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A B S T R A C T   

This paper examines the effects of implementing relative orientation constraints on bundle adjustment, as well as 
provides a full derivation of the Jacobian matrix for such an adjustment, that can be used to facilitate other 
implementations of bundle adjustment with constrained cameras. We present empirical evidence demonstrating 
improved accuracy and reduced computational load when these constraints are imposed.   

1. Introduction 

The use of oblique imaging technology is becoming increasingly 
popular in the geospatial industry, opening up a wide range of new 
possibilities for geospatial companies (Remondino and Gerke, 2015; 
Toschi et al., 2019). The technology provides high-resolution, three-
dimensional perception of buildings, roads, and other urban objects 
from multiple angles. This allows for more detailed analysis and more 
accurate identification of objects and structures that are difficult to view 
from a straight-down perspective, such as tall buildings, bridges, and 
other large structures (Haala and Rothermel, 2015). The oblique angle 
ensures more detailed views of the object, which can be used for accu
rate measurements and mapping. Moreover, oblique photogrammetry 
represents a key technology for 3D city modelling, especially for roofs 
and facades reconstruction and texturing (Wang et al., 2023). 

However, this technology also poses significant challenges. Oblique 
imaging requires dealing with large variations in image scale and illu
mination, multiple occlusions and a larger disparity search space. This 
means that the data captured by oblique imaging must be processed and 
analyzed more carefully, which can be a time-consuming and complex 
process. With regard to image block orientation, the main problem is 
how to efficiently and rigorously handle a larger number of unknowns 
while minimizing the risk of divergence in bundle block adjustment 
(BBA). 

One of the first approaches developed to deal with a multi-head 
camera system was implemented for the post-processing of four 
panchromatic images simultaneously acquired by the Digital Mapping 
Camera (DMC) by Z/I Imaging Corporation (Madani et al., 2004). In that 

case, the relative position of the projection centers were precisely known 
from a calibration process, whereas relative orientation angles were 
estimated via BBA for each image exposure, thus handling possible 
angular instability over short time spans. Finally, the relative exterior 
orientation parameters were applied to generate a single, virtual 
perspective image for subsequent standard photogrammetric processes 
(Dörstel et al., 2002). Several works in the literature suggest considering 
relative orientation constraints between cameras (Wiedemann and 
Moré, 2012; Rupnik et al., 2015; Sun et al., 2016). In terms of available 
implementations, two main approaches have been proposed to handle 
rigid orientation constraints: the first, frequently applied in commercial 
surveys with ground and airborne multi-camera systems, consists of 
retrieving relative orientations between cameras during a calibration 
procedure (Esquivel et al., 2007; Dai et al., 2009; Schneider and 
Förstner, 2013). After this initial phase, BBA will optimise only the 
exterior orientation of a reference camera, while the others will be 
rigidly bound to it. 

The second possible approach is to bypass the preliminary calibra
tion and compute the relative orientations among the cameras directly 
from the data. This is done, with different nuances, in COLMAP 
(Schönberger and Frahm, 2016), and MicMac (Pierrot-Deseilligny et al., 
2014). These methods start from an initialisation obtained from 
Structure-from-Motion (SfM) and deduce relative poses from the data, 
unlike other methods that derive relative poses from calibration. Also 
Pix4Dmapper (Pix4D) and Metashape (Agisoft) support the definition of 
multi-camera systems, but the available documentation does not give 
sufficient details on the underlying method. 

The RigBundleAdjuster of COLMAP (Schönberger and Frahm, 2016) 
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computes the average relative orientations between rigged cameras 
from the initial SfM and then considers them known in the final BBA, as 
in a calibrated case (Heng et al., 2015). Note that they are introduced as 
hard constraints forced at each iteration, so the number of unknowns 
remain the same as in the unconstrained version of BBA. 

The MicMac (Pierrot-Deseilligny et al., 2014) approach – in addition 
to being able to include pre-calibrated relative orientations – computes 
the initial relative orientations by averaging from the initial SfM. Then, 
it parametrises each unit of the multi-camera system with its indepen
dent extrinsic parameters and applies the relative orientations as soft 
constraints, thereby relaxing the rigidity of the rig. Similarly to 
(Schönberger and Frahm, 2016), this parametrization does not reduce 
the number of BBA unknowns. 

A third case, which we are not interested in, is when the rig is not 
considered rigid and the variable relative orientations are computed on- 
line. MicMac also enables this possibility with a weighting scheme that 
allows the relative orientation to remain constant or to evolve over time. 
In (Seok and Lim, 2019) the relative orientations can vary with the 
constraint that the distance between the cameras is constant. 

This paper proposes a principled approach that introduces fixed 
relative orientations between rigged cameras as unknowns. We express 
the exterior orientation of the underlying cameras as a function of the 
reference camera parameters and the fixed, unknown relative orienta
tions. In this way, the rigidity of the multi-camera system is respected 
while reducing the number of unknowns. In addition, this BBA with 
constrained relative orientation can replace the BBA which is routinely 
performed as the last stage of the SfM pipeline, whereas other ap
proaches are implemented as an additional step after the unconstrained 
BBA. 

A similar approach has been proposed by (Sun et al., 2016), but 
neither the implementation nor the details of the derivative calculation 
are available. 

Our method, henceforth dubbed “Constrained Relative Orientations 
BBA” or CRO-BBA for short, implements the exact formulation of the 
Jacobian matrix, that collects the partial derivatives of the collinearity 
equations rewritten to account for relative constraints. The formulae for 
the Jacobian matrix of the BBA with constrained cameras have been 
explicitly derived using the “matrix differential calculus” formalism 
(Magnus and Neudecker, 1999), which leads to a compact and modular 
derivation. 

We will provide evidence that exploiting the rigidity of the system 
actually has two advantages: it reduces the number of unknowns and it 
improves accuracy. In fact, neglecting the relative orientation constraint 
artificially increases the degrees of freedom of the system, leading to 
over-fitting (i.e. noise-fitting). 

2. Notation and background 

The central projection operated by a pinhole camera is represented 
mathematically by the collinearity equations: 

x = f (X, g) (1)  

where X are the coordinates of an object point, x are the two coordinates 
of the corresponding image point (in pixels) and g is the vector of 
extrinsic parameters that represents the exterior orientation of the 
image. The intrinsic parameters are assumed to be known and fixed, so 
they are subsumed in f. Their estimation, possibly including distortion 
parameters, can easily be added to the process. 

The exterior orientation is a direct isometry (or rigid transform) that 
has a matrix representation (in homogeneous coordinates) as 

G =

[
R t
0 1

]

(2)  

where R is a 3 × 3 rotation matrix and t is a 3 × 1 vector representing a 
translation. The rotation matrix, in turn, can be parameterized by three 
numbers, e.g, the Euler angles ω, φ, κ (see Appendix B), so we write R––R 
(ω, φ, κ) and the vector of extrinsic parameters is: g = [ω;φ; κ; t]. 

If the central projection is accomplished by: 

fP([x, y, z]⊤) =
[

x
z
,
y
z

]⊤

(3)  

then we can write the collinearity equations as: 

x = f (X, g) = fP(R(ω,φ, κ)X+ t). (4) 

The center of projection (COP) is the single point in space where all 
the projection rays sampled by the pinhole camera intersect, and is given 
by − R⊤t. 

3. Problem statement 

Let us consider a multi-camera system (a.k.a. multi-head camera) 
composed by k cameras, where one is taken as the reference and the 
remaining k − 1 have a fixed but unknown relative orientation with 
respect to the first one. For the sake of concreteness, one can think of the 
customary “Maltese cross” arrangement (Fig. 1), that comprises a single 
nadir-pointing camera and four oblique-pointing cameras (k = 5). Two 
of the oblique cameras point in opposite directions cross–track (left, 
right), while the remaining two oblique cameras point in opposite di
rections along-track (forward, backward). The five cameras are housed 
in a suitable frame that ensures rigidity and their shutters are 

Fig. 1. Left: illustration of the “Maltese cross” footprint. Right: an example of cameras arrangement in Leica CityMapper.  
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synchronized to operate simultaneously.1  

● Let Iν be one nadir image, whose exterior orientation is 

Gν =

[
Rν tν
0 1

]

. (5)  

Gν transforms 3D point coordinates from an external (object) reference 
frame to the standard camera reference frame, whose origin is at the 
COP and the Z axis is orthogonal to the image plane.  

● let 

Gτ =

[
Rτ tτ
0 1

]

(6)  

be the orientation of the oblique image relative to the nadir image, 
which are fixed but unknown. Gτ transform points from the nadir camera 
coordinate system to the oblique one; in the case of the “Maltese cross”, 
there are four of such relative orientations: forward, backward, left, 
right, i.e., τ = {F, B, L, R} (see Fig. 1).  

● let Iμ be one of the (four) oblique images relative to Iν, whose exterior 
orientation is 

Gμ =

[
Rμ tμ
0 1

]

μ = (ν, τ); (7)  

then Gμ can be written as a function of the exterior orientation of the 
nadir image and the relative orientation: 

Gμ = Gτ⋅Gν =

[
Rτ⋅Rν Rτ⋅tν + tτ

0 1

]

; (8)    

● let us parametrize the nadir orientation Gν with the 6 parameters 
g⊤ν = [ω,φ,κ, tν], where the first three are the Euler angles;  

● let us parametrize the relative orientation Gτ with the 6 parameters 
g⊤τ = [θ, ψ, ϱ, tτ] where the first three are the Euler angles. 

Although we focused on a multi-camera system with oblique cam
eras, such as the “Maltese cross”, CRO-BBA can be applied to any multi- 
camera system, such as, e.g., multi-spectral cameras that are composed 
by separate nadir-looking cameras that record specific light-wave bands. 

4. Jacobian matrix 

Performing BBA using any variant of the Gauss-Newton method 
(such as Levenberg-Marquardt or Gauss-Markov) entails computing the 
Jacobian matrix that collects the partial derivatives of f. 

The primary structure of the Jacobian of the classical BBA is 
composed of blocks of two types, which we will call JA and JB, that 
contain respectively the derivatives of the collinearity equations with 
respect to (wrt) image orientation and wrt 3D point. In the case of CRO- 
BBA, only the nadir images give rise to this type of blocks, whereas 
oblique images (whose orientation is linked to the nadir image) lead to 
three new blocks (Fig. 2).  

● JC collects the derivative of the residual in the oblique images wrt the 
nadir orientation;  

● JD collects the derivative of the residual in the oblique images wrt the 
relative orientation;  

● JE collects the derivative of the residual in the oblique images wrt 3D 
point coordinates. 

The blocks JA, JC and JD have dimension 2 × 6, whereas JB and JE have 
dimension 2 × 3. We assume that the oblique images relative to the same 
nadir image are consecutive and ordered consistently. 

Before working out the derivative of the function f defined in (4), let 
us establish the Jacobian of the projection function fp by differentiating 
it element-by-element: 

Dfp(W) =

⎡

⎢
⎢
⎣

1
z

0 −
x
z2

0
1
z

−
y
z2

⎤

⎥
⎥
⎦, W⊤ = [x, y, z]. (9) 

We now proceed to derive the expression for the non-zero blocks of 
the BBA Jacobian. 

Instead of reverting to subscript notation for computing such de
rivatives, we perform the entire operation using the matrix differential 
calculus introduced by (Magnus and Neudecker, 1999), which we will 
briefly review in Appendix A. 

Blocks JA and JB correspond to nadir images, and they are easily 
derived: 

JA =
∂f (X, gν)

∂g⊤
ν

=
∂fp(W)

∂W⊤

⃒
⃒
⃒
⃒

W=RνX+tν

∂(RνX + tν)

∂g⊤
ν

= Dfp(RνX + tν)[ (X⊤⊗ I3)DRν|I3 ]

(10)  

JB =
∂f (X, gν)

∂X⊤
=

∂fp(W)

∂W⊤

⃒
⃒
⃒
⃒

W=RνX+tν

∂(RνX + tν)

∂X⊤

= Dfp(RνX + tν)Rν

(11) 

As for the blocks related to oblique images, let us derive first with 
respect to the relative orientation 

JD =
∂f (X, gμ)

∂g⊤
τ

=

[ ∂f (X, gμ)

∂[θ,ψ , ϱ] |
∂f (X, gμ)

∂t⊤τ

]

(12) 

Let X′ = RτRνX+ Rτtν + tτ, then 

Fig. 2. Primary structure of the CRO-BBA Jacobian for a block of 2 nadir 
cameras, 8 oblique and 3 tie-points. 

1 Small lags can be approximately absorbed into the relative orientation as 
translations along the direction of motion. 
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∂f (X, gμ)

∂[θ,ψ , ϱ]
= Dfp(X′)

∂(RτRνX + Rτtν + tτ)

∂[θ,ψ , ϱ]

= Dfp(X′)
∂(Rτ(RνX + tν))

∂[θ,ψ , ϱ]

= Dfp(X′)((RνX + tν)
⊤
⊗ I3)DRτ

(13)  

and also 

∂f (X, gμ)

∂t⊤τ
= Dfp(X′)

∂(RτRνX + Rτtν + tτ)

∂t⊤τ

= Dfp(X′)
∂tτ

∂t⊤τ
= Dfp(X′)I3

(14) 

Now we derive with respect to the nadir orientation: 

JC =
∂f (X, gμ)

∂g⊤
ν

=

[ ∂f (X, gμ)

∂[ω,φ, κ]
|
∂f (X, gμ)

∂t⊤ν

]

(15)  

where 

∂f (X, gμ)

∂[ω,φ, κ]
= Dfp(X′)

∂(RτRνX + Rτtν + tτ)

∂[ω,φ, κ]

= Dfp(X′)
∂RτRνX

∂[ω,φ, κ]

= Dfp(X′)(X⊤ ⊗ Rτ)DRν

(16)  

and 

∂f (X, gμ)

∂t⊤ν
= Dfp(X′)

∂(RτRνX + Rτtν + tτ)

∂t⊤ν

= Dfp(X′)
∂Rτtν

∂t⊤ν
= Dfp(X′)Rτ

(17) 

Finally, for the 3D point: 

JE =
∂f (X, gμ)

∂X⊤
= Dfp(X′)

∂(RτRνX + Rτtν + tτ)

∂X⊤

= Dfp(X′)RτRν

(18) 

It is worth noting that these formulae are modular with respect to the 
parametrization chosen for R: changing it will cause only DR to change. 
Intrinsic parameters may possibly be added to the unknowns. 

Using these formulae, we implemented CRO-BBA in MATLAB 
adopting camera reduction (Brown, 1958) and the 

Levenberg-Marquardt optimization strategy. Levenberg-Marquardt is a 
variation of Gauss-Newton, where a diagonal term is added to the 
Hessian matrix. By changing the weight of this term the algorithm can 
dynamically move between pure Gauss-Newton and gradient descent, 
improving convergence basin and speed (Börlin and Grussenmeyer, 
2013). Moreover, this diagonal matrix (a.k.a. damping term) has a 
regularization effect that restores the full rank of the Jacobian matrix, 
thereby implicitly removing the datum defect (Triggs et al., 2000) of the 
free-network adjustment. Classical BBA is obtained by switching off 
relative orientation constraints in our MATLAB implementation. 

5. Experiments 

We performed tests on simulated data and one real data set. 
Let m be the number of nadir images and let k be the number of 

sensors that compose the multi-camera system (the total number of 
images is mk), n be the number of tie-points, ℓ be the number of equa
tions and p be the number of unknowns. If all tie-points were seen in all 
images ℓ = 2mkn, but in practice it is much smaller than that, for it 
depends on the visibility. As for p, if the oblique images are adjusted as if 
their orientations were independent, the system has p = 6mk + 3n un
knowns, whereas by enforcing the rigidity, the unknowns reduce to 
p = 6(m + k − 1) + 3n. This means that CRO-BBA solves a significantly 
smaller system of equations, with benefits in computing time, memory 
footprint and stronger block stability. 

As image-space errors we considered the RMS (Root Mean Square) 
reprojection error and the root of the reference variance (RRV) defined 

Fig. 3. Simulated data. Cameras are represented by coloured pyramids, control/tie-points points are displayed as gray crosses (best viewed in color).  

Fig. 4. Simulated data. Matches distribution between the images. Images are 
sorted according to the ordering “Nadir”, “Forward”, “Right”, “Backward” and 
“Left” cameras. 
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as follows. 
The reprojection error is the ℓ × 1 vector v whose entries are given by 

xij − f(Xi, gj) ​ for ​ i = 1…n, j = 1…mk. The RMS reprojection error - 
RMSRE is given by: 

RMSRE =

̅̅̅̅̅̅̅̅
v⊤v
ℓ

√

, (19)  

while the reference variance - RRV (Kraus, 2007) is computed as: 

RRV =

̅̅̅̅̅̅̅̅̅̅̅̅
v⊤v

ℓ − p

√

. (20) 

Our BBA/CRO-BBA do not use control points, producing a free- 
network solutions. Then we align this result to the datum by 
computing the similarity (a.k.a. S-transform, or Helmert transform) that 
minimizes the least-squares distances between corresponding object 
points and control points. Thus, in object-space, the evaluation consid
ered the RMS of the residual distances of this alignment. Any non- 
Euclidean deformation of the model generated by BBA/CRO-BBA is 

revealed (in object-space) by the alignment residuals. 
In the simulated experiments the COPs are known as well, so we also 

(separately) aligned the reconstructed COPs to their known positions 
and measured the RMS of the residual distances.2 

5.1. Simulated data 

Simulation used randomly subsampled 3D points and trajectory from 
a real LiDAR (Light Detection And Ranging) survey of the city of Udine, 
Italy (data courtesy by Helica s.r.l.). We assumed a multi-camera system 
composed of five Phase One iXA 180 (10,328 × 7760 pixels, 50 mm focal 
length) in a “Maltese cross” arrangement. Angles between the principal 
axis of the nadir camera and those of the oblique images were set to 30◦, 
whereas the distances between the center of the nadir and the oblique 
cameras were 0.20 m. Altitude and shooting frequency were adapted so 
as to obtain a lateral overlap (cross-track between nadir images) of 30%, 
while the forward overlap (along-track between nadir images) was set to 
60%. As a result, this block consists of 400 images (80 nadir and 320 
oblique) and 700 tie-points (Fig. 3), with an average of 30 points visible 

Fig. 5. Image-space errors: RMS of the residuals (RMSRE) and Root of Reference Variance (RRV) for BBA and CRO-BBA vs image noise. RRV is equal to the standard 
deviation of the image noise. 

Fig. 6. Object-space errors: RMS of the alignment residuals computed on control points (a) and COPs (b) vs image noise.  

2 Actually they are known also in the real experiment from the onboard 
GNSS/INS, but their accuracy is not sufficient to qualify them as reference 
values, for the purposes of this study. 
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in each image and a mean GSD (Ground Sampling Distance) of 6 cm/ 
pixel in the nadir images. 

Fig. 4 shows the distribution of matches, which configures a tightly 
bound block, more than what found in a real scenario (like in Fig. 11). 

To carry out the simulation, we defined the ground truth exterior 
orientations on the basis of the flight plan described above. Then we 
projected the object points on the image planes adding different values 
of random Gaussian noise to the image coordinates, choosing as stan
dard deviations 10 logarithmically spaced values from 0.5 to 5.0 pixels. 

The initial values of the exterior orientation of nadir images were 
obtained by perturbing the ground truth with random Gaussian noise 
with σ = 0.20 m for the position and σ = 0.2◦ for the Euler angles. 
Moreover, we added a random noise with σ = 0.05 m and σ = 0.05◦ to 
the relative positions and angles of the oblique cameras, respectively. 

For each setting the trial was run 100 times. 
Fig. 5(a) shows that the RMSRE (averaged over 100 trials) is slightly 

larger for CRO-BBA than BBA. This is in line with the results shown in 
(Sun et al., 2016), on the basis of which the authors conclude that adding 
constraints worsen the accuracy of BBA. 

However, looking at the reprojection error without considering the 
degrees of freedom of the model to be fitted leads to biased conclusions. 
In fact, unconstrained BBA has more degrees of freedom (d.o.f.) than 
CRO-BBA, being thus more capable of reducing the residuals by fitting 
the noise. Indeed, when the d.o.f. of the model are taken into account by 
computing the RRV (Fig. 5(b)), this is practically the same and it is also 
equal to the standard deviation of the noise added to the image points, as 
one should expect. 

The advantages of CRO-BBA can be appreciated in object-space 

Fig. 7. Object-space errors for control points: norm of the error and ENU components. Added noise has 0.5 pixels standard deviation. Points are sorted by decreasing 
ray-multiplicity. This figure is best viewed in colour. 

Fig. 8. Object-space errors for COPs: norm of the error and ENU components. Added noise has 0.5 pixels standard deviation. This figure is best viewed in colour.  
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(Fig. 6(a) and 7), by computing the alignment residuals wrt the control 
points (all tie-points are also control points in this simulation). These 
plots clearly show (with a confidence close to 100% according with the t- 

test) that the unconstrained BBA produces a less accurate estimate of 
object points and COPs. The specific distribution of these errors depends 
on the arbitrary choice of the datum, but the qualitative observation that 

Fig. 9. Top: correlation among the parameters (6 for each camera) of the first 4 nadir cameras (a) and the 4 oblique cameras (b) in unconstrained BBA. Bottom: 
correlation among the parameters of the first 4 nadir cameras (c) and the 24 relative orientation parameters for CRO-BBA (d). 

Fig. 10. Real data used for the experiment. Cameras are represented by blue pyramids, tie-points has their own natural color, control points are displayed as red dots 
(best viewed in color). 

E. Maset et al.                                                                                                                                                                                                                                   



ISPRS Open Journal of Photogrammetry and Remote Sensing 11 (2024) 100051

8

unconstrained BBA is less accurate is independent. 
In a practical scenario, these residuary non-Euclidean deformations 

would have been compensated for by ground control points, which is 
why this effect is rarely detected: the use of a model with an excess 
number of d.o.f. is balanced by additional constraints in the form of 
ground control points. 

It is worth noting also that while for CRO-BBA the errors affecting 
control points and COPs are comparable (please note the different scales 
of y-axes for Fig. 6(a) and (b)), BBA produces a worst localization of the 
COPs. 

This is again dependent of the datum, but since we set it implicitly on 
control points when evaluating the error on control points and on COPs 
when evaluating the error on COPs, we conclude that it reflects an 
intrinsically worst localization of COPs in BBA. This can be explained in 
terms of the degrees of freedom of the system: in BBA the COPs of the 
oblique cameras are independent variables, while the imposition of 
relative constraint in CRO-BBA reduces the degrees of freedom and the 
error. 

In particular, the nadir images (they correspond to the first 80 COPs 
in Fig. 8) in BBA have an average error (0.123 m) which is significantly 
higher (with nearly 100% confidence according to the t-test) than the 
oblique ones (0.085 m). So, ignoring relative orientation constraints 

affects the localization of the nadir images more than the oblique 
images. 

Fig. 9 reports the correlation among the unknown parameters in the 
classical BBA and CRO-BBA scenario, for a subset of cameras. It can be 
noticed that in classical BBA the correlation for nadir and oblique 
cameras is fairly similar and has a diagonal block structure, evidence of a 
weaker block geometry. In the case of CRO-BBA, the nadir cameras are 
much more correlated, as expected, and so are the 24 relative orienta
tion parameters that link the oblique cameras to the nadir ones (Fig. 9 
(d)). 

5.2. Real data from Leica CityMapper 

Real data were collected by the Leica CityMapper (1st generation) 
hybrid sensor over the city of Heilbronn, Germany (data courtesy by 
Leica Geosystems). Leica CityMapper (Fig. 1) combines a Hyperion 
LiDAR unit (1064 nm wavelength, theoretical ranging accuracy <2 cm) 
and a multi-camera system, featuring one nadir-looking camera head 
(RGB CCD size 10,320 x 7752 pixels, NIR CCD size 3336 x 4500 pixels, 
83 mm focal length) and four 45◦-tilted camera heads (RGB CCD size 
10,320 x 7752 pixels, 156 mm focal length). 

The flight plan was designed using an average nadir GSD of 12 cm, 
and along-across overlaps of 80% and 60%, respectively. The selected 
subset includes 460 images (92 nadir images and 368 oblique images) 
and covers an area of ca. 3.5 km × 3.5 km over the city centre (Fig. 10). 
As ground truth data we employed 49 control points, surveyed with RTK 
GNSS with a mean 3D accuracy of 5 cm. 

In the experiments with real data we used 3DF Zephyr to extract and 
match SIFT-like features and fed these image correspondences to our 
BBA/CRO-BBA. From the matches distribution shown in Fig. 11, it can 
be noticed that correspondences mainly exist between cameras pointing 
in the same absolute direction, corresponding to the diagonal blocks 
(along and cross-track) plus the forward-backward and right-left ones 
(only cross-track). While the nadir camera has some matches with the 
others, the other blocks are mostly empty. 

For the intrinsic parameters, we adopted the values reported in the 
calibration certificate of the system. Then we computed the errors as in 
the previous cases, with the difference that the COPs are unknown and 
that the (49) control points are only a subset of the (8049) tie-points. The 
RRV is 1.021 pixel for BBA and 1.043 pixel CRO-BBA, while the object- 

Fig. 11. Matches distribution between the images. Images are sorted according 
to the ordering “Nadir”, “Forward”, “Right”, “Backward” and “Left” cameras. 

Fig. 12. Results of the experiment with real data. Object-space errors for control points: norm of the error and ENU components. This figure is best viewed in colour.  
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Fig. 13. Results of the experiment with real data. Box plots of the oblique COP offsets: norm of the error ad components. This figure is best viewed in colour.  

Fig. 14. When intrinsic parameters are left free, the nadir images are localized with a large altitude error in unconstrained BBA.  
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space errors wrt control points are shown in Fig. 12, where it can be 
appreciated that the CRO-BBA produces more accurate results than BBA. 
The RMS of the object-space errors is 0.209 m for BBA and 0.153 m for 
CRO-BBA, and the t-test confirms that the two distributions are indeed 
different with 99.47% confidence. This experiment is in agreement with 
previous simulations: the enforcement of relative constraints is advan
tageous in terms of error in object-space, although the error in image- 
space (RRV) is approximately the same. 

Fig. 13 is a box-plot of the statistics of the offsets from the COP of one 
oblique image to the COP of the corresponding nadir image, after BBA 
and after CRO-BBA (in the latter case the values are constant). As we do 
not know the calibrated reference values, this can be taken as an indi
cator of the precision of the COP localization achieved by BBA. Please 
note that the scale of y-axis is in meters. 

Although all these experiments have been done with fixed interior 
orientation (our MATLAB implementation only works with fixed 
intrinsic parameters), it is instructive to see what would happen leaving 
them free in an unconstrained BBA (with 3DF Zephyr). The result is 
shown in Fig. 14, where it is noticeable that the nadir cameras had been 
offset from the corresponding oblique ones. This is due to the correlation 
between height of the COP and focal length, which gets stronger as the 
perspective effect is weaker, as in the nadir views, and so these views are 
more affected (see, e.g. (Luhmann et al., 2016),). The effect disappears if 
interior orientation is fixed, although, as we showed, the COPs of nadir 
images still suffer from a larger error than the oblique ones if relative 
orientation constraints are dropped. 

6. Conclusions 

In this paper we studied bundle adjustment with constrained cam
eras. This means that the orientation of certain cameras is expressed in 
relation to others, and these relative orientations become part of the 
unknowns. Though some have argued that this imposition of constraints 
decreases the accuracy of the results, we have found the opposite to be 
true. By capitalizing on the system’s rigidity, the number of unknowns 
decreases and accuracy improves. Our experiments with simulated and 
real data have shown that there is no significant difference in errors in 
image space between solutions with and without relative orientation 
constraints, while errors in object space demonstrate that the uncon
strained solution is severely deformed, reducing the accuracy of the 
result. All in all, there is no reason to avoid using relative orientation 
constraints in the bundle adjustment of image blocks in multi-camera 
systems. 

Acknowledgments 

Luca Magri has been supported by “HEaD Higher Education and 
Development Project” FP1619942003 and by 3Dflow s.r.l. Thanks to 
Helica s.r.l. for providing the flight data for the simulations, and to Leica 
Geosystems for providing the CityMapper dataset. Isabella Toschi co- 
authored a preliminary conference version of this paper (Maset et al., 
2020). The authors are grateful to Fabio Crosilla and the anonymous 
reviewers for their valuable comments that improved the quality of the 
paper.  

Appendix AMatrix differential calculus 

While for a differentiable function Rn→Rm the partial derivatives are customary arranged into a matrix called the Jacobian, for matrix functions 
Rn×q→Rm×p naturally raises the question of how to pack the mnpq partial derivatives, because this can be done in many ways. The following notation 
was introduced by (Magnus and Neudecker, 1999), who argue that it should be adopted for a number of good reasons, the most important of which is 
that it allows the use of the chain rule. 

Definition 1. Let F be a differentiable m × p real matrix function of a n × q matrix of real variables X. The Jacobian matrix of F at X is the mp × nq 
matrix 

DF(X) =
∂vecF(X)
∂(vecX)⊤

. (A.1) 

where vec(A) is the column vector obtained by stacking the columns of A. Note that (A.1) also defines the Jacobian matrix for vector functions of 
vector variables. 

Definition 1 reduces the study of matrix functions of matrices to the study of vector functions of vectors, since it allows F(X) and X only in their 
vectorized forms. However, the idea of arranging the partial derivatives into a matrix (rather than a vector) is sometimes useful, so we will retain the 
expression ∂F(x)

∂x for a function F : R→Rm×p. It is worthwhile noticing that DF(x) and ∂F(x)
∂x contain the same partial derivatives, but in ∂F(x)

∂x they are 
arranged in a m × p matrix, whereas DF(x) = vec∂F(x)

∂x . 
The following theorem transforms the problem of finding the Jacobian matrix of a matrix function into the problem of finding its differential 

(denoted by d), which is generally easier. 
Theorem 1 (Identification theorem). The following two equations are equivalent: 

d vecF(X) = A(X)d vecX (A.2)  

DF(X) = A(X). (A.3) 

The vec operator has some interesting properties in connection with the Kronecker product ⊗, in particular: 

vecAXB = (B⊤ ⊗A)vecX. (A.4)  

This formula and the identification theorem imply that: 

D(AXB) = (B⊤ ⊗A) (A.5) 
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Theorem 2 (Chain rule). Let F : Rn×q→Rm×p and.G : Rm×p→Rr×s be differentiable functions. If the composite function H(X) =G(F(X)) is differen
tiable at X0, its Jacobian matrix is 

DH(X0) = (DG(Y0))(DF(X0)) (A.6)  

where Y0––F(X0). 

Appendix B. Derivatives of rotation matrices 

Let u = [u1, u2, u3]
⊤ be a unit vector, and ϑ be an angle. The matrix representing the rotation by ϑ around the axis u is given by the Rodriguez 

formula: 

R(ϑ, u) = (I + sin ϑ[u]× + (1 − cos ϑ)[u]×
2
) (B.1)  

where 

[u]× =

⎡

⎣
0 − u3 u2
u3 0 − u1
− u2 u1 0

⎤

⎦. (B.2) 

Let us now consider the customary representation of rotations with the three Euler angles ω, φ, κ: 

R(ω,φ, κ) = R(κ, e3)R(φ, e2)R(ω, e1) (B.3)  

where ei is the i-th element of the canonical base. 
We will now determine the derivative of a rotation matrix wrt the Euler angles: 

DR = DR(ω,φ, κ) =
[

vec
∂R
∂ω, vec

∂R
∂φ

, vec
∂R
∂κ

]

. (B.4) 

Let us first establish the derivative of a rotation around a given axis. From the Rodriguez formula one gets: 

∂R(ϑ, û)
∂ϑ

=
dsin ϑ

dϑ
[u]× −

dcos ϑ
dϑ

[u]×
2

= cos ϑ[u]× + sin ϑ[u]×
2

(B.5) 

Let us focus, e.g., on the first the angle ω that represents a rotation around e1 = [1,0, 0]⊤: 

∂R(ω,φ, κ)
∂ω = R(κ, e3)R(φ, e2)

∂R(ω, e1)

∂ω
= R(κ, e3)R(φ, e2)(cos ω[e1]× + sin ω[e1]

2
×)

(B.6)  

The derivation for ∂R(ω,φ,κ)
∂φ and ∂R(ω,φ,κ)

∂κ is similar. The reader might want to compare these derivative to those reported by (Lucas, 1963), which were 

based on the observation that (e.g.) ∂R(ω,e1)
∂ω = R(ω, e1)[e1]×. 
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