e.g., gas bottles, boxes, suitcases) to stress the detection ability of the model.
Another unique characteristic of this dataset is the acquisition modality that acquires the
videos on several of the same paths twice, with and without anomalous objects; the latter
step is fundamental for the training stage in this kind of system. The metrics taken into
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account to evaluate the proposed method were the AUROC and SSIM; the first was used to
test the detection branch related to the binary classification (97.2%), whereas the second was
used to evaluate the localization branch related to the measure of the similarity between
the original image and the other generated ones using the GAN network (95.7%). In both
cases, the outstanding obtained results have confirmed that the proposed system can be
used in real-world applications. The main contributions of the paper can be summarized
as follows:

• Designing a network architecture based on two GANs organized on parallel branches
and intended for the modeling and learning of robust normal class data manifolds,
which are crucial for increasing the performance and precision of detection and
localization of eventually anomalous conditions;

• Detecting and localizing any anomalous element of interest in aerial videos at very
low altitude (from 6 to 15 m), spanning from common items, e.g., cars or people,
to undefined and challenging objects, e.g., IEDs, independently from their properties
such as color, size, position, or shape, including elements never seen before;

• Presenting quantitative and qualitative experiments for the anomaly detection and
localization tasks on the UMCD dataset, reaching outstanding results.

The paper is structured as follows. In Section 2, an overview of key works in anomaly
detection and localization is reported. In Section 3, the novel two-branch GAN-based
method for low-altitude RGB aerial video surveillance to detect and localize anomalies is
detailed. In Section 4, quantitative and qualitative results obtained on the UMCD dataset
are discussed. Finally, Section 5 contains the conclusions and proposes ideas for possible
future improvements.

2. Related Work

AD popularity increased in recent years by proposing new and different strategies
to improve the accuracy of automated systems. In general, an anomaly can be defined
as an item, such as a person, an object, an animal, and so on, that is not expected to be
in a specific environment. For example, the presence of a group of sheep in a farm area
can be considered as a normal event, while, in the same context, an airplane will probably
represent an anomaly. However, the same airplane, located in a hangar or the sky, can be
considered normal. Given that, AD strategies aim at localizing and identifying all the items
(e.g., persons, objects, animals) that are not expected to be found in a specific context. More
specifically, AD aims to monitor an area of interest only by knowing what is considered
normal for the application context. Automated AD systems usually provide significant
benefits in several real-life scenarios. In security, for example, they can be used to monitor
restricted/dangerous areas from intruders. In a military context, instead, they can help
in retrieving unexploded bombs by localizing them from the distance, e.g., with drones.
An overview of the more well-known AD approaches can be found in [43], while more
recent surveys in [44–46] present novel proposals in this field. The recent widespread use
of drones, also thanks to their cost reduction and technical improvements (e.g., flight time,
automatic control, remote transmission), allows them to cover a significant part of AD
applications, especially in large outdoor scenarios. Our proposal is focused on this specific
context and exploits data captured by UAVs to detect possible anomalies at low-altitudes.
For this reason, this section describes some recent state-of-the-art approaches for UAV-
based AD, taking into account different operative contexts in order to provide an overview
of interesting strategies in the various application areas.

In [47], an end-to-end method based on a deep one-class classification exploiting
unsupervised generative learning is described. In this work, an event is made explicit by
an optical flow and the original images coming from the UAV. The proposed strategy is
focused on two different tasks. The first aims at maintaining the descriptive compactness of
the normal event features. The last, instead, generates new optical flows directly from the
data acquired by the UAV during the testing phase. This process speeds up the detection
of possible anomalies and allows the system to fulfill the real-time constraint. To this
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aim, their proposed network is an optical flow generator based on a deep CNN. More in
detail, such a network does not compute the optical flows in a classical way. Instead, it
fastens the process by exploiting a convolution/deconvolution-based neural network. This
network is also able to extract compact features from both original images and optical flows.
The authors also introduce a custom loss function for the training. It consists of the sum of
three different loss functions, namely reconstruction loss, generation loss, and compactness
loss. In this way, it is possible to achieve a more efficient classification of events. Their
proposed strategy has been benchmarked on an in-house dataset composed of 1000 samples
and on two publicly available datasets [48,49], providing remarkable results.

Another work focused on the use of AD techniques by UAVs is reported in [50], where
the authors base their strategy on the use of four different sets of features. The first set
relies on the deep features retrieved by GoogLeNet [51]; the second contains the local
shape information extracted by the Histogram of Oriented Gradients (HOG) [52] from
each region of the frames; the third is computed by exploiting the Principal Component
Analysis (PCA) [53] on the previously mentioned features extracted by the HOG. Finally,
the last is made up by the spatio-temporal features retrieved by the HOG3D [54] algo-
rithm. Each feature set is separately fed to a One-Class Support Vector Machine (OC-SVM)
classifier [55]. In this way, four different classifiers are trained. This work raises some
interesting considerations. The first is that the second and the third sets of features produce
a significantly worst classifier compared to the other two; in addition, the use of the PCA
only improves the system’s speed but not the performance. Finally, the best set seems to be
the first one in which the GoogLeNet features achieved higher accuracy.

In [56], a strategy for AD based on future frame prediction with an encoder–decoder
network is presented. The network proposed by the authors is exploited to extract spatio-
temporal feature representations from the video frames. In their network, the last batch
normalization and ReLU layers in the encoder part are removed to retain different repre-
sentations, substituting L2 normalization layers in their place. Their proposed model is
trained to predict a future frame receiving consecutive frames as input. Such a frame is
then compared with the ground truth to detect an anomaly. The work proposed by the
authors also exploits variational auto-encoders made up of an encoder and a decoder, thus
optimizing the encoding/decoding scheme. The work reported in [39] instead proposes
an unsupervised AD Deep Neural Network (DNN) for Aerial Surveillance. The proposed
DNN aims at learning the distribution of the objects for each different environment ac-
cording to GPS labels; at the same time, the network is constrained to have a continuous
latent space to also learn the data distribution. The pipeline starts with a primary phase in
which an off-the-shelf object detector (a MobileNetV2-SSDLite [57]) provides object annota-
tions. The detector is exploited to compute the grid representations, which contain values
according to a particular object’s presence or absence. The network is fed with these repre-
sentations jointly with the GPS coordinates. Experimental results demonstrate the effective
use of the GPS coordinates, which significantly increase the precision of the network.

Moving to the AD by UAVs at low altitude, to the best of our knowledge, there is
only one work addressing the topic [32], and it is not based on a deep learning strategy. It
is worth noting that a change in the altitude acquisition may present several challenges
due to the different sizes of the anomalies to detect. In addition, the altitude can also
impact the visual features extracted from the scene. The just reported proposal is based
on the extraction of a modified set of Haralick-based features [58,59] and exploits them
to train an OC-SVM classifier. In the first step, the authors convert the input image in
gray-scale and then split it into homogeneous patches; in the second step, they extract the
Haralick-based features. In their work, the authors propose a spatial relation based on
discretized circumferences of different ranges instead of the classical orientations (i.e., 0◦,
45◦, and so on). In the final step, the authors exploit the extracted features of each patch to
train an OC-SVM classifier. Their proposal has been tested on the same dataset used in this
work, i.e., the UMCD dataset [42], which contains low-altitude UAV-captured videos with
and without different anomalies.
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3. Methodology

The two-branch GAN-based neural network architecture, shown in Figure 1, was
designed to detect and localize anomalies from RGB video streams acquired by UAVs
at low altitude. Each model branch expands the GAN network [60,61] by leveraging
the CNN architecture to handle visual data [62,63] and, at the same time, modeling and
learning two different low-dimensional manifolds of video frames depicting anomaly-
free scenarios; later, they are employed in detecting and localizing eventually abnormal
conditions. Specifically, given RGB video frames, the top branch is a GAN serving as
the detector and predicting whether or not they depict a normal scene, i.e., the presence
of anomalous states. Instead, the bottom branch is a GAN operating as the localizer,
producing an attention map, thus highlighting the abnormal elements within the frames
when detected, i.e., localizing the anomalous regions in the scene. To this end, the network
training follows a semi-supervised fashion, where the network inputs are the frames
coming only from anomaly-free scenarios. In such a manner, with an anomalous frame
as input, each element deviation and differentiation from the learned manifold can be
recognized independently from the position, size, color, and shape during the testing phase.
For illustration, the training and testing workflows are depicted in Figure 2a,b, respectively.
Below, the proposed method and the related strategy are described in detail.

Real

Fake

Real

Fake

De
te

ct
or

 (D
)

Lo
ca

liz
er

(L
)

f

y

k

α

γ

u

w

Hγ

Hα

DE DD
DC

LE LD
LC

LEGEND:
Conv/ConvTransp Batch Norm LeakyReLU/ReLU Residual Block Tanh

Figure 1. The proposed two-branch network architecture. Given an anomalous scene as input, the top
GAN (i.e., the detector) detects if anomalies are present or not. The bottom GAN (i.e., the localizer),
instead, localizes and highlights the anomalous regions when detected.
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Figure 2. In (a,b), the detailed workflows required for detecting and localizing anomalies in RGB
videos during the training and testing phases, respectively.

3.1. Anomaly Detection

In recent years, the GAN model has gained momentum for detecting anomalies over
a set of data samples, including vision-based information [64,65], achieving promising
results. This network architecture can approximate a target data distribution by generating
artificial samples as if they were drawn from the target itself, i.e., learning the manifold
of the observed data. Notice that this last property can be helpful under an image re-
construction setting to implement the detection of anomalies by exploiting the learned
manifold of the normal class. Indeed, the just introduced property is employed by the
top branch of the proposed network architecture, i.e., the detector D, to predict whether
or not there are anomalies in the observed scene. In detail, the detector is a CNN-based
GAN consisting of video frames encoder DE, decoder DD, and discriminator DC compo-
nents, where the encoder generates the latent vector for each frame, while the decoder
reconstructs these frames from such low-dimensional representations produced by the
encoder. The discriminator, instead, discriminates against all real and fake video frames.
Specifically, both DE and DC models have similar structures comprising L convolutional
layers with strided convolutions, each of them exploiting the batch normalization [66] to
stabilize the training phase and the leaky rectified linear unit (leakyReLU) [67] activation
function. However, the discriminator being a binary classifier, the sigmoid function is
applied to the output of its last convolutional operation. The DD model requires a reverse
structure with respect to the DE component. Therefore, it includes transposed convolutions
and a rectified linear unit (ReLU) activation function replacing the convolutional operations
and the leakyReLU activation, respectively, and the use of a hyperbolic tangent function
in the last layer. More precisely, given a video sequence F, for each original frame f ∈ F,
the encoder DE produces the corresponding latent vector α. Afterward, the decoder DD
uses this low-dimensional representation to reconstruct the real frame as the fake image y,
which is given as input to DE,producing its corresponding latent vector γ with the same
size of α. Finally, similarly to α, the vector γ is decoded by DD to reconstruct another fake
frame k, always reproducing the original frame f . Following this new training strategy,
the detector can learn a more robust low-dimensional manifold of normal frames; indeed,
when DC classifies both y and k as real, it implies that the low-dimensional representation α
is very informative to the point of fooling the discriminator not only with the reconstructed
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frame y of the original sequence but even with the reconstruction of the fake frame in k.
Formally, to accomplish the reconstruction goal, the low-dimensional manifold is learned
applying the GAN adversarial function based on a zero-sum game. The latter is derived
from the cross-entropy between original and reconstructed frames, as follows:

L f = E f [logDC( f )],

Lα = Eα[log(1− DC(DD(α))],

Lγ = Eγ[log(1− DC(DD(γ))],

Ladv = min
DE ,DD

max
DC

(L f +Lα +Lγ),

(1)

where DD(α) and DD(γ) are the reconstructed frames (i.e., y and k) from real and fake data,
respectively. Moreover, DC( f ), DC(DD(α)), and DC(DD(γ)) indicate the discriminator-
estimated probability of a given frame being real. Finally, E f , Eα, and Eγ are the expected
values over all the real and fake frames.

During the training phase, the detector only learns how to reconstruct frames depicting
the normal scene from their latent vectors, i.e., the manifold of normal data. To this end,
since the fake frames must reproduce the original anomaly-free video sequence, the mean
squared error (MSE) is defined between the real f and reconstructed y frames, with size
(m, n), as follows:

MSED
r =

1
mn

m

∑
i=1

n

∑
j=1

[ f (i, j)− y(i, j)]2, (2)

where f (i, j) and y(i, j) indicate a pixel in the original and reconstructed images, respectively.
To improve the input frame low-dimensional representation quality, it is ensured that the
original video can also be reproduced starting from fake frames by defining a similar
constraint among the vectors α and γ as follows:

MSED
e =

1
|α|

|α|

∑
i=1

(αi − γi)
2, (3)

where |α| is the latent vector size, which is the same for both representations. Finally, the train-
ing objective of the detector D can be computed via the following weighted function:

LD = wD
r MSED

r + wD
e MSED

e , (4)

where wD
r and wD

e , with wD
r > wD

e , are weighting parameters adjusting the impact of indi-
vidual losses on the overall loss function. By binding the input and reconstructed frames,
as well as their corresponding low-dimensional vectors via Equation (3), the detector D
naturally tries to fix any anomaly during the input frame reconstruction of an anomalous
scene at the expense of the reconstruction quality itself, as illustrated in Figure 3. Following
this rationale, the Euclidean distance among the low-dimensional representations of an
anomaly input frame and its repaired reconstruction can be used to detect anomalies,
as they result in highly different values. Therefore, the distance between latent vectors can
be considered as an anomaly score, indicating the presence of anomalies when it is equal
to or greater than a specific threshold, automatically learned when training the model by
applying the Youden’s J statistic [68].
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(a) (b)

Figure 3. Example of image reconstruction of a frame depicting abnormal elements during the test
phase. In (a) the abnormal frame; in (b) the reconstructed image of the repaired frame (i.e., removal
of people in the middle of the street). Due to the anomaly correction, (b) has a low quality, resulting
in a large Euclidean distance between (a,b) latent representations that indicates the detection of
an anomaly.

3.2. Anomaly Localization

The great capability of GAN to approximate data distributions among the others
can be employed for localizing anomalous elements in visual-based anomaly detection
applications [69,70]. To this end, the network ability can be refined to learn features by
modeling more abstract information from training samples, achieving pixel-wise localiza-
tion. Therefore, the strategy is to understand the details appearing frequently in normal
frames, employing them to predict abnormal areas within the scene. Moreover in this
case, this is achieved by learning the manifold of normal data while preserving spatial
information. Indeed, the bottom branch of the proposed network architecture, i.e., the
localizer L, has similar components and structures of the model D described in Section 3.1.
However, for the localizer, the low-dimensional representation is a set of 2D feature maps
that can be used to define an heat map localizing regions of interest in the image. To achieve
this, different from DE, the last convolution in the localizer encoder LE is replaced with
three residual blocks [71] to improve localization performance [72] having more abstract
representations of input frames. Precisely, similar to the detector branch, the L model learns
to reconstruct only the frames depicting a normal scene but exploiting the instructive latent
set of feature maps rather than a single vector, i.e., the learned manifold of normal data
containing spatial information.

Formally, given a video sequence F, each original frame f ∈ F is used by the encoder
component LE to generate a latent set Hα of 2D feature maps. Afterwards, the decoder
component LD uses all these low-dimensional feature maps to reproduce the real frame as
the fake image u, which is given as input to LE to produce another latent set Hγ of feature
maps with the same shape and size of Hα. Finally, the latter is utilized by LD to produce
another fake frame w reproducing the original frame f . The localizer discriminator LC,
similar to DC, is tasked with discriminating all real and fake frames. When LC classifies
both frames u and w as real, as discussed for the detector branch and the new training
strategy, the localizer L learns a very informative latent set of feature maps Hα and a
more robust low-dimensional manifold of normal frames. To reproduce frames depicting
anomaly-free scenarios, even if the latent space is different from the detector, a similar
constraint is required between real and fake frames, as follows:

MSEL
r =

1
mn

m

∑
i=1

n

∑
j=1

[ f (i, j)− u(i, j)]2, (5)

where f (i, j) and u(i, j) indicate a pixel in the original and reconstructed images with size
(m, n), respectively. Even in this case, to improve the low-dimensional feature maps quality
to the point that the original video sequence can be reproduced also starting from fake
frames, the Hα and Hγ representations are bound via:
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MSEL
e =

1
N

1
2s

N

∑
n=1

s

∑
i=1

s

∑
j=1

[Hn
α (i, j)− Hn

γ(i, j)]2, (6)

where N is the total number of features maps within each se, s is the n-th feature map size,
and Hn

α (i, j) and Hn
γ(i, j) are the elements in position (i, j) for the feature map n ∈ N related

to the original and reconstructed frames, respectively. Therefore, the training objective for
the localizer branch L is the following weighted loss function:

LL = wL
r MSEL

r + wL
e MSEL

e , (7)

where wL
r and wL

e , with wL
r > wL

e , are weighting parameters adjusting the impact of
individual losses on the overall loss function. Forcing these constraints, the L model
becomes capable of capturing spatial differences, i.e., anomalous elements, within the
latent set of feature maps of abnormal scenarios since the set H from anomalous videos
will differ from reconstructed ones. Following this strategy, when an anomaly scene is
given as input, abnormal regions are identified by producing a heat mapM using the
sets of low-dimensional feature maps obtained from the original and reconstructed frames.
This heat map highlights the most significant areas of videos to observe for noticing the
anomalies. It is computed by averaging and min–max normalizing the pixel-wise absolute
difference between the sets Hα and Hγ associated to the real and fake frames, as follows:

M =
1
N

N

∑
n=1

∣∣∣Hn
α − Hn

γ

∣∣∣, (8)

M =
M−min(M)

max(M)−min(M)
, (9)

where N is the total number of feature maps comprising the latent sets, while Hn
α and Hn

γ

are the n-th feature map for original and reconstructed images, respectively. Notice that
during tests, the localizer L generates the heat map M only if the detector D classifies
the frame as anomalous, considerably reducing the overall network computational cost.
An example of heat map generation for anomaly localization is shown in Figure 4.

(a) (b) (c)

Figure 4. Example of heat map generation in an abnormal frame during the test phase. In (a), the
frame depicting an abnormal item (i.e., the abandoned backpack); in (b) the heat mapM produced
by localizer model; in (c) the resulting localization.

Concluding, the two branches D and L are trained jointly to enhance both detection
and localization performances. Therefore, the objective of the proposed two-branch neural
network is to minimize the loss function defined as:

L = Ladv + LD + LL. (10)

4. Results

This section reports the results of the proposed two-branch GAN-based neural network
architecture on anomaly detection and localization tasks. Initially, it provides details about
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the UMCD dataset, a public collection of challenging RGB video sequences acquired
by UAVs at low altitudes and suitable for the proposed tasks. Afterward, it reports
implementation details as well as quantitative and qualitative results.

4.1. Dataset

The UMCD [42] is a benchmark dataset for mosaicking and change detection systems,
containing low-altitude RGB video streams ranging from 6 to 15 m, with speeds ranging
from 2 up to 12 m/s, at different daily times, i.e., morning and afternoon. Specifically, all
videos were acquired employing two different small-scale UAVs, a DJI Phantom 3 Ad-
vanced with a built-in camera each, and a custom home-made hexacopter having cameras
with different spatial resolutions, ranging from 720 × 540 to 1920 × 1080 pixels per frame.
Concerning the visual data, the UCMD dataset includes 50 aerial video sequences collected
in different environments, i.e., urban, dirt, and countryside (CS). Among these, only a
subset of 20 video sequences was devised for change detection and can be adapted to
anomaly-related tasks. Indeed, they consist of pairs of videos where each couple shows a
given path with and without specific elements, as shown in Figure 5, which can be targeted
as anomalous. Details are reported in Section 5.1. Finally, the remaining 30 videos were
excluded from the model training since they do not present anomalies for tests.

(a) (b) (c)

Figure 5. In (a–c), image samples for different paths in the UMCD dataset. In the top row, frames
associated to the normal scene. In the bottom row, the same frames depicting abnormal elements
highlighted in the red bounding box.

4.2. Implementation Details

The proposed two-branch neural network architecture was implemented using the
Pytorch framework, and, following the same experimental protocol, all experiments were
performed on a single GPU, i.e., one GeForce RTX 3080 with 16 GB of RAM. Specifically,
the network was trained on each environment separately using the corresponding 10 videos
without anomalies via a semi-supervised paradigm. The remaining sequences containing
anomalous elements were used to evaluate the model detection and localization capabil-
ities. Each input frame was resized to a dimension of 256× 256 to ensure an affordable
computational cost while preserving the visibility of small anomalies. Higher resolutions
do not provide better performance other than requiring more computational resources.
Regarding the training process, AdamW [73] was used as the optimizer with a learning rate
set to 0.0002, an ε parameter of 1 × 10−8, a weight decay set to 1 × 10−2, and a first β1 and
second β2 momentum initial decay rate of 0.5 and 0.999, respectively. Finally, the weight
parameters adjusting the loss functions for both detector D and localizer L components
were set to wD

r = wL
r = 0.8 and wD

e = wL
e = 0.2. The network was trained for 200 epochs

on each environment since the training loss L becomes steady for all backgrounds within
that number of epochs. For the proposed method evaluation, common metrics were used
for anomaly detection and localization. In particular, the anomaly detection being a binary
classification problem, the AUROC was used to evaluate the detection capability of anoma-
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lous elements. In detail, the area under the ROC curve indicates the ability of the detector
to distinguish between two classes, i.e., normal or abnormal. For the anomaly localization,
instead, the SSIM was used to measure the model capability to capture spatial differences
with anomaly-free scenarios, i.e., abnormal regions. Such an index is a perceptual metric
measuring the ability of the localizer to reconstruct normal scenes given as input.

4.3. Anomaly Detection Results

This subsection reports the obtained anomaly detection results for each kind of en-
vironment. To this end, measuring the AUROC metric, the true positive rate (TPR) is
the percentage of frames correctly detected as anomalous over the observed environment.
Instead, the false positive rate (FPR) is the percentage of frames wrongly detected as anoma-
lous over the same observed scene. Table 1 shows the detection performance obtained
using only the localizer L in an eventually single-branch setting, achieving an average
AUROC of 82.6%. Table 2, instead, reports results for each background with different
configurations in the proposed two-branch architectural design, achieving an increased
average AUROC of 97.2%. The Euclidean distance among latent vectors being associated
with repaired and anomalous images used as anomaly score, a threshold value is required
to perform the final normal or abnormal classification. Since the threshold depends on the
background, the optimal value for each environment is automatically learned as described
in Section 3.1 and reported in Table 3.

Table 1. Performance evaluation of localizer L obtained by changing its number of layers for the
detection task. Reported scores refer to the AUROC metric.

Path Seq. # 3-Layers 4-Layers 5-Layers

C
S Path #1 0.839 0.856 0.847

Path #2 0.831 0.825 0.827

D
ir

t

Path #1 0.871 0.875 0.879
Path #2 0.852 0.850 0.873
Path #3 0.788 0.765 0.770
Path #4 0.798 0.763 0.783

U
rb

an

Path #1 0.796 0.779 0.784
Path #2 0.870 0.876 0.880
Path #3 0.739 0.720 0.730
Path #4 0.873 0.870 0.860

Avg AUROC 0.826 0.818 0.823

Table 2. Performance evaluation of detector D obtained by changing its number of layers. Reported
scores refer to the AUROC metric.

Path Seq. # 3-Layers 4-Layers 5-Layers

C
S Path #1 0.979 0.976 0.959

Path #2 0.966 0.969 0.970

D
ir

t

Path #1 0.968 0.974 0.977
Path #2 0.980 0.976 0.973
Path #3 0.977 0.965 0.949
Path #4 0.952 0.968 0.957

U
rb

an

Path #1 0.973 0.984 0.952
Path #2 0.976 0.982 0.987
Path #3 0.936 0.945 0.938
Path #4 0.983 0.979 0.980

Avg AUROC 0.969 0.972 0.964
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Table 3. Listof automatically learned distance thresholds indicating the presence of anomalies for
each path sequence in the dataset.

Path Seq. # Threshold

C
S Path #1 0.079

Path #2 0.031

D
ir

t

Path #1 0.039
Path #2 0.125
Path #3 0.330
Path #4 0.362

U
rb

an
Path #1 0.332
Path #2 0.275
Path #3 0.219
Path #4 0.011

4.4. Anomaly Localization Results

Regarding anomaly localization, quantitative and qualitative results are reported, also
in this case, for each kind of environment. Table 4 summarizes the quantitative results
for different configurations and each background using the SSIM metric, achieving an
average of 95.7%. Concerning the qualitative results, the heat maps produced by the
localizer L are reported. In detail, examples ofM computed on a couple of anomalous
frames with and without the support of residual blocks are illustrated in Figure 6b,c,
respectively. Thus, examples of M computed with the support of residual blocks on
different anomalous frames in various environments are depicted in Figure 7. By observing
Figure 7b,e, the generated heat maps can highlight even multiple anomalous elements with
different shapes, colors, sizes, and positions.

Table 4. Performance evaluation of localizer L obtained by changing its number of layers. Reported
scores refer to the SSIM metric.

Path Seq. # 3-Layers 4-Layers 5-Layers

C
S Path #1 0.956 0.948 0.951

Path #2 0.947 0.950 0.946

D
ir

t

Path #1 0.955 0.960 0.959
Path #2 0.962 0.949 0.953
Path #3 0.960 0.968 0.963
Path #4 0.956 0.952 0.944

U
rb

an

Path #1 0.954 0.958 0.945
Path #2 0.946 0.937 0.931
Path #3 0.965 0.962 0.954
Path #4 0.968 0.974 0.970

Avg SSIM 0.957 0.956 0.952

(a) (b) (c)

Figure 6. In (a), image samples depicting abnormal conditions; in (b,c), the heat maps produced by
the localizer without and with residual blocks, respectively.
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(a) (b) (c) (d) (e) (f)

Figure 7. Examples ofM (b,e) and resulting localization (c,f) computed on images (a,d) with different
abnormal elements in multiple environments.

5. Discussion

This section initially motivates the choice of the UMCD dataset and the reported
implementation details. Finally, it provides an exhaustive discussion on anomaly detection
and localization results.

5.1. Dataset

The choice for using the UMCD dataset is related to its peculiarities, which make it
suitable for the presented and addressed anomaly-related tasks. The reason is threefold.
First, it is the only public dataset with low-altitude UAV-captured videos depicting the
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same scene with and without specific elements along a given path that can be considered
anomalies to detect. Such elements, varying in size, shape, color, and position, include tire,
gas bottle, person, car, small box, big box, metal suitcase, suitcase, and bag. Second, videos
are collected in three different environments comprising paths with diverse complexity,
including multiple elements appearing simultaneously. Therefore, the method’s robustness
can also be tested in challenging conditions, e.g., background clutter or multiple targets.
Third, it allows the simulation of a practical aerial video surveillance scenario because the
objects included in the scenes can represent a security risk. For example, small and big
boxes, suitcases, or bags contain dangerous objects, such as IEDs. At the same time, a car in
a place where it is not allowed could represent a possible threat containing a bomb.

5.2. Implementation Details

All tested GAN models were trained using the AdamW optimizer because in the
performed experiments it has shown a slight improvement in final results when compared
to the Adam [74] version. Probably, this is due to the better model generalization provided
by the former while also providing increased training speed. The two branches comprising
the proposed architectures are jointly optimized for the entire loss specified in Equation (10)
using an initial learning rate set to 0.0002 and the first momentum initial decay β1 set to 0.5,
leaving the suggested value for the second momentum instead, as in [75]. Concerning the
learning rate, the experiments effectively highlighted that the recommended 0.001 was too
high, resulting in the inability to reconstruct images. Moreover, changing β1 avoids training
oscillation and instability. Observe that all these settings are suggested for stabilizing the
GAN-based networks training phase [62]. Finally, the weighting parameters adjusting the
impact of individual losses on the overall loss function were set to wD

r = wL
r = 0.8 and

wD
e = wL

e = 0.2, empirically.

5.3. Performance Evaluation

Extensive experiments were performed to evaluate the various method components.
Specifically, this section discusses how the usage of two specialized branches, different num-
bers of convolutional layers, and the addition of residual blocks affect anomaly detection
and localization tasks.

5.3.1. Single-Branch Architecture

Even if trained simultaneously, models D and L perform specific jobs and can work
separately. However, only the localizer can inherently perform both detection and localiza-
tion tasks thanks to its architectural design, whereas due to missing localization capability,
the detector cannot be tested for a single-branch setting. Despite the acceptable performance
obtained using only the localizer for both tasks, the results increase by jointly training D
and L networks through the objective function L reported in Equation (10). The single-
branch detection performance decrease is probably due to the capability of model L, whose
structure is specialized for localization, in reconstructing abnormal elements in the scene,
breaking the model D effective detection strategy leveraging anomaly correction.

5.3.2. Anomaly Detection

Regarding the anomaly detection task, the detector branch follows the anomaly repair
strategy described in Section 3.1. In particular, once observing video frames depicting the
normal scene during the training, detector D tries to fix any anomaly that might appear
in the input frame. By repairing the latter during its reconstruction, in terms of Euclidean
distance, the latent vector of an anomalous scene will be far away from the one representing
the repaired image, which would be closer to the low-dimensional manifold of normal
frames. This distance acts as an anomaly score and can be used for detecting anomalies
in the input by employing a threshold value. The optimal threshold for each background
defining the presence of anomalous elements is automatically learned since it is dependent
on the environment, e.g., it is influenced by the ground complexity. An ablation study was
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performed for the detector model evaluation varying the number of convolutional layers.
Regarding the detection performance, significant results are achieved using only three
convolutional layers. However, a slight increase in detection capability can be observed
with four layers followed by a new decrease in adding a new layer, i.e., five layers in total.
The latter is probably due to the noise introduced by too many operations inside the model.
Therefore, extra layers were not tested. What is more, model D is robust across all the
backgrounds independently from the number of layers, probably due to the cooperation of
the two branches during the training, demonstrating the capability to detect any anomaly.

5.3.3. Anomaly Localization

Regarding the localization task, quantitative and qualitative evaluations were per-
formed through experiments focused on anomaly localization and heat map generation.
In order to reduce the overall network computational cost, during test time, the localizer
branch is executed only when the detector predicts the presence of an anomaly within the
processed video frame. Specifically, model L produces good quality heat maps containing
spatial information on the observed scene employed to highlight the most meaningful areas
of the video to monitor for noticing the anomalies, as described in Section 3.2. Concerning
the quantitative results, like for detector D, an ablation study to assess the proper num-
ber of convolutional layers was also performed for the localization via the SSIM metric.
In this case, a higher structural similarity index indicates the great localizer L capability to
reconstruct the original frame and localize anomalies inside the depicted scene. As can be
noticed, remarkable results are obtained with only three layers, while there is no significant
improvement or deterioration in increasing the number of convolutional layers to four or
five. Therefore, three layers can be the better option for anomaly localization, reducing
the number of operations performed inside the model while achieving good performance.
Similar to the detector, model L is robust across the environments, confirming that the local-
izer structure extracts a good quality latent set of feature maps that correctly characterize
the input allowing its reconstruction. As can be observed in Figure 6c, the presence of the
residual blocks improves the heat map quality that is more accurate and less noisy.

6. Conclusions

In this paper, a novel two-branch GAN-based method for RGB aerial video streams
acquired by UAVs at low altitude for surveillance purposes is presented. In particular,
we have shown that even in complex operational scenarios, it is possible to use an AD
paradigm to detect and localize both common elements (e.g., vehicles, persons) as well as
very small objects (e.g., gas bottles, boxes, suitcases) that can represent a reason for danger
or attention. Even if we have analyzed the current state of the art related to the databases
acquired by small-scale UAVs, we have observed that only the UMCD dataset has, all
together, the distinctive characteristics that make it suitable for our purposes. In fact, it is
the only dataset whose video sequences are acquired at very low altitudes (i.e., between 6
and 15 m), with different parameters (e.g., speed, height) on different types of ground
(i.e., urban, dirt, and countryside), having natural and artificial structures (e.g., trees,
buildings) as well as specific objects different in color, size, position, and shape. In addition,
the UMCD dataset is the only one in the literature that presents the same paths acquired
twice, with and without anomalous objects. The performed tests measured by using the
common metrics related to this application area have shown outstanding results in terms
of AUROC (97.2%) and SSIM (95.7%), showing the ability of the system in performing the
binary classification and the similarity task, respectively. We really hope that the proposed
work and the related dataset can become a comparative baseline for future applications in
this field.

Author Contributions: Conceptualization, D.A., M.C., A.F., G.L.F. and D.P.; methodology, D.A., M.C.,
L.C., G.L.F., M.M. and D.P.; formal analysis, L.C., G.L.F. and M.M.; investigation, I.C., M.C., L.C., A.D.,
A.F., G.L.F., R.L., M.M., A.M. and D.P.; software, I.C., M.C., A.D., A.F., R.L., A.M. and D.P.; validation,
I.C., M.C., L.C., A.D., A.F., G.L.F., R.L., M.M. and A.M.; data curation, I.C., M.C., A.D., A.F., R.L., A.M.



Remote Sens. 2022, 14, 4110 16 of 18

and D.P.; writing—original draft preparation, D.A., I.C., M.C., A.D., A.F., R.L., M.M., A.M. and D.P.;
writing—review and editing, D.A., I.C., M.C., A.D., A.F., R.L., M.M., A.M. and D.P.; supervision, L.C.
and G.L.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the MIUR under grant “Departments of Excellence 2018–
2022” of the Department of Computer Science of Sapienza University, the “Smart unmannEd AeRial
vehiCles for Human likE monitoRing (SEARCHER)” project of the Italian Ministry of Defence (CIG:
Z84333EA0D), and the ERC Starting Grant no. 802554 (SPECGEO).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, C.R.; Huang, W.Y.; Liao, Y.S.; Lee, C.C.; Yeh, Y.W. A Content-Adaptive Resizing Framework for Boosting Computation

Speed of Background Modeling Methods. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 1192–1204. [CrossRef]
2. Wang, H.; Lv, X.; Zhang, K.; Guo, B. Building Change Detection Based on 3D Co-Segmentation Using Satellite Stereo Imagery.

Remote Sens. 2022, 14, 628. [CrossRef]
3. Avola, D.; Bernardi, M.; Cinque, L.; Foresti, G.L.; Massaroni, C. Adaptive Bootstrapping Management by Keypoint Clustering for

Background Initialization. Pattern Recognit. Lett. 2017, 100, 110–116. [CrossRef]
4. Yang, L.; Cheng, H.; Su, J.; Li, X. Pixel-to-Model Distance for Robust Background Reconstruction. IEEE Trans. Circ. Syst. Video

Technol. 2016, 26, 903–916. [CrossRef]
5. Zhang, X.; Huang, T.; Tian, Y.; Gao, W. Background-Modeling-Based Adaptive Prediction for Surveillance Video Coding. IEEE

Trans. Image Process. 2014, 23, 769–784. [CrossRef]
6. Jing, W.; Zhu, S.; Kang, P.; Wang, J.; Cui, S.; Chen, G.; Song, H. Remote Sensing Change Detection Based on Unsupervised

Multi-Attention Slow Feature Analysis. Remote Sens. 2022, 14, 2834. [CrossRef]
7. Gong, H.; Mu, T.; Li, Q.; Dai, H.; Li, C.; He, Z.; Wang, W.; Han, F.; Tuniyazi, A.; Li, H.; et al. Swin-Transformer-Enabled YOLOv5

with Attention Mechanism for Small Object Detection on Satellite Images. Remote Sens. 2022, 14, 2861. [CrossRef]
8. Avola, D.; Foresti, G.L.; Cinque, L.; Massaroni, C.; Vitale, G.; Lombardi, L. A Multipurpose Autonomous Robot for Target

Recognition in Unknown Environments. In Proceedings of the 14th IEEE International Conference on Industrial Informatics
(INDIN), Poitiers, France, 19–21 July 2016; pp. 766–771.

9. Pan, X.; Tang, F.; Dong, W.; Gu, Y.; Song, Z.; Meng, Y.; Xu, P.; Deussen, O.; Xu, C. Self-Supervised Feature Augmentation for Large
Image Object Detection. IEEE Trans. Image Process. 2020, 29, 6745–6758. [CrossRef]

10. del Blanco, C.R.; Jaureguizar, F.; Garcia, N. An Efficient Multiple Object Detection and Tracking Framework for Automatic
Counting and Video Surveillance Applications. IEEE Trans. Consum. Electron. 2012, 58, 857–862. [CrossRef]

11. He, C.; Zhang, J.; Yao, J.; Zhuo, L.; Tian, Q. Meta-Learning Paradigm and CosAttn for Streamer Action Recognition in Live Video.
IEEE Signal Process. Lett. 2022, 29, 1097–1101. [CrossRef]

12. Liu, T.; Ma, Y.; Yang, W.; Ji, W.; Wang, R.; Jiang, P. Spatial-Temporal Interaction Learning Based Two-Stream Network for Action
Recognition. Inf. Sci. 2022, 606, 864–876. [CrossRef]

13. Meng, Q.; Zhu, H.; Zhang, W.; Piao, X.; Zhang, A. Action Recognition Using Form and Motion Modalities. ACM Trans. Multimed.
Comput. Commun. Appl. 2020, 16, 1–16. [CrossRef]

14. Avola, D.; Cinque, L.; Foresti, G.L.; Pannone, D. Automatic Deception Detection in RGB Videos Using Facial Action Units. In
Proceedings of the 13th International Conference on Distributed Smart Cameras (ICDSC), Trento, Italy, 9–11 September 2019;
pp. 1–6.

15. Zhao, Q.; Zhang, B.; Lyu, S.; Zhang, H.; Sun, D.; Li, G.; Feng, W. A CNN-SIFT Hybrid Pedestrian Navigation Method Based on
First-Person Vision. Remote Sens. 2018, 10, 1229. [CrossRef]

16. Maji, B.; Swain, M.; Mustaqeem. Advanced Fusion-Based Speech Emotion Recognition System Using a Dual-Attention Mechanism
with Conv-Caps and Bi-GRU Features. Electronics 2022, 11, 1328. [CrossRef]

17. Liao, Y.; Vakanski, A.; Xian, M. A Deep Learning Framework for Assessing Physical Rehabilitation Exercises. IEEE Trans. Neural
Syst. Rehabil. Eng. 2020, 28, 468–477. [CrossRef] [PubMed]

18. Vamsikrishna, K.M.; Dogra, D.P.; Desarkar, M.S. Computer-Vision-Assisted Palm Rehabilitation With Supervised Learning. IEEE
Trans. Biomed. Eng. 2016, 63, 991–1001. [CrossRef]

19. Petracca, A.; Carrieri, M.; Avola, D.; Basso Moro, S.; Brigadoi, S.; Lancia, S.; Spezialetti, M.; Ferrari, M.; Quaresima, V.; Placidi, G.
A Virtual Ball Task Driven by Forearm Movements for Neuro-Rehabilitation. In Proceedings of the International Conference on
Virtual Rehabilitation (ICVR), Valencia, Spain, 9–12 June 2015; pp. 162–163.

20. Du, D.; Han, X.; Fu, H.; Wu, F.; Yu, Y.; Cui, S.; Liu, L. SAniHead: Sketching Animal-Like 3D Character Heads Using a View-Surface
Collaborative Mesh Generative Network. IEEE Trans. Vis. Comput. Graph. 2022, 28, 2415–2429. [CrossRef] [PubMed]

21. Jackson, B.; Keefe, D.F. Lift-Off: Using Reference Imagery and Freehand Sketching to Create 3D Models in VR. IEEE Trans. Vis.
Comput. Graph. 2016, 22, 1442–1451. [CrossRef] [PubMed]

22. Avola, D.; Caschera, M.C.; Ferri, F.; Grifoni, P. Ambiguities in Sketch-Based Interfaces. In Proceedings of the 40th Annual Hawaii
International Conference on System Sciences (HICSS), Waikoloa, HI, USA, 3–6 January 2007; p. 290b.

http://doi.org/10.1109/TSMC.2020.3018872
http://dx.doi.org/10.3390/rs14030628
http://dx.doi.org/10.1016/j.patrec.2017.10.029
http://dx.doi.org/10.1109/TCSVT.2015.2424052
http://dx.doi.org/10.1109/TIP.2013.2294549
http://dx.doi.org/10.3390/rs14122834
http://dx.doi.org/10.3390/rs14122861
http://dx.doi.org/10.1109/TIP.2020.2993403
http://dx.doi.org/10.1109/TCE.2012.6311328
http://dx.doi.org/10.1109/LSP.2022.3168195
http://dx.doi.org/10.1016/j.ins.2022.05.092
http://dx.doi.org/10.1145/3350840
http://dx.doi.org/10.3390/rs10081229
http://dx.doi.org/10.3390/electronics11091328
http://dx.doi.org/10.1109/TNSRE.2020.2966249
http://www.ncbi.nlm.nih.gov/pubmed/31940544
http://dx.doi.org/10.1109/TBME.2015.2480881
http://dx.doi.org/10.1109/TVCG.2020.3030330
http://www.ncbi.nlm.nih.gov/pubmed/33048679
http://dx.doi.org/10.1109/TVCG.2016.2518099
http://www.ncbi.nlm.nih.gov/pubmed/26780801


Remote Sens. 2022, 14, 4110 17 of 18

23. Messina, G.; Modica, G. Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research
Outlook. Remote Sens. 2020, 12, 1491. [CrossRef]

24. AdÃ£o, T.; HruÅ¡ka, J.; PÃ¡dua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based
Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [CrossRef]

25. Marusic, Z.; Zelenika, D.; Marusic, T.; Gotovac, S. Visual Search on Aerial Imagery as Support for Finding Lost Persons. In
Proceedings of the 8th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2019;
pp. 1–4.

26. Scherer, J.; Yahyanejad, S.; Hayat, S.; Yanmaz, E.; Andre, T.; Khan, A.; Vukadinovic, V.; Bettstetter, C.; Hellwagner, H.; Rinner, B.
An Autonomous Multi-UAV System for Search and Rescue. In Proceedings of the Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications for Civilian Use (DroNet), Florence, Italy, 18 May 2015; pp. 33–38.

27. Ul Ain Tahir, H.; Waqar, A.; Khalid, S.; Usman, S.M. Wildfire Detection in Aerial Images Using Deep Learning. In Proceedings of
the 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2), Rawalpindi, Pakistan, 24–26 May
2022; pp. 1–7.

28. Jiao, Z.; Zhang, Y.; Mu, L.; Xin, J.; Jiao, S.; Liu, H.; Liu, D. A YOLOv3-based Learning Strategy for Real-time UAV-based Forest
Fire Detection. In Proceedings of the Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020;
pp. 4963–4967.

29. Xiao, J.; Zhang, S.; Dai, Y.; Jiang, Z.; Yi, B.; Xu, C. Multiclass Object Detection in UAV Images Based on Rotation Region Network.
IEEE J. Miniat. Air Space Syst. 2020, 1, 188–196. [CrossRef]

30. Zhang, R.; Shao, Z.; Huang, X.; Wang, J.; Li, D. Object Detection in UAV Images via Global Density Fused Convolutional Network.
Remote Sens. 2020, 12, 3140. [CrossRef]

31. Wang, S.; Han, Y.; Chen, J.; Zhang, Z.; Wang, G.; Du, N. A Deep-Learning-Based Sea Search and Rescue Algorithm by UAV
Remote Sensing. In Proceedings of the IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China,
10–12 August 2018; pp. 1–5.

32. Avola, D.; Cinque, L.; Di Mambro, A.; Diko, A.; Fagioli, A.; Foresti, G.L.; Marini, M.R.; Mecca, A.; Pannone, D. Low-Altitude
Aerial Video Surveillance via One-Class SVM Anomaly Detection from Textural Features in UAV Images. Information 2022,
13, 2. [CrossRef]

33. Avola, D.; Pannone, D. MAGI: Multistream Aerial Segmentation of Ground Images with Small-Scale Drones. Drones 2021,
5, 111. [CrossRef]

34. Avola, D.; Cinque, L.; Fagioli, A.; Foresti, G.L.; Pannone, D.; Piciarelli, C. Automatic Estimation of Optimal UAV Flight Parameters
for Real-Time Wide Areas Monitoring. Multimed. Tools Appl. 2021, 80, 25009–25031. [CrossRef]

35. Avola, D.; Cinque, L.; Diko, A.; Fagioli, A.; Foresti, G.L.; Mecca, A.; Pannone, D.; Piciarelli, C. MS-Faster R-CNN: Multi-
Stream Backbone for Improved Faster R-CNN Object Detection and Aerial Tracking from UAV Images. Remote Sens. 2021,
13, 1670. [CrossRef]

36. Avola, D.; Foresti, G.L.; Martinel, N.; Micheloni, C.; Pannone, D.; Piciarelli, C. Real-Time Incremental and Geo-Referenced
Mosaicking by Small-Scale UAVs. In Proceedings of the International Conference on Image Analysis and Processing (ICIAP),
Catania, Italy, 11–15 September 2017; pp. 694–705.

37. Avola, D.; Cinque, L.; Fagioli, A.; Foresti, G.L.; Massaroni, C.; Pannone, D. Feature-Based SLAM Algorithm for Small Scale
UAV with Nadir View. In Proceedings of the International Conference on Image Analysis and Processing (ICIAP), Trento, Italy,
9–13 September 2019; pp. 457–467.

38. Diez, Y.; Kentsch, S.; Fukuda, M.; Caceres, M.L.L.; Moritake, K.; Cabezas, M. Deep Learning in Forestry Using UAV-Acquired
RGB Data: A Practical Review. Remote Sens. 2021, 13, 2837. [CrossRef]

39. Bozcan , I.; Kayacan, E. UAV-AdNet: Unsupervised Anomaly Detection using Deep Neural Networks for Aerial Surveillance. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October
2020–24 January 2021; pp. 1158–1164.

40. Chriki, A.; Touati, H.; Snoussi, H.; Kamoun, F. UAV-based Surveillance System: An Anomaly Detection Approach. In Proceedings
of the IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–6.

41. Martin, R.A.; Blackburn, L.; Pulsipher, J.; Franke, K.; Hedengren, J.D. Potential Benefits of Combining Anomaly Detection with
View Planning for UAV Infrastructure Modeling. Remote Sens. 2017, 9, 434. [CrossRef]

42. Avola, D.; Cinque, L.; Foresti, G.L.; Martinel, N.; Pannone, D.; Piciarelli, C. A UAV Video Dataset for Mosaicking and Change
Detection From Low-Altitude Flights. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 2139–2149. [CrossRef]

43. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58. [CrossRef]
44. Ramachandra, B.; Jones, M.J.; Vatsavai, R.R. A Survey of Single-Scene Video Anomaly Detection. IEEE Trans. Pattern Anal. Mach.

Intell. 2022, 44, 2293–2312. [CrossRef] [PubMed]
45. Nayak, R.; Pati, U.C.; Das, S.K. A Comprehensive Review on Deep Learning-Based Methods for Video Anomaly Detection. Image

Vis. Comput. 2021, 106, 1–19. [CrossRef]
46. Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. 2021, 54,

1–38. [CrossRef]
47. Hamdi, S.; Bouindour, S.; Snoussi, H.; Wang, T.; Abid, M. End-to-End Deep One-Class Learning for Anomaly Detection in UAV

Video Stream. J. Imaging 2021, 7, 90. [CrossRef]

http://dx.doi.org/10.3390/rs12091491
http://dx.doi.org/10.3390/rs9111110
http://dx.doi.org/10.1109/JMASS.2020.3025970
http://dx.doi.org/10.3390/rs12193140
http://dx.doi.org/10.3390/info13010002
http://dx.doi.org/10.3390/drones5040111
http://dx.doi.org/10.1007/s11042-021-10859-3
http://dx.doi.org/10.3390/rs13091670
http://dx.doi.org/10.3390/rs13142837
http://dx.doi.org/10.3390/rs9050434
http://dx.doi.org/10.1109/TSMC.2018.2804766
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1109/TPAMI.2020.3040591
http://www.ncbi.nlm.nih.gov/pubmed/33237854
http://dx.doi.org/10.1016/j.imavis.2020.104078
http://dx.doi.org/10.1145/3439950
http://dx.doi.org/10.3390/jimaging7050090


Remote Sens. 2022, 14, 4110 18 of 18

48. Chan, A.; Vasconcelos, N. UCSD Pedestrian Dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 909–926. [CrossRef]
49. Bonetto, M.; Korshunov, P.; Ramponi, G.; Ebrahimi, T. Privacy in Mini-Drone Based Video Surveillance. In Proceedings of

the 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia,
4–8 May 2015; pp. 1–6.

50. Chriki, A.; Touati, H.; Snoussi, H.; Kamoun, F. Deep Learning and Handcrafted Features for One-Class Anomaly Detection in
UAV Video. Multimed. Tools Appl. 2021, 80, 2599–2620. [CrossRef]

51. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 1–9.

52. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 886–893.

53. Pearson, K. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901,
2, 559–572. [CrossRef]

54. Klaser, A.; Marszałek, M.; Schmid, C. A Spatio-Temporal Descriptor Based on 3D-Gradients. In Proceedings of the 19th British
Machine Vision Conference (BMVC), Leeds, UK, 1–4 September 2008 ; pp. 1–10.

55. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the 5th Annual
Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152.

56. Jin, P.; Mou, L.; Xia, G.S.; Zhu, X.X. Anomaly Detection in Aerial Videos Via Future Frame Prediction Networks. In Proceedings of
the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 8237–8240.

57. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June
2018; pp. 4510–4520.

58. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973,
SMC-3, 610–621. [CrossRef]

59. Haralick, R.M. Statistical and Structural Approaches to Texture. Proc. IEEE 1979, 67, 786–804. [CrossRef]
60. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. In Proceedings of the International Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada,
8–11 December 2014; pp. 2672–2680.

61. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:abs/1411.1784.
62. Radford , A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial

Networks. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May
2016; pp. 1–20.

63. Avola, D.; Cascio, M.; Cinque, L.; Fagioli, A.; Foresti, G.L. Human Silhouette and Skeleton Video Synthesis Through Wi-Fi Signals.
Int. J. Neural Syst. 2022, 32, 1–20. [CrossRef] [PubMed]

64. Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. Ganomaly: Semi-Supervised Anomaly Detection via Adversarial Training. In
Proceedings of the Asian Conference on Computer Vision (ACCV), Perth, Australia, 2–6 December 2018; pp. 622–637.

65. Chen, D.; Yue, L.; Chang, X.; Xu, M.; Jia, T. NM-GAN: Noise-Modulated Generative Adversarial Network for Video Anomaly
Detection. Pattern Recognit. 2021, 116, 107969. [CrossRef]

66. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Pro-
ceedings of the International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015; pp. 448–456.

67. Maas, A.; Hannun, A.; Ng, A. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In Proceedings of the
International Conference on Machine Learning (ICML), Atlanta, GA, USA, 16–21 June 2013; pp. 1–6.

68. Youden, W.J. Index for Rating Diagnostic Tests. Cancer 1950, 3, 32–35. [CrossRef]
69. Carrara, F.; Amato, G.; Brombin, L.; Falchi, F.; Gennaro, C. Combining GANs and AutoEncoders for Efficient Anomaly Detection.

In Proceedings of the International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 3939–3946.
70. Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Langs, G.; Schmidt-Erfurth, U. f-AnoGAN: Fast Unsupervised Anomaly Detection with

Generative Adversarial Networks. Med. Image Anal. 2019, 54, 30–44. [CrossRef]
71. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
72. Dong, L.F.; Gan, Y.Z.; Mao, X.L.; Yang, Y.B.; Shen, C. Learning Deep Representations Using Convolutional Auto-Encoders with

Symmetric Skip Connections. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 3006–3010.

73. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the International Conference on Learning
Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019; pp. 1–19.

74. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

75. Avola, D.; Cascio, M.; Cinque, L.; Fagioli, A.; Foresti, G.L.; Marini, M.R.; Rossi, F. Real-time deep learning method for automated
detection and localization of structural defects in manufactured products. Comput. Ind. Eng. 2022, 172, 108512. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2007.70738
http://dx.doi.org/10.1007/s11042-020-09774-w
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1142/S0129065722500150
http://www.ncbi.nlm.nih.gov/pubmed/35209810
http://dx.doi.org/10.1016/j.patcog.2021.107969
http://dx.doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
http://dx.doi.org/10.1016/j.media.2019.01.010
http://dx.doi.org/10.1016/j.cie.2022.108512

	Introduction
	Related Work
	Methodology
	Anomaly Detection
	Anomaly Localization

	Results
	Dataset
	Implementation Details
	Anomaly Detection Results
	Anomaly Localization Results

	Discussion
	Dataset
	Implementation Details
	Performance Evaluation
	Single-Branch Architecture
	Anomaly Detection
	Anomaly Localization


	Conclusions
	References

