## Analysis and compensation of the series resistance effects on the characteristics of ferroelectric capacitors

M. Massarotto<sup>1</sup>, F. Driussi<sup>1</sup>, M. Bucovaz<sup>1</sup>, A. Affanni<sup>1</sup>, S. Lancaster<sup>2</sup>, S. Slesazeck<sup>2</sup>, T. Mikolajick<sup>2,3</sup>, D. Esseni<sup>1</sup>

<sup>1</sup>DPIA, Università degli Studi di Udine, Via delle Scienze 206, Udine, Italy <sup>2</sup>NaMLab gGmbH, Nöthnitzer Str. 64a, 01187 Dresden, Germany

<sup>3</sup>IHM TU Dresden, Nöthnitzer Str. 64, 01187 Dresden, Germany

Abstract: Ferroelectric device optimization requires a dependable characterization of the ferroelectric (FE) material. Here, we highlighted how series resistance  $(R_S)$  impacts the I-V characteristics of Metal-Ferroelectric-Metal (MFM) stacks with peculiar distortions, possibly leading to an inaccurate extraction of the FE parameters and a misleading interpretation of its switching dynamics. For the first time to our knowledge, we here propose a procedure for an improved extraction of the FE parameters even in presence of a significant series resistance.

Lead author: Marco Massarotto DPIA, Università degli Studi di Udine via delle Scienze, 206 33100, Udine, Italy FAX: +39-0432558251 e.mail: <u>massarotto.marco001@spes.uniud.it</u>

## Authors preference: ORAL PRESENTATION

## Analysis and compensation of the series resistance effects on the characteristics of ferroelectric capacitors

M. Massarotto<sup>1</sup>, F. Driussi<sup>1</sup>, M. Bucovaz<sup>1</sup>, A. Affanni<sup>1</sup>, S. Lancaster<sup>2</sup>, S. Slesazeck<sup>2</sup>, T. Mikolajick<sup>2,3</sup>, D. Esseni<sup>1</sup>

<sup>1</sup>DPIA, University of Udine, Italy <sup>2</sup>NaMLab gGmbH, Dresden, Germany <sup>3</sup>IHM TU Dresden, Germany

Introduction. HfZrO<sub>4</sub> (HZO) is a CMOS-compatible, highly scalable ferroelectric (FE) raising interest for many applications ranging from memories to neuromorphic computing [1]. However, the FE device optimization requires an in-depth HZO characterization and a dependable extraction of its remnant polarization  $(P_R)$  and coercive voltage  $(V_C)$ . Here we report an experimental study at different frequencies and for samples with different areas, evidencing the impact of the series resistance  $(R_S)$  on the extracted  $P_R$  and  $V_C$  values. We quantitatively assess the influence of  $R_S$  and propose a new compensation procedure for a dependable extraction of  $P_R$  and  $V_C$  also in presence of relevant  $R_S$  values. Devices and experimental setup. Metal-Ferroelectric-Metal (MFM) stacks are fabricated by ALD of 10.5 nm HZO onto W (30 nm)/TiAlN (22 nm) bottom electrode (BE, Fig.1). PVD is used for the 22 nm TiAlN top contacts. Circular areas with diameter  $\Phi=110\div450 \ \mu m$  are defined by shadow mask evaporation of Ti/Pt and etching. The BE is reached through a lateral broken MFM device (BD, Fig.1). To measure the samples, the verified setup in Fig.1 is used [2]. FE polarization P is switched by a triangular voltage wave  $(V_{IN}, Fig.2a)$  and studied by measuring the switching current  $I_{MFM}$  during time (Fig.1). Then, the  $I_{MFM}$  integral provides the switching charge, which is interpreted as P [3]. Experiments. Triangular  $V_{IN}$  pulses result in  $I_{MFM}$  peaks due to P switching, which add to the  $V_{IN}$  independent dielectric response (Fig.2) [3]. Fig.2 shows  $I_{MFM}$  and the P-V curves of a sample with  $\Phi=110 \ \mu m$ . Two  $V_{IN}$  frequencies (f) are shown and we verified the proportionality between  $I_{MFM}$  and f, while P is independent of f. Thus, in the following, we report  $I_{MFM}$  normalized to both f and device area to compare different samples and measurement conditions. Fig.3 shows results for a 450  $\mu$ m sample. At 10 kHz, the normalized  $I_{MFM}$  (red) is largely distorted compared to 100 Hz (black), showing a shift in voltage and a reduction of the normalized peak (the absolute peak value,  $I_{pk}$ , is larger at 10 kHz, Fig.3b). The resulting P-V loop at 10 kHz tends to widen and the coercive voltages increase (Fig.3c). This may suggest that FE cannot track  $V_{IN}$  [4]. To study this point, we measured many samples with different  $\Phi$  over f (0.1÷10 kHz). We then defined the coercive voltages  $V_C^+$ ,  $V_C^-$  at the current peaks (Fig.3a), while the  $2P_R$  value was obtained from the P-V loops (Fig.2c). Fig.4(a) shows the box plot of all  $2P_R$  values, which are rather flat over f, indicating a complete FE switching irrespective of f and  $\Phi$ . Fig.4(b) reports the average  $V_C^+$ ,  $V_C^-$  grouped by device area, showing that  $|V_C^{\pm}|$  increase with f and especially for the larger  $\Phi$ , thus indicating that this trend could be an extrinsic, spurious effect. In fact,  $I_{pk}$  increases with  $\Phi$  and f (Fig.3b), suggesting a possible impact of a series resistance  $R_s$ . Series resistance effect. We verify the hypothetical  $R_S$  effect on the MFM curves through the experiment in Fig.5. A

110  $\mu$ m MFM is first measured at f=100 Hz (black), resulting in the lowest possible  $I_{MFM}$  (small  $\Phi$ , low f) and thus the minimum  $R_S$  influence. Then, we repeated the measurement by inserting an external resistance  $R_{ext}$  in series with the MFM. The I-V curve (Fig.5, red) is now distorted, showing a  $I_{MFM}$  peak decrease and a  $|V_C^{\pm}|$  modulation very similar to those seen in larger samples measured at high f (Fig.3). This confirms that such distortion can be partly due to  $R_S$ . We estimated the contributions to  $R_S$  by measuring the resistance between several broken devices through AC analysis

(Fig.6), obtaining  $R_S \approx 200 \ \Omega$ , that is non-negligible even for the smallest samples when measuring at 10 kHz. So  $R_S$  induces a voltage drop that distorts the  $V_{FE}$  waveform actually delivered to the MFM (Fig.7a, red), especially at the switching peaks of  $I_{MFM}$ . Of course, the voltage drop on  $R_S$  depends on the  $I_{MFM}$  value, thus on  $\Phi$  and f. We estimate the actual  $V_{FE}$  through Eq.1 (Fig.8), the measured  $I_{MFM}$  and the  $R_S$  calculated from results in Fig.6. Then we re-plot  $I_{MFM}$  and P versus  $V_{FE}$  in Figs.7(b) and (c), respectively (solid lines). Now, the P-V loop at 10 kHz (red) is consistent with that measured at 100 Hz (black), thus indicating that the P-V alteration at 10 kHz was an artifact due to  $R_S$ .

However, even if such re-scaling of the voltage x-axis seems to restore the P-V hysteresis, it is not sufficient to match the I-V curves at different f (Fig.7b) [5]. Indeed, the coercive voltages at 10 kHz (solid red) are now much closer to those at 100 Hz (black), but the  $I_{MFM}$  peaks (normalized to  $\Phi$  and f) still remain lower at high f (the y-axis is not affected by the re-plotting). This is because the switching and thus  $I_{MFM}$  depend also on the actual  $V_{FE}$  waveform, which differs significantly for the two f values (see Fig.7a). Hence, we devised a procedure to eliminate the  $R_S$  influence even on the I-V characteristics. Fig.7(a,c) indicates that P does not depend on the  $V_{FE}$  slew rate. So in Eq.2 of Fig.8, we define the large-signal capacitance  $C_{LS}$  linking P to  $V_{FE}$  [6]. Eq.3 now elaborates the measured  $I_{MFM}$  data, obtaining  $C_{LS}$  that is invariant w.r.t. the  $V_{FE}$  time evolution and unaffected by the  $R_S$  effect. We validated the method by simulating a ferroelectric capacitor with different in-series  $R_S$  values (Fig.9). Simulated  $I_{MFM}$  (a) shows the same features observed in experiments (Fig.3a). The application of Eq.3 to the simulated  $I_{MFM}$  provides a unique  $C_{LS}$ - $V_{FE}$  curve, cleaned from the  $R_S$  distortion, thus validating the method. Then, we applied Eq.3 to the experiments. Fig.10 shows that, by accounting for  $R_S$  in Eqs.1 and 3, we obtain the same  $C_{LS}$ - $V_{FE}$  curve, irrespective f, thus suggesting that the  $I_{MFM}$ distortions are mainly due to  $R_S$  in the explored f range. Then, we calculate the P-V and I-V curves in Fig.11 with Eqs.4 and 5 and extract again the  $V_C^{\pm}$  and  $2P_R$  values. Note that the corrected I-V curves in Fig.11(a, solid) completely recover from the distortions seen in the measured  $I_{MFM}$  (dashed). The correction method is finally applied to all measurements and the results are summarized in Fig.12.  $V_C^{\pm}$  values are now independent of both  $\Phi$  and f.

**Conclusion.** Series resistance effects on MFM curves are here assessed. For the first time, a rigorous procedure to compensate for  $R_S$  is presented. A large-signal capacitance is calculated and used to extract  $2P_r$  and  $V_C^{\pm}$ , whose values are frequency-independent in the explored f range [7]. This study reveals that HZO has a high switching speed and the increase of the coercive voltages at large f is to a large extent due to spurious effects of unwanted series resistances [8].

Acknowledgments. This work is funded by the European Union through the BeFerroSynaptic Project (GA: 871737).

- [1] S. Slesazeck et al., *Nanotechnology*, vol. 35, p. 352003, 2019.
- $\left[2\right]$  M. Massarotto et al., Solid State Elec., vol. 194, p. 108364, 2022.
- [3] M. Massarotto et al., Solid State Elec., vol. 200, p. 108569, 2023.
- [4] X. Lyu et al., Symposium on VLSI Tech., pp. T44-T45, 2019.

[5] Z. M. Gao et al., Jour. of Semiconduc., vol. 43, p. 014102, 2022.
[6] M. Massarotto et al., Proceedings of ICMTS, pp. 170-175, 2023.
[7] P. Hao et al., Adv. Functional Mater., vol. 33, p. 2301746, 2023.

[8] S. Boyn et al., Applied Phys. Lett., vol. 109, p. 232902, 2016.



Figure 1: Experimental setup used for the MFM characterization. The setup is used as an I $\rightarrow$ V converter to probe the switching current  $I_{MFM}$ . The Arbitrary Waveform Generator (AWG) drives the MFM sample and  $V_{OUT}$  is monitored through an oscilloscope. The setup includes also an LCR meter for AC characterization [6] and the possibility to insert an external resistance  $R_{ext}$  in series with the MFM sample.



Figure 3: (a)  $I_{MFM}$  normalized over frequency as a function of  $V_{IN}$  of a MFM with  $\Phi = 450 \ \mu$ m. At  $f = 10 \ \text{kHz}$  the I-V curve is largely distorted. (b) Absolute peak current versus f. (c) P-V curves obtained from the I-V characteristics in (a), also showing the distortion at  $f = 10 \ \text{kHz}$ .



Figure 5:  $I_{MFM}$  measured for a MFM sample with  $\Phi = 110 \ \mu m$  at  $f = 100 \ \text{Hz}$ . This experiment ensures the lowest possible current. (a)  $I_{MFM}$  is measured with or without the insertion of a large external series resistance  $R_{ext}$ . (b) The series resistance effect is evident, with an  $I_{MFM}$  distortion (red) very similar to those observed in large samples measured at high f (Fig.3a).



Figure 2: Input triangular voltage (a) used to switch the MFM stacks. Pulses with frequencies f ranging from 100 Hz to 10 kHz are used to obtain the switching current (b) of the MFM samples. Note that  $I_{MFM}$  is proportional to f. (c) P-V characteristics for an MFM with  $\Phi = 110 \ \mu m$  obtained by integrating the current curves in (b).  $2P_R$  is defined in the figure.



Figure 4: (a) Box plot of extracted  $2P_R$  values for all the measured samples. The average  $2P_R$  seems independent of f, indicating a full switching of all devices. (b) Average coercive voltages  $V_C^+$  (top) and  $V_C^-$  (bottom) versus f for different device areas. Their magnitude increases with f suggesting a slow response of the MFM at large f. The dependence on the device area is also evident.



Figure 6: The contributions to  $R_S$  (a) are estimated by measuring the resistance seen between several broken MFM samples (b) by means of the LCR meter in Fig.1.  $R_{BD}$  is the resistance associated to the access device generally used for the MFM characterization, while  $R_{TE}$  is the resistance of the specific broken MFM.  $r_{BE}$  is the resistance per unit length of the bottom electrode. The crossing of the different resistances measured in (b) allows us to obtain the values in (c) that are then used to calculate the  $R_S$  value of the specific MFM under test as  $R_S = R_{BD} + r_{be} \cdot d$ , where d is the distance between the access device BD and the MFM sample.



Figure 7: (a) Time evolution of the applied  $V_{IN}$  (dashed black) and of the voltage drop across the MFM ( $V_{FE}$ , red) when measuring a 450  $\mu$ m sample at 10 kHz. (b) Measured  $I_{MFM}$ - $V_{IN}$  curve (dashed) and  $I_{MFM}$  vs.  $V_{FE}$  (solid) calculated with Eq.1 in Fig.8 for two f values. (c) Calculated P- $V_{IN}$  (dashed) and P- $V_{FE}$  (solid) curves for two f values.



Figure 9: Circuit simulations of a hysteretic capacitor with (red) or w/o (black) the insertion of a series resistance  $R_S$ . (a) Simulated I-V curves highlight the  $R_S$  impact on the MFM characteristics (shift and lowering of switching peak), which is exactly what we observe in the experiments of Figs.3(a) and 5. (b) By using Eq.3 of Fig.8, we obtain a unique large-signal capacitance for the MFM stack, irrespective of  $R_S$ , thus validating the proposed correction method.



Figure 11: (a) I-V curves measured at two f values. Dashed lines are the measured  $I_{MFM}$ - $V_{IN}$  characteristics, solid lines are the  $I_{corr}$ - $V_{FE}$  curves obtained through Eqs.1 and 5. Note how the corrected current completely recovers from the distortions due to  $R_S$ , leading to a unique I-V curve for all frequencies. (b) Original (dashed) and corrected (solid, Eq.4) P-V loops. Again, despite the  $R_S$  impact, the correction procedure allows us to recover a unique MFM characteristic, irrespective of the measurement frequency.

$$V_{FE} = V_{IN} - R_S \cdot I_{MFM} \tag{1}$$

$$I_{MFM} = \frac{dP(V_{FE})}{dt} = \frac{dP}{dV_{FE}} \cdot \frac{dV_{FE}}{dt} = C_{LS} \cdot \frac{dV_{FE}}{dt} \quad (2)$$
$$C_{LS}(V_{FE}) = I_{MFM} \cdot \left(\frac{dV_{FE}}{dt}\right)^{-1} =$$

$$= I_{MFM} \cdot \left(\frac{dV_{IN}}{dt} - R_S \frac{dI_{MFM}}{dt}\right)^{-1}$$
(3)

$$P = \int C_{LS}(V_{FE}) dV_{FE} \tag{4}$$

$$I_{corr} = C_{LS} \cdot \frac{dV_{IN}}{dt} = I_{MFM} \cdot \left(1 - R_S \frac{dI_{MFM}}{dV_{IN}}\right)^{-1}$$
(5)

Figure 8: Equations used to correct the MFM characteristics affected by  $R_S$ . The model assumes that the polarization depends only on the  $V_{FE}$  value applied to the MFM stack, irrespective of the  $V_{FE}$  time evolution, as suggested by the P-V loops in Fig.7(c, solid).



Figure 10: Large-signal capacitance  $C_{LS}$  calculated with Eq.3 and the  $I_{MFM}$  measured on a 450  $\mu$ m sample for two f values. Dashed:  $C_{LS}$ - $V_{FE}$  curve obtained using  $R_S = 0$  in Eqs.1 and 3. Solid:  $C_{LS}$ - $V_{FE}$  curve obtained for  $R_S = 175 \ \Omega$  (compatible with the analysis in Fig.6). By accounting for the  $R_S$  impact, a unique  $C_{LS}$ - $V_{FE}$ curve for the different f values is obtained. Note that the  $C_{LS}$  peak can be used to monitor  $V_C^{\pm}$  and to obtain the correct P-V loops.



Figure 12: Average  $V_C^+$  and  $V_C^-$  values obtained after applying the correction procedure to all measurements performed on the MFM samples. Thanks to the correction, the  $V_C^\pm$  magnitudes are now rather flat in frequency and independent of the device area.