

POINT CLOUDS FOR TERRAIN MONITORING IN VEGETATED AREAS

Eleonora Maset, PhD

eleonora.maset@uniud.it

Topography, Remote Sensing and Mobile Mapping Systems Laboratory University of Udine

> 6th World Landslide Forum Florence — Italy 16 November 2023

INTRODUCTION

- The Interconnected Nord-Est Innovation Ecosystem (iNEST) project aims to extend the advantages of digitalization to the main specialization areas of Northeast Italy.
- Research focused on improving the resilience of mountain areas to the risks of climate change and geo-hydrological hazards.
- Activities employ current and legacy cartographic data to monitor the evolution of torrents and sediment-related phenomena at a regional scale, and high-resolution topographic surveys to locally assess the interaction between sediment dynamics and channel control works.
- The goal is to define best practices for remote sensing surveys, also applicable by practitioners and local authorities.

INTERCONNECTED NORD-EST

REMOTE SENSING TECHNIQUES: UAV PHOTOGRAMMETRY AND LASER SCANNING

REMOTE SENSING TECHNIQUES

- Platforms and data sources are proliferating at an unprecedent speed.
- Unmanned aerial vehicles (UAVs) are the dominant platform among low-altitude airships, allowing extensive, high-detailed and repeated surveys.
- UAVs are mainly equipped with low-cost and easyaccess cameras to acquire images, processed via Structure from Motion (SfM) to obtain 3D point clouds.
- Photogrammetry cannot see beneath the vegetation that often covers the area of interest.

Liang et al. (2022). Close-range remote sensing of forests, IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 10.1109/mgrs.2022.3168135

LASER SCANNING

- Laser scanning (or LiDAR Light Detection and Ranging) offers a suitable solution to model the bare terrain surface.
- Active system that emits infrared signals able to penetrate through gaps in the forest canopy, measuring points on the ground.
- LiDAR sensors increasingly used as UAV payload (ULS UAV-borne Laser Scanning).
- Need for understanding accuracy and precision provided by ULS and its ability to effectively penetrate vegetation and provide high detailed Digital Terrain Models (DTMs).

LITERATURE REVIEW

- Most of the articles are related to forest inventory: ULS point clouds are mainly employed for crown structure metrics assessment.
- The canopy penetration ability is strongly affected by scanner settings and flight properties:
 - pulse repetition rate
 - number of returns recorded
 - scan angle (field of view)
 - number of flight directions
 - leaf-on/leaf-off conditions
- Dense vegetation can negatively influence the accuracy of the DTM.
- Occlusions at the bottom of the canopy cannot be easily overcome with ULS.

Brede et al. (2022). Peering through the thicket: effects of UAV LiDAR scanner settings and flight planning on canopy volume discovery. International Journal of Applied Earth Observation and Geoinformation, 10.1016/j.jag.2022.103056

CASE STUDIES: ULS FOR 3D TERRAIN MAPPING

ULS SYSTEM AND DATA COLLECTION

DJI Matrice 300 RTK

- Weight: 6.3 kg
- Max payload: 2.7 kg
- Flight time: 55 minutes

DJI Zenmuse L1

- System accuracy: 5 10 cm @ 50 m
- Ranging accuracy: 3 cm @ 100 m
- Number of returns: up to 3
- Point rate: 480,000 pts/s
- Real-time point cloud coloring

DATASET 1 — THE VEGLIATO TORRENT

Area of 80,000 m², river banks and fluvial terraces, medium to high vegetation on the sides.

- Number of points: 125,038,120
- Post-processing time: ~ 4.5 hours
- Flight altitude: 80 m agl
- GSD: 1.8 cm/pixel

250 m

DATASET 1 — THE VEGLIATO TORRENT

Point clouds automatically filtered to extract ground points.

Bare ground completely covered.

 Occlusions caused by vegetation did not allow to reach the bare ground in some areas.

DATASET 1 — THE VEGLIATO TORRENT

- ULS was able to reconstruct both the upper part of the tree crowns and the bare ground
- 0 m

 No ground points measured under the canopy by photogrammetry

DATASET 2 — THE MOSCARDO TORRENT

Area of 7,500 m², river banks covered by brushes and low vegetation.

- Number of points: 2,201,544
- Flight altitude: 120 m agl

- Number of points: 49,732,683
- Flight altitude: 35 m agl
- GSD: 0.9 cm/pixel

DATASET 2 — THE MOSCARDO TORRENT

 ULS detected few points on the ground beneath the low vegetation

 Higher point density and level of detail in the photogrammetric cloud

DATASET 3 — THE LAGOON IN LIO MAGGIORE

4.5 km of river banks covered by low vegetation.

- 202 points measured with highprecision GNSS receiver
- Mean error on the DTM: +0.179 m (+/- 0.157 m)

DATASET 3 — THE LAGOON IN LIO MAGGIORE

 Ground accurately mapped below the trees

 Brushes and dense riparian vegetation prevents the laser pulse from reaching the bare ground

CONCLUSIONS

- This work is part of an ongoing research that aims at defining best practices for terrain monitoring in vegetated areas.
- Although laser scanning guarantees higher canopy penetrability than photogrammetry, several limits still exist in the presence of low vegetation.
- Results are affected by flight parameters: best practices must be established to guide the choice of sensor and flight settings.
- Data fusion and the integration of terrestrial topographic techniques could be useful to obtain a complete and accurate DTM.

THANK YOU FOR THE ATTENTION!

Thanks to globaRT – Geomatica & Topografia for providing dataset 3.

This study was carried out within the Interconnected Nord-Est Innovation Ecosystem (iNEST) and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.5 – D.D. 1058 23/06/2022, ECS00000043). This work reflects only the author's views and opinions, neither the European Union nor the European Commission can be considered responsible for them.

Ministero dell'Università e della Ricerca

Interconnected Nord-Est Innovatior Ecosystem