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ABSTRACT

This thesis is focused on a lightweight and modular control system
formed by a piezoelectric patch connected to either a single-resonant or a
multi-resonant self-tuning shunt, which can be used to mitigate the resonant
response of one or multiple low-order flexural modes of a hosting structure.
The aim of the study is to develop a self-contained unit, which can be bonded
in batches on thin structures to decrease the low frequency flexural response
generated by stationary stochastic disturbances.

To this end, the study investigates the optimal tuning of both single-
resonant and multi-resonant shunts with reference to a global and a local
cost function. Two configurations of the single-resonant shunt are considered,
which are formed by a resistance-inductance (RL) connected respectively in
series and in parallel. Instead, a single configuration of the multi-resonant
shunt is investigated, which is formed by an array of parallel branches en-
compassing a resistance-inductance-capacitance (RLC) connected in series.
The global cost function, given by the minimisation of the hosting structure
time-averaged total flexural kinetic energy, is used as a reference metric to
assess the optimal tuning of the shunt. Instead, the local cost function, given
by the maximisation of the time-averaged electric power absorbed either by
the RL single-resonant shunt or by each RLC branch of the multi-resonant
shunt, is employed for the practical implementation of the self-tuning shunt.

The study shows that, with respect to the resistance and inductance
shunt parameters, the two cost functions are characterised by mirror bell
surfaces. Hence, the optimal shunt resistance and inductance values that
would minimise the global cost function coincide with those that would
maximise the local cost functions. As a result, both the single-resonant
and multi-resonant shunts can be suitably tuned within the shunt itself by
maximising the time-average electric power absorbed by the single-resonant
shunt or by each branch of the multi-resonant shunt. The study also shows
that, the tuning can be effectively implemented with a recursive two-paths
tuning approach, whereby the inductance is first tuned along a constant-
resistance path characterised by a bell shaped curve of the cost function and
then the resistance is tuned along a constant-inductance path characterised
by a bell shaped curve of the cost function too. This two-paths tuning
sequence can be run recursively online such that the shunt can be adapted
to variations of the electro-mechanical response of the hosting structure and
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piezoelectric transducer as well as to variations of the electric response of
the shunt components, which can both occur in presence of temperature
variations or other exogenous physical effects.

Since the optimisations along the constant resistance and constant
inductance paths are characterised by non-convex cost functions, the study
proposes to employ the extremum seeking algorithm to find the optimal shunt
parameters that would maximise the electric power absorption. This is a
model-free gradient driven search algorithm, which asymptotically leads to
the maximum of the non-convex bell-shaped paths. The algorithm is based
on a periodic dithering signal that perturbs the inductance and resistance
tuning signals such that the resulting electric power absorbed by the shunt
equally shows such a periodic signal, which is either in phase or out-of-phase
with the dithering signal depending the tuning is under or over estimating the
shunt parameter with respect to the optimal one that maximises the power
absorption. The study shows that this algorithm suitably leads to the optimal
shunt values regardless the structure is excited by a stochastic disturbance
such that the power cost function undergoes significant variations over time.

Keywords: Semi-active control; Power maximisation; Adaptive absorber;
Broadband control; Extremum seeking;
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Chapter 1

Introduction

Noise transmission through lightweight structures is a relevant problem
for civil transportation vehicles [1]–[6]. Due to national and international
regulations on carbon emissions and ecological impact combined with the
market demands for low costs and high efficiency-high comfort standards of
land and air vehicles have brought the transportation industry to develop
new designs based on lightweight and low-cost materials. These materials
fulfil most of these demands as they entail: a) less raw material and thus
lower manufacturing costs and lower ecological footprint and b) lower fuel
consumption and thus lower carbon emissions and lower operational costs.
However, they are characterised by poor vibration and noise insulation prop-
erties too, which degrade interior noise comfort in the vehicles [1], [2], [4].
Therefore, during the past three decades, there has been a steady move to-
wards new designs of aircraft fuselage, automobile bodywork, railway carriage,
etc., which increasingly incorporate lightweight and stiff thin panels, often
made of low-cost materials. This has a direct impact on the air-borne and
structure-borne noise transmission to the interior of the vehicles. In the first
place, the flexural vibration fields of these panels couple more efficiently with
the interior acoustic fields of the vehicles. In fact, the coincidence frequencies
between the panels flexural vibrations and the interior acoustics are shifted to
lower values, exactly in the audio frequency range that outlines the comfort
of passengers [7]. In the second place, the low modal density, and thus low
modal overlap [7]–[9], the frequency range of these structures tend to shift
from very low frequencies (normally below 100 Hz) towards higher frequencies
(up to 500 Hz or even 1 kHz). As a result, the critical audio frequency range
for the comfort of passengers is characterised by distinct resonances due to
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the lightly damped resonant responses of the low order flexural modes of
the lightweight and stiff panels. To mitigate these issues, vibration control
techniques are required to fully suffice these new challenges. The following
sections will present a brief overview on the control approaches. Traditionally,
the methods are divided into passive or active based on the dependence on
an external power source. There are also mixed approaches being referred
as semi-active (or semi-passive) which is partially dependent on an external
supply.

1.1 Passive Vibration Control

Passive control strategies are based on the manipulation of the fun-
damental characteristics of a dynamic system. The resonant behaviour of
a system can be adjusted by changing the mass and stiffness of the system,
in order to avoid certain disturbance frequencies. In case of very narrow
frequency band or even tonal excitation, a localised mass addition, such as
the balancing procedure for vehicle wheels, is a suitable option. Increasing the
structural dampening is another resource to mitigate the response of systems.
This latter approach is very common in household appliances specially with
foams (which scatter sound waves) and viscoelastic materials (which have high
structural damping). The applications are often related to control acoustic
emissions and reflections, reducing interior reverberation for better sound
comfort.

Another passive approach is to isolate connections points to reduce
transmission. This approach is usually applied in the cases where the main
cause of vibration cannot be removed nor directly controlled without degrading
other aspects of the system. Vehicles with internal combustion engines are
one example of application of this isolation technique. The engine parameters
cannot be modified without a severe penalty of the performance objectives,
thus the coupling to the chassis is made with rubber joints, which also add
a considerable amount of damping. In addition, the engine bay has another
insulation, a foam layer, which is responsible for thermal and acoustic comfort
inside the vehicle. Another example of isolation for vibration control is
tumble drum suspension in washing machines. The random distribution of
the clothing inside the drum during centrifuge cycle is a spinning unbalanced
system, but unlike the vehicle wheel unbalancing that is predictable and
stable, the tumble drum mass distribution changes for every water extraction
cycle. Thus, the only reliable way, so far, to mitigate this issue is by isolating
the rotating system.
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A last resource for passive vibration control is the utilisation of a
secondary system that is designed to match a specific resonant frequency for
a given structure, the so-called vibration absorber. This device extract the
energy from the main structure due to its soft stiffness coupling, this means
that the mass of the vibration absorber has less resistance to the vibration
excitation, thus the energy at the frequency band of the vibration absorber is
deflected from the main structure, reducing the resonant effect on the main
structure [10]. Because this device is designed to match a specific frequency,
it is also referred as tuned vibration absorber (TVA).

In general, these passive solutions have a satisfactory performance
for medium to high frequencies and stationary disturbances [11]. To control
the low order flexural resonant response and sound radiation of a thin stiff
structure, a more effective approach is offered by the TVA, which requires a
large seismic mass mounted on a spring-damper suspension element [12]–[16]
composed with a soft spring to generate substantial vibration and sound
radiation reductions. Thus, classical solutions to mitigate noise transmission
at low audio frequencies (e.g. stiffening, viscous damping layers, double walls,
porous materials, TVA, Helmholtz resonators, etc. ) comes at a substantial
mass and volume penalties [12], [17]. Therefore, whenever higher performance
standards are necessary or the control action should perform at low frequencies
or the system dynamics are not stationary, then active systems are preferred.

1.2 Active Vibration Control

Sensors and actuators are the keywords on the active control ap-
proaches. It reason in the simple ”if you can sense, you can act and vice-
versa”, which is not that simple in reality. In fact, the placement of sensors
and actuators is one way of categorising the active control, dividing into the
collocated control, where the pair sensor-actuator is located, physically, at the
same spot on the structure, and the non-collocated control, which the pair is
placed at different positions. There is an extensive research field on optimal
placement for sensors and actuators in structures, [18]–[22]. A collocated
control retains minimal phase, this means that the phase is limited between 0
and 180 degrees, while a non-collocated pair is not phase limited. In fact, the
phase is linked to the resonances, or poles, and anti-resonances, zeros, of a
system. The occurrence of alternating poles and zeros along the frequency
axis limits the phase, Fig. 1.1, since poles shift the phase in −180 degrees and
zeros shift in +180. When placing the sensor away from the actuator, from
collocated to non-collocated configuration, a phenomenon called pole-zero
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Figure 1.1: Relation between sensor placement, poles and zeros

shift is observed. In practical terms, this translate to a ”disappearance” of
an anti-resonance from the frequency response, which remove the minimal
phase condition. Moreover, this ”losing” of zeros is increased as the distance
between the sensor-actuator pair is increased. This ”loss” of information on
phase can be a cause of instabilities for some control loops [23].

Another way to categorise the active control is based on the number
of inputs and outputs, namely single-input single-output (SISO) systems,
which is constituted by a single pair sensor-actuator, and multiple-input and
multiple-output (MIMO) systems. This later can be divided into centralised
MIMO, where an array of sensors are connected to a central unit to control
an array of actuators [24] and decentralised MIMO, which each pair sensor-
actuator have an individual control unit, thus, being effectively an array of
SISO systems. Centralised MIMO control have the advantage of being able
to control low frequency without the dependency on collocated pairs [25], [26].
However, this configuration can be very complex with a large scale appliances
with very complicated control algorithms with the need for reliable and/or
redundancy for the sensors and actuators to prevent a general failure, thus
requiring lots of wiring (which also adds to cost and weight). On the contrary,
the decentralised MIMO can maintain the easiness, since it is basically a SISO
control, during the scaling process, it can save on the wiring cost (and weight)
and it is much more resilient to a general failure. However, this comes at the
cost of cross-talk between the control units, which can become a potential
source for instabilities.

Lastly, the categorisation can be based on the control signal path.
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Feedforward control is based on a prediction of the disturbance events to
apply a predictive correction, see Fig. 1.2, for this reason, feedforward control
is also called predictive control. The prediction is based on a very well
known system and disturbance, as Fuller [27] described ”[...] feedforward
control arrangements require a high degree of accuracy in magnitude and
phase of the control system to obtain good cancellation.”. The base for the
feedforward control is the compensator, which, as the name implies, creates
a compensating effort to minimise the disturbance on the system [28]. The
compensating signal is an ”anti-signal” that should result in a destructive
interference between the external disturbance and the control effort. In order
to create the compensating signal, the original disturbance must be directly
observed for a proper application of this technique. In addition, the phase
must be tightly controlled to insure proper cancellation. To implement this
control strategy, adaptive digital filters are often utilised, [11], being the Finite
Impulse Response (FIR) filter the most common because of its guaranteed
stability [29] at the cost of large real-time computational power.

Figure 1.2: Classic feedforward system

Error correction is the keyword for feedback control. A closed loop
configuration creates the error signal by feeding the output signal back and
subtracting from the reference signal (e = r−c), see Fig. 1.3. On the contrary
to the feedforward control, the feedback control can be implemented with
indirect sensing of the disturbance. A common application is the velocity
feedback, which, as the name implies, the measured velocity of a system is fed
back through the control path. Thus, as the control system is proportional to
the velocity, in physical terms, it has a behaviour of a sky-hook damper, hence,
increasing the energy dissipation of the system. Therefore, this approach
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Figure 1.3: Classic feedback system

is particularly effective on lightly-dampened structures [30]–[35]. Another
application is the implementation of model-based optimal controllers such
as Linear-Quadratic Regulators (LQR) which can provide large reductions
inside the bandwidth window of the control. However, the dynamics and
disturbances outside of the control bandwidth can cause distortions on the
controller operation. These are referred as control spillover and observer
spillover, respectively, and they are the main cause of instability on LQR
controllers.

Instabilities on the closed loop system is one of the main concerns for
the feedback controllers. There are a number of criterion to analyse the stabil-
ity of systems, e.g., root locus, Nyquist, Routh-Hurwitz, Lyapunov [23], [24],
[36], which depends on the knowledge of the system, G(s), and the controller,
H(s). The ability of a control loop to reject external disturbances and/or
changes on the system/control parameters while retaining its performance is
called robustness [11]. This characteristic is crucial for systems, specially for
non-linear systems, with a non-negligible uncertainty on its operation.

1.3 Semi-Active Vibration Control

The mixed territory of semi-active control try to combine the advan-
tages of both active and passive solutions while mitigating their drawbacks.
As active systems, the semi-active systems requires an external supply of
energy, but in a much smaller degree then the fully active systems. This
reduces the cost and weight of semi-active controllers in comparison to the
active counterpart. In addition, semi-active systems are based on passive
devices with adjustable properties, e.g, stiffness and damping, which confers
better stability than the active systems and, usually, better performance than
the solely passive approaches [23].
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1.3.1 Magneto/Electro Rheologic

Magneto/electro-rheological fluids are one example of the application
of semi-active control approach. This material changes its viscosity depending
on the field that is subjected to. This means by manipulating the magnetic
or the electric field it is possible to control the viscosity of the fluid. The
control over the viscosity is suitable, for instance, in shock absorbers, where
the damping is directly linked to the viscosity of the fluid [37]. Some other
applications can employ magneto/electro rheologic materials as Klingenberg
noted [38].

1.3.2 Shape Memory Alloy

Shape memory alloys (SMA) is a class of compliant materials that
can return to its initial shape after heat exposure. Moreover, under a high-
temperature phase, some SMAs exhibit an ”extended elastic behaviour”
recovering from large deformations, a so-called superelasticity [39]. These
thermo-mechanic characteristic and the superelasticity can be exploited for
designing variable stiffness springs, where the stiffness can be adjusted by
controlling the temperature of the SMA [40]–[42]. Some of the desgin appli-
cations that can benefit from such thermo-mechanical behaviour are TVAs
[41], mechanical couplers [43] and seismic absorbers [44].

1.3.3 Shunted Electromagnets

Electromagnetic devices are commonly utilised as mechanical actuators,
such as speakers , shakers, etc. Nevertheless, the coupling mechanism is dual.
Hence, mechanical input results in an electrical output. For this reason,
electromagnets with shunt circuitry have been proposed to work as TVAs
[45]–[47]. A coil-magnet transducer with the moving part suspended on springs
to form a classical mass-spring-damper mechanical vibration absorber. The
coil is connected to a resistive-inductive shunt circuit such that a combined
damping and stiffness effect is generated via the electromagnetic transduction,
which can be used to vary, and thus tune, the natural frequency and damping
ratio of the vibration absorber [48]–[53]. This arrangement is particularly
suited for the implementation of self-tuning algorithms, which vary online
the resistive and inductive components of the shunt in such a way as the
fundamental natural frequency and damping ratio of the resulting shunted
electromagnetic vibration absorber are continuously adapted to changes of
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the hosting structure dynamic response [46], [54]–[58].

1.3.4 Shunted Piezoelectrics

Similarly to electromagnetic devices, piezoelectric devices have the
ability to couple electrical and mechanical domains. The utilisation of shunt
circuits with piezoelectric material was initially proposed by Forward [59] and
later improved by Hagood and von Flotow [60]. The solution, which is adopted
in this work, relies on a piezoelectric patch transducer connected to a resistive-
inductive shunt circuit. In this case, the resistive-inductive effects of the shunt
combined with the capacitive effect of the piezoelectric element generate via
the piezoelectric transduction a combined inertia-stiffness-damping action on
the hosting mechanical system, which can be used to produce a piezoelectric
vibration absorption effect [60]–[69]. With this arrangement too, self-tuning
algorithms can be implemented, which vary online the resistive and inductive
components of the shunt in such a way as the fundamental natural frequency
and damping ratio of the resulting shunted piezoelectric vibration absorber
are continuously adapted to changes of the dynamic response of the hosting
structure [70]–[74].

1.4 Objectives

The overall goal of this Ph.D. thesis is to study and develop a modular
control unit formed by a piezoelectric patch connected to a self-tuning shunt,
which can be bonded in batches on thin structures to control the low frequency
flexural response due to stochastic broadband disturbances. To this end, the
study has been planned and developed with respect to the following specific
objectives.

• Firstly, to devise single-resonant and multi-resonant self-tuning shunts
for the control of respectively single and multiple resonant responses of
low order flexural modes of the hosting structure.

• Secondly, to identify a local cost function for the tuning of the shunts
components, which can be implemented within the unit without knowl-
edge of the flexural response of the hosting structure.

• Thirdly, to develop an on-line tuning strategy such that the components
of the shunts can be continuously updated and the control unit can
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track changes in the electro-mechanical response of the hosting structure
and piezoelectric patch and in the electrical response of the shunt itself
generated by exogenous factors, such as temperature changes.

1.5 Thesis Contribution

This thesis presents theoretical, simulation and experimental studies
on the flexural response of a thin rectangular plate model structure equipped
with the modular control units investigated in this study, which are formed
by a thin piezoelectric patch connected to a tunable shunt implemented in a
digital board. The principal contributions of the study can be summarized in
the following points.

• The design of single-resonant and multi-resonant digital shunts that
mimic electric circuits formed by a single RL branch or a parallel array
of RLC branches, which can be tuned to control the resonant responses
of target flexural modes of the hosting structure.

• The conception of a local cost function such that the shunt resistive and
inductive components are tuned by setting the time-average electric
power absorbed by the single RL branch or by each RLC branch of the
single and multi-resonant shunts respectively.

• The simulation and experimental proof that the proposed local cost
function leads to the same optimal tuning of the shunt components as
those obtained from the reference cost function given by the minimiza-
tion of the time-average total flexural kinetic energy of the plate, which,
indeed, estimates the overall flexural response of the hosting structure.

• The conception and development of a two-paths tuning strategy where
the inductive and resistive components in the single-branch or in each
branch of the multi-resonant shunt are adjusted independently along
constant-resistance and constant-inductance paths.

• The idea of running sequentially the two paths tuning strategy with
two feedback loops that implement independently extremum seeking
algorithms to search for the maximum of the constant-resistance and
constant-inductance curves of the power cost function.

• The demonstration with simulations and experiments of the vibration
control effects generated by five control units set to control the resonant
response of a single or three resonant modes of the hosting structure.
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1.6 Thesis Layout

This work is divided into five chapters. Chapter 2 serves as an intro-
duction to the proposed self-tuning shunted piezoelectric vibration control
unit. Chapter 3 and 4 discuss the implementation of the proposed modular
control unit on a plate structure. In particular, Chapter 3 discusses the
self-tuning of a single-resonant shunt for the control of the resonant response
of a target flexural mode of the hosting structure. Alternatively, Chapter
4 presents the self-tuning of a multi-resonant shunt for the control of the
resonant responses of multiple target flexural modes of the hosting structure.
Finally, Chapter 5 closes this thesis by setting the final remarks of this work
and gives suggestions for future research.



Chapter 2

Introduction to the proposed
piezoelectric control units
connected to a self tuning shunt

2.1 Introduction

This chapter presents a theoretical and simulation study on the
extremum-seeking online tuning of a piezoelectric vibration absorber for
broadband vibration control of a mechanical system subject to stochastic
stationary excitation, which is based on the maximisation of the time-averaged
electric power absorbed by the shunt.

2.1.1 Background on shunted piezoelectric units for
vibration control

The idea of using shunted piezoelectric elements to control the vibration
of mechanical systems was introduced in the late 1970 by Forward [59] who
investigated the effects produced by a piezoelectric transducer connected to
an inductive shunt (L-shunt). About a decade later, Uchino [75] discussed
the effects produced by a resistive shunt (R-shunt). Then, in the 1990s,
at first Hagood and von Flotow [60], and then Wu [62], studied the effects
produced by resistive-inductive shunts (RL-shunt), with the two elements

11
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connected in series and parallel respectively. They showed that these RL-
shunts combine with the capacitive effect of the piezoelectric element to form
a resonating electric circuit, which, in turn, effectively couples to the resonant
response of the hosting system via the piezoelectric transduction. The shunted
piezoelectric transducer can thus be set to work as a classical mass-spring-
damper mechanical vibration absorber [13], [76], which can be effectively
used to control the resonant response of the hosting mechanical system to a
stationary stochastic excitation by setting its natural frequency close to the
natural frequency of the mechanical system and its damping factor to a value
that critically dampen the resulting double-resonance response [13], [76]–[78].
Over the years, several studies were presented to provide approximate or
exact tuning laws for the optimal values of the electrical components of either
series or parallel RL-shunts (e.g. see Refs. [60], [62]–[67], [79]–[83]), which
relay on simple model problems formed by a mass-spring-damper mechanical
system coupled to the RL circuit via the transduction effect of a piezoelectric
element. In this respect, it is interesting to highlight the works presented by
Kim et al. [84]–[86], who derived with a frequency domain formulation the
optimal resistance and inductance of the shunt in such a way as to maximise
the energy dissipated in the shunt.

2.1.2 Overview of shunt self tuning approaches

In general, variations of both the dynamic response of the hosting
system and the electrical response of the shunt, due for example to mechanical
tensioning effects and temperature changes, may significantly affect the tuning
of the shunt components and thus the vibration control effectiveness of the
piezoelectric vibration absorber [65], [70], [87]–[91]. Therefore, real-time
adaptive tuning solutions are necessary to guarantee the correct functioning of
the shunted piezoelectric absorber under a wide range of operation conditions.
In this respect, Hollkamp and Starchville [70] first proposed a self-tuning
piezoelectric vibration absorber for the case where the hosting mechanical
system is exposed to a stationary stochastic excitation. They suggested that
the inductance of a series RL-shunt should be continuously adapted in such a
way as to maximise the ratio between the Root-Mean-Square (RMS) of the
voltage across the shunt and the RMS of the system response. The RMS of the
system response was obtained using an additional piezoelectric element acting
as a monitor sensor of the system vibration. The proposed tuning approach
was proved experimentally using a synthetic inductor such as a gyrator filter
[92], [93]. Fleming and Moheimani [71] reviewed this idea and suggested
to use the piezoelectric transducer connected to the shunt itself to monitor
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the vibration of the hosting structure. More specifically, they proposed to
continuously adapt the inductor of the RL-shunt by maximising the ratio
between the RMS of the voltage across the shunt and the RMS voltage of
the system response. The adaptive shunt was in this case synthesised using
a digital signal processor connected to the piezoelectric patch via a suitable
electronic interface circuit [94]–[96]. A rather different approach was taken by
Niederberger et al. [72], who, instead of minimising RMS functions, suggested
to adapt online the inductance of the shunt by minimising the relative phase
difference between a vibration reference signal and the shunt current. A
similar approach was used by Gripp et al. [74] who considered a RLC shunt
circuit with a negative capacitor, which, as discussed in Refs. [97]–[102],
enhances the effectiveness of the shunt.

2.1.3 Proposed self tuning metric and algorithm

This chapter presents a new online approach for the optimal tuning of
both the inductive and resistive components of either series or parallel RL-
shunts connected to a piezoelectric transducer fixed on resonant mechanical
system subject to a stationary stochastic excitation. The tuning is based
on an extremum seeking gradient search algorithm that finds the optimal
resistance Rs and inductance Ls components of the shunt in such a way as to
maximise the time-averaged electric power absorbed by the shunt, Pe(Rs, Ls).
The study shows that the power cost function has a bell-type non-convex
shape with a single global maximum, which is characterised by two principal
directions defined by Rs = const and Ls = const . Accordingly, it proposes
a two-paths tuning algorithm, where the inductance Ls and resistance Rs

are tuned sequentially using an extremum seeking gradient search algorithm
[103] specifically tailored to the bell-shaped cost function. The proposed
tuning, relies on the current through (RL-series) or the voltage across (RL-
parallel shunt) the shunt resistance, which can be estimated locally in the
shunt in such a way as to form a self-contained adaptive control unit without
the need of extra sensors to monitor the vibration of the hosting system.
Therefore, it is expected that shunt and tuning algorithm can be effectively
implemented in a miniaturised lightweight DSP board characterised by low
electric power consumption. In particular, for hosting systems characterised
by slow variations of their physical properties, the tuning algorithm can be
operated intermittently, possibly using the electric power absorbed by the
shunt itself.

The idea of maximising the electric power absorbed by the shunt has
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been explored for the tuning of shunted electromagnetic vibration absorbers
too. In particular, in Refs. [56], [57] showed that, unlike piezoelectric vibration
absorbers, the electric power maximisation cost function can be effectively
implemented provided the electromagnetic transducer is characterised by a
low mechanical damping.

Extremum seeking control was introduced in the 1950s by Morosanov
[104] and Ostrovsky [105] to find the optimal values of static cost functions.
More recently, in the 2000s, the implementation of stable feedback extremum
seeking control schemes was investigated to search for the optimal values of
dynamic cost functions [106]–[109], which have been used in this study to
adapt in real-time the tuning of the resistive-inductive components of the
shunts.

The maximisation of the time-averaged electric power absorption has
been recently considered for the tuning of resistive and inductive components
of a shunted electro-magnetic vibration absorber [56], [57]. Also, a similar
approach based on the maximisation of the time-averaged vibration power
absorption has been employed for the tuning of the control gain of velocity
feedback control units using collocated sensor-actuator pairs [16], [110]. In
this respect, it is important to underline that this tuning approach is valid
for stochastic excitations otherwise, as shown in Ref. [111], the system may
actually maximise the vibration power injected in the controlled system by a
tonal excitation.

2.1.4 Simple case study

To accurately introduce and analyse the proposed tuning approach, a
simple case study is considered, which is composed by a seismic mass mounted
onto a piezoelectric elastic element connected to the series or parallel RL-
shunt respectively. This system can be modelled with a classical mass-spring-
damper mechanical system, which is connected through the piezoelectric
transduction to an electric mesh encompassing the inherent capacitance of
the piezoelectric transducer and the resistive and inductive components of the
series and parallel shunts. A simple model problem is thus considered, which
nevertheless replicates the typical resonant response of low-order structural
modes of complex structures.



2.2. LUMPED MODEL AND FORMULATION 15

2.1.5 Structure of the chapter

This Chapter is structured in three sections. Section 2.2 presents the
state-space and frequency formulations used to derive the response of the single
degree of freedom (SDOF) mechanical system equipped with a piezoelectric
transducer, which is connected to the series and parallel RL-shunts. Section
2.3 derives and investigates the principal features of the reference cost function
given by the time-average of the mechanical kinetic energy and the proposed
cost function given by the time-average of the electrical power absorbed in
the shunt with respect to the tuning of the shunt RL components. Then,
Section 2.4 presents a simulation study on the online implementation of the
proposed self-tuning approach using the extremum seeking gradient search
algorithm.

2.2 Mechanical system and piezoelectric vi-

bration absorber: lumped parameter

model and mathematical formulations

This section first presents the lumped parameter model of the mechan-
ical system and piezoelectric vibration absorber investigated in this thesis.
It then introduces the mathematical formulations used to derive the system
response and to calculate the time-average kinetic energy of the system and
the time-average electric power absorbed by the shunt, which have been
used respectively to assess the vibration control performance and to tune
the resistive and inductive shunt components of the piezoelectric vibration
absorber.

2.2.1 Lumped-parameter model

The study considers a simple electro-mechanical system, which, as
shown in Fig. 2.1(a), is characterised by a block mass suspended on a
piezoelectric elastic element with thin electrodes at the top and bottom
surfaces, which are connected to the self-tuning RL electric shunt. The
block mass is exposed to a stationary stochastic force excitation f(t). The
piezoelectric element and RL-shunt form a piezoelectric vibration absorber,
which is used to control the time-averaged vibration of the suspended block
mass. The system is thus studied with the lumped parameter model shown
in Fig. 2.1(b), which is composed by a mass mm in parallel with a damper
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having damping coefficient cm. The elastic effect of the piezoelectric element
is described with an axial spring connected in parallel too. Assuming the
piezoelectric transducer is in short circuit, the stiffness of the spring is given
by kEm = Y E

peApe/Hpe , where Y
E
pe is the Young modulus of the piezoelectric

material under constant electric field and Ape, Hpe are the cross sectional
area and height of the element. The electro-mechanical transduction effect of
the piezoelectric element is modelled with a two port ideal transducer [112],
which is schematised as a voltage-controlled ideal reactive force generator
and a relative velocity-controlled ideal current generator, both characterised
by the transduction coefficient ψpe = d33k

E
m, where d33 is the strain/charge

piezoelectric constant in direction 33 [113]. Therefore, the two transduction
effects are governed by the following laws:

fpe = ψpevs, (2.1)

ipe = ψpeẋm, (2.2)

where fpe and ipe are the force and current due to the shunt voltage vs
and block mass velocity ẋm respectively. The piezoelectric transducer is
also characterised by a capacitive effect, which is described with a capacitor
connected in parallel with the transducer ideal current generator. Assuming
the piezoelectric transducer is blocked, the capacitance is given by CS

pe =
(ϵSpeApe)/Hpe where ϵ

S
pe = ϵTpe(1− k233) is the permittivity of the piezoelectric

material under constant strain [61], which is normally derived from measured
data of the permittivity under constant stress ϵTpe and the electromechanical
coupling factor k233 of the piezoelectric material (e.g. see Table 4.1 in Ref.
[113]).

2.2.2 System equations of motion and state-space for-
mulation

The electro-mechanical coupled response of this system can be derived
applying Newton’s law for the motion of the block mass and Kirchhoff law
for the current flow in the electric mesh, which respectively give:

mmẍm = −cẋm − kEmxm + ψpeλ̇s + fm, (2.3)

is = CS
peλ̈s + ψpeẋm, (2.4)
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Figure 2.1: block mass mounted on a piezoelectric transducer connected to
an adaptive shunt: a) scheme, b) lumped parameter model.

where is is the shunt current and λs is the shunt flux linkage, that is λ̇s = vs
[113]. Also, using Kirchhoff voltage and current laws, the following equations
are derived for the series and parallel RL-shunts respectively:

λ̇s = −Rsis − Lsi̇s, (2.5)

is = − 1

Rs

λ̇s −
1

Ls
λs. (2.6)

Here the minus sign in the right hand side of the two equations arises from
the notation used for the shunt voltage, and thus flux linkage, and the shunt
current variables. Note that the dot-notation is used for the derivation with
respect to time, such that ẋm = dxm

dt
, i̇s =

dis
dt

and λ̇s =
dλs
dt
. Equations (2.3),

(2.4) can be combined with either Eq. (2.5) or (2.6) to give the equation of
motion in state-space form when the system is connected respectively to the
RL-series or RL-parallel shunts. To start with, the system connected to the
RL-series shunt is considered. Assuming the state variables are grouped in
the state vector

ys =




xm
is
ẋm
i̇s


 , (2.7)

the first order differential equations are casted in the following matrix expres-
sion:

ẏs = Asys +Bsfm. (2.8)



18 CHAPTER 2. PROPOSED CONTROL UNITS

Here the state and input matrices are given by:

As =




0 0 1 0
0 0 0 1

−kEm/mm −(ψpeRs)/mm −cm/mm (−ψpeLs)/mm

0 −1/(CS
peLs) ψpe/(C

S
peLs) −Rs/Ls


 , (2.9)

Bs =




0
0

1/mm

0


 . (2.10)

Alternatively, for the system connected to the parallel RL-shunt,
collecting the state variables in the state vector

ys =




xm
λs
ẋm
λ̇s


 , (2.11)

the first order differential equations are casted in the following matrix expres-
sion:

ẏp = Apyp +Bpfm. (2.12)

In this case, the state and input matrices are given by:

Ap =




0 0 1 0
0 0 0 1

−kEm/mm 0 −cm/mm ψpe/mm

0 −1/(CS
peLs) −ψpe/(CS

pe) −1/(CS
peRs)


 , (2.13)

Bp =




0
0

1/mm

0


 . (2.14)

Assuming the excitation is a random force characterised by a white noise
spectrum, the response of the system is evaluated with respect to the time-
average of the kinetic energy of the system, that is

K̄(Rs, Ls) = E[K(Rs, Ls, t)], (2.15)

where E[ ] is the expectation operator and the time-dependent kinetic energy
is given by:

K(Rs, Ls, t) =
1

2
mmẋ

2
m. (2.16)
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The velocity of the mass can be retrieved directly from the state-space vectors
ys, yp as follows

ẋm = CKys, (2.17)

ẋm = CKyp, (2.18)

where the output matrix is given by:

CK =
[
0 0 1 0

]
. (2.19)

Therefore, the kinetic energy can be expressed as follows:

K(t) =
1

2
mmy

T
s C

T
KCKys =

1

2
mmy

T
pC

T
KCKyp. (2.20)

As will be discussed below, the tuning approach proposed in this thesis
is based on the maximisation of the time-averaged electric power absorbed
by the shunt

P̄ (Rs, Ls) = E[P (Rs, Ls, t)]. (2.21)

Here, the time-dependent power absorbed by the shunt corresponds to the
power dissipated by the shunt resistor, which, as highlighted in red in Fig.
2.2(a) and (b), in practice can be estimated for both shunts from the voltage
drop across the shunt resistor vR and the value of the shunt resistor itself Rs,
i.e.:

P (Rs, Ls, t) = vRiR =
1

Rs

v2R. (2.22)

For the simulations presented in this thesis, the above expression has
been specified for the RL-series and RL-parallel shunts with reference to the
shunt current and shunt voltage state-space variables respectively, such that:

Pseries(Rs, Ls, t) = vRis = Rsi
2
s, (2.23)

Pparallel(Rs, Ls, t) = vsiR =
1

Rs

v2s =
1

Rs

λ̇2s. (2.24)

Here vR = Rsis is the voltage across the resistor connected in series with
the inductor and iR = vs/Rs is the current through the resistor connected
in parallel with the inductor. The shunt current and shunt voltage can
be retrieved from the state-space vectors ys, yp with the following output
expressions:

is = Ciys, (2.25)
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Figure 2.2: Equivalent mechanical models for (a) the series and (b) the
parallel RL-shunts. Self-tuning arrangement highlighted in red.

vs = λ̇s = Cvyp, (2.26)

where the output matrices are given by:

Ci =
[
0 1 0 0

]
. (2.27)

Cv =
[
0 0 0 1

]
. (2.28)

Therefore, the power expressions in Eqs. (2.23), (2.24) can also be derived
with respect to the state-vectors as follows:

Pseries(Rs, Ls, t) = Rsy
T
s C

T
i Ciys. (2.29)

Pparallel(Rs, Ls, t) =
1

Rs

yTpC
T
vCvyp. (2.30)

2.2.3 Frequency domain formulation for spectral anal-
ysis

Assuming time-harmonic vibrations such that the mechanical (dis-
placement, velocity, force) and electrical (current, voltage) functions take the
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form f(t) = Re[f(ω)exp(jωt)], where f(ω) is the complex amplitude, ω is
the circular frequency and j =

√
−1, Eqs. (2.3), (2.4) can be rewritten with

reference to the complex amplitudes of the mechanical and electrical variables
as follows (

jωmm + cm +
kEm
jω

)
ẋm(ω)− ψpevs(ω) = fm(ω), (2.31)

is(ω) = jωCS
pevs(ω) + ψpeẋm(ω). (2.32)

Here ẋm(ω), fm(ω), is(ω), vs(ω) are the complex amplitudes respectively of
the block mass velocity and force and of the shunt current and voltage. The
complex voltage across the shunt terminals is related to the complex current
flow through the shunt terminals by the following impedance relation

vs(ω) = −Zs(ω)is(ω), (2.33)

where Zs(ω) is exactly the impedance function of the shunt, which for the
series and parallel RL shunts takes respectively the form

Zs(ω) = Rs + jωLs, (2.34)

Zs(ω) =
( 1

Rs

+
1

jωLs

)−1

. (2.35)

Substitution of Eq. (2.32) into Eq. (2.33) gives

vs(ω) = −Zps(ω)ψpeẋm(ω), (2.36)

where the piezo-shunt impedance function can be retrieved from the following
relation:

1

Zps(ω)
=

1

Zs(ω)
+

1

ZS
pe(ω)

. (2.37)

Here ZS
pe(ω) =

1
jωCS

pe
is the electrical impedance of the piezoelectric transducer,

which is characterised by the capacitive effect with reference to constant strain
[112]. Also, Zs(ω) is the electrical impedance of the series and parallel RL-
shunts defined above. Eq. (2.37) can now readily substituted into Eq. (2.31)
to give: [

Zm(ω) + ψ2
peZps(ω)

]
ẋm(ω) = fm(ω), (2.38)

where the mechanical impedance of the mass-spring-damper system is given
by:

Zm(ω) = jωmm + cm +
kEm
jω
. (2.39)
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The equivalent mechanical impedance effects produced by the piezoelectric
transducer connected to the series and parallel RL-shunts are thus given
respectively by:

ψ2
peZps(ω) =

ψ2
pe

1
1

jωCS
pe

+ 1
Rs+jωLs

=
1

1
kSpe

jω

+ 1
cs+jωms

= kSpe

(
jω + cs

ms

)
(
− ω2 + jω cs

ms
+

kSpe
ms

) , (2.40)

ψ2
peZps(ω) =

ψ2
pe

1
1

jωCS
pe

+ 1
Rs

+ 1
jωLs

=
1

1
kSpe

jω

+ 1
cs
+ 1

jωms

= kSpe

(
jω
)

(
− ω2 + jω cs

ms
+

kSpe
ms

) . (2.41)

These expressions suggest that, as discussed in Refs. [72], [80], [82] and
shown schematically in Fig. 2.2, the series RL-shunt produces an equivalent

mechanical impedance effect given by a spring kSpe =
ψ2
pe

CS
pe

in series with a

damper cs = ψ2
peRs and mass ms = ψ2

peLs connected in parallel. Alternatively,
the parallel RL-shunt generates an equivalent mechanical impedance effect

given by the spring kSpe =
ψ2
pe

CS
pe
, damper cs = ψ2

peRs and mass ms = ψ2
peLs

connected in series. At this point, the complex amplitude of the velocity
response of the system with respect to the complex amplitude of the force
excitation can be readily derived from Eq. (2.38) in terms of the following
mobility expression

ẋm(ω) = Y (ω)fm(ω), (2.42)

where the mobility function is given by

Y (ω) =
1[

Zm(ω) + ψ2
peZps(ω)

] . (2.43)

This mobility function can be specified for the series and parallel RL-shunts
with second order polynomial expressions in ω for the mechanical and shunt
electro-mechanical effects:

Ys(ω) =
jω(−ω2 + jω2ξsωs + ω2

s)

mm

[
(−ω2 + jω2ξmωm + ω2

m)

(−ω2 + jω2ξsωs + ω2
s) +

kSpe
mm

(−ω2 + jωΩs)
]−1

, (2.44)
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Yp(ω) =
1

mm

jω(−ω2 + jω2ξpωp + ω2
p)[

(−ω2 + j2ξmωωm + ω2
m)(−ω2 + jω2ξpωpr + ω2

p) +
kSpe
mm

] , (2.45)

Here, ωm =
√

km
mm

and ξm = cm

2
√
km/mm

are the natural frequency and damping

ratio of the mechanical system. Also, ωs =
√

kSpe
mm

= 1√
LsCS

pe

, ξs =
cs

2
√
kSpems

=

Rs

2

√
CS

pe

Ls
, Ωs =

cs
ms

= Rs

Ls
are the natural frequency, the damping ratio and the

resistive-inductive cut-off frequency of the piezoelectric transducer connected

to the series RL-shunt. Finally, ωp =
√

kSpe
ms

= 1√
LsCS

pe

, ξp =
(mskSpe)/cs

2
√
kSpems

=

1
2Rs

√
Ls

CS
pe

are the natural frequency and damping ratio of the piezoelectric

transducer connected to the parallel RL-shunt. At this point, the time-
averaged kinetic energy and the time-averaged electric power dissipated by
shunt resistor can be readily derived recalling that

K̄(Rs, Ls) =
1

2π

∫ +∞

∞

SK(Rs, Ls, ω)dω, (2.46)

P̄ (Rs, Ls) =
1

2π

∫ +∞

∞

SP (Rs, Ls, ω)dω, (2.47)

where SK(ω) is the Power Spectral Density (PSD) of the kinetic energy
function and SP (ω) is the PSD of the electric power dissipated by the shunt
resistor. The PSD of the kinetic energy is given by

SK(Rs, Ls, ω) =
1

2
mm lim

T→∞
E

[
1

T
ẋ∗m(ω)ẋm(ω)

]
, (2.48)

where E[ ] is the expectation operator, ( )∗ is the complex conjugate operator
and T is the length of the time function ẋ(t) having Fourier Transform ẋm(ω)
[114]. Substituting Eq. (2.42) into Eq. (2.48) leads to

SK(Rs, Ls, ω) =
1

2
mm|Y (ω)|2Sff (ω), (2.49)

where Sff (ω) is the PSD of the force excitation:

Sff (Rs, Ls, ω) = lim
T→∞

E

[
1

T
f ∗
m(ω)fm(ω)

]
. (2.50)
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In parallel, according to Eqs. (2.22), (2.23), the PSD of the electric power
dissipated by the resistor in the series and parallel RL-shunts is given by the
following expressions

SP (Rs, Ls, ω) = −Rs lim
T→∞

E

[
1

T
i∗s(ω)is(ω)

]
, (2.51)

SP (Rs, Ls, ω) = − 1

Rs

lim
T→∞

E

[
1

T
v∗s(ω)vs(ω)

]
(2.52)

Here, recalling Eqs. (2.33), (2.36), (2.37), (2.42), the complex amplitude of
the current through the series RL-shunt is given by

is(ω) = Gif (ω)fm(ω), (2.53)

whereas, the complex amplitude of the voltage across the shunt is given by

vs(ω) = −Gvf (ω)fm(ω). (2.54)

In these expressions

Gif (ω) =
ZS
pe(ω)ψpeY (ω)

ZS
pe(ω) + Zs(ω)

, (2.55)

and

Gvf (ω) =
ZS
pe(ω)Zs(ω)ψpeY (ω)

ZS
pe(ω) + Zs(ω)

. (2.56)

Therefore, the PSD of the electric power dissipated by the resistor in the
series and parallel RL-shunts given in Eqs. (2.51), (2.52) result

SP (Rs, Ls, ω) = −Rs|Gif (ω)|2Sff (ω), (2.57)

SP (Rs, Ls, ω) = − 1

Rs

|Gvf (ω)|2Sff (ω). (2.58)

2.3 RL-maps and optimal tuning

The effectiveness of the proposed tuning strategy based on the max-
imisation of the time-average electric power absorbed by the shunt P̄ is
investigated in this section with respect to the time-averaged kinetic energy
of the SDOF system K̄, which gives the effective response of the mechanical
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Table 2.1: Electro-mechanical properties of the system depicted in Fig. 2.1
Property Value
Seismic mass mm = 3, 79 kg
Damping coefficient cm = 16, 85 Ns/m
Short circuit transducer stiffness kEm = 1, 17× 106 N/m
Piezoelectric transduction coefficient ψpe = 89, 4× 10−3 N/V, As/m
Blocked transducer capacitance CS

pe = 501 nF

system and shunted piezoelectric vibration absorber. To this end, for both
RL-series and RL-parallel shunts, the plots with RL-maps of K̄(Rs, Ls) and
P̄ (Rs, Ls) are first presented. Hence, waterfall spectra are introduced with
the SDOF system kinetic energy PSD, SK(Rs, Ls, ω), and shunt absorbed
power PSD, SP (Rs, Ls, ω) calculated considering the intermediated values of
the resistance Rs and inductance Ls that would be implemented in the shunts
to move from arbitrary initial values (R(s,ini), L(s,ini)) to the optimal values
(R(s,opt), L(s,opt)) with the proposed two-paths tuning strategy. The analysis
considers the system depicted in Fig. 2.1 is characterised by the physical
parameters summarised in Table 1.

2.3.1 RL-series

The SDOF mechanical system with piezoelectric transducer connected
to the RL-series shunt is considered first. Fig. 2.3(a) shows that the map of the
time-averaged kinetic energy of the SDOF system, K̄(Rs, Ls), is characterised
by a non-convex inverse bell-shape with a single minimum point. Instead, Fig.
2.3(b) shows that the map of the time-averaged power absorbed by the shunt,
P̄ (Rs, Ls), is given by a mirror non-convex bell-shape with a single maximum
point. As highlighted by the cross and circle markers, the points where
K̄(Rs, Ls) is minimum and P̄ (Rs, Ls) is maximum overlap. Therefore, it can
be concluded that the time-averaged response of the SDOF mechanical system
connected to the shunted piezoelectric vibration absorber can be effectively
attenuated by setting the optimal shunt resistance R(s,opt) and inductance
L(s,opt) to maximise the time-averaged electric power absorbed by the shunt. A
close inspection of the two plots suggests that the two maps are characterised
by two principal directions defined by Rs = const and Ls = const. Therefore,
a two-paths climb strategy is proposed to find independently the optimal
resistance R(s,opt) and the optimal inductance L(s,opt) of the shunt, which
maximises P̄ (Rs, Ls) and thus minimises K̄(Rs, Ls). For instance, the map
in Fig. 2.3(b) shows the two paths, which, starting from arbitrary initial
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values (R(s,ini), L(s,ini)), first lead to a value close to the optimal inductance,
i.e. (R(s,ini), L(s,ini)) → (R(s,ini), L(s,opt)), and then get to a value close to the
optimal resistance, i.e. (R(s,ini), L(s,opt)) → ( R(s,opt), L(s,opt)). As will be
discussed in the forthcoming section, this two-paths optimisation search can
be conveniently implemented iteratively with an extremum seeking gradient
search algorithm, which effectively finds the maxima of the Rs = const and
Ls = const non-convex paths. The two maps in Fig. 2.3 suggest that single
climbs along Rs = const and Ls = const are sufficient to get to a point
close to the optimal inductance L(s,opt) and resistance R(s,opt) of the shunt.
Actually, the bell shaped power cost function is quite flat in the vicinity of
the peak value and thus the time-averaged power absorbed by the shunt and
the time-averaged kinetic energy of the system when the shunt implements
the resistance and inductance found with the two climbs is very close to the
maximum value and minimum value possible respectively.

Figure 2.3: RL-series shunt. Maps of K̄(Rs, Ls) (a) and P̄ (Rs, Ls) (b). Lateral
plots: maps slice for Lopt. Top plots: maps slice for Ropt. Lines with arrows
indicate (1) the Ri, Li → Lopt and (2) the Ri → Ropt, Lopt tuning paths.
Cross marker min(K̄). Circular marker max(P̄ ).

The two waterfall plots in Fig. 2.4 show that, when the shunt is
mistuned, i.e. Rs = R(s,ini), Ls = L(s,ini), the spectra of the kinetic energy
PSD, SK(ω), and absorbed power PSD, SP (ω), highlighted by the thick
black lines are characterised by a single resonance peak, centred at about ωm.
Then, as the inductance is raised towards the optimal value L(s,opt), a second
peak with increasingly larger resonance frequency ω2 < ωm progressively
grows whereas the former first peak progressively moves to higher frequencies
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Figure 2.4: RL-series shunt. Waterfall spectra of (a) SK(ω) and (b) SP (ω) for
the shunt resistance and inductance values of the optimisation paths (1) and
(2) highlighted in Fig 2.3. Thick-black spectra R = Ri, L = Li. Thick-blue
spectra R = Ri, L = Lopt. Thick-red spectra R = Ropt, L = Lopt.

ω1 > ωm. The thick blue spectra show that, when a value close to L(s,opt) is
reached, both SK(ω) and SP (ω) are characterised by two marked peaks. At
this point, as the shunt resistance is raised towards its optimum value R(s,opt),
the two peaks in the SK(ω) and SP (ω) spectra are progressively rounded
and broadened. Overall, the vibration response of the mechanical system is
significantly lessened whereas the electric power absorbed, and thus dissipated,
by the shunt is further increased to a maximum value.

2.3.2 RL-parallel

The SDOF mechanical system with the piezoelectric transducer con-
nected to the RL-parallel shunt is considered next. In this case too, the plots
in Fig. 2.5 show that the maps of K̄(Rs, Ls) and P̄ (Rs, Ls) are characterised
respectively by a non-convex inverse bell-shape with a single minimum point
and a mirror non-convex bell-shape with a single maximum point. Yet again,
the cross and circle markers, indicate that the points where K̄(Rs, Ls) is mini-
mum and P̄ (Rs, Ls) is maximum overlap. Therefore, for the RL-parallel shunt
too, the time-averaged response of the SDOF mechanical system connected
to the shunted piezoelectric vibration absorber and excited by a stochastic
force can be effectively attenuated by setting the shunt resistance and shunt
inductance to maximise the time-averaged electric power absorbed by the



28 CHAPTER 2. PROPOSED CONTROL UNITS

shunt itself. As observed for the series RL-shunt, the two maps in Fig. 2.5
are characterised by principal directions Rs = const and Ls = const. Hence,
the two-paths tuning strategy proposed above for the RL-series shunt can
be adopted in the RL-parallel shunt too. For example, the two bell-shaped
non-convex paths highlighted in Fig. 2.5(b) can be climbed in sequence with
an extremum seeking gradient search algorithm, first to find the optimal
inductance, L(s,opt), and then to find the optimal resistance, R(s,opt). The
two maps, indicate that in this case, after single climbs along Rs = const
and Ls = const the values identified for the shunt inductance and resistance
practically correspond to the optimal ones L(s,opt) and R(s,opt).

Figure 2.5: RL-parallel shunt. Maps of K̄(Rs, Ls) (a) and P̄ (Rs, Ls) (b).
Lateral plots: maps slice for Lopt. Top plots: maps slice for Ropt. Lines with
arrows indicate (1) the Ri, Li → Lopt and (2) the Ri → Ropt, Lopt tuning
paths. Cross marker min(K̄). Circle marker max(P̄ ).

The waterfall plots in Fig. 2.6 show that, as seen above for the series
RL-shunt, when the RL-parallel shunt is mistuned, i.e. Rs = R(s,ini), Ls =
L(s,ini), the spectra of the kinetic energy PSD, SK(ω), and absorbed power
PSD, SP (ω), highlighted by the thick black lines are characterised by a
single resonance peak, centred at about ωm. However, in this case, when the
inductance is raised towards the optimal value L(s,opt), a second peak arises at
progressively smaller resonance frequencies ω2 > ωm whereas the initial peak
progressively moves to lower frequencies ω1 < ωm. The thick blue spectra
show that, when L(s,opt) is reached, both SK(ω) and SP (ω) are characterised
by a pair of neighbour peaks, which are then rounded off and broadened as
the shunt resistance is raised towards its optimum value R(s,opt). Overall,
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Figure 2.6: RL-parallel shunt. Waterfall spectra of (a) SK(ω) and (b) SP (ω)
for the shunt resistance and inductance values of the optimisation paths (1)
and (2) highlighted in Fig. 2.3. Thick-black spectra R = Ri, L = Li. Thick-
blue spectra R = Ri, L = Lopt. Thick-red spectra R = Ropt, L = Lopt.

the RL-parallel shunt too generates a substantial reduction of the vibration
response of the mechanical system accompanied by a significant increment of
the electric power absorbed, and thus dissipated, by the shunt.

2.4 Self-tuning algorithm: convergence analy-

sis

The online system to tune the shunts featured in this study is based on
an extremum seeking gradient search algorithm [105] specifically tailored to
the electric power absorption objective function proposed in this thesis, which
is characterised by a non-convex bell-shape with a single maximum. More
specifically, as discussed in the previous section and depicted in the flow-chart
of Fig. 2.7, the tuning is based on a two-paths search, where considering
initial values of the shunt components R(s,ini), L(s,ini) the search is carried out
in two phases:

1. The optimal inductance L(s,opt) is pursued along the path Rs = R(s,ini)

starting from L(s,ini);

2. The optimal resistance R(s,opt) is searched along the path Ls = L(s,opt)

starting from R(s,ini).
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Figure 2.7: Flow chart of the proposed tuning approach

As shown above, the cost function based on the maximisation of
the time-averaged electric power absorbed by each branch of the shunts is
characterised by a bell-type non-convex surface with respect to the inductance
and resistance shunt parameters, which actually define principal directions
to search for the maximum of the power cost function. Hence, the tuning
can be run independently along constant-resistance and constant-inductance
paths, which, in turn, are characterised by bell-shaped curves with respect
to the resistance and inductance parameters respectively. Since these cost
functions are characterised by non-convex curves, in this study the search for
the maximum is implemented along the two tuning paths with an extremum
seeking algorithm [103]–[107], whose operation principle is illustrated here
considering the tuning of the inductance parameter as depicted in the block
diagram in Figure 2.8.

The extremum seeking algorithm is a perturb-and-see algorithm [103],
which, relies on a ripple signal that modifies the tuning variable, thus creating
a ripple on the output cost function signal too, that is on the electric power
absorbed by the shunt. For simplicity, as depicted in the block diagram
in Figure 2.8, the implementation of the tuning of the shunt inductance is
described here. As anticipated before, the algorithm employs a time-harmonic
ripple signal
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Figure 2.8: Block diagram of the State-Space model for the SDOF system
with the extremum seeking gradient search feedback control loop for the
online tuning of the series shunt resistance Rs and inductance Ls.

r̃(t) = r0sin(ωLt), (2.59)

with amplitude r0 and circular frequency ωL, which is chosen much smaller
than the lower frequency of operation of the shunted piezoelectric patch. This
signal is amplified by a gain grL and then added to the tuning inductance
signal L̂. As depicted in Figure 2.9, the resulting signal is thus characterised
by the off-set tuning signal L̂ and the magnified time-harmonic ripple r̃grL,
that is

L̃(t) = L̂(t) + grLr0sin(ωLt), (2.60)

The wavy tuning inductance generates an equivalent ripple on the electric
power absorbed by the shunt, which can then be defined as the sum of two
power terms as well:

P = P̂ + P̃ . (2.61)

The first term, P̂ , is the absorbed power due to the L̂ tuning component
whereas the second term P̃ = σP grLr̃ encompasses the ripple signal whose
amplitude is scaled by a factor σP . In this way, yet the extremum seeking
algorithm can be implemented to find the maximum of the time-average
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Figure 2.9: Extremum seeking working principle for the tuning of the shunt
inductance

electric power absorbed by the shunt. As can be noticed in Figure 2.9, when
L̂ < Lopt the wavy time-averaged power signal P̃ and the wavy tuning signal

r̃(t) are bound to be in-phase (i.e. σP > 0), whereas when L̂ > Lopt they
are bound to be out-of-phase (i.e. σP < 0). Therefore, to identify whether

the inductance signal L̂ is higher or lower than the optimal value Lopt, it is
sufficient to check the relative phase of the harmonic components of P̃ and r̃.
As depicted in the block diagram of Figure 2.8, the harmonic signal P̃ can be
extracted from the electric power signal P̄ with a high pass filter

Hhp(jω) =
jω

jω + ωhp

, (2.62)

having very low cut-off frequency ωhp. To compare the phase of r̃ and P̃ the
two signals are then multiplied, to give a wavy tuning signal:

L̃d(t) = P̃ r̃. (2.63)

As highlighted in Figure 2.9, when the two harmonic signals P̃ and r̃ are
in-phase their product will be mostly positive, i.e., L̃d > 0, whereas when
they are out-of-phase it will be mostly negative, i.e., L̃d < 0. At this point,
to generate a suitable tuning signal L̂, the wavy signal L̃d should be rectified.
Therefore, the L̃d signal is integrated and magnified such that

L̂ = gL

∫

T

L̃ddt. (2.64)
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In conclusion, the resulting tuning signal will tend to rise when L̂(t) <

Ls,opt(t) and tend to decrease when L̂(t) > Ls,opt(t). In fact, the rate with

which the L̂(t) signal increases or decreases is proportional to the gradient
of the objective function signal P (t). The gain gL dictates the speed of
convergence of the algorithm, although to avoid instability its value should be
carefully chosen [108]. In summary, as highlighted in Figure 2.8, the extremum
seeking algorithm is characterised by three blocks: first the modulation block
where the tuning signal is modulated by the ripple signal and then the
demodulation and parameter update blocks where the wavy electric power
signal is demodulated and rectified in such a way as to have the tuning
signal. The tuning of the resistance is based exactly on the same type of
algorithm, which is therefore not described in detail here. This perturb-
and-observe algorithm adapts asymptotically the inductance and resistance
to their optimal values. Therefore, when the algorithm has converged, the
shunt resistance and inductance will tend to oscillate indefinitely around the
optimal values. The implementation of the algorithm is fairly straightforward,
but requires a careful choice of the frequency ωL and amplitude r0 of the
dithering signal r̃(t); the cut-off frequency ωhp and the gains gzL , gzR , gL
and gR. Because of this exclusive dependence on the ripple signal and output
electric power signal, the optimisation (maximisation) is not dependent on
an explicit model of the system. Thus, the proposed self-tuning shunted
piezoelectric vibration absorber can track the changes in the flexural response
of the hosting structures, due for example to variations of temperature or to
variations of the operation conditions, which would affect both the mechanical
response of the structure, the electro-mechanical response of the piezoelectric
patches and the electrical response of the shunts. The self-tuning algorithm
proposed in this study can effectively track these changes and maximise the
control effect in a wide range of operation conditions.

The search in each path is stopped once the variation of the time-
averaged absorbed power is smaller than a predefined threshold ϵP As de-
scribed in the lateral and top plots of Fig. 2.3(b) and 2.5(b), both paths are
characterised by non-convex bell-shaped curves with single maxima, which, as
discussed in Section 2.2, identify values close to L(s,opt) and R(s,opt) respectively.
As depicted in the flow chart, the initial search is repeated online by setting
at the beginning of each iteration R(s,ini) = R(s,opt) and L(s,ini) = L(s,opt). In
this way, the effective optimal shunt inductance and resistance are identified.

Nevertheless, as will be shown in the forthcoming sub-sections, the
combination of the proposed time-averaged absorbed electric power objective
function and extremum seeking gradient search adaptive control algorithm
gives a powerful approach for the tuning of the resistive and inductive com-
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ponents of the RL-series and RL-parallel shunts. The forthcoming two
sub-sections present numerical simulations on the real-time implementation of
the proposed tuning approach. For this analysis, the random force excitation
is actually passed through a high-pass filter, with low cut-off frequency at
5 Hz, and a low-pass filter, with cut-off frequency 10 times higher than the
mechanical natural frequency of the SDOF system. The high-pass filter cuts
the steady-state component of the random excitation whereas the low-pass
filter cuts the higher frequencies spectral component of the excitation to
facilitate the convergence of the algorithm that integrates the first-order
differential equations of the state-space model of the system.

2.4.1 RL-series

To start with, the real-time implementation of the RL-series shunt is
analysed here. Fig.s 2.10 and 2.11 show three time-histories taken during the
implementation of the two-paths extremum seeking gradient search algorithm
proposed above to tune the shunt inductance and resistance in sequence.
More specifically, Figure 2.10 shows: (a) the stochastic force excitation, (b)
the velocity of the black mass, which gives an indication of the response of
the mechanical system, and (c) the shunt voltage, which gives an indication
of the electrical power absorbed by the shunt. In parallel, Fig. 2.11 shows
the time-histories of the mechanical system kinetic energy, (b) electric power
absorbed by the shunt and (c) shunt inductance and shunt resistance.

Figure 2.10: Time-histories of (a) the force excitation, (b) block mass velocity
and (c) shunt voltage when the proposed tuning algorithm is implemented on
the RL-series shunt.

Considering first the plots in Fig. 2.10, the velocity graph shows that,
as the algorithm is implemented, the amplitude of the velocity nearly halves
whereas the amplitude of the shunt voltage nearly doubles. Moving to Fig.
2.11, plots (a) and (b) indicate that initially, during the inductance tuning
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Figure 2.11: Time-histories of (a) the instantaneous kinetic energy (orange
broken line time-averaged value), (b) instantaneous electric power absorbed
by the shunt (orange broken line time-averaged value) and (c) the shunt induc-
tance (blue line) and resistance (red line) as the proposed tuning algorithm is
implemented on the RL-series shunt.

phase, the kinetic energy of the system is steady while the power absorbed
from the mechanical system increases slightly. The average values in these
plots refer to the previous window. Thus, the increase seen in the time average
of the kinetic energy on Fig. 2.11(a) is referred to the initial state, as well as
the small value in the time average of the electric power. Nevertheless, after
about 80 seconds there is a marked decrement of the system kinetic energy,
which then continues to fall until the optimal inductance is reached within
the imposed tolerance τ . The following tuning of the resistance requires a
single step, which produces a negligible reduction of the kinetic energy of
the system anyhow. This is related to the fact that, as shown on the lateral
and top plots in Fig. 2.3(b), the tuning path Ls = const to find the optimal
resistance is, comparatively, much flatter than the tuning path Rs = const to
find the optimal inductance. Indeed, the map of the time-averaged electrical
power absorbed by the shunt is characterised by a bell-shape squeezed along
the horizontal constant resistance. Thus, a faster convergence is achieved
because of the threshold criterion on the absorbed power.

2.4.2 RL-parallel

The real-time implementation of the RL-parallel shunt is now inves-
tigated with respect to the results presented in Figs. 2.12 and 2.13, which
have the same layout as Figs. 2.10 and 2.11 presented above for the RL-series
shunt. The velocity graph in Fig. 2.12(b) shows that, as the shunt is tuned,
the amplitude of the velocity nearly halves in the first 120 s. Also, Fig. 2.12(c)
indicates that the shunt voltage grows with the bigger increase on the initial
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100 seconds and remains about even throughout the following iterations.

Figure 2.12: Time-histories of (a) the force excitation, (b) block mass velocity
and (c) shunt voltage when the proposed tuning algorithm is implemented on
the RL-parallel shunt.

Figure 2.13: Time-histories of (a) the instantaneous kinetic energy (orange
broken line time-averaged value), (b) instantaneous electric power absorbed
by the shunt (orange broken line time-averaged value) and (c) the shunt induc-
tance (blue line) and resistance (red line) as the proposed tuning algorithm is
implemented on the RL-parallel shunt.

Moving to Fig. 2.13, Plots (a) and (b) show that, with this shunt too,
the kinetic energy initially increases. Nevertheless, from 50 to 200 seconds of
the inductance tuning phase, the kinetic energy falls significantly in front of
substantial increments of the electric power absorbed by the shunt. Besides,
as seen for the RL-series shunt, in the remaining part of the tuning between
200 and 500 s, a comparatively smaller additional reduction of the system
kinetic energy is noticed despite the longer time available. This effect can be
explained with the side plot on Fig. 2.5(b). Unlike the RL-series configuration,
the RL-parallel does have a larger variation on the power absorbed by the
shunt on the tuning path Ls = const. Thus, a longer time will be required
for the control to achieve the stop conditions.
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The results presented in this and previous subsections are based on
a random disturbance, which is thus characterised by quite an uneven time
history. In practice, stochastic disturbances are normally smoother (smaller
standard deviation, bandlimited, etc...) and thus it is expected that the
time-frame to tune the two components of the shunt could be much shorter
that that found in the simulations presented herein.
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Chapter 3

Piezoelectric patch vibration
control units connected to a
single-resonant self tuning shunt

3.1 Introduction

This chapter investigates the practical implementation of the self tun-
ing shunted piezoelectric units introduced in the previous chapter considering
the flexural vibrations of a simple model structure. More specifically, it
presents a simulation and experimental study on the control of the resonant
response of a target low-order flexural mode of a thin panel structure equipped
with five self-tuning vibration absorbers formed by a piezoelectric patch con-
nected to a tuneable shunt composed by a resistor and inductor connected
in parallel (RL-shunt). The two-paths online tuning approach proposed in
the previous chapter is employed, where the inductance and resistance of the
shunts are tuned sequentially with an extremum seeking gradient search algo-
rithm [103], [107], [115], [116] in such a way as to maximise the time-averaged
electric power absorption from the resonant response of the target low-order
flexural mode of the panel.

3.1.1 Modular self tuning single-resonant shunt for

piezoelectric vibration control units

In this chapter, the practical implementation of systems composed by
a piezoelectric patch connected to a self-tuning shunt is thus investigated in

39
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details. The ultimate goal of this work is to devise self-contained, compact
and lightweight vibration control units, which can be bonded in batches on
thin-walled lightweight structures. Each unit can then be set to control the
resonant response of a distinct low-order flexural mode. In this way, both the
flexural vibration and the sound radiation of the structure can be effectively
reduced at low audio frequencies where, due to the low modal overlap [9],
the overall response is indeed characterised by the resonant responses of the
target low-order flexural modes.

3.1.2 Structure of the chapter

The Chapter is structured in three sections. Section 3.2 first presents
the laboratory thin plate structure considered in this study, which is equipped
with five piezoelectric patches connected to the proposed self-tuning RL-shunts
implemented in a digital board. Then, it recalls the mathematical model used
to produce the simulation analyses. Next, Section 3.3 presents simulation
and experimental results that contrast the tuning effects of the reference
and proposed cost functions given respectively by the minimisation of the
time-averaged total flexural kinetic energy of the panel and the maximisation
of the time-averaged electric power absorbed by the shunt, both with respect
to the resonant response of the target mode. After that, Section 3.4 presents
experimental results on the online implementation of the proposed extremum
seeking gradient search tuning algorithm set to maximise the time-averaged
electric power absorbed by the shunt.

3.2 Experimental Setup and Modelling

Figure 3.1 shows the test rig used for this study, which is composed by
a thin flat rectangular panel made of steel. Five thin square MFC piezoelectric
patches [117] are bonded on one side of the panel with the terminals connected
via ad hoc interface circuits to a multi-channel dSPACE digital board, which
has been used for the online implementation of the five self-tuning RL-shunts.
The panel is fixed to a rigid frame and is excited by a transverse point force
exerted by a shaker via a stinger equipped with a force cell. The dSPACE
board works with sampling frequency of 48 kHz and has 16-bit ±10V for
both analogue-to-digital (ADC) and digital-to-analogue (DAC) converters.
The geometry and physical properties of the panel and five equal piezoelectric
patches are summarised in Table 3.1.
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Figure 3.1: Thin panel model structure (a), which is equipped with five
piezoelectric patches (b) connected to the self-tuning shunts implemented in
a dSPACE digital board via ad hoc interface circuits (c).

Table 3.1: Dimensions and physical properties of the panel and piezoelectric
patches

Parameter Plate Piezoelectric patches
dimensions lxp × lyp = 668× 443mm lxpe × lype = 85× 85mm
thickness hp = 1.8mm hpe = 0.3mm
density ρp = 7200kg/m3 ρpe = 5440kg/m3

Young’s modulus Ep = 14× 1010N/m2 Epe = 2.3× 1010N/m2

Poisson ratio νp = 0.3 νpe = 0.35
modal damping ratio ξp = 0.004

strain/charge constants
d0
31

= −212× 10−12m/V
d0
32

= −212× 10−12

d0
36

= 0
permittivity(const. stress) ϵSpe = 18.7× 10−9F/m
capacitance Cpe = 466× 10−9F
point force position xp = 0.63lxp, yp = 0.25lyp

patches centre position

lxp

2
, ype1 =

lyp

2

xpe2,3,4,5 =
lxp

2
±∆x,

ype2,3,4,5 =
lyp

2
±∆y

∆x = 185mm ,
∆y = 117.5mm
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Figure 3.2: Panel with five piezoelectric patches (a) connected to RL self-
tuning shunts (b) implemented in a dSPACE digital board (c).

3.2.1 Tuneable digital shunts

As depicted in Figure 3.2(a), (b), the five piezoelectric patches are
connected to self-tuning shunts composed by a resistor and inductor connected
in parallel. Each shunt is tuned locally to maximise the time-averaged electric
power absorbed by the shunt itself, which, as shown in Figure 3.2(b), is
derived from the voltage drop across the resistor of the shunt [118], [119].
More precisely, each shunt is set to maximise the electric power absorption
from the resonant response of a target low-order flexural mode of the plate.
To this end, the electric power is filtered with a band-pass filter centred at
the resonance frequency of the target mode. The bandwidth of the filter is
selected in such a way as it incorporates the resonant response of the target
mode only. It is important to recall here, that the proposed control unit is
meant to work at low audio frequencies, where the flexural response of the
panel is characterised by a low modal density such that there is no frequency
overlap between the resonant responses of neighbour flexural modes of the
structure [9]. Therefore, recalling that the hosting structure is lightly damped,
the filters were selected in such a way as to have about a 20 dB bandwidth
with respect to the resonance peak of the target mode. The five self-tuning
shunts are implemented online in a multi-channel digital board, which is
connected to the five piezoelectric patches through five interface circuits [95].
More specifically, as shown in Figure 3.2(c), the terminals of each piezoelectric
patch are connected to the input channels of the digital board via a high input
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impedance instrumentation amplifier, which feeds to the board the shunt
voltage without influencing the current flow through the terminals. Each
output channel of the digital board is then connected to the terminals of the
respective piezoelectric patch via a high input impedance instrumentation
amplifier, which ensures the output voltage from the board is turned by
the resistor Roj into a given shunt current flow through the terminals of
the piezoelectric patch. In this way, the desired shunt impedance can be
generated on each piezoelectric patch by suitably synthesising the transfer
function Gsj(s) between the input and output channel pairs of the digital
board (here s is the Laplace variable [36]). Assuming time-harmonic vibrations
with the mechanical and electrical functions given in the following form
f(t) = Re[f(ω)exp(jωt)], where f(ω) is the complex amplitude, j =

√
−1

and ω is the circular frequency, the following three equations can be set in the
frequency domain for the interface circuit of the j-th shunt drawn in Figure
3.2(c):

vinj(ω) = vsj(ω), (3.1)

vopj(ω) = Gsj(ω)vinj(ω), (3.2)

vsj(ω)− vopj(ω) = Rojisj(ω). (3.3)

Here, vsj(ω), isj(ω), vinj(ω), vopj(ω) are the complex amplitudes of the shunt
voltage and current and of the digital board input and output voltages. Also,
Roj is the resistance used to generate a given current flow and Gsj(ω) is the
frequency response function implemented in the digital board. The shunt
voltage and current are linked by the electrical impedance frequency response
function of the shunt Zsj(ω)

vsj(ω) = Zsj(ω)isj(ω), (3.4)

where, for the parallel RL-shunt considered in this study

1

Zsj(ω)
=

1

Rsj

+
1

jωLsj
. (3.5)

After some mathematical steps, the following two equations are derived from
the above equations:

Zsj(ω) =
vsj(ω)

isj(ω)
=

Roj

1−Gsj(ω)
, (3.6)

Gsj(ω) =
vopj(ω)

vinj(ω)
= 1− Roj

Zsj(ω)
. (3.7)
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Here, the first equation gives the electrical impedance Zsj generated by
the shunt when the frequency response function Gsj is implemented in the
digital board. Alternatively, the second equation gives the expression of the
frequency response function Gsj that should be synthesised in the digital
board to generate the desired impedance function Zsj . For instance, the shunt
electrical impedance given in Eq. 3.5 can be generated with the circuit shown
in Figure 3.2(c) provided the digital board synthetises the following frequency
response function

Gsj(ω) = 1− Roj

Rsj

− Roj

jωLsj
=
jω(Rsj −Roj)Lsj −RojRsj

jωRsjLsj
. (3.8)

In practice, the dSPACE board was operated through a Real-Time Interface,
which implemented a MATLAB–Simulink model of the desired transfer func-
tions Gsj(s) between the dSPACE input and output ports connected to the
piezoelectric patches. To minimise high frequency noise effects and to ensure
the transfer function implemented digitally is guaranteed to be proper [24],
the transfer function Gsj was modified in such a way as it encompasses a
low-pass filtering effect with the corner frequency set at 500 Hz. This value
was chosen in such a way as the digital shunt can work in the 20 – 140 Hz
frequency range where the flexural response of the panel is characterised by a
low modal density and thus the resonant response of the target flexural mode
does not overlap with those of neighbour modes [9]. Overall, the transfer
functions implemented in the dSPACE board were given by the following
frequency response function

Gsj(ω) =
jω(Rs −Roj)Lsωlp,s −RojRsωlp,s

(jωωlp,s − ω2)RsLs
, (3.9)

where ωlp,s is the corner frequency of the low-pass filter.

3.2.2 Electro-mechanical analytical model

The flexural response of the plate with the five piezoelectric patches
connected to the RL-shunts was derived from Hamilton’s principle [113], [120],
[121], which sets to zero the following variation integral

V.I. =

∫ t2

t1

[∆(K∗ − V +W ∗
e ) + ∆Wnc]dt = 0, (3.10)

where ∆( ) is the variation operator. The composite structure at hand is
formed by an isotropic thin plate and five comparatively thinner orthotropic
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piezoelectric patches; therefore, classical laminate plate theory was assumed
[122] such that, the kinetic coenergy K∗, the elastic potential energy V and
the electrical coenergy W ∗

e for the flexural vibrations of the structure are
expressed as follows [66]:

K∗ =
1

2

∫

Vp

ρpẇ
2dVp +

5∑

j=1

1

2

∫

Vpe,j

ρpeẇ
2dVpe,j, (3.11)

V =
1

2

∫

Vp

STpTpdVp +
5∑

j=1

1

2

∫

Vpe,j

STpe,jTpe,jdVpe,j, (3.12)

W ∗
e =

5∑

j=1

1

2

∫

Vpe,j

Epe,jDpe,jdVpe,j. (3.13)

In these equations, ρp, ρpe are the densities of the plate and piezoelec-
tric material, w(x, y), ẇ(x, y) are the transverse displacement and veloc-
ity of the plate mid-plane (for brevity in the formulation the dependency
on x, y is omitted) and Vp and Vpe,j are the volumes of the plate and j-
th piezoelectric patch. Also, recalling that the classical laminate plate
theory leads to a case of both plane strain and plane stress [122] such
that, considering the Kelvin-Voigt notation [123], S3 = S4 = S5 = 0 and

T3 = T4 = T5 = 0, Tp =
[
Tp1 Tp2 Tp6

]T
, Sp =

[
Sp1 Sp2 Sp6

]T
and

Tpe,j =
[
Tpe1,j Tpe2,j Tpe6,j

]T
, Spe,j =

[
Spe1,j Spe2,j Spe6,j

]T
are the stress

and strain vectors for the plate structure and piezoelectric patch transducers,
where ( )T is the vector transpose operator. Finally, Epe,j and Dpe,j are the
electric field across the j-th piezoelectric patch (i.e. in z-direction) and the
electric displacement at the two electrodes of the j-th piezoelectric patch. Ac-
cording to the classical laminate plate theory [122], the following stress-strain
relations holds [113], [120]:

Tp = cpSp, (3.14)

[
Dpe,j

Tpe,j

]
=

[
ϵSpe eTpe
−epe cEpe

] [
Epe,j
Spe,j

]
. (3.15)

Here, the stiffness matrices for the plate and piezoelectric materials are given
by:

cp =




Yp
1−ν2p

νpYp
1−ν2p

0
νpYp
1−ν2p

Yp
1−ν2p

0

0 0 Yp
2(1+νp)


 , (3.16)
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cEpe =




Y E
pe

1−νEpe
2

νEpeY
E
pe

1−νEpe
2 0

νEpeY
E
pe

1−νEpe
2

Y E
pe

1−νEpe
2 0

0 0
Y E
pe

2(1+νEpe)


 , (3.17)

where Yp, νp and Y
E
pe and νEpe are the Young’s modulus and Poisson ratio of

the plate and piezoelectric patches materials, the latter being taken with
respect to constant electric field intensity, i.e., Epe,j = 0. In addition, ϵSpe is
the permittivity of the piezoelectric material under constant strain and epe =[
e31 e32 0

]T
is the vector with the e31 and e32 piezoelectric stress/charge

constants of the piezoelectric material, which are given by the following
relations

ϵSpe = ϵTpe(1− k2), (3.18)

epe = cEpedpe. (3.19)

Here ϵTpe is the permittivity of the piezoelectric material under constant stress,
k2 = dTpec

E
pedpe/ϵ

T
pe is the electromechanical coupling factor of the piezoelectric

material and the column vector dpe =
[
d31 d32 0

]T
encompasses the d31

and d32 piezoelectric strain/charge constants reported in Table 3.1 [61], [113].
Finally, the classical laminated plate theory [122] assumes that, for a given
position (x, y), the components in the strain vectors are linked to the plate
mid-plane transverse displacement w through the following relations

Sp = −zk, (3.20)

Spe,j = −zk, (3.21)

where the column vector k =
[
∂2w
∂x2

∂2w
∂y2

2 ∂2w
∂x∂y

]T
contains second deriva-

tives of w(x, y) with respect to x and y. The electric field across the j-th
piezoelectric patch (i.e. in z-direction), Epe,j, and the electric displacement
at the two electrodes of the j-th piezoelectric patch, Dpe,j, are linked to the
potential difference across the electrodes, vpe,j, and the current flow through
the terminals, ipe,j, via the following two relations [61], [113]:

Epe,j =
vpe,j
hpe,j

, (3.22)

ipe,j =
d

dt

∫

Ape,j

Dpe,jdApe,j, (3.23)
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where hpe,j is the thickness of the piezoelectric patch. Moving back to Eq.
3.10, ∆Wnc encompasses the virtual work done by the external force applied
to the plate, the damping effect produced by the air and the electric currents
flowing to the piezoelectric patches, which can be casted in the following
expression [66]:

∆Wnc =

∫

Ap

fpwpdAp −
∫

Ap

cdwdAp −
5∑

j=1

∫

Ape,j

σpe,jvpe,jdApe,j. (3.24)

Here, Ap and Ape,j are the areas of the plate and j-th piezoelectric patch.
Also, in the first term, fp and wp are the transverse force and displacement
at the primary excitation position (xp, yp). In the second term, cd is the
damping coefficient per unit surface for the damping force exerted by the air
fd(x, y) = −cdẇ(x, y). Finally, in the third term, σpe,j, vpe,j are the surface
charge density at, and the electric potential difference across, the electrodes
of the j-th piezoelectric patch.

3.2.3 Electro-mechanical coupled equations

As shown in Figure 3.1 and discussed above, the thin plate is equipped
with five piezoelectric patches, which, however, are comparatively much
thinner and cover a rather large portion of the plate such that they generate
quite uniform inertia and bending effects over the surface of the plate. In
this case, the flexural response can be approximated with reference to the
natural frequencies and natural modes of a uniform composite plate with
equivalent smeared stiffness and smeared inertia effects. In this way, assuming
synchronous motion, such that the response is separable into space and time
functions, and assuming the plate is exposed to a light viscous damping effect
produced by the air, which can be conveniently modelled as a proportional
damping [124], the expansion theorem for self-adjoint systems can be employed
to express the transverse displacement as a linear combination of the natural
modes ϕnr(x, y) and the generalised (or modal) coordinates qr(t):

w(x, y, t) =
R∑

r=1

ϕnr(x, y)qr(t) = ϕ(x, y)q(t). (3.25)

Here ϕ(x, y) =
[
ϕn1(x, y) . . . ϕnR(x, y)

]
is a row vector with the amplitudes

of the natural modes at position (x, y) and q(t) =
[
q1(t) . . . qR(t)

]T
is a

column vector with the generalised coordinates. A modal analysis of the
flexural vibration of the plate with the piezoelectric patches in short circuit
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[125] showed that, despite the plate was fixed on a rigid frame, the flexural
natural modes can be suitably described with the following expression for
simply supported plates [124],

ϕnr(x, y) = 2sin

(
r1πx

lxp

)
sin

(
r2πy

lyp

)
, (3.26)

where r1, r2 represent the modal indices of the r-th mode. Therefore, the
flexural natural frequencies were derived from the following expression [124]

ωnr =

√
Esh2p

12ρs(1− ν2s )

[(r1π
lxp

)2
+
(r2π
lyp

)2
]
, (3.27)

with reference to the thickness of the plate hp and the smeared density, ρs,
smeared Young’s modulus of elasticity, Es, and smeared Poisson’s ratio, νs,
of the composite plate summarized in Table 3.1. These values were based
on those for steel, corrected in such a way as to comply with the natural
frequencies identified from the measured flexural frequency response functions
of the panel with the piezoelectric patches in short circuit [125]. The modal
expansion for the plate transverse displacement introduced in Eq. 3.25 can
be conveniently employed to derive the energies and virtual work done by
non-conservative forces formulated in the previous sections, such that, after a
few mathematical steps (e.g. see Ref. [66]), the Hamilton’s variation integral
principle stated in Eq. 3.10 results into the set of R coupled equations
of motion and into a set of 5 coupled equations for the electro-mechanical
response of the five piezoelectric patches reported below in compact matrix
form:

Mq̈(t) +Cq̇(t) +Kq(t) +Θpevs(t) = Φpfp(t), (3.28)

−ΘT
peq(t) +Cpevs(t) = qs(t). (3.29)

Here, vs(t) and qs(t) are the vectors with the potential difference and the
charges at the terminals of the piezoelectric patches. Also,

M =



mp

. . .

mp


 , (3.30)

C =



2ξpωn1mp

. . .

2ξpωnRmp


 , (3.31)
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K =



ω2
n1mp

. . .

ω2
nRmp


 . (3.32)

are the R×R modal mass, damping and stiffness diagonal matrices, where, mp

is the mass of the plate and piezoelectric patches whereas ξp and ωnr are the
damping ratio and natural frequencies of the plate and piezoelectric patches
flexural modes. The damping effect produced by the air on the plate has
been assumed comparable for the first few flexural natural modes. Moreover,

Θpe =




θ11 θ12 . . . θ1N
θ21 θ22 . . . θ2N
. . . . . . . . . . . .
θR1 θR2 . . . θRN


 (3.33)

is the R×N matrix with the transduction factors, which have been derived
with the following equation [66]

θrj = 2zpe

∫

Ape,j

∇2ϕnr(x, y)epedApe,j, (3.34)

where ∇2ϕnr =
[
∂2φnr

∂x2
∂2φnr

∂y2
2∂

2φnr

∂x∂y

]
and the column vector epe with the

piezoelectric stress/charge constants is given in Eq. 3.21. Also,

Φp =



φn1(xp, yp)

...
ϕnR(xp, yp)


 , (3.35)

encompasses the amplitudes of the flexural natural modes at the primary
force position. Lastly,

Cpe =



CS
pe

. . .

CS
pe


 , (3.36)

is the diagonal matrix with the capacitances CS
pe under constant strain of the

piezoelectric patches. The parameters used to calculate these matrices are
summarised in Table 3.1 and were taken from datasheets of the materials,
from inspection of the test rig and from a modal analysis carried out on
the flexural response of the plate with the five piezoelectric patches in short
circuit using a laser vibrometer [125]. The modal analysis showed that, in
the vicinity of the excitation point, the shapes of the (3,1) and (1,2) modes
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do not overlap exactly the functions given by Eq. 3.26. This is due to the
mass effect produced by the load cell used to measure the force exerted by
the shaker. Therefore, both the amplitudes at the excitation point ϕnr(xp, yp)
and the transduction factors θri for these two modes were adjusted according
to the measured shapes.

3.2.4 Cost functions

As anticipated above, the shunted piezoelectric units have been de-
signed to control the time-averaged resonant response of a target flexural
mode when the hosting plate structure is exposed to a stationary stochastic
excitation. Therefore, as done in Chapter 2, two cost functions were consid-
ered in this study. First, the so-called “reference cost function” given by the
time-averaged and spatially-averaged flexural vibration of the structure, which
has been used to monitor the response of the panel when the piezoelectric
patches are not connected to the shunts, and thus are in open circuit, or
implement the self-tuning RL shunts. Second, the so-called “tuning cost func-
tion” given by the time-averaged vibration energy absorbed by each shunted
piezoelectric patch, which, in fact, has been used to tune online the resistive
and inductive components of the shunts. More specifically, the reference cost
function has been taken as the time-averaged total flexural kinetic energy of
the panel, that is

K̄(Rsj, Lsj) = E[K(Rsj, Lsj, t)], (3.37)

where E[ ] is the expectation operator andK(Rsj, Lsj, t) is the time-dependent
total flexural kinetic energy of the panel, which according to Eq. 3.11 can be
written as follows:

K(t) =
1

2

∫

Ap

ρphpẇ
2dAp +

5∑

j=1

1

2

∫

Ape,j

ρpehpeẇ
2dApe,j. (3.38)

As done in Ref. [56] for shunted electromagnetic proof-mass transducers, the
tuning cost function has been estimated with the time-averaged electric power
absorbed by the shunt, which, for the j-th shunt, is given by:

P̄ (Rsj, Lsj, t) = E[P (Rsj, Lsj, t)], (3.39)

where P (Rsj, Lsj, t) is the time-dependent electric power absorbed by the
shunt, that is

P (Rsj, Lsj, t) = vsjisj. (3.40)

Since the electric power absorbed by the shunt coincides with the power
dissipated by the shunt itself, as shown in Figure 3.2(b), in practice the
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tuning power function will be derived from the voltage drop across the shunt
resistor:

P (Rsj, Lsj, t) = vRjiRj =
1

Rsj

v2Rj. (3.41)

In this study, both cost functions will be derived using a frequency-domain
formulation based respectively on simulated and measured Power Spectral
Density (PSD) functions. Indeed, according to Refs. [114], [126], for stationary
ergodic processes, the reference and tuning cost functions can also be derived
from the following frequency integrals

K̄(Rsj, Lsj) =
1

2π

∫ +∞

−∞

SK(Rsj, Lsj, ω)dω, (3.42)

P̄ (Rsj, Lsj) =
1

2π

∫ +∞

−∞

SP (Rsj, Lsj, ω)dω, (3.43)

where SK(Rsj, Lsj, ω) is the PSD of the plate total flexural kinetic energy and
SP (Rsj, Lsj, ω) is the PSD of the electric power absorbed by the j-th shunt.
Based on Eq. 3.38, the PSD of the flexural kinetic energy is given by:

SK(Rsj, Lsj, ω) =
1

2

∫

Ap

ρphp lim
T→∞

E
[ 1
T
ẇ∗(x, y, ω)ẇ(x, y, ω)

]
dAp+

5∑

j=1

1

2

∫

Ape,i

ρpehpe lim
T→∞

E
[ 1
T
ẇ∗(x, y, ω)ẇ(x, y, ω)

]
dApe,i, (3.44)

where ẇ(x, y, ω) is the complex amplitude of the time-harmonic transverse
velocity of the plate. Also, according to Eq. 3.41, the PSD of the electric
power absorbed by the j-th shunt is given by:

SP (Rsj, Lsj, ω) = − 1

Rsj

lim
T→∞

E
[ 1
T
v∗sj(ω)vsj(ω)

]
, (3.45)

where vsj(ω) is the complex amplitude of the time-harmonic voltage of the
shunt. Since the objective of the shunted piezoelectric patch units is to control
the resonant response of a target r-th mode, the two cost functions were
derived considering the frequency integrals in a band ∆ωr centred on the
natural frequency of the target mode such that

K̄r(Rsj, Lsj) =
1

π

∫ ωnr+
∆ωr
2

ωnr−
∆ωr
2

SK(Rsj, Lsj, ω)dω, (3.46)

P̄r(Rsj, Lsj) =
1

π

∫ ωnr+
∆ωr
2

ωnr−
∆ωr
2

SP (Rsj, Lsj, ω)dω. (3.47)
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Given that the panel structure considered in this study is lightly
damped, the frequency band was selected in such a way as to have about a 20
dB bandwidth with respect to the resonance peak of the target mode kinetic
energy. The forthcoming section presents the frequency domain formulation
developed to derive the PSD functions in Eqs. 3.44 and 3.45 and thus to
derive the time-average cost functions given by Eqs. 3.46 and 3.47.

3.2.5 Frequency domain formulation

Assuming time-harmonic functions, the two sets of ordinary differential
equations in Eqs. 3.25 and 3.26 become

[jωM+C+
1

jω
K]q̇(ω) +Θpevs(ω) = Φpfp(ω), (3.48)

−ΘT
peq̇(ω) + jωCpevs(ω) = is(ω), (3.49)

where, recalling that is = dqs

dt
, the vectors q̇(ω), vs(ω), is(ω) contain the

complex amplitudes of the generalized velocities, shunt voltages and shunt
currents respectively. Also, fp(ω) is the vector with the complex amplitude
of the force excitation acting on the panel. For time-harmonic vibrations, the
following matrix expression can be set for the five shunts

vs(ω) = −Zs(ω)is(ω), (3.50)

where Zs(ω) is a diagonal matrix with the shunt impedances, which are given
by

Zsj =
jωLsjRsj

Rsj + jωLsj
. (3.51)

Equations 3.48, 3.49, 3.50 can be combined to give

q̇(ω) = Ys(ω)Φpfp(ω), (3.52)

where,
Ys(ω) = jω[−ω2M+ jω(C+ΘpeZpe(ω)Θ

T
pe) +K]−1, (3.53)

and Zpe(ω) is a diagonal matrix with the following impedance terms

Zpej(ω) =
Zsj(ω)

1 + jωZsj(ω)Cpe
. (3.54)

Also, combining Eqs. 3.49, 3.50, 3.52, the shunt voltages are given by

vs(ω) = Zpe(ω)Θ
T
peY(ω)Φpfp(ω). (3.55)
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Now, recalling the modal expansion given in Eq. 3.25, the complex amplitude
of the plate transverse velocity can be expressed as follows

w(x, y, ω) = φ(x, y)q(ω). (3.56)

Since the natural modes are mass-normalised [124], substitution of Eq. 3.56
into Eq. 3.44 leads to the following matrix expression for the PSD of the
flexural kinetic energy

SK(ω) =
1

2
Tr[MY(ω)ΦpSff (ω)Φ

T
pY

H(ω)], (3.57)

where Tr[ ] is the trace matrix operator and Sff (ω) is the PSD of the primary
force excitation. Also, recalling Eq. 3.45, since for the parallel RL-shunts the
voltage drop across the shunt resistor corresponds to the voltage across the
shunt terminals, the PSD of the electric power absorbed by the j-th shunt
can be derived conveniently using Eqs. 3.55 and 3.45, such that

SP (ω) = −[R−1
s Zpe(ω)Θ

T
peY (ω)ΦpSff (ω)Φ

T
p Y

H(ω)ΘpeZ
H
pe(ω)]jj, (3.58)

where Rs is a diagonal matrix with the shunt resistances Rsj and [ ]jj indicates
the j-th diagonal term of the square matrix.

3.3 Tuning analysis

To start with, this section presents a tuning analysis assuming all
piezoelectric patches are connected to individual RL-shunts set to control the
resonant response respectively of the first, second and fourth flexural modes
of the panel. In particular, the RL-maps of the reference and tuning cost
functions are depicted and analysed to investigate if, for the resonant response
of the target mode, the maximization of the time-averaged electric power
absorbed by the shunt P̄r(Rsj, Lsj) leads to the same tuning parameters
than the minimization of the time-averaged total flexural kinetic energy
K̄r(Rsj, Lsj). Then, the PSD of the two cost functions are analysed in the
frequency domain assuming the piezoelectric patches are either in open circuit
or connected to the RL-shunt tuned to maximize the time-averaged electric
power absorbed by the shunts from the resonant response of the target mode.
The shunted piezoelectric patch vibration absorber is meant to control low-
order modes, therefore it has been opted to investigate the tuning to control
the resonant responses of the first, second and fourth flexural modes of the
panel. The third mode is characterised by a smaller resonant response in first
instance and thus it has not been investigated.
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3.3.1 Global versus local tuning

Figures 3.3 and 3.4 show the simulated and measured maps of the
reference cost function, K̄r(Rsj, Lsj) (left hand side plots), and tuning cost
function, P̄r(Rsj, Lsj) (right hand side plots), when the shunts connected to
the patches are set to control the resonant response of the first, second and
fourth flexural modes (i.e. r = 1, 2, 4). Considering first the simulated maps
shown in Figure 3.3, it is noted that, for all three modes, the map of K̄r

is characterised by a non-convex inverse bell-shape with a single minimum
whereas the map of P̄r has a mirror non-convex bell-shape with a single
maximum. As highlighted by the cross and circular markers, the points of
minimum of K̄r and maximum of P̄r closely overlap in the maps. The same
pair of maps were derived for the resonant responses of the other modes
that resonate in the 20 – 140 Hz frequency band considered in this study,
and all showed these properties. The measured maps depicted in Figure 3.4
show very similar results. Compared to the simulated maps, they appear
less smooth. This is due to the lengthy measurement procedure necessary to
produce the maps. In fact, to generate each point of the maps, the spectrum
of the total flexural kinetic energy of the panel had to be measured with a
scanner laser vibrometer. Although a relatively coarse grid of 4× 4 points
was used to measure the velocities of the panel necessary to estimate the total
flexural kinetic energy, the measurement time was rather high. To contain
the total time necessary to produce the two maps in 15 hours, the number of
points in the maps, that is the number of resistance and inductance values
implemented in the shunt, was also kept low. Indeed, the measured maps
considered a 21× 20 grid of resistance and inductance values.

The overall outcome was therefore non-perfectly smooth surfaces. This
problem was not merely the result of the coarse vibration measurements over
the surface of the plate and coarse resistance-inductance measurements, but
was also due to the variability over the fifteen hours measurement campaign
of the flexural response of the plate and electrical response of the equipment
used to synthesize the shunt. This variability effect was due primarily to
changes of the ambient and equipment temperature. Nevertheless, despite
these challenges, the measured maps show quite a remarkable agreement
with the simulated ones. The minimum of K̄r and the maximum of P̄r are
rather close to each other and replicate quite accurately the simulated one.
Besides, the two maps are quite flat in the vicinity of minimum/maximum
points and thus the non-perfect alignment of the minimum of K̄r and the
maximum of P̄r can be considered negligible. In conclusion, the simulation
and measurement results show that, considering the resonant response of
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Figure 3.3: Simulated maps of K̄(Rs, Ls) (a) and P̄ (Rs, Ls) (b) when the
shunts are set to control the resonant response of mode 1 (top), mode 2
(centre), mode 4 (bottom), with slice cuts at Ls = Lopt (lateral plots) and
Rs = Ropt (top plots). Cross marker min(K̄). Circular marker max(P̄j).
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Figure 3.4: Measured maps of K̄(Rs, Ls) (a) and P̄ (Rs, Ls) (b) when the
shunts are set to control the resonant response of mode 1 (top), mode 2
(centre), mode 4 (bottom), with slice cuts at Ls = Lopt (lateral plots) and
Rs = Ropt (top plots). Cross marker min(K̄). Circular marker max(barPj).
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well-separated low-order flexural modes of the structure [9], the minimum of
the plate time-averaged total flexural kinetic energy and the maximum of the
time-averaged electric power absorbed by the shunt are characterised by close
values of the optimal shunt resistance and close values of the optimal shunt
inductance. Hence, as found with simulations in Refs. [118], [119], to minimise
the time-averaged total flexural kinetic energy, that is the time-averaged
and spatially-averaged flexural response of the structure, the resistance and
inductance of the shunt should be tuned to maximise the time-average electric
power absorbed by the shunt itself. This is quite a remarkable result, which
suggests that the RL-shunt can be tuned locally without the need of structural
sensors that measure the flexural response of the target mode of the structure,
as for example shaped piezoelectric transducers [127]–[130]. On the contrary,
it is sufficient to measure the electric power absorbed by the shunt, which,
as depicted in Figure 3.2b and given in Eq. (41), can be suitably estimated
from the voltage drop across the shunt resistor.

A thorough analysis of the kinetic energy and power cost functions
shows that the two maps are characterised by constant resistance Rsj = Rsj,opt

and constant inductance Lsj = Lsj,opt principal directions [118], [119]. Hence,
the tuning can be carried out in two phases where, starting from arbitrary
initial values of the shunt resistance and inductance (Rsj,ini, Lsj,ini), the
optimal inductance Lsj,opt is first searched along the path Rsj = Rsj,ini and
then the optimal resistance is searched along the path Lsj = Lsj,opt. A
detailed analysis of the maps highlights that the two paths lead to a point
quite close, but not equal, to the maximum of P̄r, that is the minimum
of K̄r. Therefore, the two-paths tuning should be repeated continuously
online. This would be necessary in any case to trace the optimal tuning of
real applications, where the dynamic properties (i.e., natural frequencies and
damping ratios) of the structures as well as the electro-mechanical properties
of the piezoelectric transducers and shunts may vary significantly during
operation. The lateral and top graphs beside the two maps show that the
constant resistance Rsj = Rsj,opt and constant inductance Lsj = Lsj,opt paths
on the kinetic energy cost function are characterised by inverse bell shapes
whereas the same paths on the power cost function are characterised by
bell shapes. As will be discussed in the forthcoming section, the tuning of
the shunt components will therefore involve a search of the maximum along
non-convex bell-shaped paths, which, can be suitably implemented with an
extremum seeking gradient search algorithm [103], [107], [115], [116].
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3.3.2 Spectral analysis

To appreciate the control effects produced by the proposed self-tuning
control units, the PSD of the two cost functions are analysed in the frequency
domain in Figures 3.5 (simulations) and 3.6 (measurements) assuming the
five piezoelectric patches are either in open circuit (blue lines) or connected to
the RL-shunts tuned to maximise the time-averaged electric power absorbed
from the resonant response of the first, second and fourth flexural modes

Figure 3.5: Simulated spectra of (a) SK(ω) and (b) SP (ω) when the piezo-
electric patches are either in open circuit (blue lines) or connected to the
shunts with the resistance and inductance components tuned to maximise the
time-averaged power absorbed by each shunt from the resonant response of
the first (top plots), second (centre plots) and fourth (bottom plots) resonant
modes (red lines).
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Figure 3.6: Measured spectra of (a) SK(ω) and (b) SP (ω) when the piezo-
electric patches are either in open circuit (blue lines) or connected to the
shunts with the resistance and inductance components tuned to maximise the
time-averaged power absorbed by each shunt from the resonant response of
the first (top plots), second (centre plots) and fourth (bottom plots) resonant
modes (red lines).

of the plate (red-lines). In practice, and thus in the simulations too, the
open circuit was produced with a very high shunt resistor. In this way, it
has been possible to provide a benchmark spectrum for the electric power
absorbed by the shunts too. The simulated spectra of the total flexural
kinetic energy PSD and absorbed electric power PSD in Figure 3.5 match
quite accurately the equivalent measured spectra in Figure 3.6. Considering
the configuration with the five patches in open circuit, such that the patches
generate an electro-mechanical stiffening effect only [66], the spectrum of the
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total flexural kinetic energy PSD is characterised by 7, well separated, sharp
resonance peaks. As anticipated above, even when the patches are in the open
circuit configuration produced by the very high shunt resistors, some electric
power is absorbed by the shunts themselves. As a result, the spectrum of the
electric power absorbed by the shunts PSD is characterised by the same 7
resonance peaks despite their lower amplitude level. When the 5 patches are
connected to the shunts tuned to maximise the time-averaged electric power
absorbed from respectively the resonant response of the first, second, fourth
flexural modes of the structure, the first, second, fourth resonance peaks of
the total flexural kinetic energy PSD are levelled down in turn by about
18dB, 8dB, 15dB respectively, whereas the other peaks remain unchanged.
In parallel, the amplitudes and width of the first, second, fourth resonance
peaks of the absorbed electric power PSD are considerably raised in the three
tuning cases, whereas the amplitude of the other peaks is significantly lowered.
For instance, when the shunts are tuned to control the resonant response
of the first flexural mode, the first resonance peak is 10 dB higher and 2
times wider suggesting that the optimally tuned shunt focuses the energy
absorption onto the resonant response of the first target flexural mode. A
similar result is produced when the 5 shunts are tuned to control the resonant
response of the second flexural mode, with an increment of the amplitude of
the second resonance peak in the absorbed electric power PSD of about 12dB
and a doubling of its width. Instead, when the 5 patches are connected to
the shunts tuned to maximise the electric power absorbed from the resonant
response of the fourth flexural mode, the fourth peak of the absorbed electric
power PSD is raised by about 8dB and significantly widened. Indeed, the
width of the peak is about 10 Hz. Moreover, the amplitudes of the other
resonance peaks are kept unchanged or slightly enhanced. Thus, when the
shunts are tuned to control the resonant response of the fourth resonant
mode, the energy absorption is enhanced over a rather wide frequency band
that encompasses a few resonances of the structure. In general, the results
presented in Figures 3.5 and 3.6 indicate that the proposed tuning approach
based on the maximisation of the time-averaged electric power absorbed by
the shunts leads to substantial reductions of the resonant response of the
target flexural modes of the panel.



3.4. IMPLEMENTATION SELF-TUNING 61

3.4 Online implementation of the self-tuning

shunts

The online implementation of the self-tuning shunts is now discussed
with reference to experimental results obtained with the setup depicted in
Figure 3.1. As anticipated in Section 3.2, the five patches were connected to
the dSPACE multi-channel digital board via the interface circuits shown in
Figure 3.1(c) and described in Figure 3.2(c). The RL-shunts were synthesised
in the board according to Eqs. 3.6 and 3.7. Also, the two-paths tuning
approach for the maximisation of the absorbed time averaged electric power
described in the previous section was implemented online in each shunt.
The experiments were carried out with a stationary stochastic primary force
excitation. The shunts were tuned to control in turn the resonant response
of the first, second and fourth flexural modes of the plate with the power
function filtered between ωnr − ∆ωr

2
and ωnr +

∆ωr

2
, where the assumed centre

frequencies and bandwidths are reported in Table 3.2.

Table 3.2: Experimental data for the online tuning procedure
Parameter Value
1st mode resonant frequency ωn1 = 29.8Hz
2nd mode resonant frequency ωn2 = 45.9Hz
4th mode resonant frequency ωn4 = 88.4Hz
Band-pass frequency width 2∆ωr = 20Hz
Initial guess, 1st mode tuning Rs,ini = 400kΩ, Ls,ini = 72H
Initial guess, 2nd mode tuning Rs,ini = 100kΩ, Ls,ini = 25H
Initial guess, 4th mode tuning Rs,ini = 70kΩ, Ls,ini = 6H
Power threshold value ϵP = 0.05
Ripple frequency ωd = 0.7Hz
High-pass filter frequency ωhp = 0.03Hz
Low-pass filter frequency ωlp = 0.02Hz

In order to increase the convergence speed of the shunt parameters,
the tuning was implemented in parallel configuration, i.e. all the patches were
tuned simultaneously. More specifically, for each unit the two-paths tuning
strategy proposed in Ref. [118], [119] and discussed in the previous section
was implemented starting from the initial values of the shunt components
Rsj,ini, Lsj,ini reported in Table 3.2. The optimal inductance Lsj,opt was first
searched along the path Rsj = Rsj,ini starting from Rsj,ini, Lsj,ini. Then, the
optimal resistance Rsj,opt was sought along the path Lsj = Lsj,opt starting
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from Rsj,ini, Lsj,opt. The searches along the two paths were implemented using
the extremum seeking algorithm whose theoretical basis was introduced in
Section 2.4 and is recalled in the forthcoming Subsection 3.4.1 to discuss its
practical implementation using the setup described in Section 3.2.1. This is
a model-free gradient driven search algorithm, which asymptotically leads
to the maximum of the non-convex bell-shaped paths with Rsj = const and
Lsj = const. Since the tuning process is asymptotic, the search along each
path was stopped as the increment of the absorbed power fell below the
threshold ϵP reported in Table 3.2. The effects produced by the self-tuning
shunts connected to the five piezoelectric patches are analysed in the following
Subsection 4.2. To start with, the evolution of the shunt resistance and
inductance from the initial values (Rs5,ini, Ls5,ini) to the final optimal values
(Rs5,opt, Ls5,opt) is discussed. Then, the flexural response of the panel and the
energy absorption by the shunts is analysed by contrasting the cases where
the piezoelectric patches are left in open circuit and then connected to the
optimal shunts.

3.4.1 Extremum seeking tuning algorithm

The sketch in Figure 3.7 exemplifies the two-paths tuning search
implemented in each shunt with the extremum seeking algorithm [107], [115],
[116]. As suggested in chapter 2 The tuning of the shunt inductance (L-
tuning) and resistance (R-tuning) are implemented sequentially with the same
procedure. Therefore, for simplicity, the algorithm is described with reference
to the L-tuning only. As discussed above, both the shunt and the extremum
seeking algorithm are implemented digitally in the multi-channel dSPACE
board. Therefore, the whole scheme in Figure 3.7 assumes the parameters
are discretised. As sketched in the figure, the electric power absorbed by the
shunt, Psj,i, is derived from the voltage drop across the shunt resistor, that is
the shunt voltage vsj,i. The power signal is then averaged over the past Ns

samples and sent to the extremum seeking loop to generate the inductance
tuning parameter. This algorithm belongs to the perturb-and-observe type
algorithms.

More specifically the tuning parameter Lsj,i is modulated with a low frequency
harmonic signal zd,i = Z0sin(ωdti), whose modulation magnitude is adjusted
by the gain gzL. As a result, the electro-mechanical response of the plate
and shunted piezoelectric patch, and thus the electric power absorbed by
the shunt, show the time-harmonic dithering effect.More precisely, when the
tuning parameter is lower than the optimal value, i.e., Lsj,i < Lsj,opt, the
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Figure 3.7: Block diagram of the two-paths extremum seeking gradient search
algorithm implemented to find the optimal resistance and inductance of the
shunt, which maximises the electric power absorption estimated from the
electric power dissipated by the shunt resistor.

wavy power signal is in-phase with the dithering signal. Conversely, when
the tuning parameter is higher than the optimal value, i.e., Lsj,i > Lsj,opt, the
wavy power signal is out-of-phase with the dithering signal. The wavy power
signal can thus be used to update the inductance parameter. To this end,
the signal is first passed through a high-pass filter FhpL = jω

jω+ωhp
to remove

the bias (ωhp is the filter corner frequency). At this point the signal can
be demodulated by multiplying it with the same dithering signal zL,i used
in the modulation phase. The resulting wavy signal will be either mostly
positive for Lsj,i < Lsj,opt or mostly negative for Lsj,i > Lsj,opt. The updated
tuning parameter Lsj,i is then generated by integrating this signal after it
has been passed through a low pass filter FlpL = 1

jω+ωlp
to remove the effects

of noise and higher frequency harmonics. The increment or decrement of
the updated tuning parameter will be proportional to the slope of the cost
function such that fast convergence will be guaranteed along the side branches
of the bell-shaped cost function and slow, but precise, tuning will be ensured
close to the peak of the cost function where the bell-shape is flatter. This
algorithm is bound to converge and oscillate around the maximum value of
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Figure 3.8: Evolutions of the resistance and inductance of the shunt connected
to the centre patch when the extremum seeking algorithm is implemented
to maximise the time-averaged electric power absorption from the resonant
response of the first (a), second (b) and fourth (c) flexural modes.

the power cost function. Therefore, to stop the search along one path and
move forward to the search along the other path, as shown in the sketch of
Figure 3.7, a switching loop is added to the algorithm such that, when the

increment of the averaged absorbed power ∆P̄sj,i =
|P̄sj,i−P̄j,i−1|

P̄sj,i−1

is below a

given threshold ϵP , the search is switched to the other path. It is important
to highlight here that the time-window for the Ns samples time-averaging of
the absorbed electrical power is much shorter than the period of the dithering
signal for the extremum seeking tuning. Thus it does not interfere with the
working principle of the extremum seeking algorithm, which is indeed based
on the implementation of a dithering tuning signal.

3.4.2 Online tuning

The on-line implementation of the extremum seeking algorithms set
to maximise in each control unit the electrical power absorbed by the shunt is
finally discussed in this subsection for the cases where the shunts are tuned to
control in turn the resonant responses of the first, second and fourth flexural
modes of the plate. Figure 3.8 shows the evolutions in time of the resistance
and inductance of the shunt connected to the centre patch set to maximise
the time-averaged electric power absorbed from the resonant response of the
first, second and fourth resonant flexural modes respectively. The three plots
show that the tuning of the resistance is much faster than the tuning of the
inductance. In this respect, it should be highlighted that a very fine tuning
was searched here, that is a fairly small threshold ϵP was considered. As can
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Figure 3.9: Measures of the panel spatially-averaged transverse velocity (a)
and voltage drop across the shunt connected to the centre patch when the
plate is excited by a stochastic excitation and the patches are either in open
circuit (blue lines) or connected to shunts (red lines) set to maximise the
time-averaged electric power absorption from the resonant response of the
first (top graphs), second (centre graphs) and fourth (bottom graphs) flexural
modes.
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Figure 3.10: Measures of the panel flexural kinetic energy (a) and electric
power absorbed by the shunt connected to the centre patch when the plate is
excited by a stochastic excitation and the patches are either in open circuit
(blue lines) or connected to shunts (red lines) set to maximise the time-
averaged electric power absorption from the resonant response of the first (top
graphs), second (centre graphs) and fourth (bottom graphs) flexural modes.
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be noticed in the maps of Figures 3.3 and 3.4, the monitor and control cost
functions are characterised by rather flat surfaces close to the optimal tuning
points. Therefore, it is expected that, even with larger threshold ϵP , the
tuning algorithm will converge to shunt resistance and inductance values that
generate nearly optimal electric power absorption and thus nearly optimal
reductions of the resonant responses of the target modes. It is important
to emphasise a rather important feature of the experiments presented here.
Indeed, the online tuning is implemented for the case where the panel is
exposed to a stochastic broadband excitation. Therefore, to have a proper
estimate of the cost function, that is the time-averaged electric power absorbed
by the shunt, rather long time-averages should be implemented. In this respect,
to avoid too long convergence times, the length of the time averages was taken
equal to ns=12 samples, that is 0.8 s. With this choice, convergence to the
optimal tuning parameters was reached in a reasonable timescale, although
at the cost of losing some accuracy when the random excitation undergoes
rapid and substantial changes. The three graphs show that the tuning time
for each mode is different. This is due to two factors. First, the distance from
the optimal values of the initial guess for the shunt resistance and inductance
was different for the three modes. Second, the profile of the bell shaped cost
function was different for the three modes. As a result, a different number of
iterations was required before the algorithm climbed to the top of the bell-
shaped cost functions to find the optimal inductance and resistance values. In
general, when the two tuning paths procedure has been finalised, the tuning
algorithm can either be stopped for a while or set to restart form the optimal
values. In this way, the shunt parameters are continuously adapted according
to changes in the response of the structure, due for example to tensioning
effects produced by temperature variations or by the operation condition of the
structure. The control effects produced by the shunted piezoelectric patches
are now investigated with reference to two configurations where the shunts
either implement very large resistances to mimic open circuits or implement
the optimal resistances and inductances found with the extremum seeking
tuning algorithm set to maximise the electric power absorption from the
resonant responses of the first, second and fourth flexural modes respectively.
The left hand side columns in Figures 3.9 and 3.10 show the spatially average
velocity and the total flexural kinetic energy derived from measurements of
the transverse velocity taken at a grid of 4 × 4 points with a scanner laser
vibrometer. The right hand side columns in Figures 3.9 and 3.10 show, for
the centre control unit, the measured voltage drop across the terminals of
the shunt and the electric power absorbed by the shunt estimated from the
voltage drop across the terminals of the shunt and the resistance implemented
in the shunt. To better emphasise the vibration control effects produced
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by the shunted piezoelectric patches, the force excitation and the measured
responses of the panel and shunt were filtered with a 20 Hz band pass filter
centred at the target resonance frequency. Also, to allow a fair comparison,
the same stochastic force excitation was implemented to produce the results
with open circuit and shunted piezoelectric patches.

The left hand side plots in Figure 3.9 show that the amplitude of the
spatially averaged transverse vibration velocity of the panel is substantially
reduced when the units are set to control the resonant response of the first
and fourth flexural modes of the panel (top and bottom graphs). There is also
a fair reduction of the resonant response of the second flexural modes of the
panel (centre graph). Nevertheless, it is important to highlight that these plots
show the spatially-averaged velocity. Typically, vibro-acoustic phenomena
are assessed with reference to energy levels. Therefore, to better appreciate
the control effect produced by the five control units, the total flexural kinetic
energy plots shown on the left hand side column of Figure 3.10 should be
considered. Indeed, these graphs show quite remarkable reductions of the
resonant responses of the first, second and fourth flexural modes respectively.
Considering time-average levels taken over the 13 s time-acquisition, the ratios
of the kinetic energy when the units are optimally shunted and in open circuit
are of the order K̄sh/K̄oc = 0.2 or mode 1, K̄sh/K̄oc = 0.63 for mode 2 and
K̄sh/K̄oc = 0.4 for mode 4, which, translated into dB, result in reductions
of 14dB for mode 1, 4dB for mode 2 and 8dB for mode 4. These results
are in line with the reductions found with the spectral analysis presented in
Section 3.3.2 – Figure 3.6 and thus confirm both the validity of the proposed
tuning approach based on the maximisation of the electric power absorption
of the shunt and the effectiveness of the extremum seeking tuning algorithm.
Moving to the electric response of the shunt connected to the centre patch,
the right hand side graphs in Figures 3.9 and 3.10 show that the voltage
drop across the shunt terminal, and consequently the absorbed power too,
rise significantly when the shunt is indeed set to maximise the time-averaged
electric power absorption. The graphs in Figure 3.9 show both the absolute
power absorbed by the large resistor mimicking the open circuit condition
(blue line), which is therefore rather low, and the much larger power absorber
by the resistor of the optimally tuned shunt (orange line). In contrast, the
graphs in Figure 3.10 seem to show only the electric power absorbed when
the shunts are optimally tuned (orange line). As a matter of fact, the graphs
report the electric power absorbed when the shunts are in open circuit too,
although the values are so small compared to those of the power absorbed by
the optimally tuned shunt that the lines are merely visible (blue lines).



Chapter 4

Piezoelectric patch vibration
control units connected to a
multi-resonant self tuning shunt

4.1 Introduction

This Chapter investigates the implementation of the piezoelectric
patch control unit connected to a self-tuning shunt. As proposed in the
previous chapters, the approach proposed is based on the maximisation of
the time-averaged electric power absorbed by each RLC branch of the shunts
relative to the resonant responses of the target modes. In this chapter, the
approach is extended to multi-resonant shunts set to control the resonant
responses of multiple target modes. The search of the maximum time-averaged
electric power absorption local cost function is implemented with the perturb
and see approach based on the extremum seeking algorithm introduced in
Section 2.4 and discussed further in Section 3.4.1 with respect to its practical
implementation in a single resonant shunt.

69
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4.1.1 Modular self tuning multi-resonant shunt for
piezoelectric vibration control units

This chapter reports experimental results on the mitigation of the
low-frequencies, multi-resonant flexural vibration of a plate subject to a
broadband random disturbance. The plate is equipped with five piezoelectric
patches connected to self-tuning shunts set to control the resonant response
of three target flexural modes. The shunts are composed by three parallel
branches, with each branch made by a resistor-inductor-capacitor (RLC)
in series. To simplify the experimental work, the shunt circuits are imple-
mented in a dSPACE multichannel digital board, which is connected to the
five piezoelectric patches via ad-hoc interface circuits [95], such that the
transfer functions implemented in the board are converted into the desired
impedance loads that should be exerted by the multi-resonant shunts on the
five piezoelectric patches. The study first contrasts the vibration control
effects produced by the multi-resonant shunts with respect to the reference
cost function given by the time-averaged total flexural kinetic energy of the
panel and the proposed cost function given by the time-averaged electric
power absorbed locally by each branch of the shunts. Both cost functions are
filtered in a narrow band centred on the resonance frequency of the target
mode. Next, it investigates the online tuning of the resistive and inductive
components of the multi-resonant shunts with an extremum seeking algorithm
set to maximise the proposed local cost function, that is the time-averaged
electric power absorbed by each branch of the multi-resonant shunts.

4.1.2 Structure of the chapter

This Chapter is structured into three sections. Firstly, Section 4.2
presents the plate structure studied in this paper. Also, it discusses the
interface circuits and dSPACE multi-channel digital board arrangement used
to implement the multi-resonant shunts composed by three RLC branches in
parallel and the perturb-and-see self-tuning approach based on the extremum
seeking algorithm. Section 4.33 contrasts the maps of the time-averaged
flexural kinetic energy of the panel reference cost function and the time-
averaged electric power absorbed by the branches proposed cost function,
both filtered in narrow frequency bands centred at the resonance frequency
of the target flexural modes, with respect to the RL components in the three
branches of the shunts. Next, Section 4.4 presents the online self-tuning of the
three branches of each shunt in order to maximise the time-average electric
power absorption from the resonant response of the target modes.
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4.2 Plate model structure equipped with dig-

ital shunts and measurement approaches

This study is focused on the broadband control of flexural vibration
in a thin rectangular steel panel. As depicted on Figure 4.1, the plate is fixed
on a rigid frame isolated from ground vibrations. The panel is equipped with
five square MFC piezoelectric patches [117]. The patches are bonded on one
side of the panel and electrically connected via an interfacing circuit to a
multi-channel dSPACE digital controller board, which implements the digital
shunts as well as the online self-tuning algorithm. The dSPACE controller
has 16-bit ±10 V converters for both analogue-to-digital (ADC) and digital-
to-analogue (DAC) channels, with the sampling frequency set at 48 kHz. The
plate is excited by a broadband white noise transverse point force with a
shaker connected to the plate via a force sensor and a stinger. A detailed list
of geometric and physical dimensions of the system is given in Table 4.1.

Figure 4.1: Thin panel model structure (a), which is equipped with five
piezoelectric patches connected to ad hoc interface circuits (b).

4.2.1 Multi-resonant digital shunt

The electrical scheme of the multi-resonant shunt utilised in this work
is adapted from the circuit proposed by Hollkamp [131]. As shown in Figure
4.2(b), in this work, the shunt implements three parallel branches composed
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Table 4.1: Plate and piezoelectric patches rig.
Parameter Steel Plate Piezoelectric patches

dimensions lxp × lyp = 668× 443mm lxpe × lype = 85× 85 mm
thickness hp = 1.8 mm hpe = 0.3mm
mass mp = 3, 7926kg mpe = 11.7g
point force position xp = 0.63lxp, yp = 0.25lyp

patches centre position

lxp

2
, ype1 =

lyp

2

xpe2,3,4,5 =
lxp

2
±∆x,

ype2,3,4,5 =
lyp

2
±∆y

∆x = 185mm,∆y = 117.5mm

by a resistor-inductor-capacitor (RLC) in series. This circuit topology ensures
each branch can be focused on a narrow frequency band, which is indeed
defined by the second order response of the series RLC branch [127]. The
centre frequency and bandwidth of the branch filtering effect results from
the combined capacitive-inductive and the resistive effects of the branch
components. Here, it is important to emphasise that, to generate the desired
vibration absorption, the branch inductive-capacitive components should be
fixed in such a way as they produce a resonance effect that approximately
matches the resonance frequency of the target flexural mode of the plate [66].
Moreover, to maximise the electric power absorption, that is to maximise the
flexural vibration power absorption, the shunt resistance is bound to have
a comparatively low value, otherwise there would be no current flow in the
branch and thus no power absorption. As a result, the filtering effect of RLC
branch is bound to be characterised by a narrow frequency band too.

As seen in section 3.4.1 for the single branch shunt, the actual imple-
mentation of the shunts was made by digitally mimicking the circuit shown
in Figure 4.2(b) with a multichannel dSPACE board connected to the piezo-
electric patches via the interface circuit shown in Figure 4.2(c). Considering
the electric circuit depicted in Figure 4.2(c) for the j-th shunt, assuming
time-harmonic functions given in the form f(t) = f(ω)exp(jωt), where f(ω) is
the complex amplitude j =

√
−1 and ω is the circular frequency, the following

equations can be derived straightforwardly in the frequency domain:

vinj(ω) = vsj(ω), (4.1)

vopj(ω) = Gsj(ω)vinj(ω), (4.2)

vsj(ω)− vopj(ω) = Rojisj(ω). (4.3)
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Figure 4.2: Sketches of (a) the plate and shunted piezoelectric patches, (b)
shunt circuit with three RLC branches in parallel each equipped with a self
tuning loop that maximises the electric power absorbed by the branch, (c)
interface circuit and dSPACE platform for the digital implementation of the
shunts.

Here, vsj(ω), isj(ω), vinj(ω), vopj(ω) are the complex amplitudes of the shunt
voltage and current and of the digital board input and output voltages, Gsj(ω)
is the frequency response function between the output and input channels
board pair of the dSPACE for the j-th shunt and Roj is the feedback resistance
used to generate a given current flow. The voltage across the terminals of the
piezoelectric patch can be written as

vsj(ω) = Zsj(ω)isj(ω), (4.4)

where Zsj(ω) is the impedance of the multi-resonant shunt, which, for the
parallel RLC branches is given by

Zsj(ω) =
( n∑

i=1

( 1

(jωCsji)
+ jωLsji +Rsji

)−1)−1

, (4.5)

where n is the number of branches, which in this work will be taken equal to
n = 3. At this point, combining Eqs. 4.1-4.4, the frequency response function
Gsj(ω) that should be implemented digitally in the digital board to generate
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desired the electric impedance load of the shunt Zsj(ω) results given by

Gsj(ω) =
vopj(ω)

vinj(ω)
= 1− Roj

Zsj(ω)
. (4.6)

To ensure that the Gsj(ω) is proper and to reduce eventual high frequency
noise a low pass filter with a cut-off frequency at flp = 500 Hz is implemented
too by setting

Gsj(ω) =
(
1− Roj

Zsj(ω)

)( ωlp

jω + ωlp

)
. (4.7)

Here ωlp = 2πflp is the cut off circular frequency of the low pass filter.

4.2.2 Measurement of the cost functions

As anticipated above two cost functions have been considered for
the tuning of the multi-resonant shunts. The first, serves as a reference
cost function to assess the actual effectiveness of the proposed cost function.
Therefore the reference cost function is given by the time-averaged total
flexural kinetic energy relative to the resonant responses of the target modes,
which has been derived from the following relation

K̄r(Rsj, Lsj) =
1

π∆ωr

+N∆∑

r=−N∆

SKr

(
Rsji, Lsji, ωnr + r

∆ωr
2N∆

)
. (4.8)

Here Rsji, Lsji are the resistance and inductance of the i-th branch in the
j-th shunt. Also, ωnr is the resonance frequency of the r-th target mode to
be controlled and ∆ωr, 2N∆ are respectively the frequency bandwidth and
the number of frequency samples in the bandwidth used to derive the average
value, which are summarised in Table 4.2. Finally, SKr is the power spectral
density of the total flexural kinetic energy, which was derived from point
measurements taken with a laser vibrometer using the following formula

SKr

(
Rsji, Lsji, ωnr + r

∆ωr
2N∆

)
=
M

32

+16∑

k=1

Swkji

(
Rsji, Lsji, ωnr + r

∆ωr
2N∆

)
. (4.9)

Here, M is the total mass of the plate and piezoelectric patches and Swkji is
the power spectral density of the transverse vibration velocity of the plate
measured at the k-th point of the 4× 4 grid of points scanned with the laser
vibrometer. The rather coarse 4× 4 grid of measurement point was adopted
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Table 4.2: Mode frequency ranges
Min Max

1st mode (ω1) 26 Hz 33 Hz
2nd mode (ω2) 47 Hz 51 Hz
3rd mode (ω3) 78 Hz 83 Hz
4th mode (ω4) 85 Hz 92 Hz

based on a trade-off between accuracy of the measurements and speed of
the measurements. The speed of the measurements was quite critical for the
generation of the maps considered in the forthcoming section, which depict
the time-averaged total flexural kinetic energy with respect to a 10× 25 grid
of resistance and inductance values in each branch of the shunts. Even with
such a coarse grid for the laser vibrometer measurements, and the likewise
coarse grid of resistance of vibration measurement points, these measurements
took a rather long time in the order of several hours. Beside the length
of the experiments itself, this was a problem since even under a controlled
environment, the flexural response of the panel was affected by a certain
variability due primarily to the temperature variations in the plate and the
shunt equipment. over several hours, thus changes in temperature are, in fact,
observable on the measurements. Therefore, the frequencies will be omitted
and instead, just the mode order will be displayed. Table 4.2 shows the ranges
of frequencies for the modes compressed between 0 and 100Hz.

Beside the reference cost function, a local cost function is proposed in
this paper, which is based on local measurements of the time-averaged electric
power absorbed by each RLC branch relative to the resonant responses of
the target modes. This cost function is of particular practical interest as it
does not need a sophisticated sensing system that detects the whole vibration
of the panel such as those involving distributed piezoelectric transducers for
example [127]–[130]. On the contrary, as highlighted in Figure 4.2a, it can be
estimated directly within each branch of the shunt from the voltage across
the branch resistor. Indeed, the time-averaged electric power absorbed by
the i-th branch of the j-th shunt with respect to the resonant response of the
r-th flexural mode of the panel was derived from the following relation

P̄r(Rsj, Lsj) =
2N∆

π∆ωr

+N∆∑

r=−N∆

SPrji

(
Rsji, Lsji, ωnr + r

∆ωr
2N∆

)
. (4.10)

The parameters Rsji,Lsji and ωnr, ∆ωr, 2N∆ are the same as those defined
for Eq. 4.6. However, SPrji is the power spectral density of the electric power
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absorbed by the i-th branch of the j-th shunt, which was derived from the
voltage measurement across the resistor in the i-th branch using the following
formula

SPrji

(
Rsji, Lsji, ωnr + r

∆ωr
2N∆

)
=

1

Rsji

Svji

(
Rsji, Lsji, ωnr + r

∆ωr
2N∆

)
. (4.11)

where Svji is the measured powers spectral density of the voltage drop across
the resistor in the i-th branch. As will be discussed in Section 4, the proposed
self-tuning of the multi-resonant shunts was implemented online considering
directly the average of the instantaneous absorbed electric power over a short
window of Ns samples, such that

P̄r(Rsj, Lsj) =
1

Ns

Ns−1∑

s=0

Psrji(Rsji, Lsji). (4.12)

Here Psrij(Rsji, Lsji) is the electric power absorbed by the i-th branch of
the j-th shunt at the s-th time sample, which is band pass filtered at the
resonance frequency of the r-th target flexural mode. This quantity was
derived directly from the voltage vsji(Rsji, Lsji) measured across the resistor
Rsji with the following relation

Psji(Rsji, Lsji) =
1

Rsji

v2sji(Rsji, Lsji). (4.13)

4.3 Global vs. local tuning cost function

In this section, the effectiveness and the tuning of the reference and
proposed tuning cost functions are investigated in details. As anticipated
above, the reference cost function is based on the global measurement of the
flexural response of the plate structure, which is expressed in terms of the
time-averaged total flexural kinetic energy relative to the resonant responses
of the target modes as given in Eq. 4.8. Alternatively, the local cost function
is based on the local measurement of the vibration energy absorbed by the
shunted piezoelectric patch and is expressed in terms of the time-averaged
electric power absorbed by each RLC branch relative to the resonant responses
of the target modes as given in Eq. 4.10. To this end, the maps presented in
Figure 4.3 have been produced from measurements of the two cost functions
with respect to a 10 × 25 grid of resistance and inductance values in each
branch of the shunts. The left hand side maps show the kinetic energy
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Figure 4.3: Measured maps of the time-averaged total flexural kinetic energy
(left hand side plots) and time-averaged electric power absorbed by the
shunt branches (right hand side plots) with reference to the inductance and
resistance of the branch #1 (top maps), #2 (centre maps) and #3 (bottom
maps). Top plots, slices of the maps for constant resistance. Lateral plots,
slices of the maps for constant inductance.
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cost function whereas the right hand side maps show the electric power cost
functions with reference to the inductance (x-axis) and resistance (y-axis) of
the first out of one branch (top maps), of the second of two branches (centre
maps) and of the third out of three branches (bottom maps). The plots on
top of the maps show slices of the kinetic energy and electric power maps
for constant shunt resistance. Alternatively, the plots alongside the maps
show slices of the kinetic energy and electric power maps for constant shunt
inductance. Although the two maps are not smooth, they show the typical
reversed bell shapes (kinetic energy maps) and bell shapes (electric power
maps) that were found in the theoretical and experimental studies presented
for single-resonant shunts in Refs. [118], [132]. As anticipated in Section 4.2.2,
to generate the maps, rather lengthy measurement sessions were required
such that the results are affected by variations of the plate flexural response
and shunt electric response, both due principally to variations of temperature.
To keep the acquisition time within a few hours, the overall flexural vibration
of the plate was measured over a small grid of 4× 4 points. Also, the maps
were generated by interpolating the values of the two cost functions measured
considering a coarse grid of 10× 25 resistance and inductance values in each
branch of the shunts. Despite these measurements and plotting artefacts, the
maps depicted in Figure 4.3 show the typical inverse bell shaped kinetic energy
surfaces and the typical bell shaped electric power surfaces. More specifically,
the bell shapes of both maps are characterised by constant-resistance and
constant-inductance principal axis. The reversed bell shapes of the flexural
kinetic energy maps are centred at the resonance frequencies of the target
modes. Thus, as found for the single-resonant shunts, the inductance in
each branch should be tuned in such a way as the branch resonates at the
resonance frequency of the target flexural mode. The bell shapes of the
electric power maps are centred at the resonance frequencies of the target
modes too. Actually, the resistance and inductance values of the maxima
of these maps closely overlap those for the minima of the flexural kinetic
energy maps. Hence, the N -resonant shunts can be conveniently tuned in
such a way as the shunted piezoelectric patches control the resonant response
of N -target flexural modes of the plate simply by setting the resistance and
inductance in each branch to maximise the electric power absorption by the
branch itself. As shown in Figure 4.2(c) and discussed in Section 2.2, the
electric power absorbed by the shunt can be easily measured locally from the
voltage drop across the resistor in the branch and its resistance value itself
(e.g. see Eqs. 4.12, 4.13). The fact that the bell shape of the electric power
cost function is characterised by constant-resistance and constant-inductance
principal axis suggests that the maximum value can be conveniently searched
along constant-resistance and constant-inductance paths, which, as can be
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noticed in the top and lateral graphs, are equally characterised by bell-shaped
functions. Therefore, a two-paths strategy can be implemented in each branch
to search in turn the resistance and inductance that would maximise the
electric power absorbed by the branch. The inductance should be tuned first
along the path Rs = const and then the resistance should be tuned along
the path Ls = const. This sequence can then be implemented recursively to
improve the tuning accuracy and, more importantly, to adapt the tuning to
changes in the flexural response of the plate and electro-mechanical response
of the piezoelectric patch and shunt circuit generated by external factors
such as temperature variations. The following section will discuss the online
implementation of this tuning strategy, where the climbing of the Rs = const
and Ls = const paths to find the maximum of the electric power absorption is
carried out with a perturb and see algorithm based on the extremum seeking
control algorithm [103]–[107].

4.4 Online implementation of the self-tuning

shunts

To start with, the experimental implementation of the extremum
seeking perturb and see algorithm employed to search the optimal inductance
and resistance values in each branch of the shunts is presented. Then,
experimental results showing how the shunt inductance and resistance vary
during tuning are presented. Finally, the flexural response of the plate and
the electric power absorbed by each branch of the shunts before and after
tuning is analysed both in the time and frequency domains.

4.4.1 Extremum seeking algorithm for the self-tuning
of the RL shunt components in each branch of
the multi-resonant shunt

For brevity, only the inductance tuning phase will be addressed in this
section considering the block diagram in Figure 4.4 since the tuning of the
resistance is very much the same. Considering a time-discrete controller, the
ripple signal with the k-th time signal is given by:

r̃j,k = r0sin(ωdtk), (4.14)

with amplitude r0 and circular frequency ωd. This signal is amplified by a
gain grL and then added to the tuning inductance signal L̂j,k to create a
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Figure 4.4: Extremum seeking algorithm block diagram.

modulation signal given by:

L̃j,k = L̂j,k + grLr̃j,k. (4.15)

This quasi-static variation of L̃j,k modulates the value of the electric power
absorbed by the shunt, which can be defined as the sum of two power terms

Pj,k = P̂j,k + P̃j,k. (4.16)

The first term, P̂j,k, is the static absorbed power related to the L̂j,k tuning
component whereas the second term P̃j,k = σP r̃j,k encompasses the ripple
signal whose amplitude is scaled by a factor σP . Then, a time-averaged
electric power absorbed by the branch is calculated. As depicted in the block
diagram of Figure 4.4, the power signal measured in the shunt is averaged
over a small interval of time, that is over a small number of samples Na, such
that:

P̂aj,k =
1

Na

k−Na∑

r=k

Pj,r. (4.17)
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In general, the averaging time interval given by Ta = NaTs, where Ts is the
sampling time of the dSPACE board, is chosen in such a way as it does not
remove the modulation of Pj,k. Thus, it is considerably shorter than the time
period of the dithering signal Td =

2π
ωd
. From this step, the algorithm follows

as presented and discussed on section 2.4. To mitigate noise and improve
convergence, a low pass filter is introduced before the integration step

Hlp(jω) =
ωlp

jω + ωlp

, (4.18)

having cut-off frequency ωlp, and then it is integrated and magnified such
that

L̂j,k = gL

k−N∑

r=k

L̃j,r∆t. (4.19)

where L̂j,k is the estimator for the optimal value of the inductance of the
shunt.

4.4.2 Online tuning of the multi-resonant shunts

The online implementation of the self-tuning multi-resonant shunts
is now investigated considering experimental results obtained with the plate
equipped with five piezoelectric patches connected to multi-resonant shunts
described in Section 4.2 and depicted in Figures 4.1, 4.2. The shunts are
formed by 3 RLC branches in parallel, which are tuned to control the resonant
responses of the first, second and fourth flexural mode of the plate. The third
flexural mode is not controlled since it is poorly excited by the point force
exerted by the shaker and thus generates a small vibration effect anyhow. To
simplify this analysis, the tuning of each branch is carried out simultaneously
in the five shunts. Therefore, the optimal inductance and resistance of the
i-th branch of the shunts is derived for all shunts together considering the
total power absorbed by the i-th branch of the N shunts. This simplification
is made possible by the fact that, contrary to time-harmonic vibrations [111],
for stochastic vibrations the power absorbed by each shunt is independent
from that of the other shunts.

Figure 4.5 shows the time evolution of the shunt resistance and induc-
tance, for the first (plot a), second (plot b) and third (plot c) branches. Here,
the most relevant aspect is the convergence of the inductance and resistance in
each branch to their optimal values. In this respect, to match the resonances
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Figure 4.5: Online tuning for the inductances (blue lines) and resistances
(orange lines) for the first (a), second (b) and third (c) branch of the shunts
set to control the resonant response of the first, the second and the fourth
flexural mode of the plate respectively.

of the RLC branches with the resonance frequency of the target modes, the
optimal inductances assume rather different values. Therefore, they have been
plotted with respect to their optimal values obtained from the maps of the
time-averaged electric power absorbed by each branch discussed in Section 3
and depicted in Figure 4.3. Considering first the tuning of the inductances,
the blue lines in the three plots of Figure 4.5, show that the inductances in
the three branches monotonically approach their optimal values. The tuning
of the inductances in the first and third branches is comparatively faster
than for the inductance in the second branch. Nevertheless, it should be
highlighted here that the convergence time is linked to the initial value of
the inductances. Therefore, it is likely that, in practical applications, after
the shunts are initially set after production of the smart panel, the online
tuning is bound to be rather fast. Moving to the tuning of the resistances, the
orange lines in the three plots of Figure 4.5, show that the resistance in the
three branches do not converge monotonically. In particular, the resistances
of the first and second branch initially exceed their optimal values and then
monotonically converge to their optimal values. This is due to the fact that,
as can be noticed in the lateral plots beside the electric power maps in Figure
4.3, the curvature of the tuning path for constant inductance is rather small.
As a result, the extremum seeking algorithm can easily “surpass” the optimal
value and then take quite a few iteration before it inverts the direction of the
tuning. This problem is exacerbated by the fact that the primary excitation
is stochastic and thus their time-averaged electric power is subject to a steady
flickering. Nevertheless, the proposed tuning strategy has led to the optimal
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values of the inductance and resistance components in each branch such that
the shunted patches effectively couple with the target resonant flexural modes.

4.4.3 Time-domain analysis of the control performance

The control effects generated by the self-tuning multi-resonant shunts
are now investigated with reference to time-domain measurements taken on
the smart panel excited by a broad band force, which, to better highlight the
vibration control effect generated on the resonant responses of the flexural
modes 1, 2, 4, was low-pass filtered at 100 Hz. To start with, Figure 4.6
shows the spatially averaged transverse velocity of the panel derived from
the laser vibrometer measurements at the 4× 4 grid of points (left hand side
plots) and the voltage measured across the terminals of the shunt connected
to the centre patch (right hand side plots), which gives an indication of the
electric power absorbed by the shunt itself. The two sets of plots consider
two cases where the inductances and resistors in the branches are mistuned
(blue lines) and where the inductances and resistor in branch N. 1 (top plots),
N. 1, 2 (centre plots) and N. 1, 2, 3 have been tuned with the proposed
approach to optimally control the resonant response of the first, first-second
and first-second-fourth flexural modes respectively (orange lines). The top
plots in the figure show that, when the first branch in the shunts is tuned
to mitigate the resonant response of the first mode, there is only a small
reduction of the panel averaged velocity. Also, the shunt voltage does not
change significantly. Nevertheless, the centre and bottom plots show that,
when the first and second branches and when the first three branches are
activated, the reduction of the panel averaged velocity and the increment
of the shunt voltage become increasingly more visible. The voltage plots
are quite uneven and, for instance, indicate a rather large increment of the
voltage when the branches 1, 2 are tuned. This is due to the fact that the
graphs show what happens with the centre shunt only, which is characterised
by the larger voltage increment when branch N. 1, 2 are activated and branch
3 is mistuned.

To better appreciate the effects generated by the multi resonant shunts,
the total flexural kinetic energy of the plate and electric power absorbed
by the shunt connected to the centre patch are now analysed considering
the plots in Figure 4.7. In this figure, the left hand plots show the panel
total flexural kinetic energy whereas the right hand side plots show the
electric power absorbed by the shunt connected to the centre patch when the
inductances and resistors in the branches are mistuned (blue lines) and when
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Figure 4.6: Measured time-response of the spatially-averaged velocity of the
panel (left hand side plots) and voltage of the centre shunt (right hand side
plots) when the branches are mistuned (blue lines) and when the branch N.
1 (top graphs), N. 1, 2 (centre graphs) and N. 1, 2, 3 (bottom graphs) are
tuned to control the first, first-second and first-second-fourth flexural modes
of the panel.
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Figure 4.7: Measurement based total flexural kinetic energy (left hand side
plots) and electric power absorbed by the centre shunt (right hand side plots)
when the branches are mistuned (blue lines) and when the branches N. 1 (top
graphs), N. 1, 2 (centre graphs) and N. 1, 2, 3 (bottom graphs) are tuned
to control the first, first-second and first-second-fourth flexural modes of the
panel.
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Table 4.3: Time domain results from Figure 4.7
1 branch 2 branches 3 branches

K̄ - open circuit 215.23 µJ 179.98 µJ 129.61 µJ
K̄ - optimal shunt 158.76 µJ 102.61 µJ 66.63 µJ
P̄ - open circuit 49.09 nW 14.60 nW 35.89 nW
P̄ - optimal shunt 8210.5 nW 2469.7 nW 5917.1 nW

the inductances and resistor in branch N. 1 (top plots), N. 1, 2 (centre plots)
and N. 1, 2, 3 have been tuned with the proposed approach to optimally
control the resonant response of the first, first-second and first-second-fourth
flexural modes respectively (orange lines). The kinetic energy plots on the
left hand side clearly show the reductions of vibration produced by the
piezoelectric patches with one, two and three branches activated. Overall,
when the three branches are working there is a 6 dB reduction of the time
averaged flexural kinetic energy. The right-hand side plots with the electric
power show only the orange lines relative to the power absorbed when the
centre shunt is tuned to control the resonant responses of the first, first-second,
first-second-fourth flexural modes of the plate. This is due to the fact that the
powers absorbed when the branches N. 1, N. 1, 2 and N. 1, 2, 3 are optimally
tuned, are at least one order of magnitude larger that the power absorbed by
the mistuned shunt. Indeed, when the whole three branches are all optimally
tuned, the electric power absorption increases by 40 dB. The time averaged
results from Figure 4.7 are summarised on Table 4.3. The time averages are
given by K̄ = 1

T

∫ T
0
K(t)dt and P̄ = 1

T

∫ T
0
P (t)dt, where T is the averaging

time interval and K(t), P (t) are the instantaneous total flexural kinetic energy
and electric power absorbed respectively. It is important to highlight here
that the plots presented on the top, centre and bottom of Figures 4.6 and 4.7
refer to single acquisitions, which for stochastic vibrations, are bound to have
different time-histories, which explains certain discrepancies of results for the
three configurations.

4.4.4 Frequency analysis of the control performance

To provide more insights on the control effects and the operation of the
multi-resonant shunts, this section presents frequency domain analyses of the
panel flexural response and electric power absorbed by the shunt connected to
the centre patch. To this end, Figure 4.8 shows the power spectral density of
the total flexural kinetic energy (left hand side plots) and the power spectral
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Figure 4.8: Measurement based spectra of the total flexural kinetic energy
(left hand side plots) and electric power absorbed by the centre shunt (right
hand side plots) when the branches are mistuned (blue lines) and when the
branches N. 1 (top graphs), N. 1, 2 (centre graphs) and N.1, 2, 3 (bottom
graphs) are tuned to control the first, first-second and first-second-fourth
flexural modes of the panel.
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densities of the electric power absorbed by the shunt connected to the centre
patch (right hand side plots). Here too, the two sets of plots consider the
cases where the inductances and resistors in the branches are mistuned (blue
lines) and where the inductances and resistor in branch N. 1 (top plots),
N. 1, 2 (centre plots) and N. 1, 2, 3 have been tuned with the proposed
approach to optimally control the resonant response of the first, first-second
and first-second-fourth flexural modes respectively (orange lines). The left
hand side plots show that, when the three branches in the shunts are activated
in sequence, the first, second and fourth peaks in the flexural kinetic energy
spectra, which are due to the resonant responses of the first, second and
fourth natural modes, are brought down respectively by 10 dB, 8 dB and
10 dB. In parallel, the right hand side plots show that the spectra of the
electric power absorbed by the shunt connected to the centre patch see a
substantial increment of the first, second and fourth resonance peaks. Here
there is an increment of the third peak too, whose resonance frequency is
close to that of the fourth mode. Therefore the response, and thus power
absorption linked to the response of the fourth mode overlaps with that of
the third mode such that the third resonance peak results magnified. The
experimental results presented in this section show the potential of semi-active
control with piezoelectric patches connected to self-tuning multi-resonant
shunts, which can generate significant reductions of the resonant responses
of low order flexural modes of the hosting structure, comparable to those
obtained with piezoelectric patches connected to fully active feedback systems
[31], [133]–[142].



Chapter 5

Summary and Conclusions

5.1 Overview of the study

This thesis has presented a comprehensive theoretical, simulation and
experimental study on a modular control unit formed by a piezoelectric patch
connected to a self-tuning shunt, which can be bonded in batches on thin
structures to control the low frequency flexural response due to stochastic
broadband disturbances. In particular, the focus has been on the conception
and development of either a single-resonant or a multi-resonant shunt, which
can be tuned online in such a way as to control the resonant response of single
or multiple flexural modes of the hosting structure.

The study has considered two tuning strategies, based on a global
metric and a local metric. More specifically, the so-called reference tuning
strategy refers to the minimisation of the time-averaged total flexural kinetic
energy of the hosting thin plate strategy. This cost function provides a global
indication of the overall flexural vibration of the panel. Thus, it has been used
as a benchmark to assess the effectiveness of the so called practical tuning
strategy, which involves the maximisation of the time-averaged electric power
absorbed by the RL branch or by each RLC branch of the single-resonant
and multi-resonant shunts respectively.

The practical implementation of the self-tuning shunts has been based
on a novel two paths tuning approach, based on the extremum seeking perturb-
and-see algorithm. The study has been structured in three parts. Firstly,
Chapter 2 has presented the proposed self-tuning shunt considering a simplified
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mechanical problem encompassing a single degree of freedom spring-mass-
damper system connected to the self-tuning shunt via a piezoelectric idealised
transducer. Two shunt configurations have been considered, which are formed
by a resistor and inductor (RL) connected either in series or parallel. Then,
Chapters 3 and 4 have discussed the actual implementation of the proposed
control unit on a thin plate structure subject to a stationary stochastic
excitation. More specifically, Chapter 3 has investigated the implementation
of single-resonant self tuning shunt set to control the resonant response of a
target flexural mode of the hosting structure. Instead, Chapter 4 has explored
the implementation of multi-resonant self tuning shunt set to control the
resonant response of multiple target flexural modes of the hosting structure.
The single-resonant shunt is formed by a single branch formed by a resistor
and inductor in parallel. The multi-resonant shunt is formed by multiple
branches connected in parallel, which are formed by a resistor, inductor and
capacitor connected in series. The following section presents the principal
conclusions of the studies presented in the three chapters.

5.2 Conclusions

As anticipated above, the conclusions of the study are organised with
respect to the results presented in each chapters as detailed below.

5.2.1 Chapter 2 – conclusions

To start with, this chapter has contrasted the minimisation of the
time-averaged kinetic energy of the mechanical system with the maximisation
of the time-averaged electric power absorbed by the shunt, that is, the time-
averaged electric power dissipated by the shunt resistor. The study has shown
that:

1. the kinetic energy cost function is characterised by an inverse bell-shape
whereas the absorbed electric power objective function is characterised
by a bell-shape;

2. both functions are characterised by constant-resistance and constant-
inductance principal directions;

3. the minimum of the kinetic energy cost function and the maximum of
the absorbed electric power objective function are characterised by the
same optimal resistance and inductance of the shunt.
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A local tuning strategy has therefore been proposed, where the resistance and
inductance of the shunt are set online to maximise the time-averaged electric
power absorbed by the shunt, which can be suitably measured locally as the
time-averaged electric power dissipated by the resistor. More specifically, a
two-paths tuning sequence has been proposed, where the inductance and
resistance of the shunt are tuned in sequence along constant-resistance and
constant-inductance paths respectively. In this respect, the study has shown
that

1. the two paths are characterised by non-convex functions with a single
maximum, which identify the optimal inductance and optimal resistance
respectively;

2. the optimal inductance and resistance can be effectively searched along
the two paths with an extremum seeking gradient search algorithm;

3. the two-paths optimisation can be implemented sequentially online such
that the tuning of the shunt is continuously adapted to both changes of
the dynamic response of the mechanical system and variations of the
electrical response of the piezoelectric transducer capacitance and shunt
resistance and inductance.

5.2.2 Chapter 3 – conclusions

At the beginning, this Chapter has also contrasted the vibration control
effects generated when the practical control unit formed by a piezoelectric
patch connected to the single-resonant shunt is set

(a) either to minimise the time-averaged total flexural kinetic energy of the
hosting plate due to the resonant response of the target flexural mode

(b) or to maximise the time-averaged electric power absorbed by the shunt
from the resonant response of the target flexural mode.

In line with Chapter 2, Chapter 3 has shown that the two cost functions are
characterised by mirrored bell shapes whose minimum and maximum occur
for the same RL shunt parameters. Therefore, the shunts can be conveniently
tuned locally by maximising the electric power absorbed by the shunts from
the resonant response of the target flexural mode.

In the second part, the Chapter has investigated the practical imple-
mentation of the two-step tuning approach proposed in Chapter 2, where
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the extremum seeking algorithm is implemented online to find online the
optimal inductance and resistance respectively along constant-resistance and
constant-inductance paths. The study has shown that the two paths are
characterised by bell-shaped curves, which can be effectively “climbed” to
the top by the extremum seeking algorithm.

Indeed, on-line experiments taken on a thin panel equipped with 5
of these control units have shown that the proposed local tuning of the five
piezoelectric patches generates reductions of the resonant responses of the
first, second and fourth flexural mode of the order of 14 dB, 4 dB, 8 dB

5.2.3 Chapter 4 – conclusions

In parallel to the study presented in Chapter 3 for the single-resonant
shunt, Chapter 4 has contrasted the vibration control effects generated when
the practical control unit formed by a piezoelectric patch connected to the
multi-resonant-resonant shunt is set

(a) either to minimise the time-averaged total flexural kinetic energy of the
hosting plate due to the resonant responses of the target flexural modes;

(b) or to maximise the time-averaged electric power absorbed by each
branch of the shunt from the resonant response of the target flexural
modes.

To start with, this Chapter has shown that the proposed tuning function
based on the maximisation of the time-averaged electric power absorbed by
each branch of the shunt with respect to the resonant response of a specific
target flexural mode provides the same optimal resistance and inductance
values that would be necessary to minimise the time-averaged flexural kinetic
energy of the target flexural modes. Moreover, it has shown that the power
cost function is characterised by a surface with a sequence of non-convex
bell shapes having constant-resistance and constant-inductance principal
directions. As a result, the two-step tuning strategy proposed for the single-
resonant shunt has been adapted in such a way as the inductance is tuned first
along the constant-resistance path and then the resistance is tuned along the
resulting constant-inductance path. The RLC branches generate a filtering
effect such that, based on their initial values, each branch filters the response
of a specific target modes and the proposed tuning strategy leads to the
optimal tuning that minimises the resonant response of the target mode.
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In the second part, the Chapter has investigated the practical imple-
mentation of a modified version of the two-step tuning approach proposed
in Chapter 2, which deals with multiple bell shapes of the cost function.
The study has shown that the proposed extremum seeking algorithm can
be effectively employed to “climbed” to the top of the multiple bell-shaped
portions of the local cost function.

Here too, on-line experiments taken on a thin panel equipped with 5
of these control units have shown that the proposed on-line local tuning of
the five piezoelectric patches generates a reduction of the resonant responses
of the first, second and fourth flexural modes in the order of 10 dB 8 dB and
10 dB respectively, and a broadband effect of 6 dB reduction of overall kinetic
energy over a time window.

5.3 Future Works

This thesis has proven the feasibility of a self contained vibration
control unit composed by a piezoelectric patch connected to a self-tuning single
resonant or multi-resonant shunt, which can be bonded on thin structures
to control the flexural vibration at low frequencies, where the response is
controlled by the resonant responses of low order target flexural modes. For
commercial use, however, more efforts are required to develop the final product.
In particular, the unit should be miniaturised in order to diminish its volume
and weight. In addition, the circuitry for the actual implementation of the
self-tuning shunt should be optimised in order to minimise the electric power
consumption. In particular, the possibility of running intermittently the
tuning algorithm should be investigated. This is quite a relevant topic, which
could lead to the idea of harvesting and storing the electric power absorbed by
the shunt and then using it during short time windows to update the tuning
of the shunt.
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[32] P. Gardonio and N. Alujević, “Double panel with skyhook active
damping control units for control of sound radiation,” Journal of the
Acoustical Society of America, vol. 128, no. 3, pp. 1108–1117, 2010.
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