
Computers & Operations Research 161 (2024) 106450

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Multi-constructor CMSA for the maximum disjoint dominating sets problem
Roberto Maria Rosati a,b,∗, Salim Bouamama c, Christian Blum b

a DPIA, University of Udine, via delle Scienze 206, Udine, 33100, Italy
b Artificial Intelligence Research Institute (IIIA-CSIC), Campus of the UAB, Bellaterra, 08193, Spain
c Department of Computer Science, Mechatronics Laboratory (LMETR), Ferhat Abbas University Sétif 1, Sétif, 19000, Algeria

A R T I C L E I N F O

Keywords:
CMSA
Reinforcement learning
Instance reduction
Maximum disjoint dominating sets problem
Domatic partition problem
Wireless sensor network

A B S T R A C T

We propose the Multi-Constructor CMSA, a Construct, Merge, Solve and Adapt (CMSA) algorithm that employs
multiple heuristic procedures, respectively solution constructors, for the Maximum Disjoint Dominating Sets
Problem (MDDSP). At every iteration of the search procedure, the solution components built by the constructors
are merged into a sub-instance, which is subsequently solved by an exact solver and then adapted to keep only
beneficial solution components. In our CMSA the solution constructors are chosen at random according to their
relative probabilities, which are adapted during the search, through a mechanism based on reinforcement
learning. We test two variants of the new Multi-Constructor CMSA that employ, respectively, two and six
solution constructors, on a new set of 3600 problem instances, encompassing random graphs, Watts–Strogatz
networks and Barabási-Albert networks, generated through a Hammersley sampling procedure on the instance
space. We compare our algorithm against six heuristics from the literature, as well as with the standard
version of CMSA. Furthermore, we employ an integer linear programming (ILP) model that is able to achieve
a good performance for small, sparse graphs. Overall, the experimental results show that all versions of CMSA
outperform by a large margin the previous state of the art and that, among the variants of CMSA, the novel
version that combines two constructors provides slightly better results than the other ones, more prominently
on larger graphs.
1. Introduction

Construct, Merge, Solve & Adapt (CMSA) is a general hybrid algo-
rithm for combinatorial optimisation proposed by Blum et al. (2016),
based on the idea of (1) constructing a reduced instance of the full prob-
lem by means of merging solution components obtained, for example,
by the repeated execution of a randomised construction heuristic, and
(2) the solution of the reduced instance by means of an exact solver.
The reduced instance is also referred to as sub-instance. The algorithm
is also equipped with an ageing mechanism to ensure that unpromising
solution components are discarded after a certain number of itera-
tions. Existing applications of CMSA to hard combinatorial optimisation
problems include the ones to the multi-dimensional knapsack prob-
lem (Blum and Ochoa, 2021), to prioritised test data generation (Ferrer
et al., 2021), and to refuelling and maintenance planning of nuclear
power plants (Dupin and Talbi, 2021), just to name a few.

In this work, we introduce the Multi-Constructor CMSA that makes
use of multiple independent construction heuristics, that we, hereby,
name constructors. For every solution construction, CMSA chooses one

∗ Corresponding author at: DPIA, University of Udine, via delle Scienze 206, Udine, 33100, Italy.
E-mail addresses: robertomaria.rosati@uniud.it (R.M. Rosati), salim.bouamama@univ-setif.dz (S. Bouamama), christian.blum@iiia.csic.es (C. Blum).

1 In this context, the terms weight and probability, in reference to constructors, are synonymous and interchangeable.
2 Note that in the MDDSP it is not required that each vertex of the input graph forms part of a dominating set from a solution.

of the available heuristics which is then used in a probabilistic way. In
order to bias the choice toward the most promising constructors for the
tackled problem instance, choice probabilities1 are associated with the
constructors. We investigate the use of an adaptive mechanism based on
reinforcement learning for the online adaptation of these weights. After
the completion of every CMSA iteration, the algorithm assigns rewards
to the constructors according to their relative contributions to the
solution found by the exact solver at the given iteration. Moreover, the
weights are updated according to these rewards. The learning process is
guided by a parameter 𝛼, called learning rate, that determines the pace
of learning from new samples. We also employ a minimum threshold
𝜏 to avoid the weight of a given constructor becoming too small,
which would basically impede any possibility for it to be chosen again.
Note that weight-adaptive metaheuristics such as the one proposed in
this work are quite common in the literature. Examples range from
methods based on local search – such as Alicastro et al. (2021), Canca
et al. (2017), Queiroz dos Santos et al. (2014) – to population-based
techniques, such as Nagra et al. (2019), Wang et al. (2015).
vailable online 7 October 2023
305-0548/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2023.106450
Received 30 January 2023; Received in revised form 24 August 2023; Accepted 5 O
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ctober 2023

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:robertomaria.rosati@uniud.it
mailto:salim.bouamama@univ-setif.dz
mailto:christian.blum@iiia.csic.es
https://doi.org/10.1016/j.cor.2023.106450
https://doi.org/10.1016/j.cor.2023.106450
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106450&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.

u
r

t
i
(
d

a
a
𝛿
o
s
t
1
2
a
e
b
c
e
t
g

g
t
t
h
a
e
i
a
s
w
t
s
t

3

a
v

J
p

a

The proposed technique is applied to the Maximum Disjoint Dom-
inating Sets Problem (MDDSP), a notoriously difficult optimisation
problem that deals with finding the largest number of disjoint dom-
inating sets in a given graph. Its applications are found in wireless
sensor networks (WSN), studied for their applications in environmental
monitoring, security surveillance, healthcare, and emergency opera-
tions (Akyildiz et al., 2002), as well as in heterogeneous multi-agent
systems (Mesbahi and Egerstedt, 2010). Very much related to the
MDDSP is the so-called Domatic Partition Problem (DPP), which re-
quires – in addition to what is necessary in the MDDSP – that the
disjoint dominating sets form a partition of the graph, that is, all
vertices are actually assigned to exactly one set.2 Nevertheless, note
that the transformation of a solution of the MDDSP into one of the DPP
is trivial because it suffices to add to any dominating set in the solution
those vertices that were not chosen to be part of the dominating sets in
the solution. Vice versa, a solution of the DPP is always a solution to
the MDDSP. Another related problem is the Domatic Number Problem
(DNP), a search problem aimed at discovering the domatic number of
a graph, the maximum number of disjoint dominating sets that can be
found in the graph, without the need to actually determine these sets.

In a previous work (Rosati et al., 2023a), we proposed a standard
CMSA algorithm for MDDSP that outperformed the approaches from
the literature. In the present work, we compare the Multi-Constructor
CMSA with the standard CMSA and the other methods from the liter-
ature. A natural choice concerning the constructors is to select a set
of randomised greedy heuristics that can be used to quickly generate
solutions. In the case of the MDDSP, we produced stochastic variants of
six greedy heuristics that are found in the literature. Even though some
of them perform much better than others as stand-alone deterministic
algorithms, beforehand it is not possible to judge their usefulness for
CMSA. For this reason, we consider all of them as valid candidates
for the Multi-Constructor CMSA. For the experiments, we generate a
new set of graphs, belonging to three different models: random graphs,
Watts–Strogatz networks, and Barabási–Albert networks. The instances
are generated from an extended instance space, including graphs with
up to 1000 vertices on a wider range of densities. The previously
available data sets only contained random graphs with up to 250
vertices, and very sparse or very dense graphs were not considered. For
the generation of the new instances, we propose a procedure based on
a Hammersley point set (Hammersley and Handscomb, 1964), aimed at
guaranteeing that all regions of the instance space are covered evenly.

In particular, we compare two versions of the Multi-Constructor
CMSA against the standard CMSA and the heuristic approaches from
the literature. Hereby, the first variant of the Multi-Constructor CMSA
makes use of all six greedy heuristics from the literature, while the
second variant only uses the two best greedy heuristics. Experimental
results confirm that all versions of CMSA significantly improve over
the previous state of the art. Finally, we remark that we outline also
an Integer Linear Programming (ILP) model for the MDDSP and we
implement it in CPLEX. We present three variants of the model, two of
which incorporate symmetry breaking constraints. They produce good
results on small and sparse graphs, where they can find many optimal
solutions within the time limit of 1 h, but they do not yield comparable
performance with the other methods on larger or denser graphs.

The remainder of this paper is organised as follows. Section 2
resumes the current advances in research on the MDDSP. In Section 3,
we describe the problem and outline the ILP model. Section 4 presents
the currently existing heuristics for the MDDSP, which are used in our
work as constructors. In Section 5, we go into the algorithmic details
of the Multi-Constructor CMSA and the strategy for the adaptive online
learning of constructor weights. Section 6 contains the analysis and the
discussion of the experimental results. Finally, the conclusions and a
2

discussion on future work are given in Section 7. d
2. Related work

Interest in the MDDSP and related problems dates back to the 70 s.
The first mention of the Domatic Number Problem, which deals with
deriving the domatic number of a given graph without the need for de-
riving the corresponding disjoint dominating sets, is found in the work
of Cockayne and Hedetniemi (1975). Many other studies are found in
the literature on the DNP. Most of them are primarily interested in
specific families of graphs. Although not many exact approaches can
be found in the literature for MDDSP-like problems, mainly due to
their complexity, some exact approaches have been designed for finding
optimal solutions to the DNP. In particular, the first exact deterministic
exponential-time algorithm for the 3-DNP was designed by Riege and
Rothe (2005). The algorithm has a running time of (2.9416𝑛) and
ses polynomial space, which is in contrast to a naive approach that
uns in (3𝑛) of time. This time complexity was later improved to
(2.695𝑛) by Riege et al. (2007). Combining the two main techniques

ypically used for the design of exact exponential-time algorithms –
nclusion & exclusion, respectively measure & conquer – Van-Rooij
2010) provided a fast polynomial-space algorithm that computes the
omatic number in (2.7139𝑛) time.

The Domatic Partition Problem was first introduced by Cockayne
nd Hedetniemi (1977), two years after the DNP. In the same paper, the
uthors showed that the problem has an upper bound of 𝛿(𝐺)+1, where
(𝐺) is the minimum degree of all vertices in 𝐺. In other words, an
ptimal solution to the DPP can never have more disjoint dominating
ets than 𝛿(𝐺) + 1. Furthermore, the problem was shown to belong to
he class of NP-hard problems on general graphs (Garey and Johnson,
979). In fact, it remains NP-hard for co-bipartite graphs (Poon et al.,
012). Moreover, unless P=NP, the MDDSP has no polynomial-time 𝛼-
pproximation algorithm for any constant 𝛼 smaller than 1.5 (Cardei
t al., 2002). Existing polynomial-time approximation schemes can
e found in Feige et al. (2002). In addition to the above, the NP-
ompleteness of the 3-domatic partition problem was proofed for gen-
ral graphs by Cardei et al. (2002) and still holds when restricted
o planar bipartite graphs (Poon et al., 2012) and planar unit disk
raphs (Nguyen and Huynh, 2007).

A natural way to produce a feasible solution to the MDDSP is to
reedily construct dominating sets of preferably small cardinality with
he ultimate goal to maximise the number of disjoint dominating sets
hat can be generated.3 In this context, many greedy heuristic strategies
ave been proposed in the literature and experimentally tested, such
s the ones given in Balbal et al. (2021), Cardei et al. (2002), Islam
t al. (2009), Nguyen and Huynh (2007). They are discussed in detail
n Section 4. Additionally, Landete and Sainz-Pardo (2022) presented
n exact decomposition algorithm for finding a domatic partition on
eparable graphs, that is, graphs with at least one node (cut-vertex)
hose removal produces two or more connected components. Finally,

he only metaheuristic proposed so far in the literature is the CMSA pre-
ented in Rosati et al. (2023a). This approach was able to outperform
he approaches for the MDDSP existing to date.

. Problem description

Let 𝐺 = (𝑉 ,𝐸) be an undirected graph where 𝑉 is a set of vertices
nd 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges. A dominating set in 𝐺 is a set of
ertices ⊆ 𝑉 such that every vertex 𝑣 ∈ 𝑉 ⧵ is adjacent to at

least one vertex 𝑣′ ∈ . The decision problem of determining whether
a dominating set of size || ≤ 𝐾 exists is NP-complete (Garey and
ohnson, 1979), whereas the related minimum dominating set (MDS)
roblem, which requires finding the smallest dominating set in a given

3 Remember that any solution to the MDDSP can be trivially transformed to
solution to the DPP by adding those vertices that do not belong to any of the
isjoint dominating sets to one of the dominating sets of the MDDSP-solution.

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.

m
o

m
a
(
d
c

3

𝑠
t

C
i
𝑠

3

d
i
t
f

𝑥

𝑥

t
b
w

3

1
𝑣
{
{
d

graph, is NP-hard (Irving, 1991). In this work, we are interested in the
maximum disjoint dominating sets problem (MDDSP), in which a valid
solution = {1,… ,𝑘} consists of a collection of disjoint dominating
sets 𝑖 (𝑖 = 1,… , 𝑘) of 𝐺, where disjoint means that 𝑖 ∩ 𝑗 = ∅ for
all 𝑖 ≠ 𝑗 ∈ {1,… , 𝑘}. The objective function value 𝑓 () of a valid
solution is the number of disjoint dominating sets in , that is,
𝑓 () ∶= ||. The goal is to find a valid solution ∗ that maximises
𝑓 . This description applies to the DPP as well, with the supplementary
condition that ⋃∈ = 𝑉 .

In addition to its research significance from a theoretical and com-
putational point of view, solving the MDDSP is relevant from a real-
world application perspective. Its utility is found, for example, in
heterogeneous multi-agent systems (Mesbahi and Egerstedt, 2010) and
in wireless sensor networks (WSN). In particular, in WSNs disjoint
dominating sets find applications in mechanisms for sleep-wake cy-
cling (Cardei and Du, 2005; Cardei et al., 2002). The aim of such
a mechanism is to prolong the lifetime of a battery-powered sensor
network. In fact, the expected lifetime of a sensor network equipped
with a disjoint-sets-based sleep-wake cycling mechanism is directly
proportional to the number of disjoint dominating sets that can be
found in the graph.

Note that finding at least one dominating set in a graph is always
possible and trivial, given that the node set 𝑉 of the graph is a
dominating set of 𝐺 = (𝑉 ,𝐸). However, note that a solution = {𝑉 },
which has an objective function value of 𝑓 () = || = 1, is the worst
solution that can be found, even though it exists in each input graph.
Furthermore, every graph without isolated vertices contains at least
two disjoint dominating sets (Ore, 1962). In general, the number of
dominating sets on graphs is a number between 1 and 𝛿(𝐺) + 1, where
𝛿(𝐺) is the minimum degree of all vertices in graph 𝐺. Indeed, 𝛿(𝐺) + 1
is a proven upper bound for the number of disjoint dominating sets
in 𝐺 (Cockayne and Hedetniemi, 1977). It is actually rather easy to
verify this upper bound. Given a solution = {1,… ,𝑘} for the
input graph 𝐺, any vertex 𝑣 ∈ 𝑉 must be dominated by a different
vertex in all 𝑖 ∈ . However, a vertex 𝑣 ∈ 𝑉 with degree 𝑑𝑒𝑔(𝑣)
can only be dominated by itself or by any of its neighbours, that is, by
at most 𝑑𝑒𝑔(𝑣) + 1 different vertices. Therefore, there will be no more
than 𝛿(𝐺) + 1 disjoint dominating sets in 𝐺. Nevertheless, this value,
which is very easy to calculate and definitely useful when solving the
problem in practice, does not imply that an actual solution with 𝛿(𝐺)+1
disjoint dominating sets exists. That is to say, a solution with 𝛿(𝐺) + 1
dominating sets is surely optimal, but there is no guarantee that the
given input graph contains a solution of value 𝛿(𝐺) + 1.

Finally, we introduce some general concepts on undirected graphs
that are required later in this paper. The open neighbourhood of vertex
𝑣 is 𝑁(𝑣) ∶= {𝑢 ∈ 𝑉 ∣ (𝑢, 𝑣) ∈ 𝐸}, which represents the set of
vertices adjacent to 𝑣 in 𝐺. The closed neighbourhood of vertex 𝑣 is
𝑁[𝑣] ∶= 𝑁(𝑣) ∪ {𝑣}, that is, 𝑁[𝑣] includes all vertices adjacent to 𝑣 and
𝑣 itself. The number of neighbours of 𝑣 corresponds to its degree, which
is denoted by 𝑑𝑒𝑔(𝑣). In other words, 𝑑𝑒𝑔(𝑣) = |𝑁(𝑣)|.

3.1. ILP formulation

A natural ILP model for the MDDSP on graph 𝐺 = (𝑉 ,𝐸) is based
on binary variables 𝑥𝑣𝑠 ∈ {0, 1} for every vertex 𝑣 ∈ 𝑉 and every
theoretically possible dominating set 𝑠 = 1,… , 𝛿(𝐺)+1. If 𝑣 is in the 𝑠th
dominating set, then 𝑥𝑣𝑠 = 1, zero otherwise. A second binary variable
𝑦𝑠 ∈ {0, 1} tells whether the 𝑠th dominating set is chosen to be part
of the solution. Given these two sets of variables, the ILP model for
MDDSP reads as follows.

max
𝛿(𝐺)+1
∑

𝑠=1
𝑦𝑠 (1a)

𝛿(𝐺)+1
∑

𝑥𝑣𝑠 ≤ 1 ∀𝑣 ∈ 𝑉 (1b)
3

𝑠=1
d

∑

𝑢∈𝑁(𝑣)
𝑥𝑢𝑠 ≥ 𝑦𝑠 − 𝑥𝑣𝑠 ∀𝑣 ∈ 𝑉 ,∀𝑠 ∈ {1,… , 𝛿(𝐺) + 1} (1c)

𝑦𝑠 ≥ 𝑥𝑣𝑠 ∀𝑣 ∈ 𝑉 ,∀𝑠 ∈ {1,… , 𝛿(𝐺) + 1} (1d)

𝑥𝑣𝑠 ∈ {0, 1}, 𝑦𝑠 ∈ {0, 1} ∀𝑣 ∈ 𝑉 ,∀𝑠 ∈ {1,… , 𝛿(𝐺) + 1} (1e)

The objective (1a) maximises the number of dominating sets in the
solution. Constraints (1b) ensure that the dominating sets are disjoint,
requiring each vertex 𝑣 to be assigned to at most one dominating set.
Constraints (1c) ensure that the sets that are chosen in the solution
are dominating sets. To evaluate this constraint, we make use of the
concept of open neighbourhood, introduced in Section 3. Constraints
(1d) ensure that nodes are only assigned to active dominating sets.
Finally, Constraints (1e) define the binary nature of the variables.

This model, however, does not include any symmetry breaking
constraints. Note that symmetric – and, therefore, redundant – solutions
are obtained simply by permuting the sets of a solution. In that way,
a solution is obtained with exactly the same sets, just that the set
indices/names are different. In particular, given a solution with ||
sets, symmetric solutions are obtained by all possible ||-permutations
of the 𝛿(𝐺) + 1 indices, that is, every solution can be expressed in

(𝛿(𝐺)+1)!
(𝛿(𝐺)+1−||)! ways. Adding symmetry breaking constraints to the ILP

odel reduces significantly the size of the search space, at the expense
f a higher number of constraints that lead to an increased complexity.

In the following, we present two additional ILP models that imple-
ent two different symmetry breaking strategies. Both are obtained by

daptations of the constraints proposed by Méndez-Díaz and Zabala
2008) for graph colouring. For sake of clarity, we name the model
escribed above as Ilp, and the two models with symmetry breaking
onstraints as Ilp-sm1 and Ilp-sm2.

.1.1. Model 1 with symmetry breaking constraints
Model Ilp-sm1 imposes that the number of vertices assigned to the

th set must be greater or equal than the number of vertices in the 𝑠+1-
h set. This is done by adding to Model Ilp the following inequalities:

∑

𝑣∈𝑉
𝑥𝑣,𝑠 ≥

∑

𝑣∈𝑉
𝑥𝑣,𝑠+1 ∀𝑠 = 1,… , 𝛿(𝐺) (2)

onstraints (2) lead to an ordering of the sets by decreasing size, that
s, set 𝑠 must represent a set with a higher or equal cardinality than the
th set.

.1.2. Model 2 with symmetry breaking constraints
Méndez-Díaz and Zabala point out in their work that Model Ilp-sm1

oes not prevent symmetries that originate from permutations of the
ndices within sets of the same size, a scenario that is likely to arise in
he MDDSP. This is solved in Model Ilp-sm2 by adding to Model Ilp the
ollowing constraints:

𝑣𝑖 ,𝑠 = 0 ∀𝑠 ≥ 𝑖 + 1 (3a)

𝑣𝑖 ,𝑠 ≤
𝑖−1
∑

𝑘=𝑠−1
𝑥𝑣𝑘 ,𝑠−1 ∀𝑖 ∈ 𝑉 ⧵ {1},∀2 ≤ 𝑠 ≤ 𝑖 − 1 (3b)

Model Ilp-sm2 assigns to sets of vertices a set index that corresponds
o the smallest index of all vertices in the set. This model, therefore, also
reaks the symmetries that originate from permutations of the indices
ithin sets of the same size.

.2. Graphical problem illustration

Consider the undirected graph 𝐺 = (𝑉 ,𝐸), with 11 vertices (|𝑉 | =
1) and 17 edges (|𝐸| = 17), displayed in Fig. 1. Vertices are labelled
1,… , 𝑣11, while edges are unlabelled. An optimal solution is =
1,2,3}, where 1 = {𝑣1, 𝑣4, 𝑣6, 𝑣8}, 2 = {𝑣2, 𝑣5, 𝑣10}, and 3 =
𝑣3, 𝑣7, 𝑣9}. The three sets are represented in the figure with three
ifferent background colours. It is easy to verify that all these sets are

ominating sets. We show it for 1:

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.

s

p

Fig. 1. A graph with 11 vertices and 17 edges. The upper bound for the domatic number is 𝛿(𝐺) + 1 = 3. Moreover, there exists an optimal solution with 3 disjoint dominating
ets (as indicated by the vertices with a background colour different to white).
Fig. 2. A graph with 11 vertices and 16 edges. The upper bound for the domatic number is 𝛿(𝐺) + 1 = 3, but an optimal solution has only 2 disjoint dominating sets. One of the
ossible optimal solutions is indicated by blue and purple vertices. Uncoloured vertices do not belong to any dominating set of the displayed solution.
1. 𝑣1 dominates the adjacent vertices 𝑣2 and 𝑣3
2. 𝑣4 dominates 𝑣2, 𝑣3 and 𝑣5
3. 𝑣6 dominates 𝑣5, 𝑣10 and 𝑣9
4. 𝑣8 dominates 𝑣7, 𝑣10 and 𝑣11

The same holds for 2 and 3. Furthermore the three sets are
disjoint because 1 ∩ 2 = ∅, 1 ∩ 3 = ∅, and 2 ∩ 3 = ∅. Hence,
 =

{

1,2,3
}

is a solution to the MDDSP in graph 𝐺, with objective
function value 𝑓 () = 3. If we add 𝑣11 to any of the dominating sets,
becomes a partition of 𝑉 and, so, a valid and optimal solution also for
the DPP.

Finally, we show through an example that an optimal solution with
objective value 𝛿(𝐺) + 1, which we discussed above, does not exist in
all graphs. Fig. 2 represents the same graph of Fig. 1, without the edge
that connects vertices 𝑣2 and 𝑣3. In both examples, 𝛿(𝐺) + 1 = 2+1 = 3.
We have seen above that a solution with value 𝑓 () = 3 exists for
the graph in Fig. 1. However, a solution ′ = {4,5}, where 4 =
{𝑣1, 𝑣5, 𝑣8, 𝑣9}, and 5 = {𝑣3, 𝑣4, 𝑣10}, with a value of 𝑓 (′) = 2, is
already an optimal solution for the graph in Fig. 2, and there are no
solutions with three dominating sets. Solution ′ is represented in Fig. 2
by means of different background colours for the vertices.

4. Greedy heuristics for the MDDSP

As mentioned in Section 2, a number of greedy heuristics have
been presented in the related literature to solve the MDDSP. A greedy
paradigm is a constructive approach that builds a solution from scratch.
It generally starts with an empty solution and repeatedly adds one
(or more) solution components to the current partial solution until a
complete, valid solution is obtained. At each construction step, the next
solution component(s) to be inserted in the incumbent partial solution
are chosen according to a problem-dependent greedy function. To our
best knowledge, the first greedy heuristic for the MDDSP was provided
by Cardei et al. (2002). It is a vertex-colouring heuristic (henceforth
called Colour-Dds) working in two phases and with a time complexity of
𝑂(|𝑉 |

3). In the first phase, all vertices are coloured using the sequential
Welsh-Powell colouring algorithm (Welsh and Powell, 1967) to gener-
4

ate all possible independent dominating sets. Each independent set is
formed by vertices with the same colour, where colours are indicated
by numbers. Remember that an independent set in a graph is a subset of
vertices such that no two vertices in it are adjacent. In the second phase,
for each independent set in ascending order of the colour identifiers, the
algorithm checks whether it represents a dominating set or not. More
specifically, if (1) the current independent set is not a dominating set
and (2) there is no possibility to achieve that by adding some vertices
from other independent sets with colour greater than the current one,
then the termination condition of the algorithm is met. A pseudo-code
for the Colour-Dds heuristic is shown in Algorithm 1.

Nguyen and Huynh (2007) also proposed three other deterministic
greedy heuristics, namely Progressive Maximum Degree Disjoint Domi-
nating Sets (P-Max), Progressive Minimum Degree Disjoint Dominating
Sets (P-Min) and Random Lowest ID Disjoint Dominating Sets (R-Lid).
These heuristics are two-step processes and adopt a similar heuristic
mechanism in which a collection of disjoint dominating sets =
{1,2,… ,

||} is formed by successively constructing 𝑘 starting
from an empty set for all 𝑘 = 1,… , ||. The construction of a dominat-
ing set 𝑘 at step 𝑘 for each of these greedy heuristics is done as follows.
First, 𝑘 is initialised to the empty set. Then, at each construction step,
vertices of the input graph 𝐺(𝑉 ,𝐸) are classified into three distinct sets
with respect to ⋃𝑘

𝑖=1 𝑖:

(i) BLACK vertices: vertices contained in ⋃𝑘
𝑖=1 𝑖, that is, vertices

inserted in one of the already generated dominating sets (includ-
ing the current partial dominating set).

(ii) GREY vertices: vertices that are not BLACK but adjacent to some
BLACK vertex.

(iii) WHITE vertices: all vertices from 𝑉 that are neither BLACK nor
GREY.

Given this classification, only WHITE vertices can be added to the
current partial dominating set. In order to be able to make a choice,
each WHITE vertex 𝑣 is first evaluated by the following greedy function:

𝑠𝑐𝑜𝑟𝑒𝑃 (𝑣) ∶=
|

|

|

|

{

𝑢 ∈ 𝑁(𝑣) ∣ 𝑢 is a 𝚆𝙷𝙸𝚃𝙴 vertex with respect to
𝑘
⋃

𝑖

}

|

|

|

|

(4)

|

|

𝑖=1 |

|

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.

o

M
o
l
t
t
i
f
a
o
m

t

F
M
(
M
a
e

i
i
o
o
a
a

Algorithm 1 Colour-Dds greedy heuristic for the MDDSP
input: a simple undirected graph 𝐺 = (𝑉 ,𝐸)
utput: a family of disjoint dominating sets = {1,2,⋯ ,𝑘}
1: Let {𝑣1, 𝑣2,⋯ , 𝑣𝑛} be the vertices of 𝑉 arranged in descending order

of their degrees.
2: colour[𝑣1] ← 1
3: for 𝑖 = 2 to 𝑛 do
4: Colour 𝑣𝑖 with the smallest possible colour (greater or equal to

1) not appearing in any neighbour 𝑣𝑗 of 𝑣𝑖 with 𝑗 < 𝑖.
5: end for
6: 𝑛colours ← max{colour[𝑣] ∣ 𝑣 ∈ 𝑉 }
7: 1 ← {𝑣 ∈ 𝑉 ∣ colour[𝑣] = 1}
8: 𝑘 ← 1
9: while (𝑘 < min(𝛿(𝐺) + 1, 𝑛colours)) do

10: 𝑘+1 ← {𝑣 ∈ 𝑉 ∣ colour[𝑣] = 𝑘 + 1}
11: for each vertex 𝑣 ∈ 𝑉 s.t. colour[𝑣] < 𝑘 + 1 do
12: if 𝑣 is not dominated by a vertex with colour 𝑘 + 1 then
13: if 𝑣 has a neighbour 𝑢 with largest colour greater than 𝑘+1

then
14: colour[𝑢] ← 𝑘 + 1
15: 𝑘+1 ← 𝑘+1 ∪ {𝑢}
16: else
17: go to line 23 {Stop the algorithm}
18: end if
19: end if
20: end for
21: 𝑘 ← 𝑘 + 1
22: end while
23: return = {1,2,⋯ ,𝑘}.

The three greedy heuristics from Nguyen and Huynh differ then in how
a WHITE vertex is chosen at each construction step. In the case of P-
Min and P-Max the next white vertex to be placed in 𝑘 is the one
with the maximum, respectively minimum, value of the greedy function
𝑠𝑐𝑜𝑟𝑒𝑃 (). R-Lid, on the other side, does not make use of this greedy
function. It simply prefers the WHITE vertex with the lowest index.
When no further WHITE vertex can be added to 𝑘, 𝑘 may still not
be a valid dominating set. Therefore, uncovered vertices are processed
one after the other. In particular, such a vertex becomes covered if it
has at least one GREY neighbour that can be added to 𝑘. If it is not
possible to cover all vertices, then the algorithm termination criterion
is reached prior to the construction of the next dominating set 𝑘+1.
The pseudo-code of P-Max is presented in Algorithm 2. Note that P-Min
is obtained from Algorithm 2 by replacing line 14 with the following
instruction:

𝑣∗ ← argmin{𝑠𝑐𝑜𝑟𝑒𝑃 (𝑣) ∣ 𝑣 ∈ 𝑉 } (5)

Note that we include the pseudo-codes of both Colour-Dds and P-
ax in order to improve the overall quality and comprehensibility of

ur paper. We provide clarifications and additional details that were
acking in the original algorithm descriptions. This is important because
he original textual descriptions of the algorithms were partially open
o interpretation, particularly for readers without a strong background
n graph colouring algorithms and domination. This causes some dif-
iculty for such readers to correctly understand and implement the
lgorithms. Our intention is to enhance the clarity and accessibility
f the algorithms by presenting them in a more easily understandable
anner.

Two years later, an improved version of P-Max was introduced
by Islam et al. (2009). This algorithm will henceforth be denoted as
Iam, which is an acronym composed of the initials of the authors’
surnames. In contrast to P-Max, Iam is a one-step construction process of
ime complexity 𝑂(𝑛3) in which the set of feasible solution components
5

n

Algorithm 2 Greedy heuristic P-Max for the MDDSP
input: a simple, undirected graph 𝐺 = (𝑉 ,𝐸)
output: a family of disjoint dominating sets = {1,2,⋯ ,𝑘−1}
1: colour[𝑣] ← WHITE for all 𝑣 ∈ 𝑉
2: 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔_𝑠𝑒𝑡_𝑓𝑙𝑎𝑔 ← true; 𝑘 ← 1
3: while (𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔_𝑠𝑒𝑡_𝑓𝑙𝑎𝑔 = true) do
4: for each vertex 𝑣 ∈ 𝑉 do
5: covered[𝑣] ← false
6: if (colour[𝑣] = GREY) then colour[𝑣] ← WHITE end if
7: end for
8: 𝑘 ← ∅
9: 𝑣𝑒𝑟𝑡𝑒𝑥_𝑐𝑜𝑣𝑒𝑟_𝑓𝑙𝑎𝑔 ← true

10: while (𝑣𝑒𝑟𝑡𝑒𝑥_𝑐𝑜𝑣𝑒𝑟_𝑓𝑙𝑎𝑔 = true) do
11: if (∄ 𝑣 ∈ 𝑉 s.t. colour[𝑣] = WHITE) then
12: 𝑣𝑒𝑟𝑡𝑒𝑥_𝑐𝑜𝑣𝑒𝑟_𝑓𝑙𝑎𝑔 ← false
13: else
14: 𝑣∗ ← argmax{score𝑃 (𝑣) ∣ 𝑣 ∈ 𝑉 }
15: 𝑘 ← 𝑘 ∪ {𝑣∗}
16: for each neighbour 𝑢 of 𝑣∗ do
17: if (colour[𝑢] = WHITE) then colour[𝑢] ← GREY
18: covered[𝑢] ← true
19: end for
20: colour[𝑣∗] ← BLACK; covered[𝑣∗] ← true
21: end if
22: end while
23: for (each vertex 𝑣 ∈

⋃𝑘−1
𝑖=1 𝑖 s.t. covered[𝑣] = false) do

24: if (𝑣 has a grey neighbour 𝑢 s.t. 𝑢 ∉
⋃𝑘

𝑖=1 𝑖) then
25: 𝑘 ← 𝑘 ∪ {𝑢}
26: for (each neighbour 𝑤 of 𝑢) do covered[𝑤] ← true end for
27: colour[𝑢] ← BLACK
28: else
29: 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔_𝑠𝑒𝑡_𝑓𝑙𝑎𝑔 ← false
30: end if
31: end for
32: if (𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔_𝑠𝑒𝑡_𝑓𝑙𝑎𝑔) then 𝑘 ← 𝑘 + 1 end if
33: end while
34: return = {1,2,⋯ ,𝑘−1}.

includes all vertices of 𝑉 that are not part of the set of BLACK vertices
as defined previously for the case of P-Max. The employed greedy
function is now defined as in Eq. (6) where ties are broken by choosing
the vertex with the minimum number of BLACK neighbours. If the tie is
still unresolved, the vertex with the lowest index is selected, similarly
to what is done in R-Lid.4

𝑠𝑐𝑜𝑟𝑒𝑃 (𝑣) ∶= |{𝑢 ∈ 𝑁[𝑣] ∣ 𝑢 is a 𝚆𝙷𝙸𝚃𝙴 vertex with respect to 𝑘}| (6)

inally, the currently best greedy algorithm (called Mdds-Gh) for the
DDSP was more recently presented by ourselves in Balbal et al.

2021). It was mainly developed for tackling a weighted variant of the
DDSP. Moreover, it was used as one of the principal components of
metaheuristic proposed for the same problem variant in Bouamama

t al. (2022).
Mdds-Gh can be easily adapted to tackle the MDDSP by incorporat-

ng Iam’s greedy score function depicted in Eq. (6). This adaptation also
mproves the handling of algorithm termination criteria and enhances
verall performance. It is worth noting that Iam faces an issue with
ne of its stopping conditions that can be met even when there is
possibility of forming additional remaining dominating sets. This

spect has been addressed and solved in Mdds-Gh by using just one

4 In reference to Eq. (6), remember that 𝑁[𝑣] represents the closed
eighbourhood of 𝑣 (that is, the set of neighbours of 𝑣 including itself).

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.

s
o
i
d

o

d
t
t

T
r

stopping condition. Unlike Iam, the algorithm checks, before beginning
the current construction process, if there is at least one vertex such
that all its neighbours from the closed neighbourhood are BLACK (part
of previously constructed dominating sets). If this condition is met, no
further dominating set can be found, and the algorithm terminates.

Note that the first five existing greedy heuristics were described here
in detail. In contrast, Mdds-Gh is comprehensively described in Balbal
et al. (2021). Therefore, we decided against repeating its description in
this section.

5. Multi-constructor CMSA for the MDDSP

In this work, we extend the preliminary CMSA approach for the
MDDSP presented in Rosati et al. (2023a) by introducing the possibility
to use multiple constructors. In the construction step of the Multi-
Constructor CMSA, every solution is generated by a constructor chosen
at random from a pre-defined portfolio. Hereby, each constructor has
a weight value assigned, and the probability to be chosen depends on
these weight values. In particular, we consider all six greedy heuristics
from Section 4 as constructors for our CMSA approach. In order to
produce (possibly) different solutions at each call to a constructor,
they are used in a probabilistic way, which work as follows: at every
greedy step, the classical deterministic greedy function is applied with
a probability equal to the value of the parameter 0 ≤ 𝑑rate < 1.5
Otherwise, a candidate list containing the first 𝑐list candidates, sorted
by value of their greedy function from best to worst, is built, and a
solution component is drawn uniformly at random from the list.

Our choice of CMSA for tackling the MDDSP is motivated by the
fact that this metaheuristic has already shown a high potential for re-
lated optimisation problems in graphs. Examples include the minimum
capacitated dominating set problem (Pinacho-Davidson et al., 2019)
and the maximum happy vertices problem (Lewis et al., 2019). Further-
more, CMSA has been shown to perform well for real-world problems
such as the prioritised pairwise test data generation problem (Ferrer
et al., 2021) or the bus driver scheduling problem with complex break
constraints (Rosati et al., 2023b).

5.1. Algorithmic details

The ILP model for the MDDSP from Section 3.1 uses certain con-
straints to ensure that the generated sets are both disjoint and dominat-
ing. These constraints are rather challenging, even for high-
performance ILP solvers. Therefore, for our CMSA, we employ another
paradigm based on the separation between (1) the generation of a large
number of feasible dominating sets and (2) the subsequent selection
of a collection of those sets such that the sets in the collection are
vertex-disjoint. Theoretically, if we had the means to enumerate the full
collection of all possible dominating sets of input graph 𝐺 = (𝑉 ,𝐸),
an optimal solution to the MDDSP could be obtained by solving the
following set packing ILP formulation:

max
∑

∈
𝑥 (7a)

s.t.
∑

{∈∣𝑣∈}
𝑥 ≤ 1 ∀ 𝑣 ∈ 𝑉 (7b)

𝑥 ∈ {0, 1} ∀ ∈ (7c)

This ILP model is based on a binary variable 𝑥 for each dominating
et ∈ , whereby a value of 𝑥 = 1 means that is chosen to be part
f the solution. Constraints (7b) ensure that each vertex of 𝐺 is present
n at most one of the chosen dominating sets. In this way, the chosen
ominating sets are pairwise disjoint.

5 𝑑 stands for ‘‘determinism rate’’.
6

rate
Algorithm 3 Multi-Constructor CMSA for the MDDSP
input: a graph 𝐺(𝑉 ,𝐸), values for 𝑛sols, 𝑑rate, 𝑐list , 𝑎𝑔𝑒limit , 𝑡exc
utput: a family of disjoint dominating sets bsf = {1,2,⋯ ,𝑘}
1: 𝑡 ← 1
2: (𝑝1,𝑡,… , 𝑝𝐾,𝑡) ←

(

1
𝐾 ,… , 1

𝐾

)

3: bsf ← ∅; ′ ← ∅
4: while 𝑓 (bsf) < 𝛿(𝐺) + 1 and CPU time limit not reached do
5: ̂ ← ∅
6: for 𝑖 ← 1,… , 𝑛sols

|𝑉 |

do
7: ℎ ← ChooseConstructor(,(𝑝1,𝑡,… , 𝑝𝐾,𝑡))
8: cur ← Construct(𝐺,ℎ); ̂ ← ̂ ∪ cur
9: if 𝑓 lex(cur) > 𝑓 lex(bsf) then bsf ← cur end if

10: end for
11: for all ∈ ̂, ∉ ′ do
12: 𝑎𝑔𝑒[] ← 0
13: ′ ← ′ ∪
14: end for
15: exc ← ApplyExactSolver(′, 𝑡exc)
16: while 𝑟(exc) = 1 do
17: exc ← ApplyRepairProcedure(exc)
18: end while
19: if 𝑓 lex(exc) > 𝑓 lex(bsf) then bsf ← exc end if
20: (𝑝1,𝑡+1,… , 𝑝𝐾,𝑡+1) ← ReinforceProb((𝑝1,𝑡,… , 𝑝𝐾,𝑡),′,exc,𝛼,𝜏)
21: Adapt(′, exc, 𝑎𝑔𝑒limit)
22: 𝑡 ← 𝑡 + 1
23: end while
24: output: bsf

However, in practice, there is no efficient way to enumerate all
dominating sets of a reasonably large graph. And even if there was one,
the size of would be too large for the above ILP model to be solvable
by nowadays’ ILP solvers. On the contrary, we can efficiently generate
a subset (or sub-instance) ′ ⊂ , containing a subset of all the possible
ominating sets of 𝐺. The resulting ILP model where ′ replaces is
ractable for a Mixed Integer Programming (MIP) solver, provided that
he size of ′ is kept reasonably small.

This idea constitutes the core of our CMSA approach for the MDDSP.
he full CMSA loop, represented also graphically in Fig. 3, works
oughly as follows:

1. CONSTRUCT: build heuristically a certain number of dominating
sets.

2. MERGE: merge the dominating sets from these solutions with the
sub-instance ′.

3. SOLVE: solve the set packing based ILP model on the sub-
instance ′.

4. ADAPT: delete from ′ those dominating sets that do not appear
in good solutions.

Algorithm 3 provides the full pseudo-code of our Multi-Constructor
CMSA algorithm for the MDDSP. First of all, the weights (𝑝1,𝑡,… , 𝑝𝐾,𝑡)
of the 𝐾 constructors are initialised to the same value 1∕𝐾, to give them
all the same probability of being chosen at the first iteration. Moreover,
the sub-instance ′ and the best solution found so far bsf are initialised
to empty sets.

The main loop of CMSA starts at line 4, and it is terminated when ei-
ther a total time limit is reached, or in case a best solution bsf such that
𝑓 (bsf) = 𝛿(𝐺) + 1 is found. At each CMSA iteration, the CONSTRUCT
and MERGE steps are repeated until 𝑛sols∕|𝑉 | solutions are generated;
see lines 6–14. In the construction procedure, the multi-constructor
plays a crucial role. First, at line 7 one of the available constructors is
chosen by means of a biased random selection. Hereby, constructors are
weighted according to their corresponding probabilities. Then, a new

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.
Fig. 3. General CMSA flow.
v
c
s
a
c
f
p

solution is generated with the chosen constructor (line 8). Naturally,
every solution cur is compared with the incumbent bsf , using the lex-
icographic objective function presented in Section 5.3, as it sometimes
may happen that a constructor is able to provide a new best solution.
Then, the corresponding MERGE step is performed in lines 11–14. All
the new dominating sets found in the 𝑛sols∕|𝑉 | constructed solutions are
added to ′, and their 𝑎𝑔𝑒[] is initialised to zero.

Lines 15—20 contain the SOLVE phase. First of all, at line 15,
CPLEX solves the set packing based ILP model corresponding to subin-
stance ′. The time limit is set to 𝑡exc CPU seconds, or to the remaining
time budget if this is less than 𝑡exc CPU seconds. The output exc is the
best solution returned by CPLEX within the given CPU time. In our
experiments, we observed that the exact solver is often able to prove the
optimality of exc for ′. In other words, often CPLEX does not spend
all the allotted computation time. A residual function 𝑟(exc) is checked
at lines 16–18 to verify whether at least one additional dominating
can be generated using the vertices not included in any dominating
set of exc; see Section 5.3 and Rosati et al. (2023a) for the definition
of the function 𝑟(). If this is the case, a heuristic procedure, labelled
ApplyRepairProcedure in Algorithm 3, is activated iteratively to build
the additional dominating set(s), using the vertices in 𝑉 ⧵exc. Then, at
line 20, the probabilities of the constructors are reinforced according
to the rules presented in Section 5.4.

Finally, the ADAPT phase takes place at line 21. First, the domi-
nating sets ∈ exc generated by the repair procedure that are not
already included in the sub-instance ′, are added to ′. Second, the
age values of all dominating sets from exc are reset to zero. Third, the
age values of all remaining dominating sets from ′ are incremented
by one. Finally, all dominating sets ∈ ′ with 𝑎𝑔𝑒[] > 𝑎𝑔𝑒limit are
removed from ′.

5.2. Parameters

Apart from graph 𝐺, our algorithm takes as input the values for
seven parameters. Note that parameter values are determined through
a statistically-principled tuning procedure, as discussed in Section 6.2.
Five of these parameters, namely 𝑛sols, 𝑑rate, 𝑐list , 𝑎𝑔𝑒limit , and 𝑡exc,
are traditional CMSA parameters, while parameters 𝛼 and 𝜏, which
are needed for the reinforcement learning mechanism applied to the
constructor probabilities, are specific to our Multi-Constructor CMSA.
The full list of parameters is contained in Table 1.

We aim to find one single parameter value setting that works
reasonably well for the whole range of problem instances. However,
in preliminary experiments, we observed that the number of solution
7

Table 1
Parameters for CMSA.

Param. Explanation

𝑛sols parameter that serves for the calculation of the number of solutions
to be generated at each algorithm iteration, as explained below.

𝑑rate determinism rate for solution construction.

𝑐list length of the candidate list for those solution construction steps in
which a non-deterministic choice is performed.

𝑎𝑔𝑒limit limits the number of iterations a dominating set can remain in the
sub-instance ′ without being chosen by the exact solver for the
best solution to the sub-instance.

𝑡exc time limit (in seconds) for the application of the MIP solver at each
iteration of CMSA.

𝛼 learning rate employed for the learning of constructor probabilities,
only for the Multi-Constructor variant (Section 5.4).

𝜏 minimum probability that can be reached by a constructor,
only for the Multi-Constructor variant (Section 5.4).

constructions allowed per iteration was very sensitive to the size of the
input graph. In case of too many solution constructions, the resulting
sub-instances have too many dominating sets, that is, the corresponding
ILP models have too many variables, which makes it nearly impossible
for CPLEX to find a good – or even optimal – solution within the
fixed CPU time limit of 𝑡exc seconds. This is because the number of
ertices of the input graph (|𝑉 |) determines the number of rows of the
orresponding ILP model, while the number of dominating sets in the
ub-instance determines the number of columns. For this reason, we
lso observed that for smaller graphs many more solution constructions
ould be afforded when compared to larger graphs. Therefore, we
inally decided to make the number of solution constructions allowed
er algorithm iteration inversely proportional to |𝑉 | by setting it to

𝑛sols
|𝑉 |

.

5.3. Lexicographic objective function

The MDDSP is characterised by the fact that many distinct solu-
tions with identical objective function value coexist. This is because,
generally, there are many different solutions with the same number
of dominating sets. As a consequence, the search landscape is charac-
terised by the presence of wide plateaus (Watson, 2010). The problem
that arises in the presence of plateaus is that a metaheuristic, which
is implicitly guided by gradients in the search landscape, may get lost.
An effective way to deal with such a situation is to use a lexicographic

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.

f
d
o
t
f
t

g
t
a
v
b
o

t
w
t
a

𝑟

s
C
p

𝑝

t
i
i

c
e
o
a

i
r
s
i
i
n
t
t
q

𝑝

t

Fig. 4. Basic scheme of a reinforcement learning algorithm.

objective function 𝑓 lex(), using more criteria than just the objective
unction in order to differentiate between different solutions. This is
one, for example, in Bruglieri and Cordone (2021), where the original
bjective function is used as a first criterion for comparing two solu-
ions, and, only when the two solutions have the same original objective
unction value, a second criterion is evaluated to differentiate between
hem.

For our Multi-Constructor CMSA we maintain the same lexico-
raphic objective function as proposed in Rosati et al. (2023a), based on
he idea that the most promising solutions on a plateau are those that
re nearest to building an additional dominating set with the unused
ertices. More specifically, given two solutions 1 and 2, 1 is said to
e lexicographically better than 2—that is, 𝑓 lex(1) > 𝑓 lex(2)—if and
nly if

1. 𝑓 (1) > 𝑓 (2) or
2. 𝑓 (1) = 𝑓 (2) and 𝑟(1) > 𝑟(2)

Hereby, the second criterion, 𝑟(), is a residual coverage function
hat calculates the fraction of the input graph 𝐺 that can be covered
ith the vertices 𝑉 ′ ⊂ 𝑉 that, in a given a solution , are not assigned

o any of the disjoint dominating sets. More specifically, 𝑟() is defined
s follows:

(𝑆) ∶=
|

|

⋃

𝑣∈𝑉 ′ 𝑁[𝑣]|
|

|𝑉 |

(8)

In addition, the residual coverage function is used in CMSA (see lines
16–18 of Algorithm 3) to discover if there are hidden dominating sets
contained in the set of unused vertices regarding CPLEX solution exc.
For a more detailed discussion on the lexicographic objective function
and on 𝑟() we forward the reader to Rosati et al. (2023a).

5.4. Adaptive learning of constructor probabilities

As explained in Section 5.1, in our Multi-Constructor CMSA, the
election of the constructors is stochastic. For this purpose, a Multi-
onstructor CMSA that utilises 𝐾 constructors makes use of a vector of
robabilities (𝑝1,… , 𝑝𝐾), with ∑𝐾

𝑖=1 𝑝𝑖 = 1, where 𝑝𝑖 is the probability
of the 𝑖th constructor. During the CONSTRUCT phase of CMSA, before
the generation of a new solution, one of the constructors is selected by
means of a biased random selection (roulette wheel selection), according
to the given probabilities. Then, the next solution is built using the
selected constructor. A trivial choice would be to assign the same
probability 1∕𝐾 to all constructors. However, it is reasonable to believe
that not all constructors are equally useful and that higher probabilities
should be assigned to the most promising ones. For this reason, we
propose an online strategy for learning these probabilities, based on
a reinforcement learning approach. Reinforcement learning is a learning
paradigm where an intelligent agent learns the best policy for its actions
by interacting with the environment. The agent takes actions in order
to maximise its notion of cumulative reward. Fig. 4 shows a simple
representation of the mechanism.

The application of reinforcement learning to metaheuristics is an
active research stream. For instance, a similar mechanism is employed
8

in Adaptive Large Neighbourhood Search (Ropke and Pisinger, 2006), C
where two vectors of probabilities are adapted during the search for
the destroy operators, respectively the repair operators. Examples are
found also in Evolutionary Algorithms, for example, with the appli-
cation of a learning mechanism based on a Multi-Armed Bandit for
adapting the weights of different operators (Fialho et al., 2010). More
recently, Q-learning (Watkins, 1989) has been explored within various
metaheuristics, with the aim of learning an ordering, or an execution
sequence, of the operators, rather than their relative weights. We also
recall similar examples regarding Iterated Local Search (Alicastro et al.,
2021) and Hyper-Heuristics (Mischek and Musliu, 2022). In addition to
the quality of the solution in terms of the objective function value, Hu
and Raidl (2006) take into account also the time spent by each operator
in a Variable Neighbourhood Search algorithm. Additional examples of
weight-adaptive metaheuristics are found in Queiroz dos Santos et al.
(2014) and Canca et al. (2017), for what concerns local search based
metaheuristics, and in Wang et al. (2015) and Nagra et al. (2019)
for population-based techniques. In general, the marriage of machine
learning with combinatorial optimisation is considered a promising
research field, as Bengio et al. (2021) point out in their method-
ological overview. A recent survey of the applications of machine
learning specifically in metaheuristics is found in Karimi-Mamaghan
et al. (2022).

In our Multi-Constructor CMSA, all probabilities are initialised to
1∕𝐾 at the first iteration. Then, at every iteration, constructors receive
a reward and the probabilities are updated according to the relative
rewards obtained by the constructors. Learning is synchronised with
CMSA iterations because the rewards can be computed only after the
SOLVE phase, when a measure of the quality of the constructors is
available. Eq. (9) shows the learning mechanism. Given a real parame-
ter 𝛼 ∈ [0, 1], called learning rate, we calculate the new probability 𝑝𝑖,𝑡+1
of constructor 𝑖 at iteration 𝑡 + 1 as:

𝑖,𝑡+1 = (1 − 𝛼) ⋅ 𝑝𝑖,𝑡 + 𝛼 ⋅ 𝑟𝑖,𝑡 (9)

where 𝑟𝑖,𝑡 is the reward obtained by constructor 𝑖 at iteration 𝑡 and 𝑝𝑖,𝑡 is
he weight/probability of constructor 𝑖 at the beginning of the iteration,
nherited from the previous CMSA iteration (respectively, from the
nitial probabilities, at the first iteration). Given that ∑𝐾

𝑖 𝑝𝑖,0 =
∑𝐾

𝑖
1
𝐾 =

1, at the first iteration, and ∑𝐾
𝑖 𝑟𝑖,𝑡 = 1, at every iteration 𝑡, this learning

riterion also guarantees that the weights of the constructors sum
xactly 1 along the whole process, without the need for normalisation
r further adjustments. This is rather easy to proof. If, by hypothesis,
t any generic iteration 𝑡, ∑𝐾

𝑖 𝑝𝑖,𝑡 = 1 and ∑𝐾
𝑖 𝑟𝑖,𝑡 = 1, then:

𝐾
∑

𝑖
𝑝𝑖,𝑡+1 =

𝐾
∑

𝑖
(1 − 𝛼) ⋅ 𝑝𝑖,𝑡 + 𝛼 ⋅ 𝑟𝑖,𝑡 = (10a)

(1 − 𝛼) ⋅
𝐾
∑

𝑖
𝑝𝑖,𝑡 + 𝛼 ⋅

𝐾
∑

𝑖
𝑟𝑖,𝑡 = (10b)

(1 − 𝛼) ⋅ 1 + 𝛼 ⋅ 1 = 1 (10c)

The parameter 𝛼 sets the pace of the learning process. As shown
n Eq. (11), the first component of Eq. (9) is the memory of past
ewards, or, in other terms, the accumulated experience from the
earch, and it is weighted with 1 − 𝛼. The second component is the
mportance assigned to the reward obtained in the last iteration, which
s weighted with 𝛼. If 𝛼 = 1, there is no memory in the process, and the
ext probabilities are influenced exclusively by the current rewards. On
he opposite, if 𝛼 = 0, no learning is involved, and the probabilities of
he constructors are never changed. Therefore, a proper tuning of 𝛼 is
uite critical for the effectiveness of the learning mechanism.

𝑖,𝑡+1 = (1 − 𝛼) ⋅ 𝑝𝑖,𝑡
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

memory of past rewards

+ 𝛼 ⋅ 𝑟𝑖,𝑡
⏟⏟⏟

learning from last rewards

(11)

Another concept to be taken into account is the learning batch,
he number of iterations between subsequent learning steps. In Multi-
onstructor CMSA, the learning batch coincides with exactly one CMSA

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.
Fig. 5. The 60 Hammersley points sampled from the instance space and used for the
generation of the problem instances. As the instance space has only two dimensions,
it is possible to represent the generated points on a bi-dimensional plane.

iteration. This choice is quite natural because our metric, respectively
reward function, for evaluating the quality of different constructors can
only be calculated after the SOLVE phase of each iteration. In fact,
the choice of the reward function 𝑟𝑖,𝑡 is a critical design choice. The
quality of the solutions generated by the constructors alone might not
be a good predictor of their usefulness for CMSA. Therefore, a better
metric is needed. Our idea for the MDDSP is to reward the constructors
proportionally to the number of generated dominating sets that are
found in the solution exc obtained by the exact solver. If the same
dominating set was generated by multiple constructors, all of them are
granted a reward. Eq. (12) shows the formula for assigning the rewards.
It accounts also for the dominating sets generated heuristically by the
repair procedure that are possibly found in exc, that are removed from
the count. The rewards are calculated as follows:

𝑟𝑖,𝑡 =
|exc

⋂

′
𝑖 |

|exc
⋂

′ ⧵ ′
𝑟|

(12)

where ′
𝑖 is the set of the dominating sets in solution exc that have

been found by the 𝑖th constructor, and ′
𝑟 contains the dominating sets

built by the repair procedure. This guarantees that ∑𝐾
𝑖 𝑟𝑖,𝑡 = 1.

A downside of the proposed learning scheme is that a constructor
that, even after an increasing number of consecutive iterations, has not
received any reward may have its probability decreased to a very low
value. This would make it nearly impossible that this constructor is
selected, thus making it extremely improbable that it ever gets any
future reward. Especially when 𝛼 is set to high values, a constructor
faces the risk to be kicked out extremely fast, even though it might
be useful to have it later in the search. To guarantee a better trade-off
between exploration and exploitation, it is advisable to put into place
a mechanism that avoids such an extreme evolution of the probabil-
ities. In order to deal with this issue, the learning scheme employs a
minimum threshold 𝜏 for all constructor probabilities. To achieve this,
Eq. (9) is rewritten as follows:

𝑝𝑖,𝑡 = max{𝜏, (1 − 𝛼) ⋅ 𝑝𝑖,𝑡−1 + 𝛼 ⋅ 𝑟𝑖,𝑡} (13)

Naturally, when the minimum threshold 𝜏 is applied, the probabilities
of the remaining constructors are also re-balanced such that the proba-
bilities always sum to 1. Please note also that the minimum threshold 𝜏
implies that the probabilities are upper-bounded by a maximum value
of 1 − (𝐾 − 1)𝜏.
9

6. Experimental results

We denote the three versions of CMSA studied in this work as Cmsa,
Cmsa-Lall, and Cmsa-L1,2. The first one is the standard CMSA, which only
uses one constructor (Mdds-Gh) and no reinforcement learning mecha-
nism. The second one employs the six constructors described before in
this paper, while the third one uses only the most promising construc-
tors, namely, Mdds-Gh and Iam. We perform a thorough comparison
on a large instance space, that involves the two Multi-Constructor
CMSA variants against the standard CMSA and the heuristics from the
literature. We present and compare also the results obtained by CPLEX.

Our software was implemented in C++17 and compiled on Ubuntu
20.04.5 with g++ 9.4.0 in -O3 mode. We run all experiments on a
machine equipped with an Intel Xeon Processor (Cascadelake), with 16
cores and a clock frequency of 2.4 GHz. We employed a maximum of
one single core per experiment, including the call to exact solver within
CMSA. For the comparison, we implemented also the six heuristics
in C++17 and compiled and ran them under the same experimental
setting. Finally, we implemented the ILP model for the MDDSP for
CPLEX 20.1, through its C++ interface for Linux.

6.1. Instances

In our preliminary work (Rosati et al., 2023a) we considered ran-
dom graphs with up to 250 vertices. In contrast, for the experimental
evaluation of this paper, we propose a larger set of graphs with up
to 1000 vertices and a wider range of densities. Furthermore, we
make use of two additional categories of networks for benchmarking
our algorithm: Watts–Strogatz, having small-world properties (Watts
and Strogatz, 1998), and Barabási–Albert graphs, which are scale-free
networks (Barabási and Albert, 1999). A generation procedure based on
the Hammersley point set (Hammersley and Handscomb, 1964) ensures
that all areas of the instance space are equally represented. The instance
space is characterised by two dimensions: the number of vertices |𝑉 |

and the density 𝐷. Given an undirected graph 𝐺 = (𝑉 ,𝐸), the definition
of 𝐷 is as follows:

𝐷 =
|𝐸|

(

|𝑉 |

2

)

=
2|𝐸|

|𝑉 |(|𝑉 | − 1)
(14)

For the three categories of graphs, the problem instances were then
generated according to the following procedure:

1. Selection of 60 pseudo-random points (|𝑉 |, 𝐷) with the Hammer-
sley sampling procedure, with 10 ≤ |𝑉 | ≤ 1000, and 0.05 ≤ 𝐷 ≤
0.95. This domain covers practically the whole instance space,
avoiding at the same time the generation of graphs that are too
small and with density values too extreme. The outcome of the
generation procedure is shown graphically in Fig. 5. Addition-
ally, information on the 60 points is provided in Tables 4, 5,
and 6, in columns |𝑉 | and 𝐷.

2. For every point, 20 graphs were randomly generated, resulting
in a total of 1200 graphs, for each model. The graphs have |𝑉 |

vertices, and 𝐷 is used as the probability for every possible edge
to be present. Nonetheless, the distribution of the edges will
vary in different kinds of graphs. For random graphs, the graph
generator iterates over all pairs of nodes (𝑢, 𝑣), and establishes
stochastically if an edge between them exists, with probability
𝐷. Watts–Strogatz networks are similar, but in addition, vertices
are clustered. In Barabási–Albert networks the degree follows a
scale-free (or power law) distribution, that will result in few ver-
tices being much more connected than most other vertices. Given
that 𝐷 is used as input parameter for probabilistic generation,
the actual density of the generated graphs can be slightly differ-
ent from the required one. However, the deviation is minimal:
as a double-check, we verified that the actual average density

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.

f
I
e
l
t
g
i
p
p

t
B

c
b
o

Table 2
Classification of graphs by size and density.
Size Density

Name Feature Name Feature

Small |𝑉 | < 334 Sparse 𝐷 < 1
3

Medium 334 ≤ |𝑉 | < 667 Medium 1
3
≤ 𝐷 < 2

3
Large 667 ≤ |𝑉 | Dense 2

3
≤ 𝐷

for each group of instances is identical to the required one, if
rounded to two decimal digits.

We employed the same procedure also for the generation of an addi-
tional set of instances for parameter tuning. This additional set utilises a
higher number of Hammersley points on the same instance space, with
of a single instance per point, and is composed exclusively of random
graphs. Table 2 introduces a classification of the instances depending
on their size and density. The borders between regions are visible also
in the background grid in Fig. 5.

The reasons for the inclusion of additional types of graphs com-
pared to our preliminary study are twofold. On the one hand, random
graphs are not realistic in many contexts. In contrast, Watts–Strogatz
and Barabási-Albert networks are often used in network science, for
modelling both natural and social phenomena. On the other hand, we
aim to study the adaptability of CMSA to unseen graphs with different
characteristics, where ‘‘unseen’’ refers to the fact that these special
types of graphs are not included in the training set for parameter
tuning. Finally, note that in Rosati et al. (2023a) we considered also
random geometric graphs. However, we decided against using them in
this work, because CMSA rather easily solved problem instances with
up to 5000 vertices to optimality.

Finally, all instances – for tuning and for the final experimental eval-
uation – are available online for download, together with an instance
and solution validator, at https://bitbucket.org/maximum-disjoint-dom
inating-sets-problem/maximumdisjointdominatingsets-instances.

6.2. Parameter tuning

We performed the parameter tuning with irace, which is a package
or automatic algorithm configuration based on iterated racing (López-
báñez et al., 2016). The time limit given to the three CMSA variants for
ach application was |𝑉 |

2 CPU seconds, identical to the one which will
ater be used for the final experimental evaluation. This allows more
ime for larger graphs, in which the constructors take longer for the
eneration of solutions. Table 3 summarises the parameters involved
n the tuning, the considered domains, and the outcome of the tuning
rocedure, for the three versions of CMSA. In particular, the tuning
rocedure considered four CMSA parameters (𝑛sols, 𝑑rate, 𝑐list , 𝑎𝑔𝑒limit)

and the hyperparameters 𝛼 and 𝜏, needed for the reinforcement learn-
ing procedure. Note that parameter 𝑡exc was fixed to 15 CPU seconds
according to the outcome of preliminary exploratory tuning tests as
well as on domain-specific expertise. The choice of fixing one parameter
in advance aimed at a simplification of the tuning process. Note also
that the choice of setting the number of solution constructions per
iteration to 𝑛sols∕|𝑉 | was determined as being superior to a static setting
of the number of solution constructions by the results of a dedicated
tuning session with irace. Parameters 𝑑rate, 𝛼 and 𝜏 are real-valued, with
an allowed precision of two digits behind the comma, while 𝑛sols, 𝑐list ,
and 𝑎𝑔𝑒limit are natural numbers. We tuned separately the parameters
of the three algorithms Cmsa, Cmsa-Lall, Cmsa-L1,2. Despite of the fact
that values for the parameters of Cmsa were already available from our
preliminary work, we retuned them too, because of the new, larger set
of instances. The previous values were tuned on graphs with up to 250
vertices, and with a tighter range of densities, which would be a clear
overfitting on a particular region of the extended instance space. The
parameter tuning was realised on the dedicated training set comprised
10

f

Table 3
CMSA parameters, the considered domains for parameter tuning, and the finally
determined parameter values.

Parameter Domain Cmsa Cmsa-Lall Cmsa-L1,2
𝑛sols {2500, 100000} 84798 79560 86865
𝑑rate [0.60, 1.00] 0.99 0.98 0.97
𝑐list {2, 3, . . . ,50} 9 3 2
𝑎𝑔𝑒limit {2, 3, . . . ,30} 4 4 11
𝛼 [0.00, 1.00] – 0.98 0.30
𝜏 [0.00, 0.10] – 0.04 0.08

only of random graphs, as described in Section 6.1, and the tuning
budget was set to 5000 experiments for Cmsa-Lall and Cmsa-L1,2, and to
3000 experiments for Cmsa, which has fewer parameters. This resulted
in a total computation time of 367 h for Cmsa-Lall and Cmsa-L1,2, and
220 h for Cmsa. Thanks to the availability of a cluster with multiple
nodes, having 16 cores each, we could parallelise the experiments, so
that the elapsed time needed for the tuning was approximately one
day. By contrast, the total computational time needed for the validation
was 2590 h. Less formal preliminary experiments, which are naturally
conducted during the design and the implementation of the algorithm,
are not accounted in the calculation.

From the results in Table 3 we can observe that the two parameters
related to learning, that only affect Cmsa-Lall and Cmsa-L1,2, are the ones
that show the most important differences (with respect to the allowed
value domains). In the case of Cmsa-Lall a very high value is obtained
for 𝛼. This already indicates that some constructors are much more
useful than others. Moreover, it can already be deduced from the first
learning batch which constructors deserve higher weights. By the way,
the final value of 0.04 for 𝜏 indicates that a certain grade of exploration
is required anyway. On the other hand, Cmsa-L1,2 requires a setting of
𝛼 = 0.30 and 𝜏 = 0.08, which implies a more moderate learning pace and
a higher minimum threshold: both constructors are producing useful
solution components. The values of the other parameters are rather
similar for the three CMSA variants.

6.3. Results

Experimental results obtained by Cmsa, Cmsa-Lall, Cmsa-L1,2 and by
the six deterministic greedy heuristics are displayed in Table 4 for
random graphs, in Table 5 for Watts–Strogatz networks and in Table 6
for Barabási-Albert networks. Each table row corresponds to one of the
60 Hammersley points and shows averages over 10 independent runs
(concerning the CMSA variants) for each of the 20 problem instances
produced for the corresponding Hammersley point. Henceforth, we will
call the 20 problem instances belonging to a specific Hammersley point
an instance group. Best values within instance groups are marked in
bold. No results in bold in a given row indicates that the best values
are found by one of the ILP models. For all types of graphs, results
allow the observation that all three CMSA variants outperform the
heuristics on all instance groups. There are, however, some instance
groups that appear to be easier to solve, given that all considered
CMSA variants obtain exactly the same results. Interestingly, these ties
are more frequent in instances with very low or very high density,
regardless of their size. A summary of the comparative performances
of the algorithms is provided in Table 8. CMSA performs very well on
all graphs, including those types that were not included in the tuning.
Among CMSA variants, the best performer is Cmsa-L1,2. Interestingly,
he advantage of Cmsa-L1,2 appears to be greater on Watts–Strogatz and
arabási-Albert networks.

We do not report on computational times, because the stopping
riterion is the same for all CMSA variants, and the times employed
y the six greedy heuristics are negligible, as it is consistently below
ne second. The total computation times of the CMSA variants range

rom 13.5 s to 500 seconds. Sometimes, however, a CMSA run is

https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances
https://bitbucket.org/maximum-disjoint-dominating-sets-problem/maximumdisjointdominatingsets-instances

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.
Table 4
Numerical results obtained for random graphs.
Instances CMSA Heuristics Improvement

|𝑉 | 𝐷 Cmsa Cmsa-Lall Cmsa-L1,2 Mdds-gh Iam P-max P-min R-Lid Colour (%) (𝑛)

27 0.50 8.00 7.96 7.96 6.20 6.10 5.75 4.90 5.30 5.55 29.03 1.80
43 0.27 6.32 6.26 6.26 5.20 4.40 4.65 3.95 4.25 4.40 21.54 1.12
60 0.73 23.00 23.00 23.00 21.50 20.95 18.10 15.30 16.40 16.50 6.98 1.50
76 0.16 5.70 5.70 5.70 4.80 4.00 4.15 3.75 3.95 3.95 18.75 0.90
93 0.61 28.89 28.72 28.80 25.20 24.20 19.90 16.65 18.05 18.45 14.64 3.69

109 0.39 19.25 19.13 19.22 17.40 16.95 13.70 11.30 12.60 12.90 10.63 1.85
126 0.84 60.12 60.02 60.04 54.35 53.75 43.20 36.40 38.75 39.80 10.62 5.77
142 0.11 6.78 6.80 6.82 6.10 5.15 5.05 4.15 4.55 4.60 11.80 0.72
159 0.56 39.03 38.83 39.03 36.05 35.60 28.00 23.10 25.50 25.75 8.27 2.98
175 0.33 23.76 23.77 23.78 22.30 21.55 17.00 13.95 15.65 15.75 6.64 1.48
192 0.78 64.10 64.10 64.10 62.65 61.95 52.30 43.65 48.15 48.65 2.31 1.45
208 0.22 18.79 18.82 18.81 17.65 16.95 13.60 10.90 12.10 12.35 6.63 1.17
225 0.67 65.98 65.54 65.77 59.85 59.30 46.90 38.65 42.60 43.65 10.24 6.13
241 0.44 41.16 41.20 41.18 39.35 38.90 29.60 24.65 27.25 27.50 4.70 1.85
258 0.89 128.28 128.30 128.26 118.65 118.85 92.00 75.45 81.95 82.80 7.95 9.45
274 0.08 9.06 9.11 9.11 8.25 7.35 6.65 5.20 6.00 6.05 10.42 0.86
291 0.53 57.78 57.76 57.82 55.95 55.55 42.80 35.15 39.20 39.35 3.34 1.87
307 0.30 34.53 34.54 34.61 33.25 32.35 24.60 20.05 22.35 22.85 4.09 1.36
324 0.75 107.99 107.86 108.00 101.30 100.90 76.70 62.90 69.60 70.05 6.61 6.70
340 0.19 24.94 24.94 24.98 23.75 22.75 17.60 14.10 15.70 16.15 5.18 1.23
357 0.64 87.93 87.84 87.82 85.30 84.65 64.90 53.05 58.70 59.50 3.08 2.63
373 0.42 56.77 56.76 56.75 54.90 54.20 40.85 33.20 37.00 37.40 3.41 1.87
390 0.87 148.51 147.96 148.27 142.90 142.65 120.05 100.00 110.75 111.85 3.93 5.61
406 0.13 20.67 20.63 20.66 19.45 18.60 14.40 11.45 12.95 13.15 6.27 1.22
423 0.58 87.44 87.42 87.42 85.30 85.10 65.15 53.45 59.40 60.00 2.51 2.14
439 0.36 55.41 55.44 55.44 53.55 52.95 39.65 31.85 35.80 36.35 3.53 1.89
456 0.81 152.00 152.00 152.00 149.35 149.05 118.25 97.05 107.20 107.85 1.77 2.65
472 0.25 41.93 41.94 41.94 40.35 39.65 29.55 23.75 26.75 26.90 3.94 1.59
489 0.70 122.64 122.59 122.59 121.15 120.35 96.10 79.35 88.35 88.65 1.23 1.49
505 0.47 81.16 81.11 81.16 79.40 78.80 58.80 47.90 53.50 54.25 2.22 1.76
522 0.92 260.79 260.74 260.72 246.45 248.60 188.15 152.70 167.25 168.80 4.90 12.19
538 0.06 12.93 12.97 12.96 11.80 10.75 9.05 7.30 8.05 8.30 9.92 1.17
555 0.51 95.84 95.84 95.90 93.65 93.50 70.40 57.10 63.65 64.50 2.40 2.25
571 0.29 56.06 56.10 56.11 54.55 54.10 39.80 31.90 36.00 36.40 2.86 1.56
588 0.74 160.84 157.96 160.07 154.55 154.25 122.45 101.35 112.80 113.50 4.07 6.29
604 0.18 38.03 38.03 38.04 36.95 36.00 26.75 21.40 23.95 24.40 2.95 1.09
621 0.63 137.00 137.06 137.16 133.95 133.85 100.95 82.75 92.10 93.05 2.40 3.21
637 0.40 84.15 84.16 84.18 82.40 82.05 60.05 48.50 54.95 55.10 2.16 1.78
654 0.85 218.00 217.99 218.00 216.50 216.00 178.40 147.00 163.30 164.60 0.69 1.50
670 0.12 29.00 29.00 29.00 27.90 27.15 20.25 15.95 18.15 18.65 3.94 1.10
687 0.57 132.83 132.84 132.82 130.35 130.30 96.50 78.50 87.80 89.05 1.91 2.49
703 0.35 79.97 79.94 79.99 78.30 77.60 57.25 45.80 51.60 51.95 2.16 1.69
720 0.80 239.26 236.78 239.36 228.25 229.70 171.20 139.10 154.95 156.35 4.21 9.66
736 0.23 55.96 55.98 56.00 54.65 53.65 39.50 31.30 35.60 35.80 2.47 1.35
753 0.68 182.77 182.72 182.74 179.35 179.90 132.80 109.30 121.55 122.40 1.60 2.87
769 0.46 113.27 113.32 113.28 110.95 110.80 81.95 66.20 74.75 75.20 2.14 2.37
786 0.91 324.62 322.62 324.92 308.60 310.50 250.95 208.75 233.25 234.40 4.64 14.42
802 0.09 26.02 26.03 26.02 25.30 24.45 18.20 14.70 16.55 16.85 2.89 0.73
819 0.54 141.38 141.43 141.43 138.80 138.65 103.85 84.85 95.05 96.05 1.89 2.63
835 0.32 84.58 84.63 84.62 83.00 82.20 59.95 48.15 54.50 54.85 1.96 1.63
852 0.77 233.58 232.53 234.84 228.65 229.00 181.30 149.05 166.55 167.60 2.55 5.84
868 0.20 56.54 56.56 56.60 55.30 54.55 39.85 31.80 35.55 36.20 2.35 1.30
885 0.65 189.34 189.38 189.47 186.55 185.80 142.35 116.80 130.80 131.45 1.57 2.92
901 0.43 121.50 121.50 121.55 119.45 119.00 87.10 70.65 79.20 79.80 1.76 2.40
918 0.88 306.00 306.00 306.00 305.05 304.20 259.40 215.60 238.60 241.05 0.31 0.95
934 0.15 46.72 46.72 46.70 45.35 44.80 32.50 25.90 29.30 29.85 3.02 1.37
951 0.60 185.90 185.92 185.94 183.35 183.30 135.95 110.65 123.70 125.20 1.41 2.59
967 0.37 110.25 110.22 110.32 108.60 108.00 78.50 63.45 71.80 72.00 1.58 1.72
984 0.82 327.00 323.32 326.99 315.35 317.60 235.55 192.65 213.80 216.10 2.96 9.40

1000 0.26 80.76 80.78 80.80 79.35 78.65 56.90 45.70 51.45 52.00 1.83 1.45
stopped before the computation time limit is reached, due to finding
a provenly optimal solution. It can be said that the execution times of
CMSA are about two orders of magnitude higher than the ones of the
greedy heuristics. While this – at first sight – might result in an unfair
comparison, we need to consider that greedy algorithms are simple
procedures and that their speed advantage comes at the cost of much
worse solutions. On the other hand, more sophisticated algorithms such
as metaheuristics perform a much larger exploration of the solution
11
space to find better solutions. Inevitably, they require a higher com-
putational time. In our context, longer running times are fully justified
by the obtained improvements over the greedy heuristics, which is
indisputable on all instance groups and all graph categories. Indeed,
the table column with the heading ‘‘Improvement (%)’’ in Tables 4, 5,
and 6, shows the percentage gap between the best-performing CMSA
and the best heuristic. The improvement is consistent for all instance
groups. In particular, CMSA can find up to 30% more dominating sets

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.
Table 5
Results obtained for Watts–Strogatz graphs.
Instances CMSA Heuristics Improvement

|𝑉 | 𝐷 Cmsa Cmsa-Lall Cmsa-L1,2 Mdds-gh Iam P-max P-min R-Lid Colour (%) (𝑛)

27 0.52 9.00 9.00 8.96 7.95 7.20 6.70 5.80 6.15 6.15 13.21 1.05
43 0.28 7.51 7.40 7.46 6.05 5.15 5.25 4.80 4.60 5.10 24.13 1.46
60 0.73 24.20 24.20 24.20 22.85 22.05 18.45 15.85 16.60 17.55 5.91 1.35
76 0.16 7.00 7.00 7.00 5.90 5.25 5.15 4.05 4.50 4.80 18.64 1.10
93 0.60 29.67 29.34 29.36 25.60 24.70 20.10 16.60 17.55 19.10 15.90 4.07

109 0.39 20.60 20.38 20.59 18.60 17.65 14.10 11.55 12.05 13.80 10.75 2.00
126 0.84 61.26 61.19 61.12 56.55 55.65 43.80 36.55 39.00 40.15 8.33 4.71
142 0.11 8.26 8.17 8.26 7.60 6.70 5.80 5.00 5.05 5.90 8.68 0.66
159 0.57 39.98 39.75 39.85 37.45 36.45 28.45 23.85 24.50 27.10 6.76 2.53
175 0.33 25.80 25.75 25.84 24.30 23.30 17.20 14.85 14.80 17.65 6.34 1.54
192 0.78 64.45 64.45 64.45 63.50 62.55 51.80 44.45 47.50 49.45 1.50 0.95
208 0.22 20.75 20.78 20.84 19.45 18.60 13.35 11.70 11.75 13.90 7.15 1.39
225 0.67 66.88 66.48 66.67 61.10 59.95 46.85 38.65 40.85 43.95 9.46 5.78
241 0.44 43.58 43.62 43.65 42.00 41.10 29.55 24.70 25.35 29.30 3.93 1.65
258 0.89 127.61 127.60 127.60 121.70 120.85 89.40 77.65 81.15 84.05 4.86 5.91
274 0.08 11.00 10.99 10.99 9.85 8.85 7.20 6.15 6.35 7.45 11.68 1.15
291 0.53 59.94 59.76 60.08 58.10 57.15 43.10 35.50 36.70 41.55 3.41 1.98
307 0.30 37.09 37.08 37.11 36.10 34.95 24.60 20.65 20.85 25.25 2.80 1.01
324 0.75 108.00 108.00 108.00 103.00 102.10 76.50 63.75 68.00 70.75 4.85 5.00
340 0.19 27.00 27.00 27.00 25.65 24.70 17.15 14.90 14.80 18.05 5.26 1.35
357 0.64 88.17 88.14 88.24 86.15 85.25 64.65 53.15 55.50 60.60 2.43 2.09
373 0.42 59.08 59.08 59.08 57.65 56.65 40.80 33.50 33.80 39.95 2.48 1.43
390 0.87 157.70 157.66 157.66 152.10 151.25 119.20 102.80 109.55 112.45 3.68 5.60
406 0.13 22.38 22.30 22.35 21.50 20.50 14.10 12.70 12.30 15.00 4.09 0.88
423 0.58 91.30 91.14 91.36 89.15 88.10 66.25 54.00 55.75 62.15 2.48 2.21
439 0.36 59.02 59.02 59.02 57.75 56.75 39.85 32.75 33.00 39.70 2.20 1.27
456 0.81 152.00 152.00 152.00 150.05 149.05 117.40 98.65 106.00 108.30 1.30 1.95
472 0.25 45.15 45.15 45.19 44.25 43.20 29.35 24.80 24.65 30.25 2.12 0.94
489 0.70 123.08 122.84 122.89 121.85 120.85 95.20 78.80 83.25 88.80 1.01 1.23
505 0.47 84.75 84.80 84.84 83.15 82.05 58.85 48.60 48.95 57.60 2.03 1.69
522 0.92 258.32 258.14 258.08 249.00 248.10 173.70 153.80 159.35 165.75 3.74 9.32
538 0.06 14.90 14.87 14.89 13.75 12.80 9.30 8.05 8.10 9.95 8.36 1.15
555 0.51 102.17 102.14 102.17 100.15 99.10 70.70 57.40 58.45 68.25 2.02 2.02
571 0.29 60.88 60.85 60.87 59.35 58.40 39.35 32.70 33.10 40.65 2.58 1.53
588 0.74 162.66 160.50 162.88 158.05 157.15 122.35 101.65 108.65 113.55 3.06 4.83
604 0.18 41.73 41.60 41.78 40.45 39.35 26.35 22.50 22.20 27.70 3.29 1.33
621 0.63 141.70 141.74 141.82 139.25 138.25 101.25 82.55 86.65 94.90 1.85 2.57
637 0.40 88.08 88.10 88.13 86.75 85.70 59.95 49.40 49.55 59.25 1.59 1.38
654 0.85 218.05 218.02 218.05 216.95 216.20 175.80 149.05 159.95 164.40 0.51 1.10
670 0.12 32.00 32.00 32.00 31.10 29.95 19.50 17.10 16.85 21.15 2.89 0.90
687 0.57 134.88 134.85 134.92 133.20 132.15 96.55 78.55 80.65 91.80 1.29 1.72
703 0.35 85.08 85.06 85.08 83.75 82.70 56.65 46.70 46.65 56.90 1.59 1.33
720 0.80 239.35 235.42 239.61 230.40 229.60 169.25 141.45 151.80 155.55 4.00 9.21
736 0.23 61.26 61.20 61.17 60.25 59.25 38.45 33.05 32.75 40.45 1.68 1.01
753 0.68 183.98 183.97 184.00 182.00 181.00 132.50 108.35 114.20 122.50 1.10 2.00
769 0.46 120.84 120.78 120.88 119.00 118.00 82.10 66.70 67.45 79.70 1.58 1.88
786 0.91 338.67 338.70 338.38 325.15 324.20 240.10 212.50 220.75 228.90 4.17 13.55
802 0.09 29.00 29.00 29.00 28.20 27.15 17.50 15.25 15.35 19.40 2.84 0.80
819 0.54 149.58 149.60 149.60 147.45 146.45 104.55 84.85 86.55 100.00 1.46 2.15
835 0.32 91.03 91.03 91.04 89.55 88.60 59.50 49.05 49.10 60.70 1.66 1.49
852 0.77 235.08 235.07 235.25 232.70 231.75 180.80 149.65 160.90 166.35 1.10 2.55
868 0.20 62.03 62.04 62.02 61.25 60.20 38.20 33.05 33.05 41.05 1.29 0.79
885 0.65 196.08 196.07 196.18 193.30 192.30 142.70 116.30 121.05 132.75 1.49 2.88
901 0.43 126.81 126.78 126.78 125.25 124.25 86.35 70.65 71.30 85.80 1.25 1.56
918 0.88 307.71 307.64 307.74 306.50 305.65 251.65 218.95 232.20 238.50 0.40 1.24
934 0.15 51.18 51.16 51.24 50.40 49.30 30.95 27.30 27.00 33.80 1.67 0.84
951 0.60 187.07 187.06 187.10 185.60 184.55 135.70 110.15 114.00 127.75 0.81 1.50
967 0.37 117.39 117.31 117.39 115.90 114.95 77.70 64.05 64.20 78.45 1.29 1.49
984 0.82 326.90 319.93 327.14 316.30 315.50 232.70 194.45 209.80 213.65 3.43 10.84

1000 0.26 88.00 88.00 88.00 86.80 85.75 55.05 46.95 46.45 58.30 1.38 1.20
in the smallest graphs. The relative improvement decreases as the graph
size increases. The difference in terms of the absolute values, however,
as shown in column ‘‘Improvement (𝑛)’’, is remarkable, especially on
dense graphs, with CMSA able to produce up to 14.42 more dominating
sets on random graphs, and up to 13.55 more dominating sets on Watt-
Strogatz networks. This is quite a notable result if we consider, for
instance, the application to WSNs. Manufacturers of commercial sensor
12
nodes declare operational lifetimes that range from days to months,
or even years (Mak and Seah, 2009). Depending on the application
area of a WSN, the potential lifetime of the network is obtained in
relation to the number of disjoint dominating sets found on the graph.
So, an extension of even a few percentage points in the lifetime of the
WSN is translated into a gain of, at least, some days of autonomous
functioning.

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.
Fig. 6. Instance groups (Hammersley points) for which algorithms are the best-performing ones. The plots in the top row include all instances, while in the plots of the bottom
row, the six points in which all CMSA variants perform equally well are removed.
Given that the running time granted to CMSA is much larger than
the time needed by the greedy algorithms, the reader might wonder
whether a heuristic algorithm for solving the MDDSP which is granted
a comparable execution time would be able to compete with CMSA.
However, all existing heuristics for the MDDSP are deterministic greedy
algorithms, and non-deterministic metaheuristics have never been ap-
plied to the MDDSP. What can be done, however, is to run the best
one of our randomised greedy heuristics (Mdds-gh) in a repeated way
with the same computation time limit as used for CMSA, that is, with
a time limit of |𝑉 |∕2 seconds. This was done with the same values for
parameters 𝑑rate and 𝑐list found in Table 3 in column Cmsa. The output
of this repeated, randomised greedy heuristic is the best solution found
within |𝑉 |∕2 seconds. Finally, we compare the obtained results with
the ones of our best-performing CMSA variant (Cmsa-L1,2).

An analysis of the results shows that, in random graphs, Cmsa-L1,2
obtains on average 0.97 more dominating sets, which corresponds to an
average percentage increment of 0.74%. In the context of Watt-Strogatz
networks, Cmsa-L1,2 obtains on average 0.92 more dominating sets,
corresponding to an average percentage increment of 0.72%. However,
in the case of Barabási-Albert networks, the gap is significantly reduced,
as Cmsa-L1,2 obtains on average just 0.05 more dominating sets, or,
equivalently, an average percentage increment of 0.15%. This is not
a surprising fact, considering the analogies between Barabási-Albert
networks and random geometric graphs, that were studied in our
previous work (Rosati et al., 2023a). Both are, indeed, characterised
by locality and/or clustering of nodes. Moreover, we performed three
paired Wilcoxon signed rank tests with continuity correction. The tests
return that the difference in performance between Cmsa-L1,2 and the
randomised, repeated greedy heuristic is statistically significant for
13
random graphs and Watts–Strogatz networks, given the very low p-
values (< 2.2 ⋅ 10−16). On the other hand, in the case of Barabási-Albert
network, even though Cmsa-L1,2 generally produces better results, the
gap is not statistically significant (the 𝑝-value is 0.079, above the
significance threshold of 0.05), which means that we cannot reject
the null hypothesis of equality of the true means of the two popula-
tions. These results suggest that the advantage of CMSA in the case
of Barabási-Albert networks is limited to dense graphs (see Fig. 12),
while its superiority is indisputable in the context of the other graph
types.

We would also like to point out that the randomised, repeated
version of greedy Mdds-gh that we used for comparison exists only
because we developed it for its usage within CMSA, and that it can
be seen as a particular use case of CMSA, with extreme parameter
values such as a computation time of zero for solving the ILP model
at each iteration. In the context of real-world applications, greedy
algorithms are interesting because of their speed and usefulness in
time-critical applications in which a user needs a response from the
computer in fractions of seconds. In less time-critical applications, in
which the decision maker has more time available for finding a good
solution in advance, repeating in a loop the same randomised greedy
algorithm for some time is generally not the best practice, especially
if a metaheuristic (such as CMSA) that offers better exploration of the
search space in the same running time exists.

In order to get more information on the behaviour of CMSA in
different regions of the instance space, Fig. 6 shows six plots. All plots
show the instance space, with the two axes that correspond to |𝑉 | and
𝐷. The three plots from the top row indicate those instance groups (out
of 60 Hammersley points) for which, from left to right, Cmsa, Cmsa-Lall,

and Cmsa-L1,2 obtain the best results. The plots consider only random

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.

t
b
o

Table 6
Results obtained for Barabási-Albert graphs.
Instances CMSA Heuristics Improvement

|𝑉 | 𝐷 Cmsa Cmsa-Lall Cmsa-L1,2 Mdds-gh Iam P-max P-min R-Lid Colour (%) (𝑛)

27 0.52 7.00 7.00 6.91 5.80 5.00 5.00 4.40 4.80 4.75 20.69 1.20
43 0.28 5.54 5.48 5.60 4.55 3.75 3.85 3.40 3.80 3.85 23.08 1.05
60 0.73 17.58 17.41 17.32 15.25 14.20 11.85 10.55 11.10 11.70 15.28 2.33
76 0.16 4.97 4.96 4.97 4.15 3.65 3.40 3.05 3.55 3.45 19.76 0.82
93 0.60 19.77 19.52 19.68 17.65 16.85 13.35 11.85 12.55 13.00 12.01 2.12

109 0.39 14.04 13.98 14.01 12.80 11.85 9.85 8.60 8.90 9.60 9.69 1.24
126 0.84 36.21 35.88 36.08 32.65 31.70 23.50 21.05 22.30 23.05 10.90 3.56
142 0.11 5.85 5.87 5.89 4.85 4.35 4.25 3.80 3.90 3.95 21.44 1.04
159 0.57 27.12 27.08 27.15 25.80 24.85 18.65 16.40 17.40 17.90 5.23 1.35
175 0.33 17.67 17.72 17.74 16.45 15.65 12.05 10.65 11.40 11.55 7.84 1.29
192 0.78 45.19 44.80 45.12 42.30 41.40 29.90 26.35 28.40 28.50 6.83 2.89
208 0.22 14.00 13.99 14.00 13.00 12.05 9.55 8.20 9.05 9.40 7.69 1.00
225 0.67 42.35 42.39 42.46 40.85 39.85 28.50 25.40 27.10 27.50 3.94 1.61
241 0.44 29.47 29.38 29.50 28.10 27.20 19.75 17.40 18.90 18.80 4.98 1.40
258 0.89 66.42 65.96 66.31 62.90 61.95 43.30 39.35 41.70 42.25 5.60 3.52
274 0.08 7.00 7.00 7.00 6.15 5.60 4.85 4.20 4.55 4.90 13.82 0.85
291 0.53 41.05 41.06 41.06 39.70 38.85 27.45 24.30 25.90 26.25 3.43 1.36
307 0.30 25.00 25.00 25.00 23.70 22.70 16.75 14.50 15.65 16.05 5.49 1.30
324 0.75 64.67 64.67 64.78 63.05 62.05 42.85 38.65 40.75 41.45 2.74 1.73
340 0.19 17.88 17.88 17.89 16.60 15.75 11.95 10.25 11.20 11.75 7.77 1.29
357 0.64 58.57 58.56 58.70 57.30 56.35 39.00 34.50 37.15 37.25 2.44 1.40
373 0.42 39.98 39.97 39.95 38.65 37.80 26.75 23.25 25.20 25.45 3.44 1.33
390 0.87 88.18 88.18 88.25 86.20 85.20 58.55 53.40 56.50 56.85 2.38 2.05
406 0.13 14.40 14.39 14.40 13.40 12.75 9.85 8.25 9.15 9.60 7.46 1.00
423 0.58 61.06 61.05 61.09 59.85 58.75 40.40 36.10 38.10 38.75 2.07 1.24
439 0.36 39.20 39.15 39.24 38.20 37.20 26.15 22.80 24.60 25.10 2.72 1.04
456 0.81 92.93 92.89 92.94 91.10 90.10 61.40 55.15 58.20 58.90 2.02 1.84
472 0.25 30.00 29.99 30.00 28.65 27.85 20.00 17.00 18.65 18.95 4.71 1.35
489 0.70 83.08 83.03 83.08 81.65 80.60 54.75 49.25 52.55 52.80 1.75 1.43
505 0.47 57.01 57.02 57.01 55.60 54.60 37.80 33.40 35.70 35.80 2.55 1.42
522 0.92 119.46 119.40 119.52 117.70 116.75 78.95 71.80 75.30 76.25 1.55 1.82
538 0.06 9.01 9.00 9.01 8.45 7.55 6.35 5.35 5.90 6.40 6.63 0.56
555 0.51 66.93 66.93 66.94 65.55 64.60 44.40 39.00 41.75 41.70 2.12 1.39
571 0.29 39.98 39.99 40.01 38.60 37.80 26.65 22.50 24.85 25.20 3.65 1.41
588 0.74 102.81 102.74 102.88 101.35 100.35 67.95 61.50 64.95 65.00 1.51 1.53
604 0.18 27.00 27.00 27.00 25.45 24.70 17.95 15.20 16.75 17.25 6.09 1.55
621 0.63 90.76 90.78 90.78 89.15 88.05 59.50 53.70 56.80 56.90 1.83 1.63
637 0.40 58.55 58.63 58.68 57.20 56.25 38.70 33.90 36.75 36.75 2.59 1.48
654 0.85 131.40 131.40 131.46 129.65 128.65 86.15 78.45 82.80 82.80 1.40 1.81
670 0.12 20.32 20.30 20.29 19.30 18.50 13.75 11.65 12.90 13.40 5.28 1.02
687 0.57 88.62 88.58 88.72 87.15 86.15 58.15 52.05 55.45 55.65 1.80 1.57
703 0.35 56.00 56.00 56.00 54.90 53.95 36.90 32.10 35.00 35.10 2.00 1.10
720 0.80 131.72 131.81 131.79 130.10 129.10 87.10 79.45 83.30 83.15 1.31 1.71
736 0.23 39.84 39.84 39.91 38.30 37.40 26.25 22.60 24.70 25.00 4.20 1.61
753 0.68 115.03 115.00 115.03 113.70 112.70 75.30 68.15 71.90 71.60 1.17 1.33
769 0.46 78.20 78.19 78.21 77.10 76.10 51.70 45.60 48.70 49.15 1.44 1.11
786 0.91 166.69 166.62 166.70 164.65 163.70 108.20 99.35 103.95 104.70 1.25 2.05
802 0.09 18.18 18.18 18.18 17.10 16.30 12.50 10.40 11.75 11.90 6.32 1.08
819 0.54 96.76 96.79 96.80 95.30 94.25 63.45 56.70 60.05 60.55 1.57 1.50
835 0.32 59.24 59.24 59.29 58.20 57.30 39.25 34.10 36.85 37.25 1.87 1.09
852 0.77 145.72 145.76 145.78 144.15 143.10 95.55 86.55 91.70 91.80 1.13 1.63
868 0.20 40.00 39.98 40.00 38.80 37.80 26.55 22.70 25.00 25.30 3.09 1.20
885 0.65 124.74 124.76 124.81 123.20 122.20 81.50 73.60 78.60 78.65 1.31 1.61
901 0.43 83.45 83.46 83.53 82.10 81.10 55.00 48.40 52.05 51.80 1.74 1.43
918 0.88 179.98 180.01 180.01 178.25 177.20 118.05 108.70 113.60 113.60 0.99 1.76
934 0.15 32.87 32.84 32.90 31.40 30.50 21.60 18.50 20.50 21.00 4.78 1.50
951 0.60 121.89 121.89 121.92 120.30 119.30 79.20 71.65 75.85 76.10 1.35 1.62
967 0.37 76.61 76.55 76.53 75.15 74.30 50.25 44.30 47.45 47.50 1.94 1.46
984 0.82 175.10 175.10 175.10 173.50 172.45 115.10 105.20 110.50 110.15 0.92 1.60

1000 0.26 56.58 56.70 56.61 55.60 54.60 37.35 32.30 35.20 35.80 1.98 1.10
t

graphs, although similar considerations could be drawn also for the
other kinds of instances. In the three plots of the bottom row, the easy
instances where all methods are able to obtain the same average results
have been eliminated. Such instances are mostly concentrated in the
low end or in the high end of the density range. From the plots, we
can observe that Cmsa performs well for small and medium instances.
On the other side, it seems to lose its effectiveness in the context of
larger instances, for which Cmsa-L1,2 obtains the best solutions. Beyond
he graphical impression, this is confirmed with statistical significance
y a non-parametric test, which is discussed in Section 6.4. On the
ther hand, Algorithm Cmsa-L appears to be particularly weak on very
14

all t
dense graphs. To provide the reader with the complete picture, Fig. 7
represent the best performers in a single plot, by using the same three
symbols for the three algorithms as those already used in Fig. 6.

Figs. 8 and 9 display examples of the evolution of the constructor
probabilities, obtained from a run of Cmsa-Lall, and from two distinct
runs of Cmsa-L1,2. In Fig. 8 we can observe the effect of having a
high learning rate, set to 0.98. The probabilities converge very sharply
toward their final values, starting already in the first iteration. The
two constructors Mdds-gh and Iam receive almost all the reward and
he weights of the other constructors are decreased to the minimum
hreshold 𝜏 = 0.04. Having said that, it can be observed that the

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.
Fig. 7. Summary of the results shown in Fig. 6 in a single plot.

constructor P-Max receives some reward in the final phases of the
search, which increases its relative weight. Fig. 9 contains two patterns
of the evolution of the probabilities concerning Cmsa-L1,2, from different
runs on the same graph. Given that there are only two constructors
and the probabilities keep summing to 1, the graphic is symmetric. In
the two examples in Fig. 9, the probabilities of the two constructors
converge toward similar values, although through a different evolution,
especially at the beginning of the search process.

Finally, Table 7 displays the results obtained from the solution of the
three models Ilp, Ilp-sm1, and Ilp-sm2 presented in Section 3.1, applied
to all problem instances with |𝑉 | < 300, within a computation time
limit of one hour. The reason why we only consider instances with
|𝑉 | < 300 is twofold: on the one hand, the exact solver struggles in
finding even any feasible solution for graphs of sizes slightly above 200
vertices. On the other hand, the application of CPLEX is quite memory
intensive in the context of larger instances. Running such experiments
would be, in any case, impractical. The table is organised as follows:
for the three network types (RG: Random Graphs, WS: Watts–Strogatz
Network and BA: Barabási-Albert networks), and for the three ILP
models (Ilp: no symmetry breaking constraints, Ilp-sm1 and Ilp-sm2: the
two models that implement symmetry breaking constraints), for every
instance group the average objective function value, the execution time
and the ratio of proven optimal solutions are provided. Bold values
are used to mark those results which are of at least the same quality
15
as the ones of CMSA. Indeed, there are some instances for which the
ILP results are better than the ones of CMSA and the heuristics. This
happens mainly on the smallest graphs (|𝑉 | < 100) and on very sparse
graphs (𝐷 < 0.1). Usually, ILP solving requires much longer running
time than CMSA, which is limited to |𝑉 |∕2 CPU seconds, or the greedy
heuristics which take less than a few seconds. There are a few cases,
however, in which the ILP solver quickly finds a provenly optimal
solution. This happens in the case of random graphs and for Barabási-
Albert networks, but never for Watts–Strogatz ones. Interestingly, we
do not observe any improvements due to the application of symmetry
breaking constraints. The reasons for this might be twofold. First, mod-
ern commercial solvers like CPLEX already contain the implementation
of techniques for detecting and handling symmetries, even when this is
not explicitly specified in the model. Second, the reduction of the search
space caused by symmetry breaking is not enough to outweigh the
increased complexity of the model within the given computation time
limit of one hour. The application of CPLEX to our Ilp model results in
provenly optimal solutions for a total of 79 random graphs, 47 Watts–
Strogatz networks, and 60 Barabási-Albert networks. We compare these
solutions with the respective 790, 470 and 600 solutions found by
Cmsa-L1,2 in the 10 runs executed on each graph. On random graphs,
Cmsa-L1,2 is able to find the optimal solution, with identical cost as the
one found by the ILP Model, in 648 out of 790 runs, with an average
gap of 2.37%, computed on the total runs. On Watts–Strogatz networks,
Cmsa-L1,2 finds the optimal solution in 284 out of 470 runs with an
average gap of 4.88%. Finally, on Barabási-Albert networks, Cmsa-L1,2
finds the optimal solution in 302 out of 600 runs, with an average gap
of 8.34%.

6.4. Statistical analysis

Additionally, R package scmamp (Calvo and Santafé Rodrigo, 2016)
was used to facilitate and support the interpretation of the results
from a statistical point of view. For this purpose, first, the results
of the considered algorithms are compared simultaneously using the
Friedman test for obtaining the rejection of the hypothesis that they
all perform equally. Next, corresponding pairwise comparisons are
performed using the Nemenyi post-hoc test (Garcia and Herrera, 2008)
and, eventually, the output of this statistical analysis is presented by
means of critical difference (CD) plots. The CD plot that compares all
heuristic algorithms (CMSA variants and greedy heuristics) on all 3600
random, Watts–Strogatz and Barabási-Albert graphs together is shown
in Fig. 10. The horizontal axis of a CD plot represents the range of
algorithm ranks, while each of the vertical lines represents the average
Fig. 8. Evolution of the probabilities of the six constructors during a run of Cmsa-Lall, for a random graph from the group (|𝑉 | = 126, 𝐷 = 0.84).

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.
Fig. 9. Two examples of the evolution of the probabilities of the two constructors during runs of Cmsa-L12, for an instance from the group (|𝑉 | = 934, 𝐷 = 0.15).
Table 7
Results obtained by the solution of three ILP models presented in Section 3.1 for random graphs as well as Watts–Strogatz and Barabási-Albert
graphs.

|𝑉 | 𝐷 Ilp Ilp-sm1 Ilp-sm2
obj time(𝑠) opt obj time(𝑠) opt obj time(𝑠) opt

27 0.50 8.00 38 1.00 8.00 2205 0.40 8.00 347 0.95
43 0.27 6.45 519 0.90 6.45 731 0.80 6.50 856 0.80
60 0.73 23.00 3600 0.00 22.75 3600 0.00 22.85 3600 0.00
76 0.16 5.85 1 1.00 5.85 1 1.00 5.85 1 1.00
93 0.61 26.20 3600 0.00 24.15 3600 0.00 23.90 3600 0.00

109 0.39 18.40 3600 0.00 16.75 3600 0.00 16.55 3600 0.00
126 0.84 41.40 3600 0.00 13.95 3600 0.00 0.45 3600 0.00
142 0.11 7.20 723 0.80 7.10 724 0.80 7.20 727 0.80

RG 159 0.56 1.00 3600 0.00 3.65 3600 0.00 0.00 3600 0.00
175 0.33 16.80 3600 0.00 19.30 3600 0.00 8.40 3600 0.00
192 0.78 31.80 3600 0.00 3.25 3600 0.00 0.00 3600 0.00
208 0.22 11.40 3600 0.00 14.85 3600 0.00 10.80 3600 0.00
225 0.67 1.00 3600 0.00 0.05 3600 0.00 0.00 3600 0.00
241 0.44 1.00 3600 0.00 2.45 3600 0.00 0.00 3600 0.00
258 0.89 0.00 3600 0.00 0.00 3600 0.00 0.00 3600 0.00
274 0.08 9.10 2724 0.25 8.80 2733 0.25 8.75 2980 0.20
291 0.53 0.10 3600 0.00 0.00 3600 0.00 0.00 3600 0.00

27 0.52 9.00 168 1.00 9.00 2956 0.25 9.00 369 1.00
43 0.28 7.85 1478 0.70 7.85 1951 0.50 7.85 1881 0.50
60 0.73 24.20 3600 0.00 23.75 3600 0.00 24.00 3600 0.00
76 0.16 7.95 1642 0.55 7.80 1823 0.50 7.95 1637 0.55
93 0.60 27.00 3600 0.00 24.30 3600 0.00 24.35 3600 0.00

109 0.39 19.90 3600 0.00 17.60 3600 0.00 17.75 3600 0.00
126 0.84 58.80 3600 0.00 38.85 3600 0.00 0.75 3600 0.00
142 0.11 9.00 3241 0.10 8.75 3241 0.10 8.85 3242 0.10

WS 159 0.57 1.00 3600 0.00 4.05 3600 0.00 0.00 3600 0.00
175 0.33 15.20 3600 0.00 20.25 3600 0.00 1.00 3600 0.00
192 0.78 31.35 3600 0.00 6.65 3600 0.00 0.00 3600 0.00
208 0.22 12.95 3600 0.00 17.30 3600 0.00 8.50 3600 0.00
225 0.67 1.00 3600 0.00 0.05 3600 0.00 0.00 3600 0.00
241 0.44 1.00 3600 0.00 1.35 3600 0.00 0.00 3600 0.00
258 0.89 0.00 3600 0.00 0.00 3600 0.00 0.00 3600 0.00
274 0.08 9.25 3600 0.00 9.40 3600 0.00 9.40 3600 0.00
291 0.53 0.00 3600 0.00 0.00 3600 0.00 0.00 3600 0.00

27 0.52 7.00 1 1 7.00 37 1.00 7.00 1 1.00
43 0.28 6.00 1 1 6.00 459 0.90 6.00 14 1.00
60 0.73 17.00 3600 0 16.80 3600 0.00 17.00 3600 0.00
76 0.16 6.00 20 1 6.00 1219 0.85 6.00 249 1.00
93 0.60 19.00 3600 0 17.95 3600 0.00 18.80 3600 0.00

109 0.39 14.10 3600 0 13.05 3600 0.00 13.85 3600 0.00
126 0.84 32.55 3600 0 29.65 3600 0.00 29.35 3600 0.00
142 0.11 6.95 3600 0 6.75 3600 0.00 6.90 3600 0.00

BA 159 0.57 22.40 3600 0 22.35 3600 0.00 8.10 3600 0.00
175 0.33 17.20 3600 0 14.10 3600 0.00 15.65 3600 0.00
192 0.78 1.00 3600 0 13.90 3600 0.00 0.00 3600 0.00
208 0.22 13.90 3600 0 12.30 3600 0.00 12.65 3600 0.00
225 0.67 1.00 3600 0 2.00 3600 0.00 0.00 3600 0.00
241 0.44 1.25 3600 0 3.00 3600 0.00 0.00 3600 0.00
258 0.89 1.00 3600 0 0.70 3600 0.00 0.00 3600 0.00
274 0.08 8.05 3600 0 7.05 3600 0.00 7.05 3600 0.00
291 0.53 1.00 3600 0 1.80 3600 0.00 0.00 3600 0.00
16

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.
Fig. 10. Critical difference plot comparing all heuristic algorithms on all 3600 problem instances.
Fig. 11. Comparison depending on graph size. Top left: small graphs, top right: medium-sized graphs, bottom: large graphs.
Table 8
Performance of the algorithms and the ILP models for different types of networks, in
terms of the number of instance groups for which the respective algorithms obtain the
best average solution.

RG WS BA Sum % best

Cmsa 23 30 21 74 41.1%
Cmsa-Lall 18 14 12 44 24.4%
Cmsa-L1,2 34 39 43 116 64.4%

CMSA (any) 58 57 55 170 94.4%

Ilp 5 5 6 16 8.8%
Ilp-sm1 4 4 5 13 7.2%
Ilp-sm2 4 4 5 13 7.2%

Mdds-gh 0 0 0 0 0.0%
Iam 0 0 0 0 0.0%
P-max 0 0 0 0 0.0%
P-min 0 0 0 0 0.0%
R-Lid 0 0 0 0 0.0%
Colour 0 0 0 0 0.0%

rank of the corresponding algorithm. Bold horizontal lines connecting
algorithm markers indicate that the corresponding algorithms perform
statistically equivalent – i.e. the critical difference is not greater than
the significance level of 0.05 – concerning the considered set of problem
instances.

The CD plot from Fig. 10 shows the following. First, the three CMSA
variants outperform, with statistical significance, all six greedy heuris-
tics, on the whole set of graphs. Second, the performance differences
between all pairs of greedy heuristics are statistically significant. Third,
Cmsa-L1,2 performs better – with statistical significance – than Cmsa-Lall.
Fourth, even though the average ranking of Cmsa-L is better than the
17

1,2
one of Cmsa and the average ranking of Cmsa is better than the one of
Cmsa-Lall, no statistically significant difference can be found between
Cmsa-L1,2 and Cmsa.

Finally, we repeated the CD plot analysis limiting the set of consid-
ered instances to small, medium and large-sized graphs. The resulting
CD plots (only concerning the CMSA variants) can be found in Fig. 11.
They show that, while no statistical difference can be found between
Cmsa-L1,2 and Cmsa in the context of small graphs, Cmsa-L1,2 is found
to outperform Cmsa with statistical significance in the context of and
medium-sized and large graphs. This confirms our observations from
the numerical results (Tables 4, 5 and 6), and in part, from the analysis
provided in Figs. 6 and 7.

In addition to the statistical comparison, in Fig. 12 we show the
absolute improvements obtained by Cmsa-L1,2, which is the best per-
forming CMSA, over the best greedy result. This is done for the three
considered types of graphs. As we commented previously, the improve-
ment is more noticeable on graphs with higher densities. For this
reason, the graph density is shown on the 𝑥-axis, while the 𝑦-axis shows
the improvement, measured as the difference between the dominating
sets found by Cmsa-L1,2 and the dominating sets in the best greedy
result. For each density point, a boxplot shows the distribution of the
obtained improvements.

7. Conclusions

In this work, we presented state-of-the-art algorithms for solving
the maximum disjoint dominating sets problem (MDDSP). The pro-
posed algorithms are variants of a recent matheuristic called Construct,
Merge, Solve & Adapt (CMSA). In addition to a standard variant of
CMSA, we proposed the Multi-Constructor CMSA as a framework for
integrating multiple construction heuristics into CMSA. This algorithm

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.

s

Fig. 12. Improvement obtained by Cmsa-L1,2 over the best greedy result, for instance groups, ordered by increasing density. From top to bottom: random graphs, Watts–Strogatz
networks, Barabási-Albert networks.
uses a stochastically biased selection criterion and a reinforcement
learning technique for learning the best probabilities for the construc-
tors during the search process. Two variants of the Multi-Constructor
CMSA were tested: the first one, Cmsa-Lall, makes use of all available
constructors, while the second one, Cmsa-L1,2, only utilises the two
most promising constructors. We were able to show that all our CMSA
variants outperform the greedy heuristics from the related literature on
three distinct models of graphs: random, Watts–Strogatz and Barabási-
Albert. Moreover, Cmsa-L1,2 generally performs best, with a statistically
ignificant advantage over the other two CMSA variants in the context
18
of medium-sized and large graphs, which are the most challenging ones.
We also made an attempt to solve the MDDSP directly by means of
applying a MIP solver to three ILP models, two of which implement
symmetry breaking constraints. However, this did not yield satisfactory
results, with the exception of very sparse graphs. Overall, Cmsa-L1,2
performs best on 116 out of 180 instance groups, which corresponds to
64.4% of the instances. When considering all CMSA variants together,
they perform best on 94.4% of the instances, that is, 170 out of 180
instance groups. The remaining 10 instance groups are small and sparse
graphs for which the ILP models perform best. We executed all the

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.

c
e
a
e
c
e
w
s

C

experiments on a new set of graphs that we have generated from
an instance space spanned by graph size (number of vertices) and
graph density. This was done with a statistically sound procedure that
guarantees that all regions of the instance space are represented in the
sample.

Future work will consist in trying to come up with new constructors
for the problem, and in investigating different reward functions or
different learning schemes. For example, we might consider rewarding
also the time that a constructor employs to generate the dominating
sets, in order to favour those constructors that are faster. Another op-
tion would be to use an 𝜖-greedy criterion for the diversification of the
onstructor choices, instead of a minimum threshold. We consider also
valuating the effects of setting fixed probabilities for the constructors
nd tuning them with a traditional offline tuning procedure, instead of
mploying a learning scheme. Another idea is a sequential selection
riterion, in comparison with a stochastic one. Finally, we plan to
xtend the Multi-Constructor CMSA to other optimisation problems for
hich constructors of different types exist. Consider, as an example, job

cheduling problems or packing problems.

RediT authorship contribution statement

Roberto Maria Rosati: Conceptualization, Methodology, Software,
Validation, Investigation, Data curation, Writing – original draft, Visu-
alization. Salim Bouamama: Investigation, Software, Writing – review
& editing. Christian Blum: Conceptualization, Methodology, Investiga-
tion, Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The link to the data is shared in the article.

Acknowledgements

The authors acknowledge Andrea Schaerf for his fruitful comments
on the work and his help in reviewing the drafts of this manuscript.
Additionally, the authors acknowledge TAILOR, a project funded by
EU Horizon 2020 research and innovation programme under GA No
952215, for the support provided for this research. Furthermore, this
work was supported by grant PID2022-136787NB-I00 funded by
MCIN/AEI/10.13039/501100011033. Finally, the support provided
by CINECA through grant ISCRA C IA4EVRP HP10CE285L is grate-
fully acknowledged by the authors. Finally, the authors acknowledge
the anonymous reviewers for their constructive feedback that helped
improve the quality of this work.

References

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., 2002. Wireless sensor
networks: a survey. Comput. Netw. 38 (4), 393–422.

Alicastro, M., Ferone, D., Festa, P., Fugaro, S., Pastore, T., 2021. A reinforcement
learning iterated local search for makespan minimization in additive manufacturing
machine scheduling problems. Comput. Oper. Res. 131, 105272.

Balbal, S., Bouamama, S., Blum, C., 2021. A greedy heuristic for maximizing the lifetime
of wireless sensor networks based on disjoint weighted dominating sets. Algorithms
14 (6), 170.

Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science 286
(5439), 509–512.

Bengio, Y., Lodi, A., Prouvost, A., 2021. Machine learning for combinatorial op-
timization: a methodological tour d’horizon. European J. Oper. Res. 290 (2),
405–421.

Blum, C., Ochoa, G., 2021. A comparative analysis of two matheuristics by means of
19

merged local optima networks. European J. Oper. Res. 290 (1), 36–56.
Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A., 2016. Construct, merge, solve &
adapt a new general algorithm for combinatorial optimization. Comput. Oper. Res.
68, 75–88.

Bouamama, S., Blum, C., Pinacho-Davidson, P., 2022. A population-based iterated
greedy algorithm for maximizing sensor network lifetime. Sensors 22 (5), 1804.

Bruglieri, M., Cordone, R., 2021. Metaheuristics for the minimum gap graph partitioning
problem. Comput. Oper. Res. 132, 105301.

Calvo, B., Santafé Rodrigo, G., 2016. Scmamp: Statistical comparison of multiple
algorithms in multiple problems. R J. 8/1.

Canca, D., De-Los-Santos, A., Laporte, G., Mesa, J.A., 2017. An adaptive neighborhood
search metaheuristic for the integrated railway rapid transit network design and
line planning problem. Comput. Oper. Res. 78, 1–14.

Cardei, M., Du, D.Z., 2005. Improving wireless sensor network lifetime through power
aware organization. Wirel. Netw. 11 (3), 333–340.

Cardei, M., MacCallum, D., Cheng, M.X., Min, M., Jia, X., Li, D., Du, D.Z., 2002.
Wireless sensor networks with energy efficient organization. J. Interconnect. Netw.
3 (03n04), 213–229.

Cockayne, E.J., Hedetniemi, S.T., 1975. Optimal domination in graphs. IEEE Trans.
Circ. Syst. 22 (11), 855–857.

Cockayne, E.J., Hedetniemi, S.T., 1977. Towards a theory of domination in graphs.
Networks 7 (3), 247–261.

Dupin, N., Talbi, E.-G., 2021. Matheuristics to optimize refueling and maintenance
planning of nuclear power plants. J. Heuristics 27 (1–2), 63–105.

Feige, U., Halldórsson, M.M., Kortsarz, G., Srinivasan, A., 2002. Approximating the
domatic number. SIAM J. Comput. 32 (1), 172–195.

Ferrer, J., Chicano, F., Ortega-Toro, J.A., 2021. CMSA algorithm for solving the
prioritized pairwise test data generation problem in software product lines. J.
Heuristics 27, 229–249.

Fialho, A., Da Costa, L., Schoenauer, M., Sebag, M., 2010. Analyzing bandit-based
adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60 (1), 25–64.

Garcia, S., Herrera, F., 2008. An extension on ‘‘statistical comparisons of classifiers
over multiple data sets’’ for all pairwise comparisons. J. Mach. Learn. Res. 9 (Dec),
2677–2694.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide To the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Hammersley, J.M., Handscomb, D., 1964. Percolation processes. In: Monte Carlo
Methods. Springer, pp. 134–141.

Hu, B., Raidl, G.R., 2006. Variable neighborhood descent with self-adaptive
neighborhood-ordering. In: Proceedings of the 7th EU/MEeting on Adaptive,
Self-Adaptive, and Multi-Level Metaheuristics.

Irving, R.W., 1991. On approximating the minimum independent dominating set.
Inform. Process. Lett. 37 (4), 197–200.

Islam, K., Akl, S.G., Meijer, H., 2009. Maximizing the lifetime of wireless sensor
networks through domatic partition. In: 2009 IEEE 34th Conference on Local
Computer Networks. IEEE, pp. 436–442.

Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M., Talbi, E.-
G., 2022. Machine learning at the service of meta-heuristics for solving
combinatorial optimization problems: A state-of-the-art. European J. Oper. Res. 296
(2), 393–422.

Landete, M., Sainz-Pardo, J.L., 2022. The domatic partition problem in separable
graphs. Mathematics 10 (4), 640.

Lewis, R., Thiruvady, D., Morgan, K., 2019. Finding happiness: an analysis of the
maximum happy vertices problem. Comput. Oper. Res. 103, 265–276.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T., 2016. The
irace package: Iterated racing for automatic algorithm configuration. Oper. Res.
Perspect. 3, 43–58.

Mak, N.H., Seah, W.K., 2009. How long is the lifetime of a wireless sensor net-
work? In: 2009 International Conference on Advanced Information Networking and
Applications. pp. 763–770.

Méndez-Díaz, I., Zabala, P., 2008. A cutting plane algorithm for graph coloring. Discrete
Appl. Math. 156 (2), 159–179.

Mesbahi, M., Egerstedt, M., 2010. Graph Theoretic Methods in Multiagent Networks.
Princeton University Press.

Mischek, F., Musliu, N., 2022. Reinforcement learning for cross-domain hyper-heuristics.
In: Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence. IJCAI-22, pp. 4793–4799.

Nagra, A.A., Han, F., Ling, Q.H., 2019. An improved hybrid self-inertia weight adaptive
particle swarm optimization algorithm with local search. Eng. Optim. 51 (7),
1115–1132.

Nguyen, T.N., Huynh, D.T., 2007. Extending sensor networks lifetime through energy
efficient organization. In: International Conference on Wireless Algorithms, Systems
and Applications. WASA 2007, IEEE, pp. 205–212.

Ore, O., 1962. Theory of Graphs.
Pinacho-Davidson, P., Bouamama, S., Blum, C., 2019. Application of CMSA to the

minimum capacitated dominating set problem. In: Proceedings of the Genetic and
Evolutionary Computation Conference. pp. 321–328.

Poon, S.H., Yen, W.C.K., Ung, C.T., 2012. Domatic partition on several classes of graphs.
In: International Conference on Combinatorial Optimization and Applications.
Springer, pp. 245–256.

http://refhub.elsevier.com/S0305-0548(23)00314-3/sb1
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb1
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb1
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb2
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb2
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb2
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb2
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb2
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb3
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb3
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb3
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb3
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb3
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb4
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb4
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb4
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb5
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb6
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb6
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb6
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb7
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb7
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb7
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb7
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb7
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb8
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb8
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb8
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb9
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb9
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb9
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb10
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb10
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb10
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb11
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb11
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb11
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb11
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb11
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb12
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb12
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb12
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb13
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb13
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb13
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb13
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb13
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb14
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb14
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb14
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb15
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb15
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb15
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb16
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb16
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb16
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb17
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb17
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb17
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb18
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb18
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb18
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb18
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb18
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb20
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb20
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb20
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb20
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb20
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb21
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb21
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb21
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb22
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb22
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb22
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb23
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb23
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb23
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb23
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb23
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb24
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb24
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb24
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb25
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb25
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb25
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb25
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb25
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb26
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb27
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb27
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb27
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb28
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb28
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb28
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb29
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb29
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb29
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb29
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb29
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb30
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb30
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb30
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb30
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb30
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb31
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb31
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb31
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb32
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb32
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb32
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb33
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb33
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb33
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb33
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb33
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb34
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb34
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb34
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb34
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb34
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb35
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb35
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb35
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb35
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb35
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb36
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb37
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb37
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb37
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb37
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb37
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb38
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb38
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb38
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb38
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb38

Computers and Operations Research 161 (2024) 106450R.M. Rosati et al.
Queiroz dos Santos, J.P., de Melo, J.D., Duarte Neto, A.D., Aloise, D., 2014. Reactive
search strategies using reinforcement learning, local search algorithms and variable
neighborhood search. Expert Syst. Appl. 41 (10), 4939–4949.

Riege, T., Rothe, J., 2005. An exact 2.9416𝑛 algorithm for the three domatic number
problem. In: International Symposium on Mathematical Foundations of Computer
Science. Springer, pp. 733–744.

Riege, T., Rothe, J., Spakowski, H., Yamamoto, M., 2007. An improved exact algorithm
for the domatic number problem. Inform. Process. Lett. 101 (3), 101–106.

Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40 (4), 455–472.

Rosati, R.M., Bouamama, S., Blum, C., 2023a. Construct, merge, solve and adapt applied
to the maximum disjoint dominating sets problem. In: Metaheuristics. pp. 306–321.

Rosati, R.M., Kletzander, L., Blum, C., Musliu, N., Schaerf, A., 2023b. Construct, merge,
solve and adapt applied to a bus driver scheduling problem with complex break
constraints. In: AIxIA 2022 – Advances in Artificial Intelligence. pp. 254–267.
20
Van-Rooij, J.M.M., 2010. Polynomial space algorithms for counting dominating sets and
the domatic number. In: International Conference on Algorithms and Complexity.
Springer, pp. 73–84.

Wang, R., Purshouse, R.C., Fleming, P.J., 2015. Preference-inspired co-evolutionary
algorithms using weight vectors. European J. Oper. Res. 243 (2), 423–441.

Watkins, C.J.C.H., 1989. Learning from Delayed Rewards. King’s College, Cambridge
United Kingdom.

Watson, J.-P., 2010. An introduction to fitness landscape analysis and cost models
for local search. In: Handbook of Metaheuristics. Springer US, Boston, MA, pp.
599–623.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘small-world’networks. Nature
393 (6684), 440–442.

Welsh, D.J., Powell, M.B., 1967. An upper bound for the chromatic number of a graph
and its application to timetabling problems. Comput. J. 10 (1), 85–86.

http://refhub.elsevier.com/S0305-0548(23)00314-3/sb39
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb39
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb39
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb39
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb39
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb40
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb40
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb40
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb40
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb40
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb41
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb41
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb41
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb42
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb42
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb42
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb43
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb43
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb43
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb44
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb44
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb44
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb44
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb44
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb45
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb45
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb45
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb45
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb45
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb46
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb46
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb46
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb47
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb47
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb47
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb48
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb48
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb48
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb48
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb48
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb49
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb49
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb49
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb50
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb50
http://refhub.elsevier.com/S0305-0548(23)00314-3/sb50

	Multi-constructor CMSA for the maximum disjoint dominating sets problem
	Introduction
	Related Work
	Problem Description
	ILP formulation
	Model 1 with symmetry breaking constraints
	Model 2 with symmetry breaking constraints

	Graphical Problem Illustration

	Greedy heuristics for the MDDSP
	Multi-Constructor CMSA for the MDDSP
	Algorithmic details
	Parameters
	Lexicographic Objective Function
	Adaptive learning of constructor probabilities

	Experimental Results
	Instances
	Parameter tuning
	Results
	Statistical Analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

