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Abstract

Threshold autoregressive moving-average (TARMA) models are popular in time series analysis due to
their ability to parsimoniously describe several complex dynamical features. However, neither theory nor
estimation methods are currently available when the data present heavy tails or anomalous observations,
which is often the case in applications. In this paper, we provide the first theoretical framework for
robust M-estimation for TARMA models and also study its practical relevance. Under mild conditions,
we show that the robust estimator for the threshold parameter is super-consistent, while the estimators
for autoregressive and moving-average parameters are strongly consistent and asymptotically normal.
The Monte Carlo study shows that the M-estimator is superior, in terms of both bias and variance,
to the least squares estimator, which can be heavily affected by outliers. The findings suggest that
robust M-estimation should be generally preferred to the least squares method. Finally, we apply our
methodology to a set of commodity price time series; the robust TARMA fit presents smaller standard
errors and leads to superior forecasting accuracy compared to the least squares fit. The results support
the hypothesis of a two-regime, asymmetric nonlinearity around zero, characterised by slow expansions
and fast contractions.

Keywords: Threshold Autoregressive Moving-Average models; Non-linear time series; Robust estimation;
Outliers; Commodity prices

1 Introduction

Threshold models are popular tools used to describe complex phenomena in many fields, including economics,
finance, ecology, epidemiology (Tong, 1990; Chan, 2009; Giordani et al., 2007; Tong, 2011; Hansen, 2011;
Chan et al., 2017). Non-linearity is introduced by a thresholding mechanism which implies multiple linear
regimes; this enables the description of complex non-linear dynamical features, such as jumps, limit cycles,
time irreversibility, while retaining good interpretability. Since their introduction by Tong (1978), thresh-
old models have been widely studied, especially in their autoregressive specification, the so-called threshold
autoregressive (TAR) models. In analogy with autoregressive moving-average (MA) models, threshold au-
toregressive moving-average (TARMA) models extend TAR models by including moving-average components
in each regime (Tong, 2015).

Although technically more challenging than TAR models due to their non-Markovian nature, TARMA
models provide a powerful yet simple framework for many research problems involving non-linear phenom-
ena; e.g., see Tong (2015), Goracci (2020) and Goracci (2021). Nonetheless, their theoretical development
has halted for many years and only recently Chan and Goracci (2019) solved the long-standing open problem
regarding the probabilistic structure of the first order TARMA model. TARMA models possess a number of
desirable features, including the following: they include moving-average (MA) components within a paramet-
ric non-linear setting; they naturally account for measurement errors; they are able to describe a wide range
of long-run probabilistic behaviors spanning from transience to ergodicity, and even geometric ergodicity.
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Also, the threshold framework provides a natural way to describe series that appear to behave like random
walks, when this behavior is incompatible with the theory underlying the data generating process. One ex-
ample in economics is the well-known purchasing power parity puzzle, which has motivated the development
of unit-root tests where the alternative hypothesis is a stationary threshold model with a local unit-root
regime (Enders and Granger, 1998; Bec et al., 2004; Kapetanios and Shin, 2006; Bec et al., 2008; Chan et al.,
2020). Tests for TARMA nonlinearity have been developed in Li and Li (2011) and Goracci et al. (2023).
Angelini et al. (2022) extend the results in Goracci et al. (2023) and develop a test for non-linear effects in
the conditional mean for series with conditional heteroscedasticity by incorporating a GARCH specification.

Compared to the simpler TAR models, estimation for the TARMA models is challenging due to the lack
of a linear parameterization conditional on the threshold parameter. Current inference methods mostly rely
on the least squares (LS) approach (Li et al., 2011), which is knowingly influenced by outliers and heavy
tails. Although aberrant observations are ubiquitous and appear in many real applications (e.g. see Giordani
et al., 2007), the issue of robust estimation and outlier detection for TARMA models has yet to be addressed
from either theoretical or methodological viewpoints. On the other hand, robust estimation for the linear
ARMA model has been extensively studied (see Maronna et al., 2019, Chapter 8, for an overview). For the
special case of the TAR model, Chan and Cheung (1994) study the effect of additive outliers in LS estimation
and propose a generalized M-estimation to mitigate the severe bias of the estimates. Zhang et al. (2009)
consider a general class of robust estimators for threshold autoregressive models and show consistency under
regularity conditions. Grossi and Nan (2015) compare the relative efficiency of M-estimators for the TAR
models to that of the LS estimator, showing that the former perform well when the error follows heavy tailed
or non-Gaussian distributions. van Dijk (1999) derive a robust estimation method for the parameters in
smooth threshold TAR models, using generalized maximum likelihood estimation.

Motivated by such a gap in the literature, we consider robust inference for the TARMA model using an
M-estimation approach. Our approach consists in replacing the residual sum of squares criterion of Li et al.
(2011) by a function with bounded derivative. This is a crucial feature which is necessary to gain stability of
the estimates in the presence of different types of outliers. The resulting estimator for the autoregressive and
moving-average parameters is shown to be strongly consistent and asymptotically normal, under standard
regularity conditions. To the best of our knowledge, we provide the first results for robust estimation in
parametric non-linear time series models with moving-average components.

Similarly to the least squares estimator, the threshold parameter is found to be super-consistent with
convergence rate of n−1, while the autoregressive and moving-average parameters are root-n consistent and
asymptotically normal. The methodology is implemented using the special family of objective functions
considered in Ferrari and La Vecchia (2012) and La Vecchia et al. (2015), which include the LS estimator
as a special case. While common contamination types are shown to increase, sometimes dramatically, bias
and variance of the least squares estimator, our estimator mitigates the effect of observations that are
incompatible with the assumed model, thus reducing the overall mean squared error.

We showcase the performance of our new methodology by analyzing a set of commodity price time series.
Commodities are important in economics and finance due to their ability to anticipate the behavior of other
macroeconomic variables; e.g., see Hamilton (2011) and Ravazzolo and Rothman (2013). The predictive
relationship between commodities and a number of macroeconomic variables is often non-linear, with asym-
metric behavior depending on whether prices increase or decrease, e.g. see Kilian and Vigfusson (2011) and
Kilian and Vigfusson (2013). Although TARMA models appear suitable for such data, heavy tails, outliers
and non-Gaussian innovations make the least squares estimate untrustworthy. The robust TARMA estimates
generally provide a better fit with smaller standard errors compared to non-robust estimates. Our robust
TARMA specification confirms the existence of two dynamical regimes, separated by the threshold invari-
ably located at zero, and corresponding to a slow, persistent growth (upper regime) and fast contractions
(lower regime). The superior predictive performance of the robust TARMA approach can result in a key
advancement in modelling the commodity market.

The remainder of the paper is organized as follows. In Section 2, we describe the general M-estimation
approach. In Section 3, we study the asymptotic behavior and robustness properties of the new estimator.
In Section 4, we study the finite-sample behavior of the new estimator and compare its robustness to the
standard LS approach under common contamination models. In Section 5, we apply the new method
for robust estimation and outlier detection for several commodity price series. Conclusions and possible
extensions of this work are presented in Section 6. Further results from the analysis of commodity time
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series and technical proofs are reported in the Supplementary Material.

2 Methodology

2.1 Model setup and notation

Let {Xt}t∈Z be the TARMA process defined by the difference equation

Xt =

{
ϕ1,0 +

∑p
i=1 ϕ1,iXt−i + εt +

∑q
j=1 θ1,jεt−j , if Xt−d ≤ r,

ϕ2,0 +
∑p

i=1 ϕ2,iXt−i + εt +
∑q

j=1 θ2,jεt−j , if Xt−d > r,
(1)

where: p ∈ N and q ∈ N are, respectively, the autoregressive and moving-average orders; the ϕ’s and θ’s
are the autoregressive and moving-average parameters, respectively; 1 ≤ d ≤ D0, where D0 ∈ D ⊂ N is the
delay parameter; r ∈ R ⊆ R is the threshold parameter; and {εt} is the innovation process, with E(εt) = 0
and E(ε2t ) = σ2 < ∞, which is usually assumed to be Gaussian white noise. Note that the TARMA model
reduces to a linear ARMA as |r| → ∞.

Equation (1) defines two regimes, which will be referred to as lower and upper regimes corresponding to
Xr−d ≤ r and Xr−d > r, respectively. For each regime we have specific parameter vectors defined as ϕ1 =
(ϕ1,0, . . . , ϕ1,p)

⊺, θ1 = (θ1,1, . . . , θ1,q)
⊺, ϕ2 = (ϕ2,0, . . . , ϕ2,p)

⊺, θ2 = (θ2,1, . . . , θ2,q)
⊺, while ϕ = (ϕ⊺

1 ,ϕ
⊺
2)

⊺

and θ = (θ⊺
1 ,θ

⊺
2)

⊺ are used to denote autoregressive and moving-average parameters. The vector collecting
all autoregressive and moving-average parameters is denoted by λ = (ϕ⊺

1 ,ϕ
⊺
2 ,θ

⊺
1 ,θ

⊺
2)

⊺ ∈ Q ⊆ R2(1+p+q),
while the overall parameter vector including also the threshold parameter is denoted by η = (λ⊺, r, d) ∈
Q×R×D := H. We assume the parameter space H to be compact and equipped with product metric. For
simplicity of exposition, in this work we focus on TARMA models with a full model structure containing
all lags up to order p and q for both regimes. However, our methodology can be applied without loss of
generality to more complex order structures, including missing lags and specific orders for the upper and
lower regimes.

In many real-world applications, the process Xt does not follow exactly the model specified in Equa-
tion (1). Although the majority of the observations may be compatible with such model assumptions, real
data may diverge substantially from the assumed process due to the presence of heavy-tailed or asymmetric
errors and aberrant observations. There are several models that may be used to represent the contamination
process in the time series context. One common model is the additive outlier (AO) model, which defines the
contaminated process Xϵ

t according to Xϵ
t = Xt + Zϵ

tWt, where Xt is the TARMA process defined in (1);
Wt is the contaminating process, independent of Xt; and Z

ϵ
t is a binary process where P (Zϵ

t = 1) = ϵ such
that ϵ is the contamination level. Another common model is the replacement outlier (RO) model, where
Xϵ

t = (1− Zϵ
t )Xt + Zϵ

tWt, with Wt, Xt and Z
ϵ
t defined above. Finally, in the innovation outlier (IO) model

the outliers affect not only the current observation, but also subsequent observations. IOs are obtained when
the innovation εt follows a process different from the assumed nominal model. For example, εt is assumed
to follow a Gaussian white noise process while the actual innovation process has the normal mixture distri-
bution (1− ϵ)N(0, σ2

0) + ϵN(0, σ2
1), with σ

2
0 ≪ σ2

1 . Outliers may also differ in their temporal structure. For
example, patchy outliers arise from the AO and RO models by letting Zt be a Markov process remaining in
one state for multiple time periods of fixed or random duration.

2.2 Robust estimation

For the time series {X1, . . . , Xn}, define the residual function εt(η) = Xt −Eη[Xt|Ft−1], t = 1, . . . , n, where
Ft is the sigma algebra generated by {Xt, Xt−1, . . . }. Eη[Xt|Ft−1] denotes the expectation of Xt conditional
on the process history up to time t − 1 and is computed with respect to the TARMA model described (1)
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with parameter η. From (1), we have

εt(η) = Xt −

ϕ1,0 +
p∑

i=1

ϕ1,iXt−i +

q∑
j=1

θ1,jεt−j(η)

 I(Xt−d ≤ r)

−

ϕ2,0 +
p∑

i=1

ϕ2,iXt−i +

q∑
j=1

θ2,jεt−j(η)

 I(Xt−d > r). (2)

An M-estimate η̂n of the parameter vector η is found by minimizing the objective function

ρn(η) =

n∑
t=1

ρ

(
εt(η)

σ̂

)
, (3)

where ρ : R 7→ R is a loss function often referred to as ρ-function in the literature of robust statistics, and
σ̂ is a robust estimate of scale which is obtained simultaneously with η as an M -scale estimate. To obtain
robustness of η̂n, we require the following standard conditions on ρ: (i) ρ(z) is non-decreasing function of |z|;
(ii) ρ(0) = 0; (iii) ρ(z) is increasing for z > 0 such that ρ(z) < ρ(∞); and (iv) the derivative ψ(z) = ∂ρ(z)/∂z
satisfies |ψ(z)| < c for some finite constant c > 0 and all z ∈ R. There is a number of functions satisfying
the above requirements.

Here we study the ρ function considered in Ferrari and La Vecchia (2012) by taking ρ(z) = −(f(z)α−1)/α
for α > 0, and ρ(z) = − log(f(z)) for α = 0, where f is the assumed probability density function for the
innovations. For the special case of Gaussian innovations, the objective function can be written as

ρn(η) = − 1

α

n∑
t=1

[(
2πσ̂2

)−α/2
exp

{
−αε

2
t (η)

2σ̂2

}
− 1

]
, (4)

for α > 0. The limit case α→ 0 corresponds to the maximum likelihood objective with

ρn(η) = −n
2
log(2π)− n

2
log(σ̂2) +

n∑
t=1

ε2t (η)

2σ̂2
. (5)

When σ2 is taken as known, minimizing (5) is equivalent to minimizing the residual sum of squares
∑n

t=1 ε
2
t (η).

In this respect, the function of Equation (4) represents a robust generalization of the well-established LS
estimator for the TARMA model of Li et al. (2011). The tuning parameter α controls the trade-off be-
tween efficiency and robustness of the underlying estimator; this makes this example particularly useful
for analyzing the properties of the estimator for various degrees of robustness. For α > 0, the derivative
ψ(z) = ∂ρ(z)/∂z = fα(z)∂ log f(z)/∂z is bounded for common family of density functions and ψ(z) → 0 as
|z| → ∞, and corresponds to a re-descending M-estimator. On the other hand, for the limit case α → 0,
we have ρ(z) → log(f(z)) and ψ(z) = ∂ log f(z)/∂z. This case corresponds to the maximum likelihood
estimator and the derivative ψ(z) is typically unbounded, which leads to estimators that are sensitive to the
presence of outliers.

One practical hurdle in the derivation of η̂n is the discontinuity of ρn(η) in r. To cope with this issue,
the minimization is carried out in two steps. First, given r and d, we take the profile estimator of λ

λ̂n(r, d) = argmin
λ∈Q

ρn(λ, r, d), (6)

and define ρ∗n(r) = ρn(λ̂n(r), r, d). Second, since ρ∗n(r, d) can only take a finite number of values, it can be

minimized by searching over some grid R̃ × D, i.e.,

(r̂n, d̂n) = argmin
(r,d)∈R̃×D

ρ∗n(r, d),

where R̃ may be data-dependent. The final estimator is obtained by the plug-in method as

η̂n = (λ̂
⊺
n(r̂n, d̂n), r̂n, d̂n)

⊺ := (λ̂
⊺
n, r̂n, d̂n)

⊺.
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Solving the minimization problem in (6) is equivalent to finding the zeros of the weighted least squares
estimating equations

∂

∂λ
ρn(η) =

n∑
t=1

w(εt(η))
∂ε2t (η)

∂λ
= 0, (7)

where weights take the form w(εt(η)) := ψ(|εt(η)|1/2). To ensure robustness, such weights must be relatively
small when the residual is incompatible with the assumed distribution for the innovations, such as the
Gaussian distribution. Solving directly (7) in λ may be computationally difficult due to the presence of
multiple local minima. This is typically the case for re-descending estimators for which the derivative
ψ(u) = ρ′(u) is not monotone.

To solve the above computational issues, we propose an iteratively re-weighted least squares (IRLS) ap-
proach to compute the estimates. The IRLS algorithm alternates two steps until convergence: (i) computing
the weights w̃t = w(εt(η̃)) using the current parameter value, say η̃, and (ii) updating the parameters by
solving

∑n
t=1 w̃t∂ε

2
t (η)/∂λ = 0, which is equivalent to minimizing the weighted residual sum of squares∑n

t=1 w̃tε
2
t (η). Note that, for fixed r, the parameter update from Step (ii) is just a weighted least squares

problem which can be solved efficiently using existing algorithms for TARMA estimation.
The above IRLS approach is fast in execution, typically requiring only a few iterations to converge. In

all our numerical applications we use the following approach to obtain the initial estimate for the IRLS
algorithm. We begin by trimming a percentage of the data corresponding to the most extreme observations;
here we choose 10%. Then we run the LS estimator on the trimmed sample. This allows us to obtain a fairly
robust initial estimate not affecting the convergence properties of the algorithm.

Standard errors for λ̂n are computed using the asymptotic distribution of the estimator derived in Sec-
tion 3. Particularly,

√
nλ̂n converges in distribution to a multivariate normal distribution with zero mean

and covariance matrix H(η)−1J(η)H(η)−1, where H(η) and J(η) are, respectively, the sensitivity and
variability matrices whose expression is given in Theorem 2. The asymptotic variance can be estimated
consistently using the sandwich estimator Ĥ(η̂n)

−1Ĵ(η̂n)Ĥ(η̂n)
−1 where

Ĥ(η) =
1

n

n∑
t=1

∂2ρ(εt(η))

∂λ∂λ⊺ , Ĵ(η) =
1

n

n∑
t=1

(
∂ρ(εt(η))

∂λ

)(
∂ρ(εt(η))

∂λ

)⊺

(8)

are estimates of the sensitivity and variability matrices H(η) and J(η).

3 Large sample properties

In this section, we study the behavior for the estimator η̂n as n diverges. We use η0 to denote the minimizer
of the population objective

ρ†(η) = E [ρ(εt(η)] . (9)

In the rest of this section, we assume that η0 exists and is unique. Note that here, differently from previous
works on TARMA estimation, the true process generating the data does not necessarily coincide with the
nominal TARMA model described in Section 2.1 and the expectation in (9) may be taken with respect to
a process outside the TARMA model family. In this case, the population parameter η0 should be regarded
as the optimal process in terms of minimizing the density divergence implied by ρ between the parametric
TARMA model and the actual process underlying the data.

For the results presented in the remainder of this section, we require the following regularity conditions:

(A1) {Xt} is invertible, strictly stationary and ergodic.

(A2) {εt} has bounded continuous and positive density on the real line; moreover, E[εt] = 0 for each t.

(A3) ρ(·) is non-decreasing and has bounded first derivative ρ′(·) such that ρ′(x) = 0 if and only if x = 0.
Moreover, the function l(x) = E[ρ(εt + x) − ρ(εt)], x ∈ R, is continuous at 0 and l(x) = 0 if x = 0
whereas l(x) > 0 if x ̸= 0.
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(A4) There exist non-random vectors a = (1, a1, . . . , ap)
⊺ ∈ Rp+1, with ad = r0 and b ∈ Rq such that

(ϕ10 − ϕ20)
⊺a+ (θ10 − θ20)

⊺b ̸= 0.

(A5) ρ(·) has bounded second derivative ρ′′(·).
Assumptions (A1), (A2) and (A4) are standard requirements in the threshold framework. Regarding As-
sumption (A1), more details on the conditions ensuring stationarity and ergodicity of TARMA models are
given by Ling (1999) and Chan and Goracci (2019), while invertibility is studied in Chan and Tong (2010).
A discussion on the invertibility of threshold moving-average models can also be found in Ling and Tong
(2005) and Ling et al. (2007). Assumption (A3) is a basic requirement for robustness. For instance, the
re-descending estimator in Ferrari and La Vecchia (2012) satisfies these properties for common families of
distributions for the innovation process. Another possible choice for ρ leading to similar robustness proper-
ties is Tukey’s bisquare function (Maronna et al., 2019, e.g., see). Assumption (A4) is the same condition
considered in Li et al. (2011) in order to ensure threshold identification. Assumption (A5) is stronger than
Assumption (A3), and is needed to guarantee a regular behavior of the expansion leading to asymptotic
normality for the ARMA parameter estimator in the two regimes.

The loss function ρ should satisfy at least the Fisher consistency property. Namely, when the data are
generated by a TARMA process with parameter η0, then η0 should be also the minimizer of the population
objective ρ†(η) = Eη0

[ρ(εt(η))], where expectation is taken with respect to the TARMA process with
parameter η0. Following steps analogous to Lemma 1 in Ferrari and La Vecchia (2012), one can show that
the re-descending estimator minimizing (4) is Fisher consistent for the parameter η for any α > 0. The
special case α = 0 corresponds to the maximum likelihood estimator, which is clearly Fisher consistent, but
does not satisfy Assumption (A3) and leads to estimates that are influenced by outliers.

The next theorem shows the strong consistency of the estimator η̂n.

Theorem 1. Under Assumptions (A1) – (A3) and (i) E[X2
t ] < ∞, (ii) E[ε2t ] < ∞ and (iii) ϕ10 ̸= ϕ20 or

θ10 ̸= θ20, we have η̂n
a.s.−−−−→

n→∞
η0.

In the following, we derive the convergence rates of r̂n and λ̂n and prove the uniform asymptotic normality
of λ̂n. To this end, let ∂ρ(η0)/∂λ and ∂2ρ(η0)/∂λ∂λ

⊺ be the first and the second derivative of the function
ρ(η) with respect to λ evaluated at the parameter vector η0. Moreover, define

H(η) = E

[
∂2ρ(η)

∂λ∂λ⊺

]
, J(η) = E

[(
∂ρ(η)

∂λ

)(
∂ρ(η)

∂λ

)⊺]
. (10)

The matrices H(η) and J(η), evaluated at η0 form the asymptotic variance H(η0)
−1J(η0)H(η0)

−1 for

λ̂n. Hence, we require the following assumptions.

(A6) The matrices H(η0) and J(η0) exist and H(η0) is invertible.

Theorem 2. Under Assumptions (A1) - (A4) and (i) E[X4
t ] <∞, (ii) {εt} is a sequence of i.i.d. random

variables with E[ε4t ] <∞ it holds that:

(i) n(r̂n − r0) = Op(1).

Moreover, if also Assumptions (A5) and (A6) hold, it follows that

(ii)
√
n sup|r−r0|≤B/n

∥∥∥λ̂n(r)− λ̂n(r0)
∥∥∥ = op(1), for any fixed constant B > 0;

(iii)
√
n(λ̂n − λ0)

d−−−−→
n→∞

N(0,H(η0)
−1J(η0),H(η0)

−1).

The proofs of Theorems 1 and 2 follow an approach similar to Koul et al. (2003) and Li et al. (2011)
with some notable differences. While Koul et al. (2003) also focus on general M-estimators, their results
rely heavily on the simpler structure of the autoregressive process, while here we also take into account the
moving-average component. Li et al. (2011) consider both autoregressive and moving-average components,
but their proofs are only valid for the specific case of the least squares objective function, which is much
simpler to handle than generic M-estimating functions.

Finally, note that the estimator of the threshold r̂n is super-consistent. In practical terms, this means
that the threshold can be taken as given, provided the sample size is adequate. For this reason we have
omitted the derivation of the robust asymptotic distribution for r̂n.
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Table 1: Parameter settings for the TARMA(1, 1) model in Equation (11). Cases 1 and 3 represent ergodic
processes, whereas Cases 2 and 4 correspond to geometrically ergodic processes. Case 3 has unit roots in
both regimes but is globally stationary.

ϕ1,0 ϕ1,1 θ1,1 ϕ2,0 ϕ2,1 θ2,1 r

Case 1 0.5 -0.5 -0.5 0.0 -1.0 0.5 0.2
Case 2 0.5 0.3 0.6 1.0 -0.5 -0.4 0.2
Case 3 2.0 1.0 0.5 -1.5 1.0 -0.5 0.2
Case 4 0.6 0.6 -0.7 -1.0 0.4 0.5 0.2

4 Monte Carlo study

In this section, we perform a Monte Carlo study to assess the performance of our robust estimator. We
consider the four parameter settings shown in Table 1 for the following TARMA(1, 1) process:

Xt =

{
ϕ1,0 + ϕ1,1Xt−1 + εt + θ1,1εt−1, if Xt−d ≤ r,

ϕ2,0 + ϕ2,1Xt−1 + εt + θ2,1εt−1, if Xt−d > r,
(11)

where εt ∼ N(0, 1) and d = 1. The choice of parameters reflects different long-run probabilistic behaviors of
the TARMA process. In particular, Cases 1 and 3 correspond to ergodic processes, whereas Cases 2 and 4
correspond to geometrically ergodic processes. Also, Case 3 has unit roots in both regimes but is globally
stationary; this is a challenging case laying on the boundary of the ergodicity region; see Chan and Goracci
(2019) for more details.

The data generated from the clean TARMA process are contaminated using a fraction ϵ of outliers. In
particular, we consider both additive outliers (AOs) and innovation outliers (IOs) corresponding to the two
Monte Carlo experiments described below.

Monte Carlo Experiment 1: Additive outliers. We consider the family of contaminated processes
Xϵ,k

t = (1− Zϵ
t )Xt + Zϵ

tW
k
t , where Xt is the clean TARMA process in Eq. (11); W k

t = Xt + (−1)ξtk,
with k = 10, is the contaminating process; ξt is a binary process such P (ξt = 1) = 0.95; and Zϵ

t = 1 if
t mod ϵ−1 = 0 and Zt = 0 otherwise.

Monte Carlo Experiment 2: Innovation outliers. The data are generated from the model in
Eq. (11) by taking εt ∼ N(0, 1) + k(−1)ξtZ

ϵ
t , where ξt is a binary process such that P (ξt = 1) = 0.95 ,

Zϵ
t = 1 if t mod ϵ−1 = 0 and Zt = 0 otherwise.

To assess the performance of our robust methodology, we compute Monte Carlo estimates of the bias,
∥E(η̂n) − η0∥22, and variance, ∥var(η̂n)∥22 of our estimator, where η0 represents the parameter vector for
the clean TARMA process and ∥ · ∥2 is the Euclidean norm. Estimates are based on 1000 Monte Carlo
replications with sample size n = 100, 200. In practice, in each contamination setting, we add 10% of equally
spaced outliers of size k = 10 with random sign depending on ξt. Note that, differently from AOs, IOs are
much harder to treat since they enter the state equation and interact non-trivially with the non-linearity of
the TARMA process. This can exert a long-term influence upon the series and even produce a qualitative
change in the dynamics. The above experiments aim to mimic real scenarios encountered in economics and
finance where contamination may occur in both tails but are prevalent in one.

Figure 1 shows bias and variance for the four TARMA specifications under AO contamination for values
of the robustness parameter α = 0, 0.3, 0.6, 0.9, 1.2, 1.5, where α = 0 corresponds to the special case of the
non-robust LS estimator. In all the settings, the bias decreases significantly when α moves away from zero
and stabilizes for values of α larger than 1. Cases 2 and 4 show the sharpest decrease, which may be an
effect due to the geometric ergodicity. Interestingly, the variance also stabilizes starting for a value of α
larger 1; however, differently from the bias, here Cases 1 and 3 show the sharpest decrease. While both bias
and variance of the LS estimator are considerably affected by outliers, the robust estimator with α ≥ 1 is
generally successful in mitigating their influence.
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Figure 1: Results from Monte Carlo Experiment 1 (additive outliers). Bias and variance as a function of the
robustness parameter α. Clean data are generated using the TARMA under the four parameterizations in
Table 1 (Cases 1–4), while contaminations are introduced by AOs.

Figure 2 shows bias and variance for the four TARMA specifications under IO contamination. The
findings are consistent with those reported in Figure 1. In all the scenarios, a value of α > 0 suffices to
improve both bias and variance. The improvement is dramatic in most cases for sufficiently large α. Note
that the reduction in bias and variance is less marked for Case 3, which sits at the boundary of the parametric
region of ergodicity. Even if the process is globally stationary, its regimes are both I(1) so that the outlier
effect decays very slowly.

4.1 Asymptotic bias under contamination

The asymptotic bias under contamination is a common measure of robustness for the time series framework.
Other measures include the influence curve, introduced by Hampel (1974) in the i.i.d. framework, which
measures the influence of infinitesimal outlier contamination on the parameter estimates. Also, Martin and
Yohai (1986) consider a generalization of influence functionals in time-series models based on a replacement
outlier model. Here we focus on the asymptotic bias since it does not assume infinitesimal contaminations
and provides a realistic representations of the behavior of the estimator in practical situations. Let η̂∞(F )

be the almost sure limit of the estimator η̂n = (λ̂
⊺
n, r̂n, d̂n) applied to a process with distribution F . The

asymptotic squared bias for η̂∞ applied to the contaminated process {Xϵ,k
t } is given by

B(η̂∞,η0, ϵ, k) =
∥∥∥η̂∞(F (Xϵ,k

t ))− η0

∥∥∥2
2
,

where F (Xϵ,k
t ) is the distribution of the contaminated process {Xϵ,k

t } and ∥·∥2 is the Euclidean norm.
In Figures 3 and 4 we show the behavior of the asymptotic bias against outlier size k, for contamination

levels ϵ = 0.05, 0.1, 0.15, 0.2 and different values for the robustness parameter α. The asymptotic values are
computed using series of size n = 20000 and the plots summarize the four cases through the median. The
behavior for both additive and innovation outliers is similar. The bias of the non-robust estimator (α = 0)
diverges quickly as k increases. On the other hand, for contamination levels up to 10%, small values of α are
enough to achieve robustness. As the contamination level increases, larger values of α are needed to stabilize
the asymptotic bias. A value of α close to one achieves a remarkable robustness even when 20% of the data
are contaminated and in case of large outliers (ϵ = 0.2, lower right panels).
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Figure 2: Results of Monte Carlo Experiment 2 (innovation outliers). Bias and variance as a function of the
robustness parameter α. Clean data are generated using the TARMA under the four parameterizations in
Table 1 (Cases 1–4), while contaminations are introduced by IOs.
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Figure 3: Asymptotic squared bias against outlier size k, under AO contamination, for contamination levels
ϵ = 0.05, 0.1, 0.15, 0.2 and different values of the robustness parameter α. The contaminating AO process is
described in MC Experiment 1.

9



0.
0

0.
2

0.
4

0.
6

0.
8

ε = 0.05

α = 0
α = 0.3
α = 0.6
α = 0.9
α = 1.2
α = 1.5

0
1

2
3

4
5

ε = 0.1

0 2 4 6 8 10

0
2

4
6

8
10

12

ε = 0.15

0 2 4 6 8 10
0

5
10

15
20

ε = 0.2

k

A
sy

m
pt

ot
ic

sq
ua

re
d

bi
as

Figure 4: Asymptotic squared bias against outlier size k, under IO contamination, for contamination levels
ϵ = 0.05, 0.1, 0.15, 0.2 and different values of the robustness parameter α. The contaminating IO process is
described in MC Experiment 2.

5 Application: Analysis of commodity prices

Commodities are raw materials or primary agricultural products used as inputs in the production of other
goods and are commonly traded in the cash market or as derivatives. Commodity prices are extremely
important in individual, country-level economies: since they respond quickly to economic shocks, such as
increase in demand, they are often used to predict the behavior of other economic variables.

We consider 336 monthly observations for the price of five commonly traded energy or precious com-
modities. The energy commodities are the WTI crude oil price index, the US natural gas spot price at the
Henry Hub in Louisiana, the average of the Australian coal price at Port Thermal in Newcastle and the
South African coal price at Richards Bay. The precious commodities are the gold and silver prices traded in
London, afternoon fixing. All the series are sampled in the period February 1994 – December 2021, and are
obtained from the World Bank website https://www.worldbank.org/en/research/commodity-markets.
For each commodity, we model log returns of their prices, that is xt,i = ∇ log(yt,i) = log(yt,i/yt−1,i), where
yt,i denotes the price of commodity i (i = 1, . . . , 5) at time t. The time plot reported in Figure 6 of the
Supplementary Material highlights that the series have different volatility, which is lower for gold and coal
while is more pronounced for oil and natural gas.

We estimate TARMA(1, 1) models for the five commodities using our robust estimation method and
the least squares approach, the latter corresponding to the special case α = 0. We also include the linear
ARMA(1, 1) model, estimated through full maximum likelihood (ML). In preliminary analyses not reported
here, we found estimates for the threshold parameter r consistently close to zero for most values of α ranging
from 0 to 1, which confirms the general asymmetric behavior in growth and contraction periods, see Deaton
and Laroque (1992). Motivated by these findings, we set r = 0 to obtain our final TARMA estimates.
Moreover, based on macroeconomic theory, we set d = 1. The overall model accuracy is assessed through
the mean absolute percentage error (MAPE) (see Section B if the Supplementary Material), using 12 out-
of-sample observations from January to December 2021 as the test set, while the remaining 324 observations
are used as the training set.

Table 2 shows parameter estimates for the five series with standard errors in parentheses below the
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estimates. The third column shows the values of the tuning parameter α, computed by minimizing the MAPE
over a grid of equally spaced values in the interval (0, 1). In all the series, we note that the autoregressive
and moving-average parameters change, sometimes dramatically, when using our robust method compared
to the LS approach. Moreover, the standard errors from the TARMA models based on the LS method are
generally larger than the robust standard errors. Thus, using the non-robust method can hinder the discovery
of separate regimes and make it impossible to assess the actual significance of many parameters. For instance,
for the silver series, the LS method does not show significantly different estimates in the two regimes and
its MAPE is even larger than that of the linear ARMA. On the other hand, the robust TARMA reveals the
existence of two dynamical regimes with clearly different autoregressive and moving-average behaviors. The
prediction error of the resulting model is 30% smaller than the LS fit.

All the estimated intercepts for the robust TARMA are close to zero and this suggests that the transition
between the two regimes is not discontinuous (see also Figure 5, last row). Moreover, in absolute value, the
parameters for the lower regime are almost always smaller than those of the upper regime, which highlights
the asymmetric behavior of the commodity series characterized by periods of persistent growth and sharp
contraction. In particular, the difference in the moving-average parameters denotes the different reaction to
shocks in the two regimes: with the exception of coal, in the upper regime the shocks exert a stronger and
more persistent influence. As already mentioned, the higher estimation accuracy of the robust TARMA is
also beneficial for prediction since this model always outperforms the least square TARMA. Gains in terms
of MAPE are sizeable for precious commodities (up to 67% for gold and 33% for silver); they are moderate
for coal (4%) and oil (6%), and small for natural gas (1%). The linear ARMA model is the least accurate,
except for gold, where many parameter estimates are not significant.

In order to detect the most influential outliers, for each series we compute the robust weights

ŵt =
exp{−α̂× ε̂2t/(2σ̂

2)}∑n
s=1 exp{−α̂× ε̂2s/(2σ̂

2)}
, t = 1, . . . , 324,

where ε̂t is the residual at time t from the robust fit, σ̂2 is the estimated error variance and α̂ is the data-
driven tuning parameter obtained by minimizing the MAPE. Smaller weights correspond to observations
that are further from the assumed clean model, i.e. the TARMA model with Gaussian errors.

Figure 5 (top) shows the histograms of the residuals from the robust TARMA for oil, coal and gold
prices. All the histograms appear to be different from the nominal standard Gaussian density (superimposed
in red) due to heavy tails or asymmetry. The residuals translate into robust weights mostly concentrated
on larger values above 0.30, although a number of observations receives smaller weights closer to zero (see
Figure 5, second row), indicating the presence of strong outliers. Figure 5 (third row) highlights with circles
the most influential outliers corresponding to the smallest robust weights (5% of the sample, or 15 values)
in the time plot of the original log-return series. Many of these extreme outliers are evident and correspond
to the shocks which occurred during the financial crisis in 2008–2009 and at the beginning of the COVID
pandemic, although some of the abrupt changes appear to be compatible with the assumed TARMA model.

The last row of Figure 5 shows the same outliers in the state space (lag plot of xt versus xt−1), where we
have also added estimated piecewise linear autoregression lines. Note that the 15 most extreme observations
are, in fact, outliers in the state space while this is not so evident from the time plot (Figure 5, third row).
Moreover, the placement of such observations marked as outliers appears to be linked to the commodity
type. For precious commodities (gold and silver) the outliers tend to fall in the upper regime, while for
oil they are found in the lower regime. Finally, for gas and coal, there is roughly the same proportion of
outliers in both regimes. Figure 7 in the Supplementary Material reports the plots for the two remaining
commodities (oil and silver).

6 Conclusions

TARMA models have attracted considerable interest due to their ability to parsimoniously describe complex
dynamical features such as jumps, asymmetric limit cycles, time irreversibility, and chaos. They are unique in
that they provide a natural interpretation for phenomena that change qualitatively across regimes and react
differently to shocks. Nonetheless, estimation for TARMA model is currently limited to the least squares
method, which is known to be severely influenced by the presence of outliers. In this paper we provide
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Table 2: TARMA(1, 1) parameter estimates for five monthly commodity returns observed in the period March
1997 – December 2020 based on the least squares (LS) method and the robust method (Rob) with tuning
parameter α obtained by minimizing the mean absolute prediction error (MAPE) using the 12 months of 2021
as the test set. The maximum likelihood fit for the linear ARMA(1, 1) is added for comparison. Standard
errors are reported in parenthesis below their respective estimates.

Series Model α ϕ1,0 ϕ1,1 ϕ2,0 ϕ2,1 θ1,1 θ2,1 MAPE

TARMA (LS) 0 0.030 -0.288 -0.006 0.552 0.848 -0.249 93.4
(0.013) (0.229) (0.008) (0.212) (0.187) (0.197)

WTI TARMA (Rob) 0.8 0.037 -0.158 0.001 0.683 0.500 -0.589 86.9
(0.004) (0.225) (0.002) (0.146) (0.243) (0.140)

ARMA 0.004 -0.001 0.272 97.3
(0.007) (0.188) (0.180)

TARMA (LS) 0 0.001 0.647 0.043 0.111 -0.550 -0.430 100.0
(0.012) (0.273) (0.014) (0.331) (0.308) (0.298)

NAT GAS TARMA (Rob) 0.3 0.006 0.400 0.031 -0.500 -0.197 0.295 99.4
(0.002) (0.035) (0.002) (0.039) (0.033) (0.033)

ARMA 0.000 -0.136 0.178 100.0
(0.008) (0.589) (0.583)

TARMA (LS) 0 -0.004 0.524 0.010 0.493 -0.214 -0.207 124.6
(0.005) (0.172) (0.006) (0.172) (0.176) (0.189)

COAL TARMA (Rob) 0.05 -0.003 0.592 0.009 0.392 -0.317 -0.092 120.9
(0.000) (0.010) (0.000) (0.015) (0.009) (0.016)

ARMA 0.004 0.553 -0.169 129.2
(0.006) (0.115) (0.135)

TARMA (LS) 0 -0.004 0.429 0.014 0.323 -0.472 -0.521 171.6
(0.003) (0.297) (0.004) (0.276) (0.291) (0.267)

GOLD TARMA (Rob) 0.4 -0.001 -0.294 0.007 -0.373 0.371 0.505 104.7
(0.000) (0.063) (0.000) (0.045) (0.061) (0.040)

ARMA 0.005 -0.247 0.398 135.6
(0.002) (0.252) (0.236)

TARMA (LS) 0 0.007 -0.068 0.000 -0.039 0.302 0.338 122.7
(0.008) (0.338) (0.008) (0.329) (0.310) (0.321)

SILVER TARMA (Rob) 0.8 0.004 0.348 0.003 -0.681 -0.178 0.875 89.6
(0.000) (0.028) (0.001) (0.025) (0.026) (0.019)

ARMA 0.005 -0.072 0.299 106.0
(0.004) (0.176) (0.164)

12



ε̂t

D
en
si
ty

-0.4 -0.2 0.0 0.2 0.4 0.6

0
1

2
3

4
5

6

WTI

100 ŵt
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D
en
si
ty

0.00 0.10 0.20 0.30

0

5

10

15

20

Year

x
t

1995 2000 2005 2010 2015 2020

-0
.2

-0
.1

0.
0

0.
1

0.
2

-0.10 -0.05 0.00 0.05 0.10 0.15

-0
.1
0

0.
00

0.
10

xt−1

x
t

Figure 5: Outlier analysis for the crude oil (WTI), coal (COAL) and gold (GOLD) commodity return series.
Histograms of the residuals from the robust TARMA fit (ε̂t, top row), robust weights (100× ŵt, second row).
The 15 most severe outliers are shown by the circles in the time plot of the log-return series (xt, third row),
and in the corresponding lag plot of xt versus xt−1 (bottom row).
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the first theoretical framework for robust M-estimation for TARMA models and also study its practical
relevance.

Theorems 1 and 2 extend the results of Li et al. (2011) and establish an asymptotic theory for a wide class
of estimators found as the solution of M-estimating equations with bounded derivatives. We establish the
superconsistency for r̂n and defer to future research the derivation of the limit distribution of the threshold
estimator, which is a challenging task. Our results can be used to derive other robust inference and model
selection tools for TARMA processes. For example, following Ronchetti (1997) and Müller and Welsh (2009),

a robust model-selection criterion for TARMA models may be formulated as 2ρn(η̂n)+2trace(Ĥ
−1

Ĵ), where

Ĥ and Ĵ are the plug-in estimators based on the sensitivity and variability estimators defined in (8). These
can also be used to derive Wald and score statistics to test hypotheses on the parameters. Focusing on the
re-descending estimator of Ferrari and La Vecchia (2012), we study the robustness properties of the proposed
M-estimator in a range of scenarios involving both additive and innovation outliers. The results from our
Monte Carlo experiments show that moving away from the LS estimator even by a small amount already
achieves robustness both in terms of bias and variance. Overall, our estimator reduces considerably the
asymptotic bias also in the presence of severe contaminations and high fractions of outliers, where the least
squares estimator fails. The findings suggest that robust M-estimation should be generally preferred to the
least squares method, even when the actual data deviate only slightly from the nominal TARMA model.

The analysis of the five time series of commodity prices shows that the robust TARMA estimates present
smaller standard errors and lead to superior forecasting accuracy compared to the least squares fit. This
enables us to detect regime changes with confidence and support the hypothesis of a two-regime, asymmetric
nonlinearity around zero, characterised by slow expansions and fast contractions. Although a thorough
analysis of the price dynamics for different commodities is beyond the scope of the present work, the robust
TARMA framework could be used as the foundation for future modelling approaches, possibly leading to
important advancements in the field.

An interesting direction for future investigations could be the study of the performance in the presence
of specific contamination processes. For example IOs are generally more challenging to handle and would
require the development of some ad-hoc estimating function. One possible approach is to introduce a robust
filtering step within the residual function, as in the bounded innovation propagation ARMA (BIP-ARMA) of
Muler et al. (2009). For the time being, we note that there is a fundamental difference in the way non-linear
processes react to perturbations compared to linear processes. In general, the presence of dynamic noise can
alter qualitatively and non trivially the nature of the process, see e.g., Chan and Tong (2001) for a discussion.
For instance, for linear processes the response function to noise is flat, whereas non-linear processes can act
both as noise amplifiers and noise suppressors, producing a plethora of characteristic phenomena, such as
resonances, or the state-dependence predictability, which is well known in the forecasting literature, see e.g.,
Fan and Yao (2005), Ch. 10.
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Supplement for:
Robust estimation for Threshold Autoregressive Moving-Average

models

Greta Goracci, Davide Ferrari, Simone Giannerini, Francesco Ravazzolo

In Section A we report the technical proofs leading to Theorems 1 and 2 of the main paper. Section B
contains supplementary figures related to the analysis of the set of commodity time series.

A Proofs

For clarity of presentation and without loss of generality the proofs are detailed for the case p = q = 1.
Analogous arguments hold for the general case p, q > 1. In order to prove Theorems 1 and 2 we need some
technical lemmas. For each η ∈ H and 0 < δ < 1 define the neighborhood

Uδ(η) = {η∗ = (ϕ∗,θ∗, r∗, d∗) ∈ H : ∥ϕ∗ − ϕ∥ ≤ δ, ∥θ∗ − θ∥ ≤ δ,

|r∗ − r| ≤ δ} . (12)

Lemma 3. For each η ∈ H it holds that

sup
η∗∈Uδ(η)

E [ρ(εt(η
∗))− ρ(εt(η))] −→ 0, as δ → 0,

with εt(·) being defined in Equation (2).

Proof of Lemma 3

We exploit the following representation for TARMA models due to Ling and Tong (2005), Theorem A.1 and
A.2. For any η ∈ H, the residual function can be represented as follows:

εt(η) =

∞∑
j=0

Ht,j(η)× [Xt−j− {ϕ1,0 + ϕ1,1Xt−1−j} I(Xt−d−j ≤ r)

− {ϕ2,0 + ϕ2,1Xt−1−j} I(Xt−d−j > r)] ,

where
Ht,j(η) = {θ2,1 + (θ1,1 − θ2,1)I(Xt−d ≤ r)}j .

Moreover, there exists a positive γ < 1 such that

sup
η∈H

∥Ht,j(η)∥ = O(γj), (13)
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Using some straightforward algebra, we compute the difference

εt(η
∗)− εt(η)

=

∞∑
j=0

Ht,j(η
∗)

[
Xt−j −

{
ϕ∗1,0 + ϕ∗1,1Xt−1−j

}
I(Xt−d−j ≤ r∗)−

{
ϕ∗2,0 + ϕ∗2,1Xt−1−j

}
I(Xt−d−j > r∗)

]
−

∞∑
j=0

Ht,j(η
∗) [Xt−j − {ϕ1,0 + ϕ1,1Xt−1−j} I(Xt−d−j ≤ r)− {ϕ2,0 + ϕ2,1Xt−1−j} I(Xt−d−j > r)]

+

∞∑
j=0

Ht,j(η
∗) [Xt−j − {ϕ1,0 + ϕ1,1Xt−1−j} I(Xt−d−j ≤ r)− {ϕ2,0 + ϕ2,1Xt−1−j} I(Xt−d−j > r)]

−
∞∑
j=0

Ht,j(η) [Xt−j − {ϕ1,0 + ϕ1,1Xt−1−j} I(Xt−d−j ≤ r)− {ϕ2,0 + ϕ2,1Xt−1−j} I(Xt−d−j > r)]

=

∞∑
j=0

Ht,j(η
∗) [ϕ⊺ · ∇r(Xt−1−j)− ϕ∗⊺ · ∇r∗(Xt−1−j)] (14)

+

∞∑
j=0

[Ht,j(η
∗)−Ht,j(η)] [Xt−j − ϕ⊺ · ∇r(Xt−1−j)] , (15)

where
∇r(Xt) = (I(Xt−d+1 ≤ r), XtI(Xt−d+1 ≤ r), I(Xt−d+1 > r), XtI(Xt−d+1 > r))

⊺
.

Note that

∥∇r(Xt)∥ =
√

1 +X2
t ≤ 1 + |Xt|,

∥∇r(Xt)−∇r∗(Xt)∥ =
√

2(1 +X2
t )I(r ∧ r∗ < Xt−d+1 ≤ r ∨ r∗)

≤
√
2(1 + |Xt|)I(|Xt−d+1 − r| ≤ |r − r∗|),

|ϕ⊺ · ∇r(Xt)− ϕ∗⊺ · ∇r∗(Xt)| = |ϕ⊺ · (∇r(Xt)−∇r∗(Xt)) + (ϕ⊺ − ϕ∗⊺)∇r∗(Xt)|

≤
√
2(1 + |Xt|) [∥ϕ∥ I(|Xt−d+1 − r| ≤ |r − r∗|) + ∥ϕ− ϕ∗∥] .

By the Cauchy-Schwarz inequality for the first term in (14) we have∣∣∣∣∣∣
∞∑
j=0

Ht,j(η
∗) [ϕ⊺ · ∇r(Xt−1−j)− ϕ∗⊺ · ∇r∗(Xt−1−j)]

∣∣∣∣∣∣
≤

∞∑
j=0

∥Ht,j(η
∗)∥ |ϕ⊺ · ∇r(Xt−1−j)− ϕ∗⊺ · ∇r∗(Xt−1−j)|

≤ K

∞∑
j=0

γj
{√

2(1 + |Xt−1−j |) [∥ϕ∥ I(|Xt−d−j − r| ≤ δ) + δ]
}
:= Υ

(1)
δ (Ft−1),

withK being a positive constant. Here Υ
(1)
δ (Ft−1) indicates that the function Υ

(1)
δ depends uponXt−1, Xt−2, . . . .

By Assumption (A1) and the argument in Lemma 3.1 in Koul et al. (2003), it holds that E[Υ
(1)
δ (Ft−1)] →

0 as δ → 0. An analogous calculation shows that the absolute value of (15) is bounded by a function, say

Υ
(2)
δ (Ft−1), such that E[Υ

(2)
δ (Ft−1)] → 0 as δ → 0. Letting Υδ(Ft−1) = Υ

(1)
δ (Ft−1) + Υ

(2)
δ (Ft−1), we get

|εt(η∗) − εt(η)| ≤ Υδ(Ft−1) with E [Υδ(Ft−1)] → 0 as δ → 0. Finally, Assumption (A3) implies that there
exists a constant K such that

E

[
sup

η∗∈Uδ(η)

|ρ(εt(η∗))− ρ(εt(η))|

]
≤ E

[∫ Υδ(Ft−1)

−Υδ(Ft−1)

|ρ′(εt(η) + w)|dw

]
≤ K × E [Υδ(Ft−1)] .

The right hand side of the above expression goes to zero as δ → 0, which completes the proof.
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Proof of Theorem 1

We prove that for any neighborhood U of η0, for any sufficiently large n,

inf
η∈Uc

{ρn(η)− ρn(η0)} > inf
η∈U

{ρn(η)− ρn(η0)} , a.s.

Since

inf
η∈U

1

n
{ρn(η)− ρn(η0)} ≤ 1

n
{ρn(η0)− ρn(η0)} = 0,

it suffices to show

inf
η∈Uc

1

n
{ρn(η)− ρn(η0)} > 0. (16)

Consider the expectations

g(η) = E [ρ(εt(η))− ρ(εt(η0))] = E [ρ(εt(η0) + {εt(η)− εt(η0)})− ρ(εt(η0))] ,

and l(x) = E [ρ(εt(η0) + x)− ρ(εt(η0))] .

Note that the law of iterated expectations implies that g(η) = E[l(εt(η)− εt(η0))]. Moreover, following the
same argument as in Lemma 6.4 of Li et al. (2013), it is not difficult to show that, for any η ̸= η0, there
exists x0 > 0 such that

P (|εt(η)− εt(η0)| > x0) > 0. (17)

By Assumption (A3), l(x) > 0 for any x ̸= 0, thereby (17) implies that g(η) = 0 if η = η0 and it is strictly
positive if η ̸= η0. Hence, for any neighborhood U of η0 there exists η̃ ∈ Uc such that

inf
η∈Uc

g(η) = g(η̃) > 0.

Note that Lemma 3 implies that for all c > 0

∃ δ̄ : ∀δ < δ̄

∣∣∣∣∣ sup
η∗∈Uδ(η)

E [ρ(εt(η
∗))− ρ(εt(η))]

∣∣∣∣∣ < c. (18)

We consider the neighborhood Uδ̄ and prove that:

E

[
inf

η∗∈Uδ̄(η)
{ρ(εt(η∗))− ρ(εt(η0))}

]
≥ 2c ∀η ∈ Uc. (19)

To this end consider η ∈ Uc; it holds that

E

[
inf

η∗∈Uδ̄(η)
{ρ(εt(η∗))− ρ(εt(η0))}

]
= E

[
inf

η∗∈Uδ̄(η)
{ρ(εt(η∗))− ρ(εt(η0)) + ρ(εt(η))− ρ(εt(η))}

]
≥ E [ρ(εt(η))− ρ(εt(η0))]− E

[
sup

η∗∈Uδ̄(η)

{ρ(εt(η∗))− ρ(εt(η))}

]
≥ inf

η∈Uc
E [ρ(εt(η))− ρ(εt(η0))]− c = 2c,

where the last equality holds by setting c = g(η̃)/3 in (18). Since Uc is compact, there exists a finite
coverage {Uδ̄(ηκ), κ = 1, . . . ,K}, with K being a constant, such that ηκ ∈ Uc, for each κ = 1, . . . ,K, and⋃K

κ=1 Uδ̄(ηκ) = Uc. The ergodicity of {Xt} implies that, for any ηκ:

inf
η∈Uδ̄(ηκ)

1

n

n∑
t=1

{ρ(εt(η0) + {εt(η)− εt(η0)})− ρ(εt(η0))}

a.s.−−−−→
n→∞

E

[
inf

η∈Uδ̄(ηκ)
{ρ(εt(η0) + {εt(η)− εt(η0)})− ρ(εt(η0))}

]
,
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thereby for all c > 0 there exists n̄ such that for any n > n̄∣∣∣∣ inf
η∈Uδ̄(ηκ)

1

n
{ρn(η)− ρn(η0)} − E

[
inf

η∈Uδ̄(ηκ)
{ρ(εt(η0) + {εt(η)− εt(η0)})− ρ(εt(η0))}

]∣∣∣∣ < c. (20)

In particular, (19) implies

inf
η∈Uδ̄(ηκ)

1

n
{ρn(η)− ρn(η0)} ≥ E

[
inf

η∈Uδ̄(ηκ)
{ρ(εt(η0) + {εt(η)− εt(η0)})− ρ(εt(η0))}

]
− c

≥ 2c− c = c.

Hence, (16) is satisfied and the proof is complete.

Proof of Theorem 2

Since η̂n is consistent for the population parameter η0 defined in Section 3, we restrict the parameter space
H to the neighborhood Hδ = {η ∈ H : ∥λ− λ0∥ < δ ∧ |r − r0| < δ}, with 0 < δ < 1 to be determined later.
Without loss of generality, we can assume r = r0 + u with u being a positive real value.
(i) To show the first part, we proceed similarly to Li et al. (2011). The result follows by showing that ∀c > 0,
∃ β,B > 0 such that ∀n sufficiently large:

P

 inf
η ∈ Hδ

B/n < r − r0 < δ

ρn(λ, r)− ρn(λ, r0)

nP (r0 < Xt−1 ≤ r)
> β

 > 1− c. (21)

See Koul et al. (2003), proof of Theorem 3.2.
Define

Dn(λ, r) = ρn(λ, r)− ρn(λ, r0) = D(1)
n (r) +D(2)

n (λ, r),

where

D(1)
n (r) = ρn(λ0, r)− ρn(λ0, r0),

D(2)
n (λ, r) = [ρn(λ, r)− ρn(λ, r0)]− [ρn(λ0, r0)− ρn(λ0, r0)].

We start focusing on D
(1)
n (r). Let Zt = (Xt, εt)

⊺ and Z∗ = (a⊺,b⊺)⊺, with a and b being defined in
Assumption (A4). Moreover we set di, i = 1, 2, 3 to be the differences between the corresponding true
parameters in the two regimes, i.e. d0 = (ϕ0,1,0 − ϕ0,2,0), d1 = (ϕ0,1,1 − ϕ0,2,1) and d2 = (θ0,1,1 − θ0,2,1).

Then there exists a constant C > 0 such that

dt−1 := (d0, d1, d2) · (1,Z⊺)⊺ = d0 + d1Xt−1 + d2εt−1

is bounded away from zero for any Zt satisfying ∥Zt−1 − Z∗∥ ≤ C. Moreover, let

I∗(r0 < Xt ≤ r) = I(r0 < Xt ≤ r ∧ ∥Zt − Z∗∥ ≤ C),

P ∗(r0 < Xt ≤ r) = P (r0 < Xt ≤ r ∧ ∥Zt − Z∗∥ ≤ C).

Routine algebra implies that:

D
(1)
n (r)

nP (r0 < Xt−1 ≤ r)
=

1

nP (r0 < Xt−1 ≤ r)

n∑
t=1

[ρ(εt + {εt(λ0, r)− εt})− ρ(εt)]

≥ Γ(1)
n + Γ(2)

n + Γ(3)
n ,
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with

Γ(1)
n =

1

nP (r0 < Xt−1 ≤ r)

n∑
t=1

[ρ(εt + dt−1)− ρ(εt)] I
∗(r0 < Xt−1 ≤ r),

Γ(2)
n =

1

nP (r0 < Xt−1 ≤ r)

n∑
t=1

[ρ(εt + {εt(λ0, r)− εt})− ρ(εt + dt−1)] I
∗(r0 < Xt−1 ≤ r),

Γ(3)
n =

1

nP (r0 < Xt−1 ≤ r)

n∑
t=1

[ρ(εt + {εt(λ0, r)− εt})− ρ(εt)] {P ∗(r0 < Xt−1 ≤ r)− I∗(r0 < Xt−1 ≤ r)} .

First we show that Γ
(2)
n and Γ

(3)
n are negligible in probability. To this end note that, when r0 < Xt−1 ≤ r

then
εt(λ0, r)− εt − dt−1 = −{θ0,2,1 + (θ0,1,1 − θ0,2,1)I(Xt−1 ≤ r)} {εt−1(λ0, r)− εt−1} .

By Assumption A3, we have

|ρ(εt + {εt(λ0, r)− εt})− ρ(εt + dt−1)|

≤
∫ |εt(λ0,r)−εt−dt−1|

−|εt(λ0,r)−εt−dt−1|
|ρ′(εt + y)|dy

≤ K1|εt(λ0, r)− εt − dt−1|

≤ K1I(r0 < Xt−1 ≤ r)

∞∑
j=0

γj∥Zt−2−j∥I(r0 < Xt−2−j ≤ r),

with K1 being a positive constant. The last inequality follows from the TARMA representation and (13).

Hence Γ
(2)
n is negligible in probability by Part A.2 of Lemma A.1 in Li et al. (2011). By a similar argument,

we have

|Γ(3)
n | ≤ K2

P (r0 < Xt−1 ≤ r)

1

n

n∑
t=1

|I∗(r0 < Xt−1 ≤ r)− P ∗(r0 < Xt−1 ≤ r)|

for some K2 > 0, which is negligible in probability by Part A.1 of Lemma A.1 in Li et al. (2011). Now, we

focus on Γ
(1)
n . Since ∥Zt−1 − Z∗∥ ≤ C, by Assumption (A3), we have ρ(εt + dt−1)− ρ(εt) := c0 > 0 and

Γ(1)
n > c0

P ∗(r0 < Xt−1 ≤ r)

P (r0 < Xt−1 ≤ r)

1

n

n∑
t=1

I∗(r0 < Xt−1 ≤ r)

P ∗(r0 < Xt−1 ≤ r)

By Lemma A.1 in Li et al. (2011) and

lim
u→0

P ∗(r0 < Xt−1 ≤ r0 + u)

P (r0 < Xt−1 ≤ r0 + u)
> 0,

there exists a sufficiently small δ > 0 such that for all c > 0 there exist β1, B > 0 such that for any sufficiently
large n, Equation (21) is satisfied.

As concerns D
(2)
n (λ, r) note that

D
(2)
n (λ, r)

n
=

1

n

n∑
t=1

∫ 1

0

{
∂ρ(λ0 + w(λ− λ0), r)

∂λ
− ∂ρ(λ0 + w(λ− λ0), r0)

∂λ

}
(λ− λ0)dw

and it can be shown that

sup
η ∈ Hδ

B/n < r − r0 < δ

|D(2)
n (λ, r)|

nP (r0 < Xt−1 ≤ r)
= Op(δ).
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The proof is completed by noting that

inf
η ∈ Hδ

B/n < r − r0 < δ

ρn(λ, r)− ρn(λ, r0)

nP (r0 < Xt−1 ≤ r)

≥ inf
B/n < r − r0 < δ

D
(1)
n (r)

nP (r0 < Xt−1 ≤ r)
− sup

η ∈ Hδ

B/n < r − r0 < δ

|D(2)
n (λ, r)|

nP (r0 < Xt−1 ≤ r)
.

(ii) Consider the first order Taylor’s expansion of ∂ρn(λ, r)/∂λ:

∂ρn(λ̂n(r), r)

∂λ
=
∂ρn(λ0, r)

∂λ
+
∂2ρn(λ̄, r)

∂λ∂λ⊺ (λ̂n(r)− λ0), (22)

with λ̄ being between λ̂n(r) and λ0. Hence

1

n

∂ρn(λ0, r)

∂λ
+

1

n

∂2ρn(λ̄, r)

∂λ∂λ⊺ (λ̂n(r)− λ0) = 0.

The ergodicity of {Xt} implies that

1

n

∂2ρn(λ0, r0)

∂λ∂λ⊺ =
1

n

n∑
t=1

∂2ρ(εt)

∂λ∂λ⊺
a.s.−−−−→

n→∞
E

[
∂2ρ(εt)

∂λ∂λ⊺

]
= H(η0),

with H(η) being defined in (10). By combining Lemma 7.8 in Li et al. (2013), Assumptions (A4)-(A5) and
technical arguments developed in Goracci et al. (2023), one can show that there exists a constant B > 0
such that

sup
|r−r0|<B/n

∥∥∥∥∂ρn(λ0, r)

∂λ
− ∂ρn(λ0, r0)

∂λ

∥∥∥∥ = op(1),

sup
∥λ−λ0∥<B/

√
n

sup
|r−r0|<B/n

∥∥∥∥∂2ρn(λ, r)∂λ∂λ⊺ − ∂2ρn(λ0, r0)

∂λ∂λ⊺

∥∥∥∥ = op(1),

hence we have

sup
|r−r0|<B/n

∥∥∥∥√n(λ̂n(r)− λ0) +H(η0)
−1 1√

n

∂ρn(λ0, r0)

∂λ

∥∥∥∥ = op(1)

and, in particular, ∥∥∥∥√n(λ̂n(r0)− λ0) +H(η0)
−1 1√

n

∂ρn(λ0, r0)

∂λ

∥∥∥∥ = op(1).

The proof is completed upon noting that

√
n sup

|r−r0|<B/n

∥∥∥λ̂n(r)− λ̂n(r0)
∥∥∥

= sup
|r−r0|<B/n

∥∥∥∥√n(λ̂n(r)− λ0) +H(η0)
−1 1√

n

∂ρn(λ0, r0)

∂λ

+
√
n(−λ̂n(r0) + λ0)−H(η0)

−1 1√
n

∂ρn(λ0, r0)

∂λ

∥∥∥∥
≤ sup

|r−r0|<B/n

∥∥∥∥√n(λ̂n(r)− λ0) +H(η0)
−1 1√

n

∂ρn(λ0, r0)

∂λ

∥∥∥∥
+

∥∥∥∥√n(λ̂n(r0)− λ0) +H(η0)
−1 1√

n

∂ρn(λ0, r0)

∂λ

∥∥∥∥ = op(1).
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Point (iii) From Point (ii), it holds that

√
n(λ̂n(r)− λ0) =

√
n(λ̂n(r0)− λ0) + op(1) = H(η0)

−1 1√
n

∂ρn(λ0, r0)

∂λ
+ op(1).

Note that the definition of η0 in (9) implies that ∂ρ(λ0, r0)/∂λ is a martingale difference sequence thereby
the result follows by using the martingale central limit theorem:

H(η0)
−1 1√

n

∂ρn(λ0, r0)

∂λ

d−−−−→
n→∞

N(0,H(η0)
−1J(η0),H(η0)

−1),

with J(η) being defined in (10).

B Analysis of the commodity time series

In Figure 6 we report the time plot of the monthly raw commodities yt (left column) and of their log-
return xt = ∇ log(yt) (right column). In the latter, the plots use a common scale to highlight the different
variability of the five series. The training set includes 324 monthly observations, from February 1994 to De-
cember 2021, and are obtained from the World Bank website https://www.worldbank.org/en/research/
commodity-markets. The test set includes the 12 months of 2021 and is used to assess the performance of
the models through the Mean Absolute Percentage Error, defined as follows:

MAPE =

12∑
t=1

∣∣∣∣xt − x̂t
xt

∣∣∣∣ · 100, (23)

where t ranges from January to December 2021. In Figure 7 we show the outlier analysis for natural gas
and silver; see the main article for further details.
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