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Abstract
We prove a necessary and sufficient criterion for the ring of integer-valued poly-
nomials to behave well under localization. Then, we study how the Picard group
of Int(𝐷) and the quotient group (𝐷) ∶= Pic(Int(𝐷))∕Pic(𝐷) behave in rela-
tion to Jaffard, weak Jaffard, and pre-Jaffard families; in particular, we show that
(𝐷) ≃

⨁
(𝑇) when 𝑇 ranges in a Jaffard family of 𝐷, and study when similar

isomorphisms hold when 𝑇 ranges in a pre-Jaffard family. In particular, we show
that the previous isomorphismholdswhen𝐷 is an almostDedekinddomain such
that the ring integer-valued polynomials behavewell under localization and such
that the maximal space of 𝐷 is scattered with respect to the inverse topology.
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1 INTRODUCTION

Let 𝐷 be an integral domain with quotient field 𝐾. A polynomial 𝑓(𝑋) ∈ 𝐾[𝑋] is integer-valued over 𝐷 if 𝑓(𝑑) ∈ 𝐷 for
every 𝑑 ∈ 𝐷; the set of all integer-valued polynomials is a ring, denoted by Int(𝐷). The ring of integer-valued polynomials
presents several properties that makes it a very interesting subject of study: For example, it is a simple example of a con-
struction that does not involve limits, infinite families of indeterminates, or intersections of complicated families of rings,
and that rather consistently produces rings that are non-Noetherian, even starting from a Noetherian ring. Furthermore,
this construction can be tailored to several topics (e.g., considering polynomials that are integer-valued only on a subset)
in order to obtain examples of phenomena that are difficult to obtain with other constructions. We refer the reader to the
book [2] for background and results about integer-valued polynomials.
One particular problem of the theory of integer-valued polynomials is its relationship with localization. Given a domain

𝐷 and a multiplicatively closed set 𝑆, we always have 𝑆−1Int(𝐷) ⊆ Int(𝑆−1𝐷), but there are examples where the contain-
ment is strict (see [2, Chapter 6]); we say that Int(𝐷) behaves well under localization when the equality holds for every
multiplicatively closed set 𝑆 of 𝐷. Well-behavior under localization has been studied in several contexts: for example, it
holds for Noetherian domains [2, section 1.2], for Krull and Mori domains [3, Proposition 2.1], when 𝐷 is a locally finite
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2 SPIRITO

intersection of localizations [8], and it is possible to characterize for which almost Dedekind domains it holds [22]. We
give in Section 3 a necessary and sufficient criterion for the equality 𝑆−1Int(𝐷) = Int(𝑆−1𝐷) to hold, involving the conduc-
tor (𝐷 ∶ 𝑓(𝐷)), and show how the known results descend from ours. We also deal not only with localizations but, more
generally, with flat overrings of the base domain 𝐷.
We then concentrate on generalizing globalization properties for the Picard group Pic(Int(𝐷)) of Int(𝐷). Unless Int(𝐷)

is trivial (i.e., unless Int(𝐷) = 𝐷[𝑋]), the Picard group of Int(𝐷) is usually much larger than the Picard group of 𝐷, and
can be calculated only in very special circumstances (e.g., for discrete valuation domains and for some kinds of one-
dimensional Noetherian local domains [2, Chapter 6]). To obtain a description of Pic(Int(𝐷)) in more cases, the main tool
is globalization: For example, when 𝐷 is a one-dimensional Noetherian domain, there is always an exact sequence [15]

0⟶ Pic(𝐷)⟶ Pic(Int(𝐷))⟶
⨁

𝑀∈Max(𝐷)

Pic(Int(𝐷𝑀))⟶ 0,

which allows us at least to understand the main features of Pic(Int(𝐷)). In this context, our first result (given in two
different forms in Theorems 4.4 and 4.7) gives a generalization of the previous exact sequence, proving that a similar
result holds if, instead of the family {𝐷𝑀 ∣ 𝑀 ∈ Max(𝐷)}, one takes a Jaffard family of 𝐷, a particular kind of family of
flat overrings with strong independence properties (see Section 2.2 for a precise definition). The result becomes more
striking using the int-polynomial Picard group (𝐷), defined as the quotient between Pic(Int(𝐷)) and the image of the
canonical inclusion of Pic(𝐷): In this terminology, the theorem guarantees that(𝐷) and the direct sum

⨁
{(𝑇) ∣ 𝑇 ∈ Θ}

are isomorphic for any Jaffard family Θ.
In Sections 6 and 7, we further generalize this result by considering weak Jaffard families and pre-Jaffard families, that

are obtained by relaxing the conditions defining a Jaffard family. In the former case, we obtain in Theorem 6.4 an exact
sequence

0⟶
⨁
𝑇∈Θ
𝑇≠𝑇∞

(𝑇)⟶ (𝐷)⟶ (𝐷, 𝑇∞)⟶ 0

(see below for the definition of 𝑇∞ and (𝐷, 𝑇∞)). For pre-Jaffard families, we use the result on weak Jaffard families to
set up a transfinite inductive reasoning (which uses the derived sequence of the pre-Jaffard family, see Section 2.2) that
allows us to prove, under some additional hypothesis, the existence of an exact sequence

0⟶
⨁

𝑇∈Θ⧵ 𝛼(Θ)

(𝑇)⟶ (𝐷)⟶ (𝐷, 𝑇𝛼)⟶ 0

(see below for the definition of 𝑇𝛼 and 𝑁𝛼(Θ)). In particular, when also the pre-Jaffard family is sharp, one obtains an
isomorphism (𝐷) ≃

⨁
{(𝑇) ∣ 𝑇 ∈ Θ}, just like in the case of Jaffard families. For example, such an isomorphism holds

when𝐷 is an almost Dedekind domain such that Int(𝐷) behaves well under localization and such that the maximal space
of 𝐷 is scattered in the inverse topology (Corollary 7.6).

2 PRELIMINARIES

Throughout the paper, 𝐷 is an integral domain with quotient field 𝐾.
An overring of𝐷 is a ring contained between𝐷 and𝐾; we denote byOver(𝐷) the set of all overrings of𝐷. A flat overring

is an overring that is flat as a 𝐷-module; in particular, every localization and every quotient ring of 𝐷 is a flat overring.
If 𝑇 is a flat overring of 𝐷, then for every prime ideal 𝑃 of 𝑇, we have 𝑇𝑃 = 𝐷𝑃∩𝐷 ; in particular, every flat overring is an
intersection of localizations of 𝐷, and every (prime) ideal of 𝑇 is the extension of a (prime) ideal of 𝐷 [1, 21].
Let 𝐼 be a 𝐷-submodule of 𝐾 and 𝐴 ⊆ 𝐾. The conductor of 𝐴 in 𝐼 is (𝐼 ∶ 𝐴) ∶= {𝑥 ∈ 𝐾 ∣ 𝑥𝐴 ⊆ 𝐼}; moreover, (𝐼 ∶ 𝐴) =

(𝐼 ∶ 𝐴𝐷), where we denote by 𝐴𝐷 the 𝐷-submodule generated by 𝐴. The conductor is always a 𝐷-submodule of 𝐾, and
can be (0). If 𝑇 is a flat overring of 𝐷 and 𝐽 is a finitely generated 𝐷-module, then (𝐼 ∶ 𝐽)𝑇 = (𝐼𝑇 ∶ 𝐽𝑇) [16, Theorem 7.4].
A fractional ideal of 𝐷 is a 𝐷-submodule 𝐼 of 𝐾 such that (𝐷 ∶ 𝐼) ≠ (0), that is, such that 𝑥𝐼 ⊆ 𝐷 for some nonzero

𝑥 ∈ 𝐾. A fractional ideal 𝐼 is invertible if there is a fractional ideal 𝐽 such that 𝐼𝐽 = 𝐷; equivalently, 𝐼 is invertible if it is
finitely generated and locally principal (i.e., 𝐼𝐷𝑀 is principal for every 𝑀 ∈ Max(𝐷)). The set of invertible ideals is an
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SPIRITO 3

abelian group, denoted by Inv(𝐷), having as a subgroup the set Princ(𝐷) of principal fractional ideals of 𝐷; the quotient
Inv(𝐷)∕Princ(𝐷) is called the Picard group of 𝐷, and is denoted by Pic(𝐷).

2.1 Topologies

Let 𝐷 be an integral domain. In addition to the usual Zariski topology, the spectrum Spec(𝐷) of 𝐷 can be endowed with
another topology, called the inverse topology. The inverse topology is defined as the topology having, as a subbasis of open
sets, the closed sets of the Zariski topology. Under the inverse topology, the spectrum is still a compact 𝑇1 space.
The set Over(𝐷) of the overrings of 𝐷 can be endowed with a natural topology, called the Zariski topology, whose

subbasic open sets are the ones in the form

𝐵(𝑥1, … , 𝑥𝑛) ∶= {𝑇 ∈ Over(𝐷) ∣ 𝑥1, … , 𝑥𝑛 ∈ 𝑇},

as 𝑥1, … , 𝑥𝑛 varies in 𝐾. The Zariski topology on Over(𝐷) is intimately connected with the Zariski topology on the spec-
trum Spec(𝐷) of 𝐷: for example, the localization map 𝑃 ↦ 𝐷𝑃 is a topological embedding when Spec(𝐷) and Over(𝐷) are
endowedwith the respective Zariski topologies [7, Lemma 2.4].Moreover, the Zariski topology has several good properties:
For example, it is a spectral space, in the sense that there is a ring𝑅 (not explicitly constructed) such that Spec(𝑅) ≃ Over(𝐷)

[9, Proposition 3.5].
The inverse topology onOver(𝐷) is the topology such that the 𝐵(𝑥1, … , 𝑥𝑛) are a subbasis of closed sets. This topology is

closely connected with the properties of representations of 𝐷 as intersection of overrings (see e.g. [18]). Properties of the
inverse topology, in the context of spectral spaces, can be found in [6].
We shall use many times the following result [10, Corollary 5]: If Θ ⊆ Over(𝐷) is compact, with respect to the Zariski

topology, and if 𝐼 is a flat 𝐷-submodule of 𝐾, then

𝐼

(⋂
𝑇∈Θ

𝑇

)
=

⋂
𝑇∈Θ

𝐼𝑇.

2.2 Jaffard and pre-Jaffard families

Let 𝐷 be an integral domain with quotient field 𝐾. We say that a subset Θ ⊆ Over(𝐷) is a pre-Jaffard family of 𝐷 if the
following conditions hold [25]:

(1) either Θ = {𝐾} or 𝐾 ∉ Θ;
(2) every 𝑇 ∈ Θ is flat over 𝐷;
(3) Θ is complete: if 𝐼 is an ideal of 𝐷, then 𝐼 =

⋂
{𝐼𝑇 ∣ 𝑇 ∈ Θ};

(4) Θ is independent: if 𝑇 ≠ 𝑇′ are in Θ, then 𝑇𝑇′ = 𝐾;1
(5) Θ is compact in the Zariski topology.

For example, if 𝐷 is a one-dimensional domain, the family Θ = {𝐷𝑀 ∣ 𝑀 ∈ Max(𝐷)} is a pre-Jaffard family of 𝐷.
In particular, if Θ is a pre-Jaffard family and 𝑃 is a nonzero prime ideal of 𝐷, then there is exactly one 𝑇 ∈ Θ such that

𝑃𝑇 ≠ 𝑇.
A family Θ of overrings of 𝐷 is locally finite if every nonzero 𝑥 ∈ 𝐷 is a nonunit in only finitely many elements of Θ;

if Θ = {𝐷𝑀 ∣ 𝑀 ∈ Max(𝐷)} is locally finite, we say that 𝐷 itself is locally finite. Any locally finite family of overrings is
compact, with respect to the Zariski topology (see, e.g., the proof of [10, Corollary 8]).
A Jaffard family is a pre-Jaffard family that is locally finite. Jaffard families enjoy several good factorization properties

that make them a nonlocal generalization of ℎ-local domains and thus of Dedekind domains; see, for example, [11, section
6.3], [23, section 4], or [24].
We say that an overring 𝑇 of 𝐷 is a Jaffard overring if 𝑇 belongs to a Jaffard family of 𝐷. Given a Jaffard family Θ of 𝐷,

we can construct a well-ordered decreasing chain { 𝛼(𝐷)} of subsets of Θ and a corresponding ascending chain {𝑇𝛼} of
overrings of 𝐷 in the following way. Given an ordinal number 𝛼, we set [25, section 6]:
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4 SPIRITO

(1) if 𝛼 = 0, 0(Θ) ∶= Θ and 𝑇0 ∶= 𝐷;
(2) 𝑇𝛼 ∶=

⋂
𝑇∈ 𝛼(𝐷)

𝑇;
(3) if 𝛼 = 𝛾 + 1 is a limit ordinal, then 𝛼(𝐷) is the set of all elements of 𝛾(𝐷) that are not Jaffard overrings of 𝑇𝛾;
(4) if 𝛼 is a limit ordinal, then 𝛼(𝐷) ∶=

⋂
𝛽<𝛼

 𝛽(𝐷).

Note that, in [25], the set 𝛼(𝐷) was denoted simply by Θ𝛼. Each 𝛼(𝐷) is a pre-Jaffard family of 𝑇𝛼 (in particular, it is
compact with respect to the Zariski topology) [25, Proposition 6.1], and it is a closed subset ofΘ, with respect to the inverse
topology. We call {𝑇𝛼} the derived sequence of Θ.
If 1(Θ) is a single element 𝑇∞, we say thatΘ is a weak Jaffard family pointed at 𝑇∞. Weak Jaffard families are usually

the stepping stones in inductive arguments used to generalize properties of Jaffard families to pre-Jaffard families.
When 𝛼(Θ) = ∅ for some 𝛼 (equivalently, when 𝑇𝛼 = 𝐾), we say that Θ is sharp.

2.3 Homology

We shall frequently use the basic results of homological algebra, the snake lemma: if

is a commutative diagram of abelian groups (or, more generally, of modules over a ring 𝑅) with exact rows, then the
sequence

0⟶ ker(𝑓)⟶ ker(𝑔)⟶ ker(ℎ)⟶ coker(𝑓)⟶ coker(𝑔)⟶ coker(ℎ)⟶ 0

is exact. In particular, if 𝑓, 𝑔, ℎ are injective, then the sequence of cokernels

0⟶ coker(𝑓)⟶ coker(𝑔)⟶ coker(ℎ)⟶ 0

is exact.

3 WHEN INTEGER-VALUED POLYNOMIALS LOCALIZE

In this section, we find a necessary and sufficient criterion for Int(𝐷) to localize at a flat overring, that is, for when
the equality Int(𝐷)𝑇 = Int(𝑇) holds. Before doing so, we introduce a notion that generalizes Jaffard families and
Jaffard overrings.
Using the terminology introduced in Section 2.2, we give the following definition.

Definition 3.1. Let 𝐷 be an integral domain and Θ ⊆ Over(𝐷). We say that Θ is a 𝑡-Jaffard family of 𝐷 if

(1) either Θ = {𝐾} or 𝐾 ∉ Θ,
(2) every 𝑇 ∈ Θ is flat over 𝐷,
(3) Θ is independent,
(4) Θ is locally finite,
(5)

⋂
{𝑇 ∣ 𝑇 ∈ Θ} = 𝐷.

We say that an overring 𝑇 of 𝐷 is a 𝑡-Jaffard overring if it belongs to a 𝑡-Jaffard family of 𝐷.
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SPIRITO 5

Note that, in particular, every Jaffard family is a 𝑡-Jaffard family, and thus every Jaffard overring is a 𝑡-Jaffard overring.
The converse does not hold: For example, if 𝐷 is a Krull domain, then the family of localizations at its prime ideals of
height 1 is a 𝑡-Jaffard family, but it is not a Jaffard family unless 𝐷 has dimension 1.
The following proposition can be seen as a variant of [23, Lemma 5.3].

Proposition 3.2. Let 𝑇 be a 𝑡-Jaffard overring of 𝐷. Then, for every fractional ideal 𝐼 of 𝐷, we have (𝐷 ∶ 𝐼)𝑇 = (𝑇 ∶ 𝐼𝑇).

Proof. Let Θ be a 𝑡-Jaffard family of 𝐷 containing 𝑇, and let 𝐴 ∶=
⋂
{𝑆 ∣ 𝑆 ∈ Θ ⧵ {𝑇}}. Since Θ ⧵ {𝑇} is locally finite, it is

compact, and thus, by [10, Corollary 5]

𝐴𝑇 =

( ⋂
𝑆∈Θ⧵{𝑇}

𝑆

)
𝑇 =

⋂
𝑆∈Θ⧵{𝑇}

𝑆𝑇 = 𝐾.

Hence,

(𝐷 ∶ 𝐼)𝑇 = (𝑇 ∩ 𝐴 ∶ 𝐼)𝑇 = ((𝑇 ∶ 𝐼) ∩ (𝐴 ∶ 𝐼))𝑇 = (𝑇 ∶ 𝐼)𝑇 ∩ (𝐴 ∶ 𝐼)𝑇.

We have (𝑇 ∶ 𝐼)𝑇 = (𝑇 ∶ 𝐼𝑇)𝑇 = (𝑇 ∶ 𝐼𝑇); on the other hand, (𝐴 ∶ 𝐼) is an 𝐴-ideal, and thus (𝐴 ∶ 𝐼)𝑇 = (𝐴 ∶ 𝐼)𝐴𝑇 = 𝐾.
Hence, (𝐷 ∶ 𝐼)𝑇 = (𝑇 ∶ 𝐼𝑇), as claimed. □

We now go back to studying integer-valued polynomials. The following is a slight generalization of [2, Theorem I.2.1].

Proposition 3.3. Let 𝑇 be a flat overring of 𝐷 and 𝑓 ∈ 𝐾[𝑋]. Then, 𝑓(𝐷)𝑇 = 𝑓(𝑇)𝑇.

Proof. Clearly 𝑓(𝐷) ⊆ 𝑓(𝑇), and thus 𝑓(𝐷)𝑇 ⊆ 𝑓(𝑇)𝑇. Conversely, let 𝑡 ∈ 𝑇: we need to show that 𝑓(𝑡) ∈ 𝑓(𝐷)𝑇. Consider
𝐼 ∶= (𝑓(𝐷)𝑇 ∶ 𝑓(𝑡)) = (𝑓(𝐷)𝐷 ∶ 𝑓(𝑡))𝑇. If 𝑓(𝑡) ∉ 𝑓(𝐷)𝑇, then (𝑓(𝐷)𝐷 ∶ 𝑓(𝑡)) ⊆ 𝑃 for some prime ideal 𝑃 such that 𝑃𝑇 ≠

𝑇; hence, 1 ∉ (𝑓(𝐷)𝐷 ∶ 𝑓(𝑡))𝐷𝑃 = (𝑓(𝐷)𝐷𝑃 ∶ 𝑓(𝑡)). However, 𝑓(𝐷)𝐷𝑃 = 𝑓(𝐷𝑃)𝐷𝑃 by [2, Theorem I.2.1] (since 𝐷𝑃 is a
localization of 𝐷), and 𝑓(𝑡) ∈ 𝐷𝑃 since 𝑇 ⊆ 𝐷𝑃 (by the flatness of 𝑇). This is a contradiction, and thus 𝑓(𝑡) ∈ 𝑓(𝐷)𝑇 and
𝑓(𝐷)𝑇 = 𝑓(𝑇)𝑇. □

Proposition 3.4. Let 𝑇 be a flat overring of 𝐷, and let 𝑓 ∈ 𝐾[𝑋].

(a) 𝑓 ∈ Int(𝐷)𝑇 if and only if (𝐷 ∶𝐷 𝑓(𝐷))𝑇 = 𝑇.
(b) 𝑓 ∈ Int(𝑇) if and only if (𝑇 ∶𝑇 𝑓(𝐷)𝑇) = 𝑇.

Proof.

(a) If (𝐷 ∶𝐷 𝑓(𝐷))𝑇 = 𝑇, then 1 = 𝑑1𝑡1 +⋯+ 𝑑𝑛𝑡𝑛 for some 𝑑𝑖 ∈ (𝐷 ∶𝐷 𝑓(𝐷)), 𝑡𝑖 ∈ 𝑇; hence

𝑓(𝑋) = 𝑓(𝑋)(𝑑1𝑡1 +⋯+ 𝑑𝑛𝑡𝑛) =

𝑛∑
𝑖=1

(𝑓(𝑋)𝑑𝑖𝑡𝑖).

However, 𝑓(𝑑)𝑑𝑖 ∈ 𝐷 for all 𝑑 ∈ 𝐷, since 𝑑𝑖 ∈ (𝐷 ∶𝐷 𝑓(𝐷)), and thus each 𝑓(𝑋)𝑑𝑖 ∈ Int(𝐷). Hence 𝑓(𝑋) ∈ Int(𝐷)𝑇.
Conversely, suppose 𝑓 ∈ Int(𝐷)𝑇. If 𝑇 = 𝐷𝑃 for some prime ideal 𝑃, then Int(𝐷)𝐷𝑃 = Int(𝐷)𝑃 and thus there is an 𝑠 ∈
𝐷 ⧵ 𝑃 such that 𝑠𝑓 ∈ Int(𝐷); hence 𝑠 ∈ (𝐷 ∶𝐷 𝑓(𝐷)) and (𝐷 ∶𝐷 𝑓(𝐷))𝐷𝑃 = 𝐷𝑃. For the general case, if 𝑓 ∈ Int(𝐷)𝑇,
then 𝑓 ∈ Int(𝐷)𝐷𝑃 for all prime ideals 𝑃 of 𝐷 such that 𝑃𝑇 ≠ 𝑇 (as 𝑇 is flat, 𝑇 ⊆ 𝐷𝑃 for all such 𝑃), and thus (𝐷 ∶𝐷
𝑓(𝐷))𝐷𝑃 = 𝐷𝑃; the claim now follows from the fact that all maximal ideals of 𝑇 are extensions of prime ideals of 𝐷.

(b) If 𝑓 ∈ Int(𝑇), then 𝑓(𝑇) ⊆ 𝑇 and thus 𝑓(𝐷)𝑇 ⊆ 𝑇; hence (𝑇 ∶𝑇 𝑓(𝐷)𝑇) = 𝑇. Conversely, if (𝑇 ∶𝑇 𝑓(𝐷)𝑇) = 𝑇 then it
contains 1, and thus 𝑓(𝐷)𝑇 ⊆ 𝑇. Since 𝑓(𝐷)𝑇 = 𝑓(𝑇)𝑇, we have 𝑓(𝑇) ⊆ 𝑇 and 𝑓 ∈ Int(𝑇). □

Joining the two characterizations, we have our criterion.
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6 SPIRITO

Theorem 3.5. Let 𝑇 be a flat overring of 𝐷. Then, Int(𝐷)𝑇 = Int(𝑇) if and only if (𝐷 ∶𝐷 𝑓(𝐷))𝑇 = (𝑇 ∶𝑇 𝑓(𝐷)𝑇) for every
𝑓 ∈ 𝐾[𝑋].

Proof. It is enough to apply the two conditions of Proposition 3.4. □

As a consequence, we get back several known results about the well-behavior under localization of the ring Int(𝐷).
Recall that aMori domain is a domain whose divisorial ideals satisfy the ascending chain condition (see, e.g., [19, p. 195]).

Proposition 3.6. Let 𝑇 be a flat overring of 𝐷. Suppose that one of the following conditions hold:

(a) 𝑇 is a Jaffard overring of 𝐷,
(b) 𝑇 is a 𝑡-Jaffard overring of 𝐷,
(c) 𝐷 is one-dimensional and locally finite,
(d) [2, Theorem I.2.3] 𝐷 is Noetherian,
(e) [3, Proposition 2.1] 𝐷 is Mori.

Then, we have Int(𝐷)𝑇 = Int(𝑇).

Proof. If 𝑇 is a Jaffard or 𝑡-Jaffard overring, then (𝐷 ∶ 𝐼)𝑇 = (𝑇 ∶ 𝐼𝑇) for all ideals 𝐼, and thus in particular for 𝐼 = 𝑓(𝐷)𝐷.
If 𝐷 is one-dimensional and locally finite, then every flat overring is a Jaffard overring and we are in the previous case.
If 𝐷 is Noetherian, then 𝑓(𝐷)𝐷 is finitely generated, and thus we can bring the flat overring inside the conductor.
If 𝐷 is Mori, then there is a finitely generated ideal 𝐽 ⊆ 𝑓(𝐷)𝐷 such that (𝑓(𝐷)𝐷)𝑣 = 𝐽𝑣 [19, Chapitre V, B, Théorème

7], and thus (𝐷 ∶ 𝑓(𝐷)𝐷) = (𝐷 ∶ 𝐽). Hence,

(𝐷 ∶ 𝑓(𝐷))𝑇 = (𝐷 ∶ 𝐽)𝑇 = (𝑇 ∶ 𝐽𝑇) ⊇ (𝑇 ∶ 𝑓(𝐷)𝑇) ⊇ (𝐷 ∶ 𝑓(𝐷))𝑇

and thus (𝐷 ∶ 𝑓(𝐷))𝑇 = (𝑇 ∶ 𝑓(𝐷)𝑇). □

We end this section with a result that will be useful later.

Proposition 3.7. Let𝐷 be an integral domain,𝑇 a flat overring, andΛ be a complete family of flat overrings of𝑇. If Int(𝐷)𝑆 =
Int(𝑆) for every 𝑆 ∈ Λ, then Int(𝐷)𝑇 = Int(𝑇).

Proof. Let 𝑓 ∈ Int(𝑇), then 𝑓(𝑇) ⊆ 𝑇 ⊆ 𝑆 for every 𝑆 ∈ Λ, that is, 𝑓 ∈ Int(𝑇, 𝑆) = Int(𝑆) = Int(𝐷)𝑆. Hence,

𝑓 ∈
⋂
𝑆∈Λ

Int(𝐷)𝑆 =
⋂
𝑆∈Λ

Int(𝐷)𝑇𝑆 = Int(𝐷)𝑇,

since Λ is complete over 𝑇. The claim is proved. □

4 THE PICARD GROUP

When Int(𝐷) is nontrival, a direct calculation of its Picard group can only be done under very special circumstances, for
example when𝐷 is a discrete valuation ring (DVR) or an analytically irreducible one-dimensional domain [2, Proposition
VIII.2.8 andCorollaryVIII.3.10]. To reachmore cases, themain tool is globalization: For example, if𝐷 is a one-dimensional
Noetherian domain, then there is a short exact sequence (see [15] or [2, Theorem VIII.1.9])

0⟶ Pic(𝐷)⟶ Pic(Int(𝐷))⟶
⨁

𝑀∈Max(𝐷)

Pic(Int(𝐷𝑀))⟶ 0,

where each map is induced by the ring extensions: A class [𝐼] ∈ Pic(𝐷) is sent to [𝐼Int(𝐷)], while a class [𝐽] ∈ Pic(Int(𝐷))

is sent to the sequence of extensions ([𝐽Int(𝐷𝑀)])𝑀∈Max(𝐷).
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SPIRITO 7

In this section, we begin to extend the use of this kind of exact sequence by considering the case of Jaffard families.

Definition 4.1. Let 𝑇 be a flat overring of 𝐷. The extension map of Picard groups is the group homomorphism

𝜓𝐷,𝑇 ∶ Pic(𝐷)⟶ Pic(𝑇),

[𝐼]⟼ [𝐼𝑇].

If Θ is a family of flat overrings of 𝐷, the Picard group of 𝐷 relative to Θ is

Pic(𝐷,Θ) ∶= {[𝐼] ∈ Pic(𝐷) ∣ [𝐼𝑇] = [𝑇] for all 𝑇 ∈ Θ}.

If Θ = {𝑇}, we write Pic(𝐷, 𝑇) ∶= Pic(𝐷, {𝑇}).

Since 𝜓𝐷,𝑇 is a group homomorphism, Pic(𝐷,Θ) is always a subgroup of Pic(𝐷) (indeed, it is the intersection of the
kernels of the 𝜓𝐷,𝑇 , as 𝑇 ranges in Θ). When every element of Θ is local, Pic(𝐷,Θ) = Pic(𝐷).
The starting point of the globalization results of [2, Chapter VIII] is an extension map from Int(𝐷) to the direct product

of Int(𝐷)𝑀 = Int(𝐷)𝐷𝑀 , as𝑀 ranges among the maximal ideals of 𝐷 [2, Proposition VIII.1.6]. Likewise, our study begins
by examining the extension map

𝜋Θ ∶ Pic(Int(𝐷))⟶
∏
𝑇∈Θ

Pic(Int(𝐷)𝑇),

[𝐼]⟼ ([𝐼Int(𝐷)𝑇]),

(1)

for some arbitrary family Θ of flat overrings.

Lemma 4.2. Let 𝑇 be a flat overring of 𝐷. Then, Int(𝐷)𝑇 is a flat overring of Int(𝐷).

Proof. Since𝑇 is flat, it is the colimit of a directed set {𝑀𝑖} of free𝐷-modules; since each of these is contained in the quotient
field of𝐷, there are 𝑥𝑖 such that𝑀𝑖 = 𝑥𝑖𝐷. It is straightforward to see that Int(𝐷)𝑇 is the colimit of {𝑥𝑖Int(𝐷) = Int(𝐷)𝑀𝑖},
and thus it is flat over Int(𝐷). □

Proposition 4.3. Let Θ be a family of flat overrings of 𝐷. Then, there is an exact sequence

0⟶ Pic(𝐷,Θ)⟶ Pic(Int(𝐷))
𝜋Θ

:::::→
∏
𝑇∈Θ

Pic(Int(𝐷)𝑇).

Proof. Let 𝑖 ∶ Pic(𝐷,Θ)⟶ Pic(Int(𝐷)), 𝐼 ↦ 𝐼Int(𝐷) be the extension map; we need to show that 𝑖(Pic(𝐷,Θ)) = ker 𝜋Θ.
If [𝐼] ∈ Pic(𝐷,Θ), then 𝐼 becomes principal in each 𝑇 ∈ Θ, and thus 𝜋Θ◦𝑖([𝐼]) = [𝐼Int(𝐷)𝑇] is principal, that is,
𝑖(Pic(𝐷,Θ)) ⊆ ker 𝜋Θ.
Conversely, suppose [𝐼] ∈ Pic(Int(𝐷)) becomes principal in each Pic(Int(𝐷)𝑇). By [2, Remark VIII.1.5], we can suppose

without loss of generality that 𝐼 is a unitary ideal of Int(𝐷). Let 𝐽 ∶= 𝐼 ∩ 𝐷. For each 𝑇, the ideal 𝐽𝑇 is principal and
generated by an element of 𝐽; hence, 𝐼Int(𝐷)𝑇 = 𝐽Int(𝐷)𝑇 for each 𝑇 ∈ Θ. Let Λ ∶= {Int(𝐷)𝑇 ∣ 𝑇 ∈ Θ}; then, the map
⋆Λ ∶ 𝐼 ↦

⋂
{𝐼𝐴 ∣ 𝐴 ∈ Λ} is a star operation (see, e.g., [14, Chapter 32]) and 𝐼⋆Λ = (𝐽Int(𝐷))⋆Λ . Since 𝐼 is invertible, 𝐼 =

𝐼⋆Λ , and analogously 𝐽Int(𝐷) = (𝐽Int(𝐷))⋆Λ ; thus 𝐼 = 𝐽Int(𝐷). Hence, [𝐽] ∈ 𝑖(Pic(𝐷,Θ)) and 𝑖(Pic(𝐷,Θ)) ⊇ ker 𝜋Θ, as
claimed. □

We now prove the first theorem of this section.

Theorem 4.4. Let Θ be a Jaffard family of 𝐷. Then, there is an exact sequence

0⟶ Pic(𝐷,Θ)⟶ Pic(Int(𝐷))⟶
⨁
𝑇∈Θ

Pic(Int(𝑇))⟶ 0.
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8 SPIRITO

Proof. We first note that, by Proposition 3.6(a), we have Int(𝐷)𝑇 = Int(𝑇), and thus Pic(Int(𝐷)𝑇) = Pic(Int(𝑇)).
Let Δ be the image of the extension map 𝜋Θ ∶ Pic(Int(𝐷))⟶

∏
{Pic(Int(𝑇)) ∣ 𝑇 ∈ Θ}. We claim that its image is just

the direct sum.
Indeed, if [𝐼] ∈ Pic(Int(𝐷)), then by [2, Remark VIII.1.5] we can suppose that 𝐼 is an integral unitary ideal of Int(𝐷); in

particular, 𝐼 contains a nonzero constant 𝑎. SinceΘ is a Jaffard family, it is locally finite, and thus 𝑎𝑇 = 𝑇 for all but finitely
many 𝑇 ∈ Θ; hence, 𝐼Int(𝑇) = Int(𝑇) for all but finitely many 𝑇, and thus [𝐼Int(𝑇)] is almost always equal to [Int(𝑇)]. It
follows that Δ is contained in the direct sum.
To prove the converse, it is enough to show that, for any 𝑇 ∈ Θ and any [𝐽] ∈ Pic(Int(𝑇)), there is a [𝐼] ∈ Pic(Int(𝐷))

such that [𝐼Int(𝑇)] = [𝐽] and [𝐼Int(𝑆)] = [Int(𝑆)] for every 𝑆 ∈ Θ, 𝑆 ≠ 𝑇. Again by [2, Remark VIII.1.5], we can suppose
that 𝐽 is an integral unitary ideal of Int(𝑇); moreover, we can suppose that 𝐽 = (𝑓1, … , 𝑓𝑛)Int(𝑇) for some 𝑓1, … , 𝑓𝑛 ∈
Int(𝐷). Let 𝐿 ∶= 𝐽 ∩ 𝐷 = 𝐽 ∩ 𝑇 ∩ 𝐷 = 𝐼 ∩ 𝐷: then, 𝐿𝑆 = 𝑆 for every 𝑆 ∈ Θ, 𝑆 ≠ 𝑇. Then, 𝐼′ ∶= (𝑓1, … , 𝑓𝑛)Int(𝐷) + 𝐿Int(𝐷)

is contained in 𝐼 and finitely generated, but 𝐼′Int(𝑇) = 𝐽 and 𝐼′Int(𝑆) = Int(𝑆), as well as 𝐼′𝐾[𝑋] = 𝐾[𝑋]. It follows that
𝐼′ = 𝐼, and thus 𝐼 is finitely generated.
We show that 𝐼 is locally principal. Let𝑀 be a maximal ideal of Int(𝐷): If𝑀 ∩ 𝐷 = (0), then Int(𝐷)𝑀 is a localization of

𝐾[𝑋], and thus 𝐼Int(𝐷)𝑀 is principal. If𝑀 ∩ 𝐷 ≠ (0), then Int(𝐷)𝑀 contains Int(𝐷)𝑆 for some 𝑆 ∈ Θ, and thus 𝐼Int(𝐷)𝑀 =

𝐼Int(𝑆)Int(𝐷)𝑀 . If 𝑆 ≠ 𝑇, then 𝐼Int(𝐷)𝑀 = 𝐼Int(𝑆)Int(𝐷)𝑀 = Int(𝐷)𝑀 is principal. If 𝑆 = 𝑇, then 𝐼Int(𝑇) = 𝐽 is invertible,
and thus 𝐼Int(𝐷)𝑀 is principal since Int(𝐷)𝑀 is a localization of Int(𝑇). Thus, 𝐼 is locally principal and thus invertible;
therefore, the direct sum is in the image of 𝜓Θ. The claim is proved. □

While very similar to the localization result for Dedekind domains, Theorem 4.4 includes in its statement the group
Pic(𝐷,Θ), whichmay not be easy to calculate. In the next theorem, we trade its presence with the one of the Picard groups
Pic(𝑇); we first show how they are related.

Proposition 4.5. Let Θ be a Jaffard family of 𝐷. Then, there is an exact sequence

0⟶ Pic(𝐷,Θ)⟶ Pic(𝐷)⟶
⨁
𝑇∈Θ

Pic(𝑇)⟶ 0.

Proof. By [23, Proposition 7.1], the extension map

Γ ∶ Inv(𝐷)⟶
⨁
𝑇∈Θ

Inv(𝑇),

𝐼 ⟼ 𝐼𝑇

is an isomorphism. Since every principal ideal of𝐷 becomes principal in each𝑇,Γ induces a surjectivemapΓ′ ∶ Pic(𝐷)⟶⨁
{Pic(𝑇) ∣ 𝑇 ∈ Θ}, whose kernel by definition is exactly Pic(𝐷,Θ). The claim is proved. □

Definition 4.6. Let𝐷 be an integral domain, and let 𝜄𝐷 ∶ Pic(𝐷)⟶ Pic(Int(𝐷)), 𝐼 ↦ 𝐼Int(𝐷), be the canonical extension
map. We define the int-polynomial Picard group of 𝐷 as the quotient

(𝐷) ∶=
Pic(Int(𝐷))

𝜄𝐷(Pic(𝐷))
.

If 𝑇 is a flat overring of 𝐷, we also define the int-polynomial Picard group of (𝐷, 𝑇) as

(𝐷, 𝑇) ∶=
Pic(Int(𝐷)𝑇)

𝜄𝐷,𝑇(Pic(𝑇))
,

where 𝜄𝐷,𝑇 ∶ Pic(𝑇)⟶ Pic(Int(𝐷)𝑇) is the extension map.

Note that, when 𝐷 is a local ring, Pic(𝐷) = (0), and thus (𝐷) = Pic(Int(𝐷)).
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SPIRITO 9

Theorem 4.7. Let Θ be a Jaffard family of 𝐷. Then, there is an exact sequence

0⟶ Pic(𝐷)⟶ Pic(Int(𝐷))⟶
⨁
𝑇∈Θ

(𝑇)⟶ 0.

In particular,

(𝐷) ≃
⨁
𝑇∈Θ

(𝑇).

Proof. Consider the commutative diagram

The first row is exact by Proposition 4.5, while the second one from Theorem 4.4; on the other hand, the leftmost
vertical map is the identity and the other two vertical maps are injective. By the snake lemma, there is an exact sequence
0⟶ coker 𝜄𝐷 ⟶ coker 𝜄Θ ⟶ 0. By definition, coker 𝜄𝐷 is just (𝐷), while coker 𝜄Θ is the direct sum

⨁
(𝑇), and thus

we have the isomorphism. The sequence (which is exact by definition)

0⟶ Pic(𝐷)⟶ Pic(Int(𝐷))⟶ (𝐷)⟶ 0

then becomes the one in the statement by substituting (𝐷) with the direct sum. □

A domain is ℎ-local if every nonzero ideal is contained in only finitely many maximal ideals and every nonzero prime
ideal is contained in only onemaximal ideal; in such domains, localizationworkswell enough to globalize severalmodule-
theoretic properties of local domains (see, e.g., [17]). The previous theorems immediately give the following.

Corollary 4.8. Let 𝐷 be an integral domain such that one of the following conditions holds.

(a) 𝐷 is ℎ-local,
(b) 𝐷 is one-dimensional and locally finite,
(c) 𝐷 is a one-dimensional Noetherian domain.

Then, there is an exact sequence

0⟶ Pic(𝐷)⟶ Pic(Int(𝐷))⟶
⨁

𝑀∈Max(𝐷)

Pic(Int(𝐷𝑀))⟶ 0.

In particular, (𝐷) ≃
⨁

𝑀∈Max(𝐷)
(𝐷𝑀) ≃

⨁
𝑀∈Max(𝐷)

Pic(Int(𝐷𝑀)).

Proof. We first note that, if 𝐷 is one-dimensional and locally finite, then 𝐷 is ℎ-local; likewise, if 𝐷 is one-dimensional
and Noetherian, then it is locally finite. Hence it is enough to prove the claim for 𝐷 ℎ-local.
If 𝐷 is ℎ-local, Θ ∶= {𝐷𝑀 ∣ 𝑀 ∈ Max(𝐷)} is a Jaffard family, and thus the claim follows either from Theorem 4.4 (since

Pic(𝐷,Θ) = Pic(𝐷)) or by Theorem 4.7 (since (𝐷𝑀) = Pic(Int(𝐷𝑀)) as 𝐷𝑀 is local). □

Proposition 4.9. Let 𝐷 be a locally finite Prüfer domain. Then, there is a split exact sequence

0⟶ Pic(𝐷)⟶ Pic(Int(𝐷))⟶
⨁

𝑀∈Max(𝐷)
ℎ(𝑀)=1

Pic(Int(𝐷𝑀))⟶ 0.
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10 SPIRITO

In particular,

Pic(Int(𝐷)) ≃ Pic(𝐷) ⊕
⨁

𝑀∈Max(𝐷)
ℎ(𝑀)=1

Pic(Int(𝐷𝑀))

Proof. Let 𝑇 ∶=
⋂
{𝐷𝑀 ∣ 𝑀 ∈ Max(𝐷), ℎ(𝑀) > 1}, and let Θ ∶= {𝐷𝑀 ∣ 𝑀 ∈ Max(𝐷), ℎ(𝑀) = 1} ∪ {𝑇}. Then, Θ is com-

plete, locally finite, and each of its elements is flat over 𝐷. Moreover, 𝐷𝑀𝐷𝑁 = 𝐾 if𝑀,𝑁 have height 1, while

𝑇𝐷𝑁 =

⎛⎜⎜⎜⎝
⋂

𝑀∈Max(𝐷)
ℎ(𝑀)>1

𝐷𝑀

⎞⎟⎟⎟⎠𝐷𝑁 =
⋂

𝑀∈Max(𝐷)
ℎ(𝑀)>1

𝐷𝑀𝐷𝑁 = 𝐾

since each subset ofMax(𝐷) is compact. Hence, Θ is independent and thus a Jaffard family. By Theorem 4.4, there is an
exact sequence

0⟶ Pic(𝐷)⟶ Pic(Int(𝐷))⟶ (𝑇) ⊕
⨁

𝑀∈Max(𝐷)
ℎ(𝑀)=1

(𝐷𝑀)⟶ 0.

Each Pic(𝐷𝑀) is trivial since 𝐷𝑀 is local. We claim that Pic(Int(𝑇)) = Pic(𝑇).
Let 𝑃 be a maximal ideal of 𝑇. Then, 𝑇𝑃 is a valuation domain of dimension strictly greater than 1, and thus by [2,

Proposition I.3.16], we have Int(𝑇𝑃) = 𝑇𝑃[𝑋]; hence also Int(𝑇) = 𝑇[𝑋]. Since 𝑇 is integrally closed, the natural map
Pic(𝑇)⟶ Pic(𝑇[𝑋]) is an isomorphism [12, Corollary 6.1.5], and thus the quotient (𝑇) = Pic(Int(𝑇))

Pic(𝑇)
is trivial. Hence,

the sequence in the statement is exact.
To show that it is split, it is enough to note that Pic(Int(𝐷𝑀)) is always a free group (if 𝐷𝑀 is not discrete since

Pic(Int(𝐷𝑀)) = Pic(𝐷𝑀[𝑋]) = (0), if 𝐷𝑀 is discrete by [5, Proposition 7.7]). The isomorphism follows. □

5 THE SURJECTIVITY OF THE EXTENSIONMAP

A consequence of Theorem 4.4 (or rather, of its proof) is that when 𝑇 is a Jaffard overring, then the extension map

Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑇) = Pic(Int(𝑇))

is surjective. This property is in general not true, not even for an extension map Pic(𝐷)⟶ Pic(𝑇), where 𝐷 ⊆ 𝑇 is a flat
extension:𝐷may be a local ring (so Pic(𝐷) is trivial), while the Picard group of a flat overringmay not be trivial. Moreover,
even if the surjectivity holds, it need not pass to integer-valued polynomials: We will construct in Example 6.5 below a
domain 𝐷 for which the map Pic(𝐷)⟶ Pic(𝑇) is surjective but Pic(Int(𝐷))⟶ Pic(Int(𝑇)) is not.
In this section, we give sufficient conditions in order to get that the surjectivity of Pic(𝐷)⟶ Pic(𝑇) implies the sur-

jectivity of Pic(Int(𝐷))⟶ Pic(Int(𝑇)). These conditions will be used in Propositions 6.1 and 7.2 for the calculation of
Pic(Int(𝐷)).

Lemma5.1. Let𝐷 be an integral domain,𝑇 a flat overring of𝐷, and let be a sublattice ofOver(𝐷) such that
⋃
{𝑆 ∣ 𝑆 ∈ } =

𝑇. If the extensionmap Pic(𝐷)⟶ Pic(𝑆) is surjective for every 𝑆 ∈ , then the extensionmap Pic(𝐷)⟶ Pic(𝑇) is surjective.

Proof. We first note that, for every finite subset 𝐴 ⊆ 𝑇, there is an 𝑆 ∈  containing 𝐴: Indeed, each 𝑎 ∈ 𝐴 is contained
in some 𝑆𝑎 ∈ , and since  is a sublattice of Over(𝐷), there is an 𝑆 ∈  containing all 𝑆𝑎 and thus all of 𝐴.
Let 𝐼 ∶= (𝑥1, … , 𝑥𝑛) be an invertible ideal of 𝑇, and let 𝐽 ∶= (𝑦1, … , 𝑦𝑚) be its inverse. Then, 𝑥𝑖𝑦𝑗 ∈ 𝑇 for every 𝑖, 𝑗, and

there are 𝑟𝑖𝑗 ∈ 𝑇 such that 1 =
∑
𝑖,𝑗
𝑟𝑖𝑗𝑥𝑖𝑦𝑗 . Therefore, there is an 𝑆 ∈  that contains all 𝑥𝑖 , all 𝑥𝑖𝑦𝑗 and all 𝑟𝑖𝑗 .

Consider 𝐼0 ∶= (𝑥1, … , 𝑥𝑛)𝑆 and 𝐽0 ∶= (𝑦1, … , 𝑦𝑚)𝑆; then, by construction, 𝐼0𝐽0 ⊆ 𝑆 and 1 ∈ 𝐼0𝐽0. Hence, 𝐼0𝐽0 = 𝑆, so
𝐼0 is invertible in 𝑆. Clearly 𝐼0𝑇 = 𝐼. By hypothesis, there is an invertible ideal 𝐼1 of 𝐷 such that [𝐼1𝑆] = [𝐼0]; thus, [𝐼1𝑇] =
[𝐼1𝑆𝑇] = [𝐼0𝑇] = [𝐼]. It follows that the extension map Pic(𝐷)⟶ Pic(𝑇) is surjective, as claimed. □
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SPIRITO 11

Lemma5.2. Let𝐷 be an integral domain,𝑇 a flat overring of𝐷, and let be a sublattice ofOver(𝐷) such that
⋃
{𝑆 ∣ 𝑆 ∈ } =

𝑇. If the extension map Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑆) is surjective for every 𝑆 ∈ , then the extension map Pic(Int(𝐷))⟶
Pic(Int(𝐷)𝑇) is surjective.

Proof. Let 1 ∶= {Int(𝐷)𝑆 ∣ 𝑆 ∈ Λ}, then 1 is a sublattice of Over(Int(𝐷)). We claim that its union is Int(𝐷)𝑇. Indeed, if
ℎ ∈ Int(𝐷)𝑇, then ℎ = 𝑓1𝑡1 +⋯+ 𝑓𝑛𝑡𝑛 for some 𝑓𝑖 ∈ Int(𝐷), 𝑡𝑖 ∈ 𝑇; if 𝑆 ∈  contains 𝑡1, … , 𝑡𝑛, then ℎ ∈ Int(𝐷)𝑆. Hence,
we can apply Lemma 5.1 to 1. □

We conclude this section by showing that for one-dimensional Prüfer domains, we can exclude some maximal ideals
with infinite residue field while controlling the change in the Picard group.

Lemma 5.3. Let 𝐷 be a one-dimensional Prüfer domain, and let 𝑇 be a flat overring of 𝐷. Then, the extension map
Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑇) is surjective.

Proof. Let be the family of all Jaffard overrings of𝐷 contained in𝑇. Then, is a sublattice ofOver(𝐷), since the product of
two Jaffard overrings is a Jaffard overring, and the extension map Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑆) = Pic(Int(𝑆)) is surjective
for all such 𝑆.
Take 𝑎 ∈ 𝑇, and let 𝐼 ∶= (𝐷 ∶𝐷 𝑎) = 𝑎−1𝐷 ∩ 𝐷. Since 𝐷 is a Prüfer domain, 𝐼 is finitely generated; therefore, both

the closed set 𝑉(𝐼) and the open set 𝐷(𝐼) ∩ Max(𝐷) of Max(𝐷) are compact in the Zariski topology of Max(𝐷). Let
Θ1 ∶= {𝑃 ∈ Max(𝐷) ∣ 𝑃 ∈ 𝑉(𝐼)} andΘ2 ∶= {𝑄 ∈ Max(𝐷) ∣ 𝑄 ∈ 𝐷(𝐼) ∩ Max(𝐷)}, and let 𝑆𝑖 ∶=

⋂
{𝐷𝑃 ∣ 𝑃 ∈ Θ1}. Applying

[25, Proposition 4.8] to Θ ∶= {𝐷𝑀 ∣ 𝑀 ∈ Max(𝐷)}, we obtain that {𝑆1, 𝑆2} is a pre-Jaffard family of 𝐷; being finite, it is a
Jaffard family, and thus 𝑆1 and 𝑆2 are Jaffard overrings.
By construction, 𝑎 ∈ 𝐷𝑄 for every 𝑄 ∈ Θ2, and thus 𝑎 ∈ 𝑆2. Moreover, if 𝑃 is a maximal ideal of 𝐷 such that 𝑃𝑇 ≠ 𝑇,

then 𝑎 ∈ 𝐷𝑃, and thus 𝑃 ∈ Θ2; hence 𝑆2 ⊆ 𝑇. It follows that 𝑆2 ∈ , and thus 𝑎 belongs to the union of the elements of .
Since 𝑎 was arbitrary, 𝑇 is equal to the union, and we can apply Lemma 5.2. □

Proposition 5.4. Let 𝐷 be a one-dimensional Prüfer domain, let 𝑋 ∶= {𝑀 ∈ Max(𝐷) ∣ Int(𝐷𝑀) ≠ 𝐷𝑀[𝑋]}, and let 𝑇 ∶=⋂
{𝐷𝑀 ∣ 𝑀 ∈ 𝑋}. Then, there is an exact sequence

0⟶ Pic(𝐷, 𝑇)⟶ Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑇)⟶ 0.

In particular, (𝐷) ≃ (𝐷, 𝑇).

Proof. Let 𝑋 be the closure of 𝑋 inMax(𝐷), with respect to the inverse topology. Then, 𝑋 is a closed set of Spec(𝐷), with
respect to the inverse topology, and thus it is compact in the Zariski topology; hence, also {𝐷𝑀 ∣ 𝑀 ∈ 𝑋} is compact, since
it is homeomorphic to 𝑋. Moreover, 𝑇 =

⋂
{𝐷𝑃 ∣ 𝑃 ∈ 𝑋}. By [25, Proposition 4.8] Θ ∶= {𝑇} ∪ {𝐷𝑁 ∣ 𝑁 ∈ Max(𝐷) ⧵ 𝑋} is a

pre-Jaffard family of 𝐷. By Proposition 4.3, there is an exact sequence

0⟶ Pic(𝐷,Θ)⟶ Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑇) ⊕
∏

𝑁∈Max(𝐷)⧵𝑋

Pic(Int(𝐷)𝐷𝑁).

Let 𝑁 ∈ Max(𝐷) ⧵ 𝑋. By definition, Int(𝐷𝑁) = 𝐷𝑁[𝑋], and thus

𝐷𝑁[𝑋] ⊆ Int(𝐷)𝐷𝑁 ⊆ Int(𝐷𝑁)𝐷𝑁 = 𝐷𝑁[𝑋]𝐷𝑁 = 𝐷𝑁[𝑋];

hence Pic(Int(𝐷)𝐷𝑁) = Pic(𝐷𝑁[𝑋]) = Pic(𝐷𝑁) = (0) since 𝐷𝑁 is local and integrally closed. Hence, the direct product in
the previous sequence vanishes.Moreover, 𝐼𝐷𝑁 is principal for every invertible ideal 𝐼 of𝐷; hence, Pic(𝐷,Θ ⧵ 𝑋) = Pic(𝐷),
and Pic(𝐷,Θ) = Pic(𝐷, 𝑇). Thus, the exact sequence becomes

0⟶ Pic(𝐷, 𝑇)⟶ Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑇).
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12 SPIRITO

To conclude, we note that the rightmost map of the sequence is the extension map, which is surjective by Lemma 5.3.
Hence, the sequence of the statement is exact.
To prove the isomorphism, we apply the same method of Theorem 4.7: There is a commutative diagram

The rows are exact (by definition and by the first part of the proof), while the vertical maps are injective (and the
leftmost one is the identity). By the snake lemma, the cokernels of the other two vertical maps are isomorphic; since they
are, respectively, (𝐷) and (𝐷, 𝑇), the claim is proved. □

6 WEAK JAFFARD FAMILIES

We now start to study how to extend Theorem 4.4 toward weak Jaffard and pre-Jaffard families. In these cases, we have
two problems: First, the equality Int(𝐷)𝑇 = Int(𝑇)may not hold (see Example 6.5 below); second, the cokernel of the map
Pic(𝐷)⟶ Pic(Int(𝐷)) cannot reduce to the direct sum, and in general itmay be difficult to actually determine it inside the
direct product of the various Pic(Int(𝑇)) or Pic(Int(𝐷)𝑇). The first problem cannot be resolved with our methods, and, for
the most part, we will have to use the equality Int(𝐷)𝑇 = Int(𝑇) as an additional hypothesis; to solve the second problem,
on the other hand, our strategy will be to write the cokernel as the middle element of some other exact sequences, using
this knowledge to write exact sequences involving the int-polynomial Picard groups.
We study in this section the case of weak Jaffard families, which will then be used as an inductive step in the next

section (where we will deal with pre-Jaffard families).

Proposition 6.1. Let 𝐷 be an integral domain and let Θ be a weak Jaffard family of 𝐷 pointed at 𝑇. Then, the extension
maps Pic(𝐷)⟶ Pic(𝑇) and Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑇) are surjective.

Proof. Let  be the lattice of Jaffard overrings of 𝐷 contained in 𝑇. Then, the extension maps Pic(𝐷)⟶ Pic(𝑆) and
Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑆) = Pic(Int(𝑆)) are surjective for every 𝑆 ∈ . We claim that

⋃
{𝑆 ∣ 𝑆 ∈ } = 𝑇.

Indeed, let 𝑎 ∈ 𝑇, and consider (𝐷 ∶𝐷 𝑎). Then, (𝐷 ∶𝐷 𝑎)𝑇 = 𝑇, and thus by [25, Proposition 5.3(a)], there are only
finitely many 𝑅 ∈ Θ such that (𝐷 ∶𝐷 𝑎)𝑅 ≠ 𝑅, say 𝑅1, … , 𝑅𝑛. Define 𝐴 ∶=

⋂
{𝑅 ∈ Θ, 𝑅 ≠ 𝑅1, … , 𝑅𝑛}: Then, {𝐴, 𝑅1, … , 𝑅𝑛}

is a complete and independent finite family of flat overrings of𝐷, and thus it is a Jaffard family; moreover, (𝐷 ∶𝐷 𝑎)𝐴 = 𝐴.
In particular,𝐴 is a Jaffard overring of𝐷 contained in 𝑇 (hence,𝐴 ∈ ) such that 𝑎 ∈ 𝐴: It follows that

⋃
{𝑆 ∣ 𝑆 ∈ } = 𝑇.

The claims now follow from Lemmas 5.1 and 5.2. □

Proposition 6.2. LetΘ be a weak Jaffard family of𝐷 pointed at 𝑇∞. Let 𝜋Θ ∶ Pic(Int(𝐷))⟶
∏
{Pic(Int(𝐷)𝑇) ∣ 𝑇 ∈ Θ} be

the extension map and let Δ be its cokernel. Then, there is an exact sequence

0⟶
⨁

𝑇∈Θ⧵{𝑇∞}

Pic(Int(𝑇))⟶ Δ⟶ Pic(Int(𝐷)𝑇∞)⟶ 0.

Proof. We first note, that, for each 𝑇 ∈ Θ ⧵ {𝑇∞}, we have Int(𝐷)𝑇 = (Int(𝑇)) by Proposition 3.6(a), and thus
Pic(Int(𝐷)𝑇) = Pic(Int(𝑇)) for these overrings.
The inclusion Δ ⊆

∏
{Pic(Int(𝐷)𝑇) ∣ 𝑇 ∈ Θ} induces a projection map 𝜋′ ∶ Δ⟶ Int(𝐷)𝑇∞, whose kernel contains

exactly the extensions of the classes [𝐼] ∈ Pic(Int(𝐷)) such that 𝐼 becomes principal in each 𝑇 ∈ Θ ⧵ Λ. We claim that
this kernel is exactly

⨁
{Pic(Int(𝑇)) ∣ 𝑇 ∈ Λ}.

We first show that the direct sum belongs to the kernel, and to do so, we need to show that it is actually inside Δ. If
[𝐽] ∈ Pic(Int(𝑇)) for some 𝑇 ∈ Θ, 𝑇 ≠ 𝑇∞, we can consider the Jaffard family {𝑇, 𝑇⟂}, where 𝑇⟂ ∶=

⋂
{𝑆 ∣ 𝑆 ∈ Θ ⧵ {𝑇}}:

then, by Theorem 4.4, there is a class [𝐼] ∈ Int(Pic(𝐷)) such that [𝐼𝑇] = [𝐽] and [𝐼𝑇⟂] = [𝑇⟂], so that [𝐼𝑆] = [𝑆] for all
other 𝑆 ∈ Θ. Thus, the direct sum is contained in the kernel.
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SPIRITO 13

Conversely, suppose that [𝐼] ∈ ker 𝜋′. Then, [𝐼𝑇∞] = [𝑇∞], and thus there is an 𝑓 ∈ 𝐼 such that 𝐼𝑇∞ = 𝑓𝑇∞. The set
of 𝑇 ∈ Θ such that 𝑓𝑇 = 𝐼𝑇 is closed in the Zariski topology and does not contain 𝑇∞, and thus it is finite; hence 𝜋Θ([𝐼])
belongs to the direct sum. Therefore, ker 𝜋′ =

⨁
𝑇∈Λ

Pic(Int(𝑇)), and the claim is proved.
To conclude, we need to show that the map Δ⟶ Int(𝐷)𝑇∞ is surjective. However, this map factorizes the extension

map Int(𝐷)⟶ Int(𝐷)𝑇∞, which is surjective by Proposition 6.1, and thus it is surjective itself. The claim is proved. □

We now transform this result using int-polynomial Picard groups; the following lemma has the same role of
Proposition 4.5.

Lemma 6.3. Let Θ be a weak Jaffard family pointed at 𝑇∞. Then, there is an exact sequence

0⟶
⨁

𝑇∈Θ⧵{𝑇∞}

Pic(𝑇)⟶
Pic(𝐷)

Pic(𝐷,Θ)
⟶ Pic(𝑇∞)⟶ 0.

Proof. The extension map Pic(𝐷)⟶ Pic(𝑇∞) is surjective, with kernel Pic(𝐷, 𝑇∞). In particular, the kernel contains
Pic(𝐷,Θ), and thus the extension map induces a surjective map Pic(𝐷)

Pic(𝐷,Θ)
⟶ Pic(𝑇∞) with kernel

Pic(𝐷,𝑇∞)

Pic(𝐷,Θ)
. We claim that

this group is isomorphic to
⨁

𝑇∈Θ⧵{𝑇∞}
Pic(𝑇).

Indeed, consider the extension map 𝜙 ∶ Pic(𝐷, 𝑇∞)⟶
⨁

𝑇∈Θ⧵{𝑇∞}
Pic(𝑇). Note that 𝜙 is well-defined since, if 𝐼𝑇∞ =

𝑓𝑇∞, then 𝐼𝑆 ≠ 𝑓𝑆 for only a closed set of Θ not containing 𝑇∞, and thus 𝐼𝑆 is not principal for only finitely many 𝑆 ∈ Θ

[25, Proposition 5.3(a)]. Moreover, 𝜙 is surjective: Indeed, let [𝐼] ∈ Pic(𝑇), with 𝐼 ⊆ 𝑇, and set 𝐽 ∶= 𝐼 ∩ 𝐷. Then, 𝐽 is an
invertible ideal of𝐷 such that 𝐽𝑆 = 𝑆 for all 𝑆 ∈ Θ, 𝑆 ≠ 𝑇, and in particular 𝐽𝑇∞ = 𝑇∞. Therefore, 𝜙([𝐽]) is the element of
the direct sum whose only nonzero coefficient is the one corresponding to 𝑇, which is equal to [𝐼]. Thus, 𝜙 is surjective.
The kernel of 𝜙 is given by all [𝐼] ∈ Pic(𝐷, 𝑇∞) that become principal in Pic(𝑇) for each 𝑇 ∈ Θ; that is, by definition,

ker 𝜙 = Pic(𝐷,Θ). Thus, Pic(𝐷,𝑇∞)
Pic(𝐷,Θ)

≃
⨁

𝑇∈Θ⧵{𝑇∞}
Pic(𝑇). The exactness of the sequence of the statement follows. □

Theorem 6.4. Let Θ be a weak Jaffard family of 𝐷 pointed at 𝑇∞. Then, there is an exact sequence

0⟶
⨁

𝑇∈Θ⧵{𝑇∞}

(𝑇)⟶ (𝐷)⟶ (𝐷, 𝑇∞)⟶ 0.

Proof. Consider the commutative diagram

where Δ is the cokernel of 𝜋Θ. The first row is defined (and is exact) by Lemma 6.3, while the second row is exact by
Proposition 6.2. All vertical maps are injective: the side ones since Pic(𝐴)⟶ Pic(Int(𝐷)𝐴) is always injective, while the
middle one because the kernel of the natural map Pic(𝐷)⟶ Δ is exactly Pic(𝐷,Θ). By the snake lemma, the sequence of
cokernels

0⟶
⨁

𝑇∈Θ⧵{𝑇∞}

(𝑇)⟶ 𝐺 ⟶ (𝐷, 𝑇∞)⟶ 0

is exact. Moreover, the quotient 𝐺 between Δ and Pic(𝐷)

Pic(𝐷,Θ)
is isomorphic to

Pic(Int(𝐷))∕Pic(𝐷,Θ)

Pic(𝐷)∕Pic(𝐷,Θ)
≃
Pic(Int(𝐷))

Pic(𝐷)
= (𝐷);

thus, we obtain exactly the exact sequence of the statement. □
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14 SPIRITO

Example 6.5. Let 𝑝 be a prime number, and let 𝑉 ∶= ℤ(𝑝). Applying repeatedly [20, Chapter 6, Theorem 4], we can con-
struct a chain of extensions ℚ = 𝐿0 ⊂ 𝐿1 ⊂ ⋯ ⊂ 𝐿𝑛 ⊂ ⋯ such that, for every 𝑛, 𝑉 has 𝑛 + 1 extensions𝑊𝑛, 𝑍1,𝑛, … , 𝑍𝑛,𝑛
to 𝐿𝑛:

(1) 𝑊𝑛 extends to𝑊𝑛+1 and 𝑍𝑛+1,𝑛+1 in 𝐿𝑛+1;
(2) for 𝑖 = 1, … , 𝑛, 𝑍𝑖,𝑛 has a unique extension to 𝐿𝑛+1, namely, 𝑍𝑖,𝑛+1;
(3) 𝑉 ⊂ 𝑊𝑛 is an immediate extension;
(4) for each 𝑖, the extension 𝑉 ⊂ 𝑍𝑖,𝑛 is trivial on value groups, while the extension of residue fields has degree at least 𝑛.

Let 𝐿 ∶=
⋃

𝑛
𝐿𝑛. Then, the integral closure 𝑉 of 𝑉 in 𝐿 is a one-dimensional Prüfer domain whose localization at the

maximal ideals are the extensions of 𝑉 to 𝐿, namely,𝑊∞ ∶=
⋃

𝑛
𝑊𝑛 and, for each 𝑖 ∈ ℕ, 𝑍𝑖,∞ ∶=

⋃
𝑛
𝑍𝑖,𝑛.

Each 𝑍𝑖,∞ is an isolated point of Zar(𝑉) (because there is a 𝑧 ∈ 𝑍𝑖,𝑖 ⧵ (𝑊𝑖 ∪ 𝑍1,𝑖 ∪ ⋯ ∪ 𝑍𝑖−1,𝑖)), while𝑊∞ is not isolated,
since every finite subset of𝑊∞ is contained in some𝑊𝑘 and thus also in𝑊𝑘,∞. In particular,𝑉 is equal to the intersection
of all𝑊𝑖,∞, and Θ ∶= {𝑊∞, 𝑍𝑖,∞ ∣ 𝑖 ∈ ℕ} is a weak Jaffard family of 𝑉.
The residue field of each 𝑍𝑖,∞ is infinite, and thus Int(𝑍𝑖,∞) is trivial; therefore, also Int(𝑉) is trivial, and thus

Int(𝑉)𝑊∞ = 𝑊∞[𝑋]. However, 𝑊∞ is a DVR with finite residue field, and thus Int(𝑊∞) is not trivial [2, Proposition
I.3.16]; it follows that Int(𝑉)𝑊∞ ≠ Int(𝑊∞).
Moreover, Pic(𝑊∞) is trivial (since𝑊∞ is local) and thus themap Pic(𝑉)⟶ Pic(𝑊∞) is surjective. On the other hand,

Pic(Int(𝑉)) is trivial while Pic(Int(𝑊∞)) is not trivial by [2, Proposition VIII.2.8] since𝑊∞ is a DVR with finite residue
field; in particular, Pic(Int(𝑉))⟶ Pic(Int(𝑊∞)) is not surjective.

7 PRE-JAFFARD FAMILIES

Proposition 6.2 is, in some ways, the best result that is possible to obtain without adding more hypotheses. However, if
Int(𝐷)𝑇∞ = Int(𝑇∞) (something that need not happen, see Example 6.5), then one may repeat the process by taking a
weak Jaffard family Θ′ of 𝑇∞ and apply the same result; hopefully, this can lead to a finer description of Δ and thus of
Pic(Int(𝐷)) and (𝐷). The purpose of this section is to develop this idea by using the notions of pre-Jaffard family and of
its derived sequence (see Section 2.2); we use throughout the section the notation introduced therein.

Lemma 7.1. Let Θ be a pre-Jaffard family of 𝐷, and let 𝛾 be a limit ordinal. Then,
⋃

𝛾<𝛼
𝑇𝛾 = 𝑇𝛼 .

Proof. Let 𝑅 be the union of 𝑇𝛾, for 𝛾 < 𝛼. Then, 𝑅 is the union of a chain of flat overrings, and thus it is itself flat;
moreover, 𝑅 ⊆ 𝑇𝛼 since 𝑇𝛾 ⊆ 𝑇𝛼 when 𝛾 < 𝛼. If 𝑅 ≠ 𝑇𝛼, then (since 𝑇𝛼 is flat too) there should be a nonzero prime ideal 𝑃
of𝐷 such that𝑃𝑅 ≠ 𝑅 and𝑃𝑇𝛼 = 𝑇𝛼. SinceΘ is a Jaffard family, there is a unique𝑇 ∈ Θ such that𝑃𝑇 ≠ 𝑇; by construction,
𝑇 ∉ 𝛼(Θ), and since 𝛼 is a limit ordinal, there is a 𝛽 < 𝛼 such that 𝑇 ∉ 𝛽(Θ). In this case, we have 𝑃𝑇𝛽 = 𝑇𝛽 , and thus
𝑃𝑅 = 𝑅 since 𝑇𝛽 ⊆ 𝑅. This is a contradiction, and thus 𝑅 = 𝑇𝛼, as claimed. □

Proposition 7.2. Let Θ be a pre-Jaffard family of 𝐷, and let {𝑇𝛼} be the derived series of 𝐷. Then,

(a) for each 𝛼, the extension map Pic(𝐷)⟶ Pic(𝑇𝛼) is surjective;
(b) if Int(𝐷)𝑇𝛾 = Int(𝑇𝛾) for every 𝛾 < 𝛼, then the extension map Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑇𝛼) is surjective.

Proof. Weproceed by induction on𝛼, considering both cases at the same time. If𝛼 = 0, then𝑇𝛼 = 𝐷 and the claim is trivial.
If 𝛼 is a limit ordinal, then by Lemma 7.1,

⋃
𝛾<𝛼

𝑇𝛾 = 𝑇𝛼, and the claim follows by applying the inductive hypothesis and
Lemmas 5.1 and 5.2 to {𝑇𝛾 ∣ 𝛾 < 𝛼}.
Suppose that 𝛼 = 𝛾 + 1 is a successor ordinal. Then, the extension map Pic(𝐷)⟶ Pic(𝑇𝛼) factors as

Pic(𝐷)⟶ Pic(𝑇𝛾)⟶ Pic(𝑇𝛼).

The first of these maps is surjective by hypothesis; on the other hand,  𝛾(Θ) is a pre-Jaffard family of 𝑇𝛾, and thus
𝑇𝛼 belongs to the weak Jaffard family ( 𝛾(Θ) ⧵ 𝛼(Θ)) ∪ {𝑇𝛼}, which implies that Pic(𝑇𝛾)⟶ Pic(𝑇𝛼) is surjective by
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SPIRITO 15

Proposition 6.1. In the same way, Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑇𝛼) factors as

Pic(𝐷)⟶ Pic(Int(𝐷)𝑇𝛾)⟶ Pic(Int(𝐷)𝑇𝛼).

The first map is surjective by hypothesis; the second one is surjective since Pic(Int(𝐷)𝑇𝛾) = Pic(Int(𝑇𝛾)) and thus we can
apply again Proposition 6.1. The claim is proved. □

Theorem 7.3. Let Θ be a pre-Jaffard family of 𝐷, and let {𝑇𝛼} be the derived series of 𝐷. Fix an ordinal 𝛼 and suppose that
the following conditions hold:

(1) Int(𝐷)𝑇 = Int(𝑇) for each 𝑇 ∈ Θ ⧵ 𝛼(Θ) and for each 𝑇 = 𝑇𝛾 with 𝛾 < 𝛼;
(2) (Int(𝑇)) is a free group for each 𝑇 ∈ Θ ⧵ 𝛼(Θ).

Then, there is an exact sequence

0⟶
⨁

𝑇∈Θ⧵ 𝛼(Θ)

(𝑇)⟶ (𝐷)⟶ (𝐷, 𝑇𝛼)⟶ 0.

Proof. By induction on 𝛼. If 𝛼 = 1, then Λ𝛼 = (Θ ⧵ 𝛼(Θ)) ∪ {𝑇𝛼} is a weak Jaffard family of 𝐷, and thus the statement
is exactly Theorem 6.4.
Suppose that 𝛼 = 𝛾 + 1 is a successor ordinal. There is a commutative diagram

(2)

where 𝐿 is the kernel of (𝐷)⟶ (𝐷, 𝑇𝛼); note that this map is surjective since Pic(Int(𝐷))⟶ Pic(Int(𝐷)𝑇𝛼) is
surjective by Proposition 7.2.
The first row is exact by induction (using the hypothesis Int(𝐷)𝑇𝛾 = Int(𝑇𝛾) and thus (𝐷, 𝑇𝛾) = (𝑇𝛾)), while the

second one is exact by definition of 𝐿. Since themap in themiddle column is an equality, its kernel and cokernel are trivial,
and thus by the snake lemma coker 𝑓 ≃ ker 𝑔; by Theorem 6.4, the latter is isomorphic to

⨁
{(𝑇) ∣ 𝑇 ∈ 𝛾(Θ) ⧵ 𝛼(Θ)},

and thus there is an exact sequence

0⟶
⨁

𝑇∈Θ⧵ 𝛾(Θ)

(𝑇)⟶ 𝐿⟶
⨁

𝑇∈ 𝛾(Θ)⧵ 𝛼(Θ)

(𝑇)⟶ 0.

By hypothesis, each (𝑇) is free; hence the sequence splits and thus 𝐿 is isomorphic to the direct sum of (𝑇) for 𝑇 ∈

Θ ⧵ 𝛼(Θ). The claim now follows reading the second row of (2).
Suppose now that 𝛼 is a limit ordinal; for each 𝛾 ≤ 𝛼, let 𝐿𝛾 be the kernel of the surjective map (𝐷)⟶ (𝐷, 𝑇𝛾). By

induction, {𝐿𝛾}𝛾<𝛼 is a chain of free subgroups of 𝐿𝛼 such that each element is a direct summand of the next ones; we
claim that

⋃
𝛾<𝛼

𝐿𝛾 = 𝐿𝛼.
Let 𝑘 ∈ 𝐿𝛼: Then, 𝑘 is the image in (𝐷, 𝑇𝛼) of an invertible ideal 𝐼 ∶= (𝑓1, … , 𝑓𝑛) of Int(𝐷) such that 𝐼Int(𝐷)𝑇𝛼 is

principal, say generated by 𝑔. In particular, there are 𝑡1, … , 𝑡𝑛 ∈ Int(𝐷)𝑇𝛼 such that 𝑔 = 𝑓1𝑡1 +⋯+ 𝑓𝑛𝑡𝑛, and 𝑓𝑖𝑔−1 ∈
Int(𝐷)𝑇𝛼 for every 𝑖. By Lemma 7.1, 𝑇𝛼 is the union of 𝑇𝛾, for 𝛾 < 𝛼, and thus the same holds for Int(𝐷)𝑇𝛼 and Int(𝐷)𝑇𝛾;
therefore, there is a 𝛾 < 𝛼 such that Int(𝐷)𝑇𝛾 contains all 𝑡𝑖 and all 𝑓𝑖𝑔−1. Then, 𝐼Int(𝐷)𝑇𝛾 is a principal ideal, generated
by 𝑔; in particular, the image of 𝑘 in (𝐷, 𝑇𝛾) is trivial, that is, 𝑔 ∈ 𝐿𝛾.
Therefore, we can apply [26, Lemma 5.6] (or [13, Chapter 3, Lemma 7.3]), obtaining that 𝐿𝛼 ≃

⨁
{(𝑇) ∣ 𝑇 ∈ Θ ⧵

 𝛼(Θ)}. The claim is proved. □

Corollary 7.4. Let Θ be a pre-Jaffard family of 𝐷 such that:

(1) Int(𝐷)𝑇 = Int(𝑇) for every 𝑇 ∈ Θ;
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16 SPIRITO

(2) (Int(𝑇)) is free for every 𝑇 ∈ Θ;
(3) Θ is sharp.

Then, (𝐷) ≃
⨁

𝑇∈Θ
(𝑇).

Proof. The first condition implies, thanks to Proposition 3.7, that Int(𝐷)𝑇𝛼 = 𝑇𝛼 for every 𝛼; moreover, together with the
second condition, it also implies that we can apply Theorem 7.3. SinceΘ is sharp, there is an 𝛼 such that 𝛼(Θ) = ∅, that
is, 𝑇𝛼 = 𝐾; for this 𝛼, Int(𝐷)𝑇𝛼 = Int(𝐷)𝐾 = 𝐾[𝑋], and thus (𝐷, 𝑇𝛼) = (0). The claim follows from Theorem 7.3. □

The condition that(Int(𝑇)) is free is satisfied, for example,when𝑇 = 𝐷𝑀 is aDVR.A ring such that all the localizations
at the maximal ideals are DVRs is called an almost Dedekind domain; the following two results apply Theorem 7.3 to this
class of rings. We note that it is possible to characterize for which almost Dedekind domains the ring of integer-valued
polynomials behaves well under localization [4, Theorem 4.3].

Theorem 7.5. Let 𝐷 be an almost Dedekind domain, {𝑇𝛼} be the derived series of the canonical pre-Jaffard family Θ ∶=

{𝐷𝑀 ∣ 𝑀 ∈ Max(𝐷)} of𝐷, corresponding to 𝛼(Θ) ⊆ Max(𝐷). If, for every𝑀 ∉ 𝛼(Θ), we have Int(𝐷)𝐷𝑀 = Int(𝐷𝑀), and
Int(𝐷)𝑇𝛼 = Int(𝑇𝛼), then there is an exact sequence

0⟶
⨁

𝑀∉ 𝛼(Θ)

Pic(Int(𝐷𝑀))⟶ (𝐷)⟶ (𝑇𝛼)⟶ 0.

Proof. The condition on localization implies, by Proposition 3.7, that Int(𝐷)𝑇𝛾 = 𝑇𝛾 for every 𝛾 < 𝛼. The claimnow follows
from Theorem 7.3. □

Corollary 7.6. Let 𝐷 be an almost Dedekind domain. If Int(𝐷)𝐷𝑀 = Int(𝐷𝑀) for all𝑀 ∈ Max(𝐷) andMax(𝐷) is scattered
(with respect to the inverse topology), then

(𝐷) ≃
⨁

𝑀∈Max(𝐷)

(𝐷𝑀)

and

Pic(Int(𝐷)) ≃ Pic(𝐷) ⊕
⨁

𝑀∈Max(𝐷)

Pic(Int(𝐷𝑀)).

Proof. IfMax(𝐷) is scattered, then the canonical pre-Jaffard familyΘ ∶= {𝐷𝑀 ∣ 𝑀 ∈ Max(𝐷)} is sharp [25, Corollary 8.6].
The claim now follows fromCorollary 7.4 (or by Theorem 7.5 applied with 𝛼 being the Cantor–Bendixson rank ofMax(𝐷),
endowed with the inverse topology). □

ORCID
Dario Spirito https://orcid.org/0000-0002-7318-7860

ENDNOTE
1This is not the best way to define independence for general families of overrings, but it is equivalent for flat overrings, and it is the property
we will be using; see [25, Lemma 3.4 and Definition 3.5].
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