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Abstract: Anti-NMDAR encephalitis has been associated with multiple antigenic triggers (i.e., ovarian
teratomas, prodromal viral infections) but whether geographic, climatic, and environmental factors
might influence disease risk has not been explored yet. We performed a systematic review and
a meta-analysis of all published papers reporting the incidence of anti-NMDAR encephalitis in
a definite country or region. We performed several multivariate spatial autocorrelation analyses
to analyze the spatial variations in the incidence of anti-NMDA encephalitis depending on its
geographical localization and temperature. Finally, we performed seasonal analyses in two original
datasets from France and Greece and assessed the impact of temperature using an exposure-lag-
response model in the French dataset. The reported incidence of anti-NMDAR encephalitis varied
considerably among studies and countries, being higher in Oceania and South America (0.2 and
0.16 per 100,000 persons-year, respectively) compared to Europe and North America (0.06 per
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100,000 persons-year) (p < 0.01). Different regression models confirmed a strong negative correlation
with latitude (Pearson’s R = −0.88, p < 0.00001), with higher incidence in southern hemisphere
countries far from the equator. Seasonal analyses showed a peak of cases during warm months.
Exposure-lag-response models confirmed a positive correlation between extreme hot temperatures
and the incidence of anti-NMDAR encephalitis in France (p = 0.03). Temperature analyses showed a
significant association with higher mean temperatures and positive correlation with higher ultraviolet
exposure worldwide. This study provides the first evidence that geographic and climatic factors
including latitude, mean annual temperature, and ultraviolet exposure, might modify disease risk.

Keywords: anti-NMDAR encephalitis; geoepidemiology; seasonality

1. Introduction

The description of the N-Methyl-D-Aspartate receptor (NMDAR) encephalitis in
2007 [1] represented a paradigm shift in the field of neuroimmunology. Anti-NMDAR
encephalitis is autoimmune encephalitis related to the presence of autoantibodies of the
IgG1 subclass targeting the GluN1 subunit of the NMDAR, a glutamate receptor highly
expressed on the surface of hippocampal neurons. Anti-NMDAR autoantibodies have
demonstrated to be directly pathogenic, causing reversible synaptic dysfunction in neuronal
cultures [2] and animal models [3].

Anti-NMDAR encephalitis primarily affects young females [4,5], one of the triggers
being the presence of an underlying ovarian teratoma, which is detected in about half
of the cases [4,5]. Preceding viral infections [5], not limited to herpes simplex [6] and
Japanese encephalitis [7], represent additional triggers of the disease. Genetic factors
such as HLA profile (HLA-I B*07:02 in European patients and HLA-II DRB1*16:02 in
Chinese populations) have also been suggested to modulate disease risk [8,9], supporting
the hypothesis that, similarly to several other autoimmune disorders, both genetic and
environmental factors may concur to disease pathogenesis [10].

The possible impact of environmental factors such as latitude, sun exposure, and
air pollution has not yet been evaluated in autoimmune encephalitis, although they have
shown to heavily influence the risk and disease activity of multiple sclerosis [11,12], another
immune-mediated disorder affecting the central nervous system.

Herein, we performed a systematic review and a meta-analysis of the literature,
including unpublished datasets from four additional countries, to assess the incidence
of anti-NMDAR encephalitis in different countries, searching for elements suggesting
an influence from geographic, climatic, and environmental factors. To strengthen our
findings, we performed seasonal and climatic analyses on two original datasets from
France and Greece.

2. Materials and Methods

The literature review was conducted and reported following PRISMA statements [13].
The PubMed (https://pubmed.ncbi.nlm.nih.gov/, accesed on 15 January 2020) and Google
Scholar (https://scholar.google.com/, accessed on 15 January 2020) research was per-
formed between 20 December 2019 and 15 January 2020 using the keywords ‘autoimmune
encephalitis’ and ‘NMDA encephalitis’ in combination with each of the 177 country names
included in the ISO list of world countries (Supplementary Table S1). No restriction was
applied concerning language or year of publication.

Two investigators (AA, GB) independently reviewed the articles retrieved from the
research, extracting relevant information using a standardized data extraction sheet, as
recommended by quality standards for reporting meta-analyses of observational studies in
epidemiology [14]. The assessments performed separately by the two investigators were
then cross-checked and, if any disagreement arose, a third reviewer (DP) was consulted to
achieve a final decision.

https://pubmed.ncbi.nlm.nih.gov/
https://scholar.google.com/
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To be included in the meta-analysis, studies needed to provide the number of incident
cases or crude and/or age-specific incidence estimates for anti-NMDAR encephalitis, study
period, and referring population. Studies reporting incidence estimates inferred from a
subset of patients not representative of the whole anti-NMDAR encephalitis population
(i.e., concerning intensive care unit or epileptic patients) were excluded. The list of the
68 studies [9,15–82] included in the meta-analysis is given in the Supplementary Data.

Literature data were complemented by unpublished data on the incidence of NMDAR
encephalitis in Colombia, Chile, France, and Greece, collected by coauthors actively work-
ing in these countries. This allowed having information on the incidence of anti-NMDAR
encephalitis in three countries, with no literature data available (Colombia, Chile, and
Greece). This study was approved by the local ethics committee of the Pitié Salpêtrière
Hospital and informed consent was waived (reference CPP SUD-EST II).

Two unpublished datasets of patients diagnosed with “definite” anti-NMDAR en-
cephalitis according to the 2016 criteria [83], one from Greece and one from France, were
used as exploratory datasets for additional analyses on seasonal and climatic trends. In-
dividual data on Greek patients’ dataset were collected retrospectively during the period
2010–2019 from two diagnostic neuroimmune laboratories considered as nation-wide re-
ferral centers. Individual data on French patients were drawn from the database of the
National Reference Centre for Paraneoplastic Neurological Syndromes and refer to the
period 2008–2018.

Incidence rates were calculated using the number of incident cases per year over
the referring population, assuming that reference populations were stable throughout the
study period. We calculated an age and sex standardized incidence as directly standardized
rates (DSR) using a gamma distribution [84] with the World Health Organization standard
population with five-year intervals. We also obtained the female/male ratio with the
95% confidence interval (CI) using the Wald normal approximation and considering counts
and person-year [85].

Overall incidence estimates were calculated using both fixed and random-effects
models, weighted for inverse variance following DerSimonian’s method [86]. Heterogeneity
between studies was assessed using a chi-square test (Cochran’s Q statistic) and quantified
using the I2 statistic [87].

Publication bias was evaluated with the aid of a funnel plot, the asymmetry of
which was assessed with the Egger’s test [88]. The differences between different sub-
groups within the meta-analysis were assessed using different meta-regression models
(Supplementary Methods).

Spatial autocorrelation refers to the correlation of a variable with itself in space. In
our case, the variable was the incidence of anti-NMDAR encephalitis: a positive spatial
autocorrelation existed if high incidence was associated with high incidence in neighboring
countries, while a negative spatial autocorrelation existed if low incidence was associated
with high incidence in neighboring countries. Global spatial autocorrelation was assessed
using the Moran’s I and the Geary’s C indexes.

We assessed different multivariate spatial regression models (i.e., geographically
weighted regression, ordinary least square regression, generalized additional model, and
conditional and simultaneously autoregressive models) adjusting with the mean tempera-
ture of each country to further characterize in a multivariate model the spatial correlation
of anti-NMDAR encephalitis with its spatial distribution. We selected the model with the
best performance according to the minimum Akaike Information Criteria (AIC). From these
models, we obtained the local R2 that were mapped. In addition, these models provided a
prediction of anti-NMDAR encephalitis at a worldwide level.

2.1. Correlating the Incidence of Anti-NMDAR Encephalitis with Different Climatic,
Environmental, and Demographic Factors

We performed several linear regressions to correlate the incidence of anti-NMDAR
encephalitis with different environmental, climatologic, or demographic features. The
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degree of correlation was assessed using the coefficient R of Pearson’s correlation. De-
mographic features included the urban population percentage or the socio-demographic
index (SDI) [89]. Climatic and environmental variables included mean annual temperature,
particulate matter air pollution (PM2.5) exposure, the median CO2 emissions per country,
and the ultraviolet exposure in each included country (Supplementary Methods).

We performed an exposure-lag-response regression between the number of anti-
NMDAR encephalitis cases and the temperature in France and in Ile-de-France, as previ-
ously described [90] (Supplementary Methods).

2.2. Seasonal and Monthly Trends

After comparing the accuracy of different seasonal and non-seasonal models, we
used the X13-Seasonal Extraction in Autoregressive Integrated Moving Average (ARIMA)
Time-Series (SEATS)-ARIMA algorithm [91] in the French dataset, and the Seasonal and
Trend decomposition using locally weighted running line smoother (LOESS), STL [92] in
the Greek dataset, to assess temporal trends (Supplementary Methods).

We compared average monthly counts of anti-NMDAR encephalitis, using a Quasi-
Poisson regression, with the number of cases as the outcome, month as the sole predictor (with
February as baseline), and the log of the population as an offset (Supplementary Methods).

All statistical analyses were performed using the software “R” (version 4.0.1). The
threshold for statistical significance was p < 0.05, all tests were bilateral. Details from the
different version of R packages as well as the R scripts, datasets, and the methodological
details used to reproduce the vast majority of the results are provided in the Supplementary
Methods and can be found at https://osf.io/u5hjf/?view_only=bb4ed5d417b6410c8c3a9
ebad81bee09, accessed on 15 October 2022.

3. Results
3.1. Literature Meta-Analysis

Our research strategy yielded 2127 unique records in PubMed. After a systematic
process of exclusion (Figure 1), we were left with 68 articles that, with the addition of four
unpublished studies, provided information on the incidence of anti-NMDAR encephalitis
in 30 different countries, Supplementary Table S2.
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The crude population-based incidences of anti-NMDAR encephalitis within the different
studies included in the meta-analysis are summarized in the Forest plot in Figure 2. Pooling
together the data from all the studies, the crude overall incidence estimate for anti-NMDAR
encephalitis, calculated using a random effect model, was 0.09 per 100,000 inhabitants-year
(95% CI: 0.07–0.10). The value of statistical heterogeneity for this analysis was high (I2 = 94%),
reflecting how the crude incidence of anti-NMDAR encephalitis varied across studies (from
0.01 to 0.31 cases per 100,000 inhabitants-year). The Funnel plot (Supplementary Figure S2)
revealed a relatively symmetrical distribution of the studies, with Egger’s bias test p = 0.3,
suggesting a non-significant asymmetry of studies.
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3.2. Unpublished Data

Literature data were complemented by unpublished data on the incidence of NM-
DAR encephalitis in Colombia, Chile, France, and Greece, collected by coauthors actively
working in these countries. This allowed having information on the incidence of anti-
NMDAR encephalitis in three countries, with no literature data available (Colombia, Chile,
and Greece).

3.3. The Incidence of Anti-NMDAR Encephalitis Differs between Continents

We graphically represented crude incidence rates in the countries included in our meta-
analysis in a world map (Figure 3). The crude incidence of anti-NMDAR encephalitis differed
based on the continent, varying from 0.06 per 100,000 inhabitants-year (95% CI 0.05–0.07) in Eu-
rope (Supplementary Figure S2) and 0.06 (0.04–0.09) in North America (Supplementary Figure S3)
to 0.11 per 100,000 inhabitants-year (0.09–0.13) in Asia (Supplementary Figure S4), 0.16
(0.12–0.21) in South America (Supplementary Figure S5), and 0.2 (0.11–0.35) in Oceania
(including Australia and New Zealand) (Supplementary Figure S6). According to different
meta-regressions, the incidence of anti-NMDAR encephalitis was significantly lower in
Europe than in South America, Oceania and Asia (p < 0.0001, p < 0.0001 and p = 0.001,
respectively), while it was very similar to North America (p = 0.9). Similarly, South America,
Asia, and Oceania countries, had a higher incidence than North America countries, p = 0.01,
p < 0.001, and p = 0.02, respectively. Finally, Asia showed an intermediate incidence of 0.11
per 100 000 inhabitants-year (0.09–0.13), with no significant differences compared to South
America (p = 0.2) or Oceania (p = 0.5).
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country-wide level.
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3.4. Geographical Clusters of Higher and Lower Incidence

Global spatial autocorrelation analyses showed a moderate but significant correlation
between the incidence of anti-NMDAR encephalitis and geography (Moran’s I = 0.23,
p < 0.00001; Geary’s C = 0.39, p < 0.00001).

3.5. Multivariate Spatial Analyses: The Impact of Temperature and Latitude

We compared several multivariate spatial regression models (Supplementary Methods)
and we selected the GWR model because it had the highest adjusted R2 (0.89) and the
lowest AIC (−841). The GWR was chosen to assess spatial autocorrelation (Supplementary
Figure S7A) in a multivariate model, adjusting by the mean annual temperature of each
country (Supplementary Figure S7B). We used the GWR to calculate local R2 for each
country and obtained high local R2 values (0.75–1), reflecting high goodness of fit of a
model, in North America, in Oceania, and most European countries (Supplementary Figure
S7C). The GWR was then used to produce a map of the predicted probability of anti-
NMDAR encephalitis, which showed a higher risk for southern hemisphere countries
(Supplementary Figure S7D).

In addition to GWR, multiple linear regression models were used to explore the
correlation between the incidence of anti-NMDAR encephalitis and geographic, climatic,
environmental, and demographic factors. Interestingly, we observed a strong negative
correlation between latitude and the incidence of anti-NMDAR encephalitis (R = −0.88,
p < 0.00001) (Figure 4), the incidence of anti-NMDAR encephalitis increasing progressively
from the North of Europe to Argentina. The incidence of anti-NMDAR encephalitis showed
a positive correlation with mean annual temperature (R = 0.45, p = 0.01) (Supplemen-
tary Figure S8) and ultraviolet exposure (R = 0.46, p = 0.02) (Supplementary Figure S9),
increasing with higher mean annual temperatures and higher ultraviolet exposure. In
northern hemisphere countries, the incidence of anti-NMDAR encephalitis showed an
inverse correlation with CO2 emissions (R = −0.5, p = 0.008, Supplementary Figure S10),
particulate matter air pollution PM2.5 (R = 0.55, p = 0.005) (Supplementary Figure S11),
urban population percentage (R = −0.4, p = 0.03) (Supplementary Figure S12), and SDI
(R = −0.4, p = 0.02) (Supplementary Figure S13). These observations did not apply to
southern hemisphere countries, where most p-values did not reach statistical significance.

3.6. Spatial and Temporal Analyses on the French and Greek Dataset

To better assess the impact of some climatic variables on the incidence of anti-NMDAR
encephalitis, we analyzed two unpublished cohorts, one from France (n = 329, 328 with
age available) and one from Greece (n = 57). The crude and standardized incidences of
anti-NMDAR encephalitis in the French and Greek datasets are provided in Supplementary
Tables S3 and S4. We represented the female/male ratio according to a five-year interval
in two datasets with a higher proportion of females. Female predominance was stronger
in younger patients (Supplementary Figure S14). The frequency of the different tumors
associated with anti-NMDAR encephalitis is described in Supplementary Figure S15.

These two datasets were used for temporal distribution analyses. In the French dataset,
the median number of cases was 2 per month, with a recurrent lower number of cases in
February and a recurrent higher number of cases in June and August (Figure 5, panel C). In
the Greek dataset, where the median number of cases was 1 per month, this trend was far
less evident (Figure 5, panel D). To better circumstantiate monthly variations, we performed
a Quasi-Poisson regression using February as the month of reference. The Quasi-Poisson
regression disclosed a significant higher number of cases in June in both countries, with a
relative risk (RR) of 2.1 (95% CI 1.2–4) and p = 0.02 in France and a RR of 2.3 (1.2–4.7) and
p = 0.02 in the Greek dataset.
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Figure 5. Temporal distribution of anti-NMDAR encephalitis cases in France (2008–2018) (panel
A,C,E) and Greece (2010–2019) (panel B,D,F). (Panel A,B) show the aggregated number of cases
per year and month; (panel C,D) show the number of cases per month (dotted lines in both panels
indicate median values); (panel E,F) show long-term trends and seasonality.
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These findings prompted us to perform more in-depth seasonal analyses using the
ARIMA model (French dataset) and the STL model (Greek dataset), details are provided in
the Supplementary Methods. These models confirmed the existence of a seasonal trend in
both countries, with a recurrent peak of cases during summer (Figure 5, panel E and F).
The same models disclosed a progressive increase in the number of cases of anti-NMDAR
encephalitis diagnosed in France over the study interval (2008–2018) (Figure 5, panel E)
that was not observed in Greece, where the yearly number of cases remained relatively
constant from 2010 to 2019 (Figure 5, panel F).

Based on the observation that the incidence of anti-NMDAR encephalitis seemed to
increase during warm months, we used the French dataset to perform temperature analyses.
Tlag-he impact of temperature on the incidence of anti-NMDAR encephalitis was assessed
using a lag-response association model. Both in the overall dataset (n = 328) and the subset
of patients from the Île-de-France region (n = 115), which was the region with more cases,
we observed a significant association between hot temperatures and the crude incidence
of anti-NMDAR encephalitis in the overall dataset, RR 1.2 [1.02–1.4, p = 0.03, and also in
Île-de-France, RR 1.15 [1.02–1.55] p = 0.04 (Figure 6, panel A and B), providing additional
evidence in support of this association. This model was used to estimate the quantitative
impact of temperature on the incidence of anti-NMDAR encephalitis. We found that high
temperatures accounted for approximately 15% (CI 0.7–27%) of cases of anti-NMDAR
encephalitis. The Greek dataset was not analyzed using this approach due to the limited
number of patients.
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Figure 6. Exposure-lag-association model between anti-NMDAR encephalitis and the temperature in
the Ile-de-France region (panel A) and all France (panel B). Exposure–response associations as best
linear unbiased prediction (with 95% CI, shaded grey), with related temperature distributions. Solid
grey lines are minimum incidence temperatures and dotted lines are the 2·5th and 97·5th percentiles.
Note that in both models, the grey area is slightly above the horizontal line (RR = 1), showing a
significant association. RR = relative risk.
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4. Discussion

In this systematic review and meta-analysis, we explored the association between the
incidence of anti-NMDAR encephalitis and several geographic, climatic, and environmental
factors. We found that the incidence of anti-NMDAR encephalitis strongly correlated with
latitude, mean annual temperature, and ultraviolet exposure. We identified a seasonal
distribution, with a peak of cases during warm months and a correlation with extreme hot
temperatures. The results were not unanticipated, as several autoimmune diseases show
a strong geographical distribution [93,94]. The best paradigm in neurology is multiple
sclerosis, which has a higher incidence in countries far from the equator and lower incidence
in countries near the equator [95,96]. This phenomenon has been attributed to mean vitamin
D levels, which are dependent on sun exposure, and decrease as the distance from the
equator increases, exposing to a higher disease risk [93]. Conversely, our meta-analysis
suggests that ultraviolet exposure might influence the risk of anti-NMDAR encephalitis,
the geographical distribution observed for anti-NMDAR encephalitis differs from the one
depicted for multiple sclerosis, suggesting that additional climatic and environmental
factors might be implicated.

Similarly to sun exposure, mean annual temperature has shown to modulate the inci-
dence of multiple sclerosis [97] and other autoimmune disorders [98] and might represent
one of the factors responsible for the geographical gradient observed in our meta-analysis.
Intriguingly, the exposure-lag-associated study pinpointed a non-linear association between
hot temperatures and the incidence of anti-NMDAR encephalitis (Figure 6). Interestingly,
this type of non-linear association with temperature and other health conditions has been
previously described [90].

Consistently with temperature analysis, we observed that anti-NMDAR encephalitis
displayed a seasonal pattern, with a higher number of cases during warm months. It should
be noted that in the Greek dataset, with a limited number of cases, there was a great number
of cases during June, July and August (Figure 5D). A similar observation was previously
reported in a small study conducted in the United States on pediatric patients [15]; however,
multivariate analyses or seasonal modelling were not included. Although, a higher peak of
cases during summer could simply reflect higher seasonal temperatures, other factors that
have not been taken into account in the present study, such as recurrent viral epidemics,
might also be implicated. Some studies on infectious encephalitis, including herpes simplex
virus encephalitis, conducted in western countries have pinpointed a higher incidence
of hospital admissions during summer [99,100], while others have failed to disclose any
significant seasonal pattern [101]. Besides virus commonly responsible for encephalitis [6,7],
other non-neurotropic viruses display a seasonal pattern and might be responsible for the
higher number of cases of anti-NMDAR encephalitis.

This study has several limitations related to the limited data available in the literature
on this rare disorder. Most of the studies included in the meta-analysis were retrospective
and, as such, potentially affected by referral, selection, and misclassification biases. In
addition, we did not have patient individual data for most of the studies limiting some
of analysis, for example, the possibility to analyze the seasonality at worldwide level
or the potential impact of UV on the incidence of anti-NMDAR encephalitis and we
could not include age and gender adjustment, due to this limitation. The differences in
age composition rendered crude incidence estimates not directly comparable between
populations. Data on the incidence of anti-NMDAR encephalitis were unavailable for many
world countries, mainly in the southern hemisphere, and completely missing for Africa.
Therefore, our results should be interpreted with caution when considering the data of
southern hemisphere, including the association between NMDAR encephalitis incidence
and ultraviolet radiation exposure and the mean annual temperature.

The impact of factors such as nutrition and lifestyle could not be assessed in our meta-
analysis, although these likely represent important elements, as demonstrated for other
autoimmune disorders [102]. However, we used the Socio-Demographic Index (SDI) similar
factors. This is a summary measure of a geography’s socio-demographic development. It is
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based on average income per person, educational attainment, and total fertility rate (TFR)
(Supplementary Methods and Supplementary Figure S13). Studies assessing the changes in
disease risk as a consequence of changes in the place of living, as performed in patients
with multiple sclerosis [103], might help to assess the weight of environmental factors and
living habits on disease risk.

Another factor that could not be assessed in our meta-analysis is the genetic risk, which
could indeed contribute to the variations in the incidence of anti-NMDAR encephalitis
among countries and populations. Studies on genetic risk factors are to date limited
to European and Chinese patients [8,9], and only further studies in low- and high-risk
populations will elucidate the relative weight of genetics.

To sum up, this study provides the first evidence that geographic and climatic factors
might modulate the risk of anti-NMDAR encephalitis, paving the way to a broader range of
explorations on the impact of environmental factors in the pathogenesis of this rare disease.
The approach described in this study could be applied to other types of autoimmune
encephalitis, clarifying if other entities within this spectrum share similar risk factors.
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