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Abstract: In this paper, we introduce a general numerical method to approximate the reproduction
numbers of a large class of multi-group, age-structured, population models with a finite age span.
To provide complete flexibility in the definition of the birth and transition processes, we propose an
equivalent formulation for the age-integrated state within the extended space framework. Then, we
discretize the birth and transition operators via pseudospectral collocation. We discuss applications
to epidemic models with continuous and piecewise continuous rates, with different interpretations of
the age variable (e.g., demographic age, infection age and disease age) and the transmission terms
(e.g., horizontal and vertical transmission). The tests illustrate that the method can compute different
reproduction numbers, including the basic and type reproduction numbers as special cases.
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1. Introduction

Reproduction numbers are key quantities in epidemiology, as they are usually related to concepts
such as the occurrence of epidemic outbreaks, the herd immunity level, the final size, and the endemic
equilibrium [1]. They were originally introduced in the context of demography and ecology, where
they typically characterize either population persistence or extinction [2]. The most known and used
example of a reproduction number in epidemiology is the basic reproduction number (or ratio) R0,
which describes the average number of secondary cases produced by a typical infected individual
during its entire infectious period, in a completely susceptible population [3]. For deterministic models,
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R0 = 1 is a threshold that determines the stability of the disease-free equilibrium: it is stable when
R0 < 1 and unstable when R0 > 1. In simple models, R0 also typically characterizes the herd immunity
threshold (i.e., the proportion of population that should be immunized to prevent the spread of the
disease) via the expression 1− 1/R0. Variations of the basic reproduction number when the population
is partially immune or when transmission is affected by control measures are also known as effective
and control reproduction numbers [4].

For more complicated models (e.g., with heterogeneity), looking at R0 alone may not be satisfac-
tory for epidemic control [5]. For instance, this is true when it is possible to apply control measures
only to a certain group of individuals (e.g., mosquitoes rather than humans in vector-borne infections)
or against certain transmission routes (e.g., vertical rather than horizontal transmission). Under these
circumstances, a simple and explicit relation between R0 and the herd immunity level may no longer
exist [5]. In this case, the type reproduction number, usually denoted by T , is a more appropriate
measure, as it describes the expected number of secondary cases in individuals of a certain type pro-
duced by one infected individual of the same type, either directly or through chains of infection passing
through any sequence of the other types [6]. As such, T can be directly linked to the amount of control
measures to be applied to one specific group of individuals to stop the spread. An extension of the
type reproduction number, the state reproduction number, was proposed in [7], which allows for focus
types not only states describing new infections but potentially any epidemic state (e.g., asymptomatic
phase and symptomatic phase) [8, Section 5.2]. Finally, [9, 10] considered a further generalization of
these quantities, the target reproduction number, which focuses on specific interactions between types,
rather than all interactions that involve a given type of individuals. It is important to underline that
although different reproduction numbers have different biological interpretations, they typically share
the same threshold for epidemic extinction with R0 [10, 11].

For deterministic models formulated as ordinary differential equations, a well-established and
widely-used framework to compute R0 is that of linearizing the model around the disease-free equilib-
rium and then computing the spectral radius of a Next Generation Matrix (NGM) [3, 12]. The method
is based on the idea of interpreting infection transmission as a demographic process, where a new in-
fection is considered as a birth in the demographic sense. Intuitively, the NGM maps the distribution of
infected individuals in one generation to the distribution of newly infected individuals in the next gener-
ation [3]; this is mathematically derived from the model’s coefficients by suitably splitting the Jacobian
into two parts, one accounting for the birth/infection processes and one accounting for the transition
processes (which include, for instance, changes in the epidemiological state, death, or acquisition of
immunity) [13]. The simplicity of the NGM method has considerably increased its popularity in the
last decades. At the same time, the potentially arbitrary splitting into birth and transition processes
described above has given rise to many criticisms and misconceptions about R0 and its generational
interpretation; see for example [14]. In fact, the interpretation of birth and transition is typically left
to the modeller [15] and, while different choices agree on the sign of R0 − 1, they can lead to different
values of R0. We refer to [16] for a recent didactic note about this issue.

In the context of age-structured models, which are often formulated as integro-partial differen-
tial equations with nonlocal boundary conditions, reproduction numbers are again associated with the
linearization of the model around an equilibrium and the splitting of the linearization into birth and
transition; however, in this case, the operators act on infinite-dimensional spaces. For example, it is
well known that for a susceptible-infected-removed (SIR) model structured by demographic age with-
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out vertical transmission, R0 can be computed as the spectral radius of a Next Generation Operator
(NGO) [3], which is obtained by splitting the linearized operator in two parts–one accounting for all
the infection processes and one accounting for all the remaining processes–which are both linear and
defined on a subspace of the state space L1, with values in L1 itself [8, Section 6.2]. Thus, the proce-
dure is very similar to that of the NGM method, but considering a space of L1 functions rather than Rd,
for d a positive integer. Working in L1 is quite straightforward when processes described by boundary
conditions are considered as transition processes. However, things get more involved when boundary
conditions involve birth/infection processes (for instance, think at vertical transmission, or simple in-
fection in the case of models structured by infection age). In this context, different strategies have been
proposed in the literature. In [17, 18], the authors introduced sequences of “approximating problems”,
for which the relevant reproduction numbers can be computed via the NGO method in the L1 frame-
work and such that these “approximating” reproduction numbers converge to the one of the original
problem, see [19] for its applications. Alternatively, another possible approach is to work in extended
spaces of the form Rd × L1 and to develop the spectral theory following the results of [11]; see [20] for
details on the extended space method and [8, 21] for applications in this context.

Since reproduction numbers for age-structured models are defined as the spectral radius of operators
acting between infinite-dimensional vector spaces, their analytical computation is typically difficult,
unless one makes additional simplifying assumptions on the model coefficients (e.g., separable mix-
ing). To overcome this problem, several numerical methods have been proposed to approximate R0 by
discretizing the birth and transition operators first to derive a finite-dimensional approximation of the
NGO. The NGO is positive and, typically, compact, hence its spectral radius is a dominant eigenvalue
(in the sense of largest in magnitude) [22] and the spectral radius of the discrete operator gives an
approximation of R0. [23, 24] proposed a Theta method and a backward Euler method, respectively, to
discretize the birth and the transition operators relevant to an age-structured epidemic model with no
vertical transmission and a finite age span. Being based on finite-order methods, these two approaches
guarantee, under suitable smoothness assumptions on the coefficients, a finite order of convergence.
An improvement of these methods was proposed in [25–27] by using pseudospectral collocation (thus
potentially guaranteeing an infinite order of convergence for smooth coefficients [28]) in the case of
models with nontrivial boundary conditions and a finite age span. However, all these methods rely on
the definition of R0 in the L1 framework discussed above, thus including the boundary condition in the
domain of the transition operator and suffering from a lack of flexibility in the choice of the birth and
transition processes.

In this paper, we introduce a general numerical method to approximate the reproduction numbers of
a large class of multi-group age-structured models. We follow the idea of [23–27] by identifying a birth
and a transition operator and discretizing them via pseudospectral collocation. To work with complete
flexibility in the definition of the birth/infection and transition processes, we build our approach on the
extended space framework by [8, 21]. We define a suitable integral mapping from the extended space
to the space of absolutely continuous functions, so that point evaluation is well defined and the birth
processes included in the boundary conditions become part of the action of a new operator with a trivial
boundary condition. The idea of going to the integrated framework has been previously successfully
applied in [29–32].

We assume that the maximum age is finite, which is equivalent to require that the survival proba-
bility (i.e., the probability of still being alive or infectious depending on the context) is zero after the
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maximum age. We focus on the applications of the method and we postpone the proof of convergence
to a manuscript in preparation by the authors [33].

The paper is organized as follows. In Section 2, we consider a prototype linear multi-group age-
structured model and, with reference to it, we illustrate the theoretical framework and the reformulation
via integration of the state in the age variable. The numerical method is described in Section 3, along-
side additional details about its implementation. In Section 4, we present some applications of the
method to epidemic models taken from the literature. To illustrate the flexibility of the approach, we
compute different types of reproduction numbers, depending on different interpretations of the age
variable and the transmission term. To facilitate the reading, the modeling details and specific compu-
tations are collected in Appendix A. Finally, in Section 5 we discuss some concluding remarks.

2. A general theoretical framework

In this section, we introduce a general, linear, multi-group, age-structured, population model, which
encompasses many models of the literature typically obtained from the linearization of a nonlinear
model around an equilibrium. With reference to this prototype model and following [8, 21, 34], we
first recall the definition of the basic reproduction number and other relevant reproduction numbers
useful to address some control strategies of infectious diseases within the extended space framework.
Then, we introduce an integral mapping to the space of absolutely continuous functions and provide
the equivalent definitions within the AC-framework, which is more advantageous for the development
of the discretization technique presented in Section 3.

Let a† ∈ (0,+∞) denote the maximum age. We consider the following linear, multi-group, age-
structured, population model:

∂tx(t, a) + ∂ax(t, a) =

∫ a†

0
β(a, ξ)x(t, ξ) dξ + δ(a)x(t, a), (2.1)

x(t, 0) =

∫ a†

0
b(a)x(t, a) da, (2.2)

where x(t, ·) ∈ X := L1([0, a†],Rd) for t ≥ 0, β ∈ L∞([0, a†]2,Rd×d), b, δ ∈ L∞([0, a†],Rd×d), and d is a
positive integer. The d × d matrices β(a, ξ) and b(a) are assumed to be non-negative. The d × d matrix
δ(a) has non-positive diagonal elements and all the off-diagonal elements are non-negative. Hence, δ(a)
is an essentially non-negative matrix and the associated fundamental solution matrix is a non-negative,
non-singular matrix [8, pag. 77].

In the context of infectious disease modeling, (2.1)–(2.2) enables one to describe several types of
transmission routes and biological processes: the boundary term (2.2) can account for either vertical
transmission (when a represents demographic age) or for natural infection (when a represents infection
age), while the right-hand side of (2.1) includes horizontal transmission terms, as well as the removal
of individuals via death or recovery.

To allow for flexibility in the definition of reproduction numbers associated to different ways of
inflow into the infected compartments, we assume that β and b can be divided into the following:

β = β+ + β−, b = b+ + b−,
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where the non-negative matrices β+, β−, b+, b− are chosen to conveniently split the inflow processes
into two parts where β+, b+ collect the birth processes and β−, b− collect the transition processes. The
+/− notation was inspired by [7].

We work in the extended state space of the density function and its boundary value, hence we
consider the space Z := Rd × X, equipped with the following norm:

‖(α; φ)‖Z := |α| + ‖φ‖X,

where | · | is a norm in Rd and ‖·‖X is the standard L1 norm, see [21] and [8, Chapter 6.4.2]. Furthermore,
we introduce the subspace Z0 = {0} × X ⊂ Z, where 0 is now used to denote the null vector of Rd.

We define the baseline transition operatorMZ : D(MZ)(⊂ Z0)→ Z as follows:

MZ(0; φ) := (φ(0); φ′ − δφ), (0; φ) ∈ D(MZ) := {(0; φ) ∈ Z | φ′ ∈ X} ,

and the bounded linear birth operators BZ
± : Z0 → Z such that

BZ
±(0; φ) :=

∫ a†

0
b±(ξ)φ(ξ) dξ;

∫ a†

0
β±(·, ξ)φ(ξ) dξ

 .
From the assumption on δ, it follows thatMZ is invertible, and then we can define the following:

KZ
± := BZ

±(M
Z)−1.

To compute the reproduction number for the birth process described by BZ
+, we define the transition

operatorMZ
− :=MZ − BZ

−, whose domain coincides with D(MZ). FromMZ
− = (I − KZ

− )MZ, we have
that if ρ(KZ

− ) < 1, thenMZ
− is invertible [34, Section 4].

Then, the reproduction number R for the birth process BZ
+ and the transition operator MZ

− is the
spectral radius of the positive operator

HZ := BZ
+(MZ

−)
−1 = KZ

+ (I − KZ
− )−1. (2.3)

If (2.3) is a compact operator with positive spectral radius, then the reproduction number is a dominant
real eigenvalue with an associated non-negative eigenfunction [22]. Note that, in line with the interpre-
tation, the operator (I − KZ

− )−1 =
∑∞

i=0(KZ
− )i captures the chains of transmission through any sequence

of any other type not included in BZ
+.

We generically refer to “reproduction number” to include several different interpretations as specific
cases, including the basic reproduction number R0 and the type reproduction number T , as well as more
general definitions [6, 8, 35].

• If BZ
+ contains all processes leading to new infections, then (2.3) is the standard NGO and its

spectral radius is precisely R0.

• If BZ
+ only contains a subset of the new infections (e.g., horizontal vs vertical, vector vs host) and

BZ
− contains all other processes, then (2.3) is the type reproduction operator and its spectral radius

is the type reproduction number, and KZ
+ and KZ

− are the type-specific NGOs [8, pag. 477].

• If BZ
+ contains the inflow in a generic compartment (possibly not a state-at-infection), then the

spectral radius of (2.3) is the state reproduction number according to the terminology in [7].
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Moreover, depending on the assumptions on population immunity and interventions, (2.3) can capture
the concepts of effective and control reproduction numbers. Additionally, (2.3) provides a unifying
abstract framework to introduce the numerical method in Section 3.

Now, let us consider the Banach space Y := AC([0, a†],Rd) equipped with the norm

‖ψ‖Y := |ψ(0)| + ‖ψ′‖X,

and its closed subspace Y0 = {ψ ∈ Y | ψ(0) = 0}. The integral operatorV : Z → Y given by

V(α; φ) := α +

∫ ·

0
φ(ξ) dξ,

defines an isomorphism between Z and Y and between Z0 and Y0.
By defining y(t, ·) := V(0; x(t, ·)), the model (2.1)–(2.2) for x(t, ·) ∈ X is equivalent to the following

multi-group model:
∂ty(t, a) + ∂ay(t, a) =

∫ a†

0
b(ξ)y(t, dξ) +

∫ a

0

∫ a†

0
β(ζ, ξ)y(t, dξ) dζ +

∫ a

0
δ(ξ)y(t, dξ),

y(t, 0) = 0,
(2.4)

for y(t, ·) ∈ Y0. Note that, in (2.4), we consider an absolutely continuous function as a measure. Now,
we introduce the birth operators BY

± : Y0 → Y

BY
± := VBZ

±V
−1,

and the transition operatorsMY ,MY
− : D(MY)(⊂ Y0)→ Y

MY := VMZV−1, MY
− := VMZ

−V
−1,

where D(MY) := V(D(MZ)). Explicitly, they read as

BY
±ψ :=

∫ ·

0

∫ a†

0
β±(ζ, ξ)ψ′(ξ) dξ dζ +

∫ a†

0
b±(ξ)ψ′(ξ) dξ, ψ ∈ Y0,

MYψ := ψ′ −

∫ ·

0
δ(ξ)ψ′(ξ) dξ, ψ ∈ D(MY) := {ψ ∈ Y0 | ψ

′ ∈ Y},

and

MY
− =MY − BY

−.

It is clear that the spectral radius of HY := VHZV−1 coincides with R. In fact, the relations
σ(HZ) = σ(HY) [36, Section 2.1] and σp(HZ) = σp(HY) [37, Proposition 4.1] hold, and there is
a one-to-one correspondence of the eigenfunctions via the operator V. Moreover, the compactness
results forHZ in Z can be easily extended to the corresponding operators in Y via the isomorphismV.
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3. Numerical approximation via pseudospectral method

In this section, we illustrate how to approximate the reproduction number of a class of models that
can be recast in the framework of Section 2. The idea is to derive a finite-dimensional approxima-
tion HY

N of HY , and to approximate the eigenvalues of the latter through those of the former. This is
achieved by separately discretizing the operators BY

+ andMY
− in Section 2 via pseudospectral colloca-

tion [28, 38].
In this section, we only work in the space Y and, to simplify the notation, we drop the superscript Y

from the operators acting on Y . We adopt the MATLAB-like notation according to which elements of
a column vector are separated by “;”, while elements of a row vector are separated by “,”.

Let us consider the space YN of algebraic polynomials of degree at most equal to N, for N a positive
integer, on [0, a†], taking values in Rd, and its subspace Y0,N := {ψN ∈ YN | ψN(0) = 0}. For the
Chebyshev zeros ΘN := {a1 < · · · < aN} in (0, a†) [39], we introduce the restriction operator RN : Y →
RdN defined as

RNψ := (ψ(a1); . . . ;ψ(aN)), ψ ∈ Y,

and the prolongation operator P0,N : RdN → Y0,N ⊆ Y0 defined as∗

P0,N(Ψ1; . . . ; ΨN) :=
N∑

i=1

`0,iΨi, (Ψ1; . . . ; ΨN) ∈ RdN ,

for {`0,i}
N
i=0 the Lagrange basis relevant to Θ0,N := {a0 = 0} ∪ ΘN , i.e.,

`0,i(a) :=
N∏

j=0
i, j

a − a j

ai − a j
, a ∈ [0, a†], i = 0, . . . ,N.

Observe that RNP0,N = IRdN and that the composition

P0,NRN = L0,N

defines the Lagrange interpolation operator L0,N : Y0 → Y0,N relevant to Θ0,N .
We derive the finite-dimensional approximations BN : RdN → RdN andMN : RdN → RdN of B+ and

M−, respectively, as follows:

BN := RNB+P0,N , MN := RNM−P0,N .

Then, the finite-dimensional approximation HN : RdN → RdN of H is obtained as HN := BNM
−1
N .

Finally, we can use the eigenvalues of HN to approximate those of H . The discrete eigenvalue prob-
lem can be solved either by using the standard MATLAB function eig or by solving the generalized
eigenvalue problem BN = λMN [26]. Correspondingly, observe that the eigenvectors of HN give an
approximation of the values of the eigenfunctions of H at the Chebyshev zeros. Thus, an approxima-
tion of the eigenfunctions of H can be obtained by interpolating the eigenvectors of HN at the nodes
in ΘN and, subsequently, an approximation of the eigenfunctions of HZ can be obtained by applying
V−1 to those polynomials.

∗Observe that Ψi ∈ R
d for every i = 1, . . . ,N.
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3.1. Implementation issues

Here, for the sake of simplicity, we restrict to the case d = 1, and we give an explicit description
of the entries of the matrices representing the discretized operators. These follow from the following
cardinal property of the Lagrange polynomials:

`0, j(ai) =

1 if i = j,

0 otherwise,
i, j = 0, . . . ,N,

from which it is easy to see that the entries of the matrices BN andMN are explicitly given by

(BN)i j =

∫ ai

0

∫ a†

0
β+(ζ, ξ)`′0, j(ξ) dξ dζ +

∫ a†

0
b+(ξ)`′0, j(ξ) dξ, i, j = 1, . . .N, (3.1)

and

(MN)i j = `′0, j(ai) −
∫ ai

0
δ(ξ)`′0, j(ξ) dξ

−

∫ ai

0

∫ a†

0
β−(ζ, ξ)`′0, j(ξ) dξ dζ +

∫ a†

0
b−(ξ)`′0, j(ξ) dξ, i, j = 1, . . .N. (3.2)

If the integrals in (3.1) and (3.2) cannot be analytically computed, then we need to approximate
them via a quadrature formula. In this regard, for a function ψ : [0, a†] → Rd, we make the following
approximation: ∫ a†

0
ψ(a) da ≈ (w1, . . . ,wN)(ψ(a1); . . . ;ψ(aN)),

where w1, . . . ,wN are the Fejer’s first rule-quadrature weights relevant to the Chebyshev zeros [40].
As for the integrals in [0, ai], i = 1, . . . ,N, inspired by [41], we use the i-th row of the inverse of the
following (reduced) differentiation matrix:

(DN)i j := `′0, j(ai), i, j = 1, . . . ,N.

When dealing with models where the structuring variable a lives in a “large” domain, it can be
convenient to consider the change of variable α = a/a†, where α ∈ [0, 1]. Then, by defining u(t, α) :=
x(t, a†α), (2.1)-(2.2) can be rewritten as follows:

∂tu(t, α) +
1

a†
· ∂αu(t, α) =

∫ 1

0
a†β(a†α, a†θ)u(t, θ) dθ + δ(a†α)u (t, α) ,

1

a†
· u(t, 0) =

∫ 1

0
b(a†α)u(t, α) dα.

Via integration, one can derive the corresponding equation for (2.4):

∂tv(t, α) +
1
a†
∂αv(t, α) =

∫ 1

0
b(a†θ)v(t, dθ) +

∫ α

0

∫ 1

0
a†β(a†η, a†θ)v(t, dθ) dη +

∫ 1

0
δ(a†θ)v(t, dθ).
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Then, the numerical approach can be easily adapted. Moreover, observe that one could also be in-
terested in using different interpretations of “age” in the same model; for example see (4.3) which
considers both infection age and disease age, or [42, Section 2.1], where an SIR model was proposed
with susceptible individuals structured by the demographic age, infected individuals structured by the
infection age, and removed individuals structured by the recovery age. In this context, different in-
terpretations of the age variable can require one to work with different age intervals (or, equivalently,
different maximum ages). The method can be easily extended to account for this case by resorting to
the scaling described above (with appropriate modifications).

Finally, in the presence of breaking points (i.e., discontinuities in the model coefficients or in their
derivatives), it is preferable to resort to a piecewise approach. More in the detail, given 0 = ā0 <

ā1 < · · · < āM = a† the breaking points of the coefficients, for M a positive integer, we approximate a
function ψ ∈ Y via a continuous function ψN such that ψN |[āi−1 ,āi]

is a polynomial of degree at most N on
[āi−1, āi] for every i = 1, . . . ,M.

In this case, in order to simplify the implementation, a possible choice is to extend the mesh (of
Chebyshev zeros plus the left endpoint) within each interval by adding the right endpoint. This still en-
sures convergence of interpolation under the choice made at the beginning of the section [43, Theorem
4.2.4]. Alternatively, it can be convenient to choose the Chebyshev extremal nodes as discretization
points and the Clenshaw–Curtis quadrature formula to approximate the integrals in [0, a†] [44,45]. The
latter choice has been widely used in the literature for pseudospectral methods, and experimentally
shows convergence properties comparable to those of Chebyshev zeros [45]. In the codes available at
https://cdlab.uniud.it/software, we implement this latter choice.

4. Age-structured epidemic models and reproduction numbers in applications

In this section, we introduce some examples of linear age-structured models in the context of in-
fectious disease dynamics which are obtained from the linearization of a nonlinear model around an
equilibrium. For each of them, we compute different types of reproduction numbers depending on
different interpretations of the age variable and the transmission term. The examples are chosen to
cover a range of cases: the first two models are somewhat simplified, which allows us to work with
continuous rates and scalar equations and to have explicit expressions for the reproduction numbers;
the third example is a system of equations that is useful to reflect on the interpretation of the birth pro-
cesses; and finally, the last example involves a system of equations and application to real data, which
requires piecewise constant parameters. All the reproduction numbers are computed using the method
of Section 3 with N = 100 and the piecewise version of the numerical approach in the presence of
breaking points. The modeling details and the linearization around the equilibria are described in the
appendix, while Table 1 shows how the test examples fit into the general framework of Section 2. As
we assume to work with a finite maximum age, we implicitly assume that the death/removal rates are
infinite after the maximum age.

4.1. An epidemic model structured by infection age

Let us consider the spread of an infectious disease in a closed population, with the infected indi-
viduals structured by infection age, in the presence of isolation measures upon detection of symptoms.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5360–5393.
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Figure 1. Model (4.1). Left: Rc varying the multiplicative parameter R0, for different values
of the fraction of symptomatic individuals (ε) and assuming no delay from symptoms to
diagnosis (D = 0). Right: Rc varying ε (x-axis) and D (y-axis), for R0 = 1.2.

Figure 2. Model (4.1). Log-log plot of the absolute error of approximation for R0 = 1 for
increasing N with ε = 0.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5360–5393.
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Table 1. Birth and transition processes used to compute the reproduction numbers for the
models in Section 4, with reference to the notation used in Section 2.

Model d age R b+ b− β+ β− δ

(4.1) 1 infection Rc b 0 0 0 −γ

(4.2) 1 demographic R0, j 0 0 β j 0 0

R j
k 0 0 s∗kβ j 0 0

(4.3) 2
infection/

disease R0

b11 b12

0 0


 0 0

b21 0

 0 0

−b21 − γ1 0

0 −γ2


TS

 0 0

b21 0


b11 b12

0 0

 0 0

−b21 − γ1 0

0 −γ2


(4.4) 2 demographic R0

0 0

0 b

 0

β 0

0 0

 0

−σ 0

σ −γ


TH 0

0 0

0 b


β 0

0 0

 0

−σ 0

σ −γ


TV

0 0

0 b

 0 0

β 0

0 0


−σ 0

σ −γ



We refer to [8, Section 5.3] and Appendix A.1 for further details about the nonlinear model, and to [46]
for an application of an extended version of this model to study the impact of contact tracing on the
containment of COVID-19.

Let i(t, τ) denote the density of infected individuals at time t ≥ 0 and infection age τ ∈ [0, τ†]. The
linearization around the disease-free equilibrium reads as follows:

∂ti(t, τ) + ∂τi(t, τ) = −γ(τ)i(t, τ),

i(t, 0) =

∫ τ†

0
b(τ)i(t, τ) dτ.

(4.1)

The non-negative functions b, γ : [0, τ†] → R describe the per capita infection rate and recovery rate,
respectively. In particular, we assume that γ accounts for both natural recovery and isolation upon
symptom onset, and we take the following:

γ(τ) =


γ0, τ < D,

γ0 +
ε f (τ − D)

1 − ε
∫ τ

0
f (ξ − D) dξ

, τ ≥ D,

where γ0, ε,D are non-negative parameters whose interpretation is specified in Table 2.
In the absence of isolation from symptoms (ε = 0), the basic reproduction number is R0 =
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Table 2. Parameters of (4.1). The function f is a Gamma probability density function with
mean µ = 4.84 days and standard deviation σ = 2.79, describing the incubation period
distribution [47]. The parameters are chosen so that b(τ)e−γ0τ = R0Γ(5, 1.9), where Γ(5, 1.9)
is a Gamma density function with mean 5 days and standard deviation 1.9 [48] (normalized
in [0, τ†]), and R0 is varied in the simulations.

Symbol Value Description

τ† 14 Maximum infection age (days)

b(τ) R0 cτ5.9252 Per capita infection rate at infection age τ (days−1)

γ0 1.3850 Per capita baseline recovery rate in [0, τ†] (days−1)

f (τ) Γ(µ, σ) Incubation period probability density function

c 0.0152 Normalizing constant for infectiousness

ε varying Fraction of symptomatic individuals

D varying Delay between symptom onset and isolation (days)

∫ τ†

0
b(τ)e−γ0τ dτ. In the presence of isolation (ε > 0), the control reproduction number is as follows:

Rc =

∫ τ†

0
b(τ)F (τ) dτ, F (τ) := e−

∫ τ
0 γ(θ) dθ.

Note that, even though an explicit expression for Rc is available in this case, its computation from the
analytical formula requires numerical approximations.

In Figure 1, we investigated the impact of a delay from symptom onset to diagnosis (D) and the
fraction of symptomatic infections (ε) using parameter values inspired by the COVID-19 literature,
collected in Table 2. Rc increases linearly with the baseline transmission parameter R0, and isolation
of symptomatic individuals effectively reduces Rc and promotes controllability (left panel). Moreover,
the isolation is more effective if the proportion of symptomatic individuals is larger or the delay from
symptoms to isolation is shorter (right).

Finally, in Figure 2, we illustrate the convergence behavior of the approximation error with respect
to R0 = 1 for increasing values of N with ε = 0.

4.2. A multi-strain epidemic model with host age structure

We consider a model with two classes of infected individuals structured by demographic age, which
describes the dynamics of two competing strains in a host population [49]. For applications of similar
models to real infectious diseases, we refer to [50], where the case of influenza was discussed. In the
model, susceptible individuals can be infected either with strain 1 or with strain 2, and enter the class
of individuals infected with each strain. Cross-immunity is assumed, so that individuals recovered
with any strain are immune towards both strains, and immunity is assumed to be permanent. In [49],
it is shown that the coexistence of both strains in an endemic equilibrium is not possible when the
parameters do not depend on age, but is possible for age-dependent parameters. The model derivation
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Figure 3. Model (4.2). Basic reproduction numbers R0,1 (left) and R0,2 (right) varying the
parameters c1, c2,m1 and m2. When not varied, the parameters are fixed at: c1 = 1, c2 = 0.06,
m1 = 0.1, and m2 = 0.06.

Figure 4. Model (4.2). Invasion reproduction numbers varying the parameters m1,m2, c1 and
c2. Note that these parameters affect the value of the invasion reproduction numbers both via
the kernels and via the value of the susceptible population at equilibrium. When not varied,
the parameters are fixed at: c1 = 1, c2 = 0.06, m1 = 0.1, and m2 = 0.06.

Figure 5. Model (4.1). Log-log plot of the absolute error of approximation for R0,1 ≈ 5.24
(blue) and R0,2 ≈ 16.88 (red) for increasing N with c1 = 1, c2 = 0.06, m1 = 0.1, m2 = 0.06.
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Table 3. Parameters of (4.2), taken from [49]. With this parameter choice, the total pop-
ulation density is Φ−1(1/Rd

0) = 19/3. The non-negative parameters c1, c2, m1 and m2 are
introduced for mathematical convenience to characterize the shape of the functions K1 and
K2, and are varied in the simulations.

Symbol Value Description

a† 20 Maximum life span (yr)

Rd
0 20 Demographic reproduction number

µ(a) 0.6 Age-specific death rate in [0, a†] (yr−1)

f (a) 0.6 Age-specific per capita birth rate (yr−1)

Φ(x) 1
1+0.3x Function describing density dependence of births

K1(a) m1
1+c1a Age-specific susceptibility of individuals to strain 1

K2(a) m2 + c2a Age-specific susceptibility of individuals to strain 2

q j(a) 1 Age-specific infection rate for strain j, j = 1, 2

is described in detail in Appendix A.2, and the parameters are summarized in Table 3. We assume
that the total population is at the (nontrivial) demographic steady state, and we neglect disease-induced
mortality. The system can have four equilibria, of which three are boundary equilibria (one disease-free
and two with only one strain present in the population) and one is an endemic coexistence equilibrium.

Let i j(t, a) denote the density of individuals infected with strain j, for j = 1, 2, at time t ≥ 0 and
demographic age a ∈ [0, a†]. The linearization around the disease-free equilibrium reads as follows:

∂ti j(t, a) + ∂ai j(t, a) =

∫ a†

0
β j(a, ξ)i j(t, ξ) dξ,

i j(t, 0) = 0,
(4.2)

with β j(a, ξ) = K j(a)q j(ξ)P∗(ξ), see also Table 3, and

P∗(a) =
Π(a)Φ−1(1/Rd

0)∫ a†

0
Π(ξ) dξ

, Π(a) := e−
∫ a

0 µ(ξ) dξ.

The basic reproduction number R0, j for strain j can be computed by individually considering each
scalar equation in the absence of the other strain, and explicitly reads as follows:

R0, j =

∫ a†

0

P∗(a)
Π(a)

∫ a†

a
β j(a, ξ)

Π(ξ)
P∗(ξ)

dξ da, j = 1, 2.

Figure 3 shows the values of R0,1 and R0,2 varying the parameters c1, m1, and c2, m2, respectively,
which are introduced for mathematical convenience to characterize the shape of the age-specific sus-
ceptibility of individuals (see also Table 3). The large values of the basic reproduction numbers for
these parameter choices ensure the existence of the boundary equilibria where one strain is endemic in
the population, and allow us to study the invasion reproduction numbers, as explained below.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5360–5393.



5374

Consider the boundary equilibria E∗1 = (s∗1, i
∗
1, 0) and E∗2 = (s∗2, 0, i

∗
2), where only strain 1 or strain

2, respectively, is present in the population (where s∗k(a) and i∗k(a) are the densities of susceptible and
infected individuals at equilibrium divided by the stable age distribution P∗(a)). The equilibria E∗k ,
k = 1, 2, do not admit an analytic expression, but their values can be solved numerically, as explained
in Appendix A.2. The linearization at E∗k for k = 1, 2 and j , k reads as follows:


∂ti j(t, a) + ∂ai j(t, a) = s∗k(a)

∫ a†

0
β j(a, ξ)i j(t, ξ) dξ,

i j(t, 0) = 0.

The invasion reproduction number R j
k, which describes whether strain j can invade the equilibrium set

by strain k, admits the following explicit expression:

R j
k =

∫ a†

0
s∗k(a)

P∗(a)
Π(a)

∫ a†

a
β j(a, ξ)

Π(ξ)
P∗(ξ)

dξ da.

Note that, in this case, computing the reproduction numbers from the analytical formula requires one
to numerically approximate not only the integrals, but also the equilibria.

When both invasion reproduction numbers are larger than 1, the coexistence equilibrium is stable
and the two strains can persist in the population [49].

Figure 4 shows the invasion reproduction numbers R1
2 and R2

1 when varying the parameters
m1,m2, c1, and c2. As expected, each of these parameters has an opposite impact (either decreasing
or increasing) on R1

2 and R2
1. The parameter m1 is the only one that positively impacts the invasion of

strain 1 (increasing R1
2) and negatively impacts strain 2 (decreasing R2

1).

In Figure 5, we plot the absolute errors of approximation for R0,1 and R0,2 for increasing N with
respect to the reference values computed from the analytical formulas. The numerical convergence is
of infinite order, which is consistent with the fact that the parameters are of class C∞.

4.3. An epidemic model with symptomatic and asymptomatic transmission

We consider the asymptomatic transmission model described in [7]. Upon infection, individuals
enter an asymptomatic phase characterized by an infection age τ1 ∈ [0, τ†1]. Then, individuals can
either recover without developing symptoms at a rate γ1(τ1), or they can develop symptoms at a rate
b21(τ1), upon which they enter the symptomatic phase, which is characterized by a disease age (time
since the onset of symptoms) τ2 ∈ [0, τ†2], and from which they recover with a rate γ2(τ2).

Let i1(t, τ1) denote the density of asymptomatic individuals at time t ≥ 0 and infection age τ1, and
let i2(t, τ2) denote the density of symptomatic individuals at time t ≥ 0 and disease age τ2. Assuming
that the total susceptible population is normalized to one, the linearization around the disease-free
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Table 4. Parameters of (4.3). Parameter values are taken from [7], assuming exponential
distributions (i.e., all rates are assumed to be constant), making exception for b11 and b12

which are chosen for illustration purposes.

Symbol Value Description

τ†1 14 Maximum infection age (days)

τ†2 14 Maximum disease age (days)

γ1 0 Recovery rate in the asymptomatic phase in [0, τ†1] (days−1)

γ2 0.45 Recovery rate in the symptomatic phase in [0, τ†2] (days−1)

b21 0.676 Rate of developing symptoms (days−1)

b11 varying Per capita infection rate in the asymptomatic phase (days−1)

b12 0.0695 Per capita infection rate in the symptomatic phase (days−1)

equilibrium reads 

∂ti1(t, τ1) + ∂τ1i1(t, τ1) = −(b21(τ1) + γ1(τ1))i1(t, τ1),

∂ti2(t, τ2) + ∂τ2i2(t, τ2) = −γ2(τ2)i2(t, τ2),

i1(t, 0) =

∫ τ†1

0
b11(τ1)i1(t, τ1) dτ1 +

∫ τ†2

0
b12(τ2)i2(t, τ2) dτ2,

i2(t, 0) =

∫ τ†1

0
b21(τ1)i1(t, τ1) dτ1,

(4.3)

where b11(τ1) is the per capita infection rate at the infection age τ1 in the asymptomatic phase, and
b12(τ2) is the infection rate at the disease age τ2 in the symptomatic phase.

The parameter values used in the numerical simulations are listed in Table 4. Here, inspired by [15,
Section 4] and [7], we can consider different definitions of “birth”. According to the standard interpre-
tation of R0 as the number of new infections generated by one average infectious individual, we con-
sider all new infections coming from asymptomatic and symptomatic individuals as birth processes,
and consider the development of symptoms as transition process. On the other hand, since asymp-
tomatic individuals are invisible from the point of view of the public health system (in the absence of
other interventions like test-and-trace and asymptomatic testing), one could be interested in studying
the effectiveness of control measures to the class of symptomatic individuals only (e.g., isolation upon
symptoms) [7]. In this case, one could interpret the entrance in the class of symptomatic individuals
as birth, while the asymptomatic phase is included in the transition operator, see also [51]. Therefore,
we denote the state reproduction number of symptomatic individuals by TS . As expected, the two
reproduction numbers, R0 and TS , have different values in general, but the same threshold at 1, as seen
in Figure 6 when varying r := b11/b21. Additionally, Figure 6 illustrates another important theoretical
property: the state reproduction number TS is finite (and well defined) only when the spectral radius of
the NGO relevant to asymptomatic transmission is smaller than one. When the latter becomes larger
than one, then asymptomatic individuals alone can sustain the epidemic, hence interventions that are
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Figure 6. Model (4.3). Left: R0 and TS as functions of r := b11/b21. Right: TS and the
spectral radius of the NGO relevant to the asymptomatic individuals as functions of r.

targeted to only symptomatic individuals are not sufficient to control its spread. This feature is reflected
in the behavior of TS , which tends to infinity and becomes not well defined.

4.4. A model for the spread of Rubella with vertical transmission

Table 5. Parameters of (4.4) taken from [54]. The functions f and Π are chosen so that∫ a†

0
f (a)Π(a) da = 1.

Symbol Value Description

a† 75 Maximum life span (yr)

η 4 Rate of loss of protection provided by maternal antibodies (yr−1)

σ 34.76 Rate of acquisition of infectiousness (yr−1)

γ 31.74 Recovery rate from infectious period (yr−1)

Π(a) 1 Natural survival probability in [0, a†]

f (a) 1/a† Per capita birth rate (yr−1)

k(a, ξ) See Table 9 Transmission rate (yr−1)

q 0.9 Proportion of vertically infected newborns

ν varying Per capita vaccination rate (yr−1)

Rubella, also known as German measles or three-day measles, is an acute and contagious viral
infection that can be vertically transmitted [52]. It is not particularly severe in children and adults, but
infection during pregnancy can result in the so called congenital rubella syndrome, which can result
in fetal death or congenital malformations in infants [53]. For women infected during early pregnancy
(first trimester), the probability of passing the virus to the fetus is reported to be 90% [53] and, since
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there is no treatment for Rubella, the design of vaccination policies plays a fundamental role. In the last
few decades, this has triggered a series of works by Anderson and colleagues, see for example [54–56].

Here, we consider a model inspired by [54] for the spread of congenital rubella syndrome in the
United Kingdom. The model definition and the derivation of the disease-free equilibrium and the
corresponding linearization are described in detail in Appendix A.3. The parameter definitions and
values used in the numerical tests are collected in Table 5. Note that, in the literature, the term control
reproduction number is typically used in the presence of interventions such as vaccinations. To simplify
our terminology, here we refer to R0 even in the presence of vaccinations.

Let e(t, a) and i(t, a) denote the density of exposed (not infectious) and infectious individuals, re-
spectively, at time t ≥ 0 and demographic age a ∈ [0, a†], and let s∗(a) denote the density of susceptible
individuals at equilibrium, which is determined by the vaccination rate ν (see Appendix A.3 for the de-
tails). The linearization around the disease-free equilibrium reads as follows:

∂te(t, a) + ∂ae(t, a) =

∫ a†

0
β(a, ξ)i(t, ξ) dξ − σe(t, a),

∂ti(t, a) + ∂ai(t, a) = σe(t, a) − γi(t, a),

e(t, 0) = 0,

i(t, 0) =

∫ a†

0
b(a)i(t, a) da,

(4.4)

where β(a, ξ) = s∗(a)Π(ξ)k(a, ξ) and b(a) = q f (a)Π(a), see Table 5 for more details.
Following [54], we assume that the transmission rate k is piecewise constant among six age groups,

i.e., given 0 = ā0 < ā1 < . . . ā6 = a†,

k(a, ξ) ≡ ki j for (a, ξ) ∈ [āi−1, āi) × [ā j−1, ā j), i, j = 1, . . . , 6, (4.5)

so that we can estimate it from existing data using the well-known procedure of [56, Appendix A]
(that we recall in Appendix A.3 for the reader’s convenience). In this regard, we consider force of
infection data from two different datasets: one for the South East of England in 1980 (case a) and one
for Leeds in 1978 (case b), as summarized in Table 8. These datasets fix the age class division at 5,
10, 15, 20, and 30 years of age. The piecewise form in (4.5) gives us a Who Acquires Infection From
Whom (WAIFW) matrix (ki j)i, j=1,...6, which collects the contact rates between different age groups.
We consider three different forms of the WAIFW, which capture different features in the transmission
patterns. The estimated values of ki j are illustrated in Figure 7. More details on the parameters and
data used for the estimation are available in Appendix A.3.

We compute the basic reproduction number, R0, and the type reproduction number for horizontal
transmission, TH, for different choices of the vaccination rate v and the WAIFW matrix. The results
are collected in Table 6 (case a) and Table 7 (case b), rounded to four decimal digits.

The computed values of R0 and TH are never substantially different (we can appreciate some differ-
ences only at the third decimal digit), thus suggesting that, for these data-informed parameter values,
vertical transmission has a substantially smaller effect on the epidemic spread compared to horizontal
transmission. Note that, for case b, the results obtained with WAIFW2 and WAIFW3 are identical: this
is actually a consequence of the particular force of infection data in Table 8, which is the same for the
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Figure 7. Model (4.4). Estimated WAIFW matrices (ki j) for case a (upper row) and case b
(lower row). Numerical values reported in Table 9.

Figure 8. Model (4.4). TH as a function of v for different choices of the WAIFW-matrix,
case a (left) and case b (right) according to Table 8.
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Figure 9. Model (4.4). Approximated eigenfunctions of the type reproduction operator (see
also Section 2) relevant to horizontal transmission in the absence of vaccination, for different
choices of the WAIFW matrix for case a (upper row) and case b (lower row).

Figure 10. Model (4.4). TV as a function of v (left) and q (right) for case b with WAIFW1.
When not varied, the parameters are ν = 0.11871 and q = 0.9.
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Table 6. Model (4.4). R0 and TH for different values of the vaccination rate v and different
choices of the WAIFW matrix (case a).

WAIFW1 (case a) WAIFW2 (case a) WAIFW3 (case a)

v R0 TH R0 TH R0 TH

0 5.4206 5.4223 5.9228 5.9243 5.4592 5.4609
0.05 1.7240 1.7242 1.8130 1.8133 1.7465 1.7468
0.09 1.0580 1.0580 1.0624 1.0625 1.0612 1.0612
0.10 0.9588 0.9588 0.9600 0.9600 0.9599 0.9599
0.15 0.6317 0.6316 0.6436 0.6435 0.6360 0.6359

Table 7. Model (4.4). R0 and TH for different values of the vaccination rate v and different
choices of the WAIFW matrix (case b).

WAIFW1 (case b) WAIFW2 (case b) WAIFW3 (case b)

v R0 TH R0 TH R0 TH

0 9.5110 9.5141 9.5759 9.5790 9.5759 9.5790
0.05 2.5013 2.5018 2.5376 2.5381 2.5376 2.5381
0.09 1.3776 1.3777 1.3866 1.3867 1.3866 1.3867
0.10 1.2236 1.2237 1.2289 1.2290 1.2289 1.2290
0.15 0.7449 0.7448 0.7446 0.7445 0.7446 0.7445

two age groups 20–29 and 30–75 years old, see also [54, pag. 324]. Additionally, the values in Table 6
and Table 7 numerically illustrate the known relations between TH and R0, namely 0 < TH < R0 < 1
and 1 < R0 < TH [34].

Both R0 and TH decrease for increasing v for all choices of WAIFW matrix, see Figure 8. This is ex-
pected since a larger vaccination rate reduces the density of the susceptible population at equilibrium.
On the other hand, different choices of the WAIFW matrix may result in slightly different quantita-
tive values of R0 and TH, which reflects how different assumptions on the mixing patterns between
individuals of different ages can affect transmission. This difference is even more evident looking at
the eigenfunction of the type reproduction operator relevant to TH (normalized in the L1-norm), see
Figure 9.

Finally, we compute the type reproduction number for vertical transmission TV . Figure 10 shows
how TV depends on ν (left) and q (right) for case b with WAIFW1. TV is a decreasing function of ν and
linearly increases with q (the ad hoc values of ν are chosen for illustrative purposes).

5. Discussion and conclusions

In this paper, we have proposed a general numerical method to approximate the reproduction num-
bers of a class of age-structured population models with a finite age span. We presented applications
to epidemic models that show how the method can compute different reproduction numbers, includ-
ing the basic and the type reproduction numbers. Additionally, these examples show that, even when
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analytical expressions for the reproduction numbers are available, their computation may still require
numerical approximations. Hence, our approach may represent an efficient and general alternative.

To our knowledge, this is the first numerical method that can approximate the many types of re-
production numbers for any splitting of the processes into birth and transition. This flexibility is made
possible by working with the equivalent formulation for the age-integrated state, which has several ad-
vantages. First, it allows us to interpret processes described by the boundary condition as perturbations
of an operator with trivial domain. Second, since the state is continuous, we can work with polynomial
interpolation. Moreover, the additional regularity provided by the integral mapping permits us to in-
vestigate the convergence of the approximated eigenvalues without the need to look for a characteristic
equation as in [27]. In fact, we can prove under mild (and biologically meaningful) assumptions that
if M− is invertible with bounded inverse, then there exists a positive integer N̄ such that MN is also
invertible with bounded inverse for all N ≥ N̄, and that the eigenvalues ofHN converge to those ofH
with rate that depends on the regularity of the relevant eigenfunctions. In this paper, we experimentally
investigated the convergence in some cases where the reproduction numbers were known, and we refer
to the work in preparation [33] for the theoretical details.

Here, we focused on models with one structuring variable, namely age. However, to obtain a more
realistic portrait of the dynamics of a population, one could also be interested in considering models
with two (or more) structures (e.g., demographic age and infection age), see for example [57, 58] and
references therein. Unfortunately, considering an additional structuring variable brings in many dif-
ficulties in the theoretical and numerical study of these models. In fact, the hyperbolic nature of the
infinitesimal generator of the semigroup makes the stability analysis more involved in the presence
of discontinuities that propagate along the characteristic lines; for instance, these could be generated
by corner singularities in the domain of the structuring variables, which is typically a rectangle in R2.
In this context, working with the integrated state permits us to work with more regular spaces and
to have an explicit expression for the infinitesimal generator, without the need for additional smooth-
ness assumptions on the model coefficients, or compatibility assumptions on the boundary conditions
as in [25]. A first work in this direction is [29], where the integrated state framework was used to
approximate the spectrum of the infinitesimal generator relevant to the semigroup of a linear, scalar
model with two structures. Following this idea, we plan to extend the method presented in this paper
to models with more than one structure.

A limitation of this work is the assumption of finite age span. Hence, another interesting extension
of this method regards models with unbounded structuring variables, which are common in the liter-
ature when considering probability distributions with unbounded support. For handling this problem
numerically, one can either truncate the domain or resort to interpolation on exponentially weighted
spaces and Laguerre-type nodes. For recent applications of these techniques to delay and renewal
equations, which can also be used to model structured populations [59], see [60, 61].

A. Modeling details

In this appendix, we collect some further modeling and computational details regarding the models
considered in Section 4, including the original formulation of the models in their nonlinear form. We
use capital letters (S , I, R. . . ) to denote the age-densities (or numbers depending on the context), and
small letters to denote the densities divided by either the total size or the age distribution of the host

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5360–5393.



5382

population (e.g., s(t, a) = S (t, a)/P(t, a)).

A.1. An epidemic model structured by infection age

Model (4.1) is obtained by partitioning the population into three classes (susceptibles, infected and
removed), where only the infected class is structured by the infection age, see for example [62, Chapter
7] and [8, Section 5.3]. Let S (t) and R(t) denote the number of susceptible and removed individuals,
respectively, at time t ≥ 0, and let I(t, τ) denote the density of infected individuals at time t ≥ 0 and

infection age τ ∈ [0, τ†]. We assume that the total population P := S (t) + R(t) +
∫ τ†

0
I(t, τ) dτ is constant

(no demographic turnover). The model reads as follows:



S ′(t) = −
S (t)

P

∫ τ†

0
b(τ)I(t, τ) dτ,

∂tI(t, τ) + ∂τI(t, τ) = −γ(τ)I(t, τ),

I(t, 0) =
S (t)

P

∫ τ†

0
b(τ)I(t, τ) dτ,

R′(t) =

∫ τ†

0
γ(τ)I(t, τ) dτ,

and can be rewritten in terms of the new variables

s(t) :=
S (t)

P
, i(t, τ) :=

I(t, τ)

P
, r(t) :=

R(t)

P
,

as 

s′(t) = −s(t)
∫ τ†

0
b(τ)i(t, τ) dτ,

∂ti(t, τ) + ∂τi(t, τ) = −γ(τ)i(t, τ),

i(t, 0) = s(t)
∫ τ†

0
b(τ)i(t, τ) dτ,

r′(t) =

∫ τ†

0
γ(τ)i(t, τ) dτ.

A.2. A multi-strain epidemic model with host age structure

We consider a simplified version of the model proposed in [49], with two classes of infected in-
dividuals structured by demographic age, describing the dynamics of two competing strains in a host
population. Let S (t, a) denote the density of susceptible individuals at time t ≥ 0 and demographic age
a ∈ [0, a†], and let I1(t, a) and I2(t, a) denote the density of infectious individuals with strain 1 and 2,
respectively, at time t ≥ 0 and demographic age a ∈ [0, a†]. We neglect additional disease-induced
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mortality. The full nonlinear model reads as follows:

∂tS (t, a) + ∂aS (t, a) = −(λ1(t, a) + λ2(t, a) + µ(a))S (t, a),

∂tI1(t, a) + ∂aI1(t, a) = λ1(t, a)S (t, a) − µ(a)I1(t, a),

∂tI2(t, a) + ∂aI2(t, a) = λ2(t, a)S (t, a) − µ(a)I2(t, a),

S (t, 0) = Rd
0Φ(Q(t))

∫ a†

0
f (a)P(t, a) da,

I1(t, 0) = I2(t, 0) = 0,

where Q(t) :=
∫ a†

0
P(t, ξ) dξ, P(t, a) := S (t, a) + I1(t, a) + I2(t, a) is the age distribution of the host

population, and the force of infection λ j satisfies

λ j(t, a) = K j(a)
∫ a†

0
q j(ξ)I j(t, ξ) dξ, j = 1, 2,

where q j is the age-specific infection rate for strain j, and K j is the age-specific susceptibility of sus-
ceptible individuals to strain j. For the demographic process, P(t, a) is assumed to be at demographic

equilibrium, i.e., the death rate µ and the per capita fertility rate f are such that
∫ a†

0
f (a)Π(a) da = 1,

where
Π(a) := e−

∫ a
0 µ(ξ) dξ (A.1)

is the survival probability. If Rd
0 > 1, then there exists an endemic equilibrium such that the population

profile at equilibrium, P∗(a), satisfies

P∗(a) =
Π(a)P0∫ a†

0
Π(ξ) dξ

, (A.2)

for P0 =
∫ a†

0
P∗(a) da = Φ−1(1/Rd

0).
To simplify the model, we define the variables

s(t, a) :=
S (t, a)
P∗(a)

, i j(t, a) :=
I j(t, a)
P∗(a)

, j = 1, 2,

and obtain the following nonlinear system of equations:

∂ts(t, a) + ∂as(t, a) = −(λ1(t, a) + λ2(t, a))s(t, a),

∂ti1(t, a) + ∂ai1(t, a) = λ1(t, a)s(t, a),

∂ti2(t, a) + ∂ai2(t, a) = λ2(t, a)s(t, a),

s(t, 0) = 1,

i1(t, 0) = i2(t, 0) = 0,
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where the force of infection can be written (equivalently) as follows:

λ j(t, a) = K j(a)
∫ a†

0
q j(ξ)P∗(ξ)i j(t, ξ) dξ, j = 1, 2.

The linearization around the disease-free equilibrium is reported in (4.2). Regarding the boundary
equilibria E∗1 = (s∗1, i

∗
1, 0) and E∗2 = (s∗2, 0, i

∗
2), where only one strain is present in the population, they

satisfy, for k = 1, 2,

ds∗k(a)
da

= −λ∗k(a)s∗k(a),
di∗k(a)

da
= λ∗k(a)s∗k(a), a ∈ [0, a†], (A.3)

with s∗k(0) = 1, i∗k(0) = 0, and λ∗j(a) = K j(a)
∫ a†

0
q j(ξ)P∗(ξ)i∗j(ξ) dξ, j = 1, 2.

Numerical solution of the endemic equilibrium. Note that system (A.3) for s∗k and i∗k cannot be
solved analytically. To compute the equilibrium values to perform the numerical tests in the main text,
the solutions were approximated numerically. Consider the equilibrium E∗1 for illustrative purposes.
For n ∈ N, we discretize the interval [0, a†] using Chebyshev extremal nodes {0 = a0 < a1 < · · · < an =

a†}. Then, the derivative at each node is approximated using spectral differentiation, and the integral
is approximated using Clenshaw–Curtis quadrature formulas with weights wn, j. Let S n, In ∈ R

n+1

be two vectors such that, for j = 0, . . . , n, each entry S n, j approximates s∗1(a j), and each entry In, j

approximates i∗1(a j). Let D ∈ R(n+1)×(n+1) be the differentiation matrix associated with the nodes. Finally,
let Kn,Qn ∈ R

n+1 such that Kn, j = K1(a j), and Qn, j = wn, j q1(a j)P∗(a j). Then, we can write the following
approximating system for the unknowns S n, In:DS n = −(Qn · In)Kn ∗ S n,

DIn = (Qn · In)Kn ∗ S n,

where ∗ denotes the element-wise product. In practice, to facilitate the convergence to the nontrivial
solution, we divide both terms by (Qn · In) and solve the corresponding system.

A.3. A model for the spread of Rubella with vertical transmission

We consider a model inspired by [54]. Let M(t, a), S (t, a), E(t, a), I(t, a) and Z(t, a) denote the den-
sity of individuals who are protected by maternal antibodies, susceptible, infected but not infectious,
infectious, and immune (acquired naturally or via vaccination), respectively, at time t ≥ 0 and demo-
graphic age a ∈ [0, a†]. The model reads as follows:

∂tM(t, a) + ∂aM(t, a) = −(µ(a) + η)M(t, a),

∂tS (t, a) + ∂aS (t, a) = ηM(t, a) − (µ(a) + λ(t, a) + v(a))S (t, a),

∂tE(t, a) + ∂aE(t, a) = λ(t, a)S (t, a) − (µ(a) + σ)E(t, a),

∂tI(t, a) + ∂aI(t, a) = σE(t, a) − (µ(a) + γ)I(t, a),

∂tZ(t, a) + ∂aZ(t, a) = γI(t, a) + v(a)S (t, a) − µ(a)Z(t, a),
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with the following boundary conditions:

M(t, 0) =

∫ a†

0
f (a)(M(t, a) + Z(t, a)) da,

S (t, 0) =

∫ a†

0
f (a)[S (t, a) + E(t, a) + (1 − q)I(t, a)] da,

I(t, 0) = q
∫ a†

0
f (a)I(t, a) da,

E(t, 0) = Z(t, 0) = 0,

where

λ(t, a) :=
∫ a†

0
k̂(a, ξ)I(t, ξ) dξ

is the force of infection, for k̂(a, ξ) the transmission rate between one individual of age a and one
individual of age ξ. We refer to Table 5 for the interpretation of the parameters. Note that an individual
is assumed to have permanent immunity once infected.

Following [8, Chapter 6], we assume that
∫ a†

0
f (a)Π(a) da = 1, where Π is the survival probability

defined in (A.1), and that the age density of the host population P(t, a) := M(t, a) + S (t, a) + E(t, a) +

I(t, a)+Z(t, a) has already attained the stable age distribution P(t, a) = P∗(a) defined in (A.2), for some
P0 > 0, see for example [8, Chapter 6]. For convenience, we define the standardized transmission rate
as follows:

k(a, ξ) :=
P0k̂(a, ξ)∫ a†

0
Π(θ) dθ

.

Then, if we consider new variables

m(t, a) :=
M(t, a)

P∗(a)
, s(t, a) :=

S (t, a)

P∗(a)
, e(t, a) :=

E(t, a)

P∗(a)
, i(t, a) :=

I(t, a)

P∗(a)
, z(t, a) :=

Z(t, a)

P∗(a)
,

we can reduce to the following model:

∂tm(t, a) + ∂am(t, a) = −ηm(t, a),

∂ts(t, a) + ∂as(t, a) = ηm(t, a) − (λ(t, a) + v(a))s(t, a),

∂te(t, a) + ∂ae(t, a) = λ(t, a)s(t, a) − σe(t, a),

∂ti(t, a) + ∂ai(t, a) = σe(t, a) − γi(t, a),

∂tz(t, a) + ∂az(t, a) = γi(t, a) + v(a)s(t, a),

with the following boundary conditions:

m(t, 0) =

∫ a†

0
f (a)Π(a)(m(t, a) + z(t, a)) da,
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s(t, 0) =

∫ a†

0
f (a)Π(a)

[
s(t, a) + e(t, a) + (1 − q)i(t, a)

]
da,

i(t, 0) = q
∫ a†

0
f (a)Π(a)i(t, a) da,

e(t, 0) = z(t, 0) = 0,

where the force of infection can be expressed as follows:

λ(t, a) =

∫ a†

0
k(a, ξ)Π(a)i(t, ξ) dξ.

The disease-free equilibrium E∗ := (m∗(a), s∗(a), e∗(a), i∗(a), z∗(a)) explicitly reads as follows:

m∗(a) = (1 − s∗(0)) e−ηa,

s∗(a) = s∗(0) e−
∫ a

0 v(ξ) dξ + η

∫ a

0
e−

∫ a
ξ

v(θ) dθm∗(ξ) dξ,

z∗(a) =

∫ a

0
v(ξ)s∗(ξ) dξ,

e∗(a) = i∗(a) = 0,

where

s∗(0) =
η
∫ a†

0
f (a)Π(a)

∫ a

0
e−

∫ a
ξ

v(θ) dθe−ηξ dξ da

1 −
∫ a†

0
f (a)Π(a)e−

∫ a
0 v(θ) dθ da + η

∫ a†

0
f (a)Π(a)

∫ a

0
e−

∫ a
ξ

v(θ) dθe−ηξ dξ da
.

Assuming a constant vaccination rate v(a) ≡ v and η > v, the density of susceptible population reads

as follows:

s∗(a) = s∗(0)
[
e−va −

η

v − η
(e−ηa − e−va)

]
+

η

v − η
(e−ηa − e−va),

where

s∗(0) =
η(v − η)−1

∫ a†

0
f (a)Π(a)(e−ηa − e−va) da

1 −
∫ a†

0
f (a)Π(a)

(
e−va − η(v − η)−1(e−ηa − e−va)

)
da
.

Observe that we have s∗(a) ≡ 1 for v ≡ 0. The linearization around the disease-free equilibrium is
given in (4.4).

We estimate k using real-world prevalence data taken from [54, Table 2] and their comments at page
324, which are collected in Table 8. To do this, we assume that k is piecewise constant in the six age
groups defined in Table 8, i.e.,

k(a, ξ) ≡ ki j for (a, â) ∈ [āi−1, āi) × [ā j−1, ā j), i, j = 1, . . . , 6.

We assume three different structures for the WAIFW matrix (ki j)i, j=1,...6, which are listed below:
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Table 8. Age-specific forces of infection λi’s (yr−1) for (4.4). Data are taken from [54, Table
2] according to their comments at page 324.

Age class (years) 0 − 4 5 − 9 10 − 14 15 − 19 20 − 29 30 − 75

λi (case a) 0.081 0.115 0.115 0.083 0.091 0.067
λi (case b) 0.089 0.134 0.151 0.148 0.126 0.126

WAIFW1
age

class 1 2 3 4 5 6

1 k1 k1 k3 k4 k5 k6

2 k1 k2 k3 k4 k5 k6

3 k3 k3 k3 k4 k5 k6

4 k4 k4 k4 k4 k5 k6

5 k5 k5 k5 k5 k5 k6

6 k6 k6 k6 k6 k6 k6

WAIFW2
age

class 1 2 3 4 5 6

1 k1 k6 k6 k6 k6 k6

2 k6 k2 k6 k6 k6 k6

3 k6 k6 k3 k6 k6 k6

4 k6 k6 k6 k4 k6 k6

5 k6 k6 k6 k6 k5 k6

6 k6 k6 k6 k6 k6 k6

WAIFW3
age

class 1 2 3 4 5 6

1 k1 k6 k6 k6 k5 k6

2 k6 k2 k6 k6 k5 k6

3 k6 k6 k3 k6 k6 k6

4 k6 k6 k6 k4 k6 k6

5 k5 k5 k6 k6 k5 k6

6 k6 k6 k6 k6 k6 k6

In Table 9, we list the values of ki, i = 1, . . . , 6, obtained from Table 8 using the procedure described
below.

Table 9. Values of ki, i = 1, . . . , 6 in case a and case b, estimated from the force of infection
data in Table 8 with different configurations of the WAIFW matrix.

WAIFW1 WAIFW2 WAIFW3

(case a) (case b) (case a) (case b) (case a) (case b)

k1 2.205 1.938 3.467 0.730 3.198 0.730
k2 5.905 6.502 7.356 4.811 7.049 4.811
k3 3.932 4.866 11.415 8.565 11.415 8.565
k4 2.644 4.753 9.212 12.664 9.212 12.664
k5 2.940 4.000 11.275 4.000 3.208 4.000
k6 2.132 4.000 2.132 4.000 2.132 4.000

Estimation of age-dependent transmission rates. Here, we recall the procedure described in [56,
Appendix A] to estimate the age-dependent transmission rate k under the hypothesis that it is piecewise
constant among different age groups, i.e.,

k(a, ξ) ≡ ki j for (a, ξ) ∈ [āi−1, āi] × [ā j−1, ā j], i, j = 1, . . . , n,

for given 0 = ā0 < ā1 < · · · < ān = a†. We assume that the age-specific mortality rate µ has the
following form:

µ(a) =

0, if a ≤ a†,

∞ otherwise,
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so that
∫ a†

0
Π(a) da = a†, and that the age-specific force of infection

λ(a) ≡ λi, for a ∈ [āi−1, āi], i = 1, . . . , n, (A.4)

is known.
Then, the following algorithm can be applied:

(i) define ψ0 := 0 and ψi :=
∑i

j=1 λ j(ā j − ā j−1) for i = 1, . . . , n;

(ii) define Ψi := exp (−ψi−1) − exp (−ψi) for i = 1, . . . , n;

(iii) solve the linear problem λi = 1
γ

∑n
j=1 ki jΨ j for i = 1, . . . , n.

Observe that the linear system in (iii) is over-determined; thus some hypotheses on the structure of the
WAIFW matrix (ki j)i, j=1,...,n are needed. We refer the reader to [56] for some possible choices.
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