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Abstract
The state-of-the-art proposes life care annuities, that have been recently designed
as variable annuity contracts with Long-Term Care payouts and Guaranteed Life-
long Withdrawal Benefits. In this paper, we propose more general features for these
insurance products and refine their pricing methods. We name our proposed product
“GLWB-LTC”. In particular, as to the product features, we allow dynamic withdrawal
strategies, including the surrender option. Furthermore, we consider stochastic interest
rates, described by a Cox–Ingersoll–Ross process. As to the numerical methods, we
solve the stochastic control problem involved by the selection of the optimal with-
drawal strategy through a robust tree method, which outperforms the Monte Carlo
approach. We name this method “Tree-LTC”, and we use it to estimate the fair price
of the product, as some relevant parameters vary, such as, for instance, the entry age
of the policyholder. Furthermore, our numerical results show how the optimal with-
drawal strategy varies over timewith the health status of the policyholder. Our findings
stress the important advantage of flexible withdrawal strategies in relation to insurance
policies offering protection from health risks. Indeed, the policyholder is given more
choice about how much to save for protection from the possible disability states at
future times.
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1 Introduction

As stressed by the World Health Organization1, every country in the world is expe-
riencing the phenomenon of population ageing, whose drivers are lower fertility and
higher survival prospects. Indeed, older people represent a growing share of the pop-
ulation. For instance, it is estimated that the proportion of the world’s population over
60 years will nearly double from 12 to 22% by 2050.

While a longer life gives rise to several opportunities for older people and their
families, the quality of the added years of life highly depends on health.

Currently, it is estimated that more than 250 million people aged 60 years and
over have moderate to severe disability2. The progressive population ageing may
lead to more people experiencing age-related diseases/disorders and disability in their
more advanced stages of life (Petretto and Pili 2022). Furthermore, as emphazised in
OECD/European Union (2022), Long-COVID or “Post COVID-19 Condition (PCC)”
will likely make chronic diseases more prevalent in both younger and older people in
the coming years.

Ageing and disability cannot be disentangled. Enabling older people to receive
care and support in the face of declines in physical and mental capacity (e.g., granting
access to long-term-care) is indeed one of the targeted initiatives related to healthy
ageing3, being aligned with the 17 Sustainable Development Goals (SDGs) set in the
2030 Agenda for Sustainable Development4.

As populations grow old and the demand for LTC services is expected to increase
in the coming years and decades, governments seek to balance financial sustainability
with the provision of effective social protection against the financial hardship that
may be caused to individuals by LTC needs (Costa-Font and Zigante 2020). Indeed,
institutionalized care may be very expensive on a daily basis and may be needed on
extended time horizons, thus implying dramatic costs. Public social protection systems
play a fundamental role in subsidising the total costs of LTC in a large majority of
OECD and EU countries, even for the people with higher incomes.

Private insurance can complement or supplement the public sector, e.g., by extend-
ing care options and filling the gaps in public coverage (OECD 2021). Tipically,
long-term care insurance policies are designed to support the payment for assistance
(at home or in an institution) for individuals who experience difficulty accomplishing
“activities of daily living” (ADLS) because of physical and/or cognitive impairments.
Although the potential need for long-term care represents one of the greatest financial
risks for most older people and their families, private long-term care insurance has a
relatively small market penetration in OECD countries (OECD 2011) and worlwide,
with significant welfare and public policy implications.

The literature has identified several reasons why individuals may decide not to
purchase private LTC insurance coverage, addressing, for instance, the main demand-
side factors that may drive such a behaviour (Eling and Ghavibazoo 2019). Among

1 https://www.who.int/news-room/fact-sheets/detail/ageing-and-health.
2 https://www.un.org/development/desa/disabilities/disability-and-ageing.html.
3 https://www.who.int/initiatives/decade-of-healthy-ageing.
4 https://sdgs.un.org/goals.
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these (e.g., high premiums loadings, information asymmetry), as argued by Brown and
Finkelstein (2009), the individuals’ lack of a proper understanding of LTC insurance
and of the LTC expenditure risk contribute to impose limits on the size of the private
LTC market.

Health shocks are very difficult to predict, in terms of both their severity and the time
when they occur. Liquidity needs due to perceived health cost risks have economic
effects. For instance, health cost risk is offered as a possible explanation to the low
annuitization rate being consistently observed in the private insurance market, the so-
called “annuitization puzzle” (Peijnenburg et al. 2017). Nevertheless, Xu et al. (2023)
show that, when health shocks are considered, access to LTC insurance mitigates the
reduction in the annuity demand induced by a higher level of risk aversion.

As discussed in Bär and Gatzert (2023), the issue of the optimal decumulation
of wealth during retirement is highly relevant. The most recent paradigms analyse
products and strategies for the decumulation of wealth under the perspectives of both
insurers and retirees to ensure that demand meets supply, thus accounting also for risk
perception and behavioral aspects.

The private insurance sector has explored the combination of LTC with other insur-
ance products, e.g., annuities, so that to bundle LTC with other risks as, e.g., in Webb
(2009). Getzen (1988) proposed “longlife insurance” plans, combining deferred annu-
ity benefits, health insurance andLTC. Such insurance coveragewas designed tomatch
protection from the risks of chronic illness with protection from the risks of higher
longevity and thus to mitigate the adverse selection affecting both LTC insurance and
annuities. More recently, Chen et al. (2022) evaluated a life annuity product with an
embedded care option potentially supporting the financial needs of dependent persons,
by accounting for both the insurer’s perspective and the policyholder’s willingness to
pay for the care option.

Murtaugh et al. (2001) investigated the empirical features of “life care annuity”,
namely the combination of life annuity with LTC disability coverage at retirement.
This product has the potential to extend disability protection to a wider segment of the
population and to mitigate adverse selection, thus reducing its purchase cost. Brown
and Warshawsky (2013) provided an empirical examination of life care annuity based
on the data from the Health and Retirement Study (HRS).

One of the most recent innovations discussed in the state-of-the-art is the Variable
life care annuity with Guaranteed Lifetime Withdrawal Benefits (LCA-GLWB), pro-
tecting downside risk, through guaranteed income streams, togetherwith longevity and
LTC cost risk (Hsieh et al. 2018). Specifically, under the general scheme of a GLWB
variable annuity contract, the policyholder makes a single lump sum payment, that is
invested in risky assets, such as a mutual fund. The amount of the lump sum payment
typically represents the benefit base, or guarantee account balance. The policyholder
is allowed to withdraw a given fraction of the benefit base each year until she remains
alive. The GLWB thus combines longevity protection, exposure to equity markets and
withdrawal flexibility. The valuation of these guarantees and the involved technical
problems are discussed, for instance, in Bacinello et al. (2011), Steinorth andMitchell
(2015), Goudenége et al. (2016) and De Angelis et al. (2022). Compared to a tradi-
tional GLWB variable annuity contract, a variable LCA-GLWB contract provides also
LTC payouts if the policyholder incurs in defined frailty state levels (e.g., impairments
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in ADLS). The evaluation of such insurance contract requires tackling three sources
of uncertainty: the occurrence of ADLs impairments, prospective longevity (either in
the healthy or disabled condition), and the performance of the financial market.

In Hsieh et al. (2018), withdrawals are possible only at contractually defined per-
centages of the benefit base. Furthermore, pricing relies on Monte Carlo valuation
methods, such as the variance reduction techniques (specifically, control variates tech-
nique). In such a pricing framework, the interest rate is not stochastic.

The key idea of our paper is to provide more general features for the variable
annuity contract with LTC payouts and GLWB and to refine its pricing methods.
We denote our proposed product “GLWB-LTC”. The three characteristics that make
GLWB-LTC depart from the LCA-GLWB product of Hsieh et al. (2018), relative to
the product specification and pricingmethod: (i) stochastic interest rate model, namely
Cox-Ingersoll-Ross (CIR) as in Cox et al. (1985), (ii) dynamic withdrawal strategy,
as in Forsyth and Vetzal (2014), (iii) pricing based on a tree method, as in Appolloni
et al. (2015).

A stochastic framework for the interest rate model allows a more accurate descrip-
tion of the future evolution of interest rates, over the long time horizon implied by
the policy duration. Specifically, the underlying fund is supposed to evolve, under a
risk neutral measure, as a geometric Brownian motion, as in the Black-Scholes (BS)
model, but with stochastic drift given by the short interest rate. This latter, is supposed
to follow a CIR process, thus we term this the BS-CIR model.

A dynamic withdrawal strategy allows the policyholder to choose the amount to
be withdrawn. Accordingly, the benefit base may be increased if the policyholder
withdraws no funds in a given year (i.e., bonus or roll-up). Furthermore, the contract
may terminate if the policyholder opts for complete surrender, namely she withdraws
the whole residual amount in the investment account. As illustrated in Bacinello et al.
(2009), insurance products embedding a surrender option may be more attractive to
the demand side, as policyholders may be less prone to perceive insurance securities as
illiquid investments. This early exercise feature acquires even more relevance in light
of the fact that mis-perceptions of health cost and mortality-related risks may further
contribute to make long-term contracts such as annuities and LTC schemes poorly
attractive for individuals in their pre-retirement ages; see, e.g., O’Dea and Sturrock
(2023).

From a numerical point of view, the presence of a surrender option implies tackling
an American-style option enabling the policyholder to exit the contract and be paid the
surrender value. We solve the stochastic control problem involved by the evaluation
of this option, through an improved version of the tree method pricing technique in
Appolloni et al. (2015), as it is proven to be fast and efficient for pricing American
options in the BS-CIRmodel, without any numerical restriction on its parameters. The
employed method, which we term Tree-LTC, can be applied also in the case of high
volatility of interest rates and shows advantages over Monte Carlo methods.

Finally, we perform several numerical experiments. As a first step, we validate the
Tree-LTCmethod, showing that it outperforms the traditional Monte Carlo simulation
approachwhen pricing a traditional LCA-GLWB insurance product. As a next step, we
focus on our proposed GLWB-LTC insurance product and carry out its evaluation. Our
numerical results describes how the fair prices and the optimal withdrawal strategy
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vary with some features of the policyholder, such as her age and her health status,
and other factors such as market conditions (as expressed by the volatility of the fund
and of the interest rate). Our novel evidence shows an important advantage of flexible
withdrawal strategies, in relation to insurance policies offering protection from health
risks. Indeed, against a small increase in the fee, the policyholder is given more choice
about how much to save for protection from the possible disability states at future
times.

The paper is structured as follows. Section 2 introduces the product and the model
specifications. Section 3 presents in detail the principles and methods adopted for
the evaluation of the contract under examination. Section 4 discusses the numerical
results. Finally, Section 5 draws the conclusions.

2 Product andmodel specifications

In this Section, we illustrate how the GLWB-LTC product specification is designed
and we describe the underlying modelling framework.

2.1 Health state model

LCA policyholders are characterized by complex mortality patterns. Health and mor-
tality risks play a substantial role within the actuarial modeling of health and life
insurance policies, and require a proper assessment, according to the regulatory frame-
work of the Solvency II Directive5 (Shao et al. 2017).

Pitacco (1995) illustrates how, in the framework of the mathematics of Markov
and semi-Markov stochastic processes, it is possible to develop a general approach
for the actuarial modelling of disability and related benefits, such as LTC annuities.
Indeed, the evaluation of life insurance policies with long term benefits is usually
based on probabilistic structures consistent with Markovian multi-state models, such
as, for instance, in Haberman and Pitacco (1998), Levantesi and Menzietti (2012)
and Tabakova and Pitacco (2021). Interdisciplinary literature proposes a variety of
statistical methods to estimate transition matrices of Markov chains from data, for
instance Baione and Levantesi (2014); Helms et al. (2005).

In our paper, we use the disability model proposed by the authors in Manton et al.
(1993); Pritchard (2006). According to their model, disability is defined in terms of
loss of instrumental activities of daily living (IADL, such as meal preparation, grocery
shopping, getting around outside, using the telephone), and loss of activities of daily
living (ADL, such as eating, getting in and out of bed, getting around inside, dressing,
bathing, getting to the bathroomor using the toilet). In particular, such amodel includes
seven health states: healthy, impairment in only IADL, 1–2 impairments in ADLs, 3–4
impairments in ADLs, 5–6 impairments in ADLs, institutionalized and dead.

Here are the main features of this model. Let Mt ∈ {1, 2, 3, 4, 5, 6, 7} be a random
variable which represents the health state of the policyholder (hereinafter PH) at time
t , being x0 her age at inception. Now, for 0 ≤ s ≤ t , we term Px0(s, t) the 7 × 7

5 https://www.eiopa.europa.eu/browse/regulation-and-policy/solvency-ii_en.
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transition probability matrix with entries

px0i, j (s, t) = P (Mt = j |Ms = i) .

Transition rates can be used to define the process: let Qx0(t) be the 7×7 matrix, given
by

qx0i, j = lim
�t→0

px0i, j (t, t + �t)

�t
, i �= j,

qx0i,i = −
∑

j �=i

qx0i, j , i = 1, . . . , 7.

The matrices Qx0 are assumed to be time-homogeneous during each year, that is, for
each n ∈ N, Qx0(t) = Qx0(s) holds for all t, s such that n ≤ s ≤ t < n + 1.
Then, the transition probability matrix Px0(n, n + 1) between two anniversaries can
be computed from the transition intensities via the matrix exponential operation, that
is

Px0(n, n + 1) = eQ
x0 (n).

Furthermore, we obtain transition intensities Qx0(n) based on the parameter values
shown in Pritchard (2006) (Table 8, page 68), that were obtained by applying the
penalized likelihood methodology to the interval-censored longitudinal data from the
National Long-Term Care Study. In this respect, we provide some further details in the
Appendix A. We stress out that this approach for modeling the health state of the PH
is also adopted by Hsieh et al. (2018), who, to the best of our knowledge, developed
the most recent study on the evaluation of the LCA-GLWB insurance product. Using
the same underlying transition matrices as in Hsieh et al. (2018) allows us to have
a benchmark for validating some of the numerical outcomes shown in our paper
and to propose original developments based on alternative product specifications and
computation methods.

Remark 1 The model by Pritchard (2006) allows the generation of transition proba-
bilities between health states for any age of the PH, without placing an upper limit
on the age of the insured. Following common practice, see e.g. Forsyth and Vetzal
(2014) Goudenége et al. (2016), we limit the maximum age of the insured to 122.
Consequently, whatever her health state at 121, the probability of transition to health
state 7 is equal to 1.

2.2 Dynamics of themutual fund and of the interest rate

Let us consider a risk-neutral measure Q. The risk neutral dynamics of the stochastic
processes describing the mutual fund Ft and the interest rate rt are as follows:

{
dFt = rt Ftdt + σF FtdW 1

t ,

drt = kr (θ − rt )dt + σr
√
rtdW 2

t ,
(1)
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where the constant parameters kr , θ and σr are the rate of mean reversion, the long
run mean and the volatility of the interest rate, respectively. Furthermore,W 1 andW 2

are Brownian motions such that their correlation equals ρ.

Remark 2 It is well-established in the literature the structural soundness of the CIR
model in preventing negative rates under normal conditions, with no negative interest
rates. Nevertheless, we remark that the CIR model can be adapted to accommodate
negative rates if necessary, through simple modifications such as shifting the rate
distribution downward, making it a versatile tool in stochastic interest rate modeling
(see, e.g., Russo and Fabozzi 2017 and Orlando et al. 2019).

2.3 The GLWB-LTC

The GLWB-LTC insurance product guarantees the PH the right to make guaranteed
withdrawals and can provide the payment of an annual disability allowance.

At time t = 0, the PH purchases the product through an initial one-off payment,
which we denote by P . This amount determines the initial value of the two indicators
governing the evolution of the contract: the account value A and the benefit base
B. In particular, the account value is used to calculate the maximum withdrawable
amount, as well as the death benefit. The benefit base, on the other hand, governs
the payments guaranteed by the contract, such as the LTC benefits and the minimum
amount withdrawable by the PH. The state parameters A and B are two stochastic
processes defined for each time instant between t = 0 and t = τ , the first anniversary
of the contract inception following the insured’s death.

2.3.1 Initiation of the contract

The initial values of A and B, denoted by A−
0 and B−

0 respectively, are both set equal
to P:

A−
0 = B−

0 = P.

Immediately after the initiation of the contract, the account value is charged with
some specified fees, while the benefit base remains unaffected. Adopting the approach
proposed by Hsieh et al. (2018), the decrement in the account’s value, owing to these
fees, is regulated by two parameters, α and β. These parameters are indicative of the
annual costs per unit for A and B respectively. Consequently, on each anniversary of
the contract, it is reduced by αA and βB as long as the account value remains positive.
Specifically, if we denote by A1+

0 and B1+
0 the value of A and B immediately after

the fees are taken, the following holds:

A1+
0 = max

(
A−
0 − αA−

0 − βB−
0 , 0

)
, B1+

0 = P.

At each anniversary n, hereafter, we will denote by A2+
n and B2+

n the values of A
and B after the payment of the LTC to the PH and, then, by A3+

n and B3+
n the values

of A and B after a withdrawal contingent on the choice of the PH at time n.
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At contract inception, i.e., n = 0, no LTC is paid to the PH in case of disability.
Moreover, the PH is not entitled to make any withdrawal. Therefore, neither A nor B
is altered by a payment to, or a withdrawal from, the PH. Accordingly, the following
holds:

A3+
0 = A2+

0 = A1+
0 , B3+

0 = B2+
0 = B1+

0 .

2.3.2 Evolution of the contract between two anniversaries

During the time between the beginning of the contract and the first anniversary, and
similarly between any two consecutive anniversaries, the account value A varies in
proportion to the underlying fund, while the benefit base B does not change: for all
t ∈ ]0, 1[ it holds

d At

At
= dFt

Ft
, dBs = 0. (2)

This holds also between any other two consecutive anniversaries.

2.3.3 Anniversary events if the PH is alive

On the first anniversary, but more generally on a generic anniversary thereafter, cer-
tain clauses of the contract are activated according to the PH’s health status. Let t
represent the time of the n-th anniversary and let A−

n and B−
n be the values of A and

B immediately before such a time. Thus, according to (2), we have

A−
n = A3+

n−1 · Fn
Fn−1

, B−
n = B3+

n−1.

At a generic anniversary n > 0, the account value is deduced by the fees.
Two payments can be received by the PH: the LTC benefit and the amount arising

from the PH’s withdrawal. Specifically, the LTC benefit and the guaranteed minimum
amount for withdrawal are computed proportionally to the inflation-indexed benefit
base and reduce the account value. We formalize the dynamics of A and B as follows.

1. Fees reduce the account value and do not alter the benefit base:

A1+
n = max

(
A−
n − αA−

n − βB−
n , 0

)
, B1+

n = B−
n .

2. The PH receives the LTC payment, Ln(Mn), if her health state at this time corre-
sponds to a disability condition covered by the contract. The amount of the LTC
protection is proportional to the benefit base and is indexed by an inflation rate,
denoted by π , as follows:

Ln (Mn) =
{
0 if Mn ∈ {1, 2, 3} ,

cB1+
n (1 + π)n if Mn ∈ {4, 5, 6} .

(3)
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Accordingly, the values of A and B after the LTC payment are given by:

A2+
n = max

(
A1+
n − Lt (Mn) , 0

)
, B2+

n = B1+
n .

3. Guaranteed withdrawals Gn from the account value are possible at contractually
defined percentages g of the inflation-indexed benefit base, as follows:

Gn = g (1 + π)n B2+
n , (4)

but the PH may also withdraw more or less than Gn . In this regard, let Wn ∈[
0,max

(
A2+
n ,Gn

)]
be the amount that the PH withdraws. We stress out that the

maximum admissible withdrawal is given by max
(
A2+
n ,Gn

)
, that is the greater

between the account value after the payment of the LTC and the minimum guar-
anteed withdrawal.

In order to distinguishwhether or notWn exceeds the guaranteed amount, wemake use
of an auxiliary parameter γ , as in Forsyth and Vetzal (2014), whose value expresses
the choice made by the PH with respect to the amount to be withdrawn at anniversary
n. Specifically, Wn is controlled by the parameter γn ∈ [0, 2] as follows:

Wn =
{

γnGn if γn ≤ 1,

(2 − γn)Gn + (γn − 1) A2+
n if γn > 1.

While Wn represents the chosen withdrawal by the PH, let us denote by Yn the actual
amount the PH receives, at time t . In this respect, we distinguish three cases:

• if γn = 0, no money is withdrawn from the account. In this case, the PH renounces
making awithdrawal and she is rewardedwith a proportional bonus b that increases
the benefit base. Specifically:

Yn = Wn = 0,

A3+
n = A2+

n ,

B3+
n = B2+

n (1 + b) .

• if 0 < γn ≤ 1 the performed withdrawal is less than or equal to the minimum
guaranteed one (the latter case corresponds to γn = 1):

Yn = Wn = γnG
2+
n ,

A3+
n = max

(
A2+
n − Wn, 0

)
,

B3+
n = B2+

n .

(5)

• if 1 < γn ≤ 2 the performed withdrawal is greater than the minimum guaranteed
one. A proportional cost κn is applied to the part of the withdrawal exceeding the
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guaranteed amount, this implying that the amount Yn that is actually received by
the PH is smaller than Wn :

Wn = (2 − γn) · Gn + (γn − 1) A2+
n ,

Yn = Gn + (Wn − Gn) (1 − κn) ,

A3+
n = max

(
A2+
n − Wn, 0

)
,

B3+
n = B2+

n (2 − γn) .

(6)

Usually, the cost κn decreases over time and goes down to zero after a few years.
We stress out that the case γn = 2 implies total lapse and the end of the contract.
In this particular case,

Wn = A2+
n , Yn = Gn +

(
A2+
n − Gn

)
(1 − κn) , A3+

n = B3+
n = 0.

We denote by � the anniversary, if it exists, such that γ� = 2. If γn is always
different from 2, we define � = +∞.

2.3.4 Anniversary events if the PH is dead

If the PH has died during the last year, i.e. n = τ , her heirs receive a death benefit,
calculated as follows, and the contract ends:

Yτ = Wτ = gτ B
−
τ + max

(
0, A−

τ − gτ B
−
τ

)
, A+

τ = B+
τ = 0.

We stress out that the contract may be terminated for two reasons: total lapse, or
the death of the PH. If we denote with T the anniversary of contract termination, then
T = min (τ, �).

Remark 3 Fees are paid since time n = 0; the first withdrawal takes place at time
n = 1. No fees are paid at the first anniversary after the death time, and no LTC
payments are made as well (Lτ (7) = 0).

3 Pricing the GLWB-LTC contract

The value of the contract at any time t depends on four state variables, namely
At , Bt , rt and Mt , so we denote it as a function of these four state variables by
V(At , Bt , rt , Mt , t). In addition, at the n-th anniversary, we write n−, n1+, n2+ and
n3+ to indicate the value of the contract just before the n-th anniversary, after the with-
drawal of fees, after the payment of the LTC and after the withdrawal of the annuity,
respectively.
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3.1 Withdrawal strategy

The withdrawal strategy performed by the PH is a crucial point in the evaluation
of the contract. Following the classification introduced by Bacinello et al. (2011),
we consider three particularly relevant strategies: “static”, “mixed” and “dynamic
withdrawal”. Moreover, we also investigate a fourth strategy, termed “full dynamic”.

Under the static withdrawal strategy, the PH has only one choice, that resides in
withdrawing the minimum guaranteed sum, i.e., γ = 1, at each anniversary in which
the PH is alive. This static strategy is the only one considered in Hsieh et al. (2018). In
this particular case, the benefit base never changes and is always equal to the premium
P paid by the PH at time zero. Consequently, the fees associated with the benefit base
are constant at each anniversary and equal to βP .

According to risk neutral valuation, under the static withdrawal strategy, the initial
value of the contract is the expected value of future cash flows:

V(P, P, r0, M0, 0
−) = E

Q

[
τ∑

n=1

e− ∫ n0 rs ds (Ln(Mn) + Yn)

]
.

The mixed strategy implies that the PH continues to draw at the guaranteed min-
imum rate until she dies or decides to terminate the contract early. Compared to the
static strategy, there is thus the possibility of a total lapse, which can be achieved by
choosing γ = 2.

In the case of the mixed withdrawal strategy, the initial value of the contract is the
expected value of future cash flows, obtained by using the optimal stopping strategy:

V(P, P, r0, M0, 0
−) = max

�∈T
E
Q

⎡

⎣
min(τ,�)∑

n=1

e− ∫ n0 rs ds (Ln(Mn) + Yn)

⎤

⎦ , (7)

with T the set of optimal stopping times. The optimal stopping time � can easily be
computed by means of dynamic programming. Specifically, � is the first anniversary
such that the value of the whole position in case of total lapse is larger than the con-
tinuation value. Let us write A3+

n (γn) , B3+
n (γn) ,W 3+

n (γn) and Y 3+
n (γn) to denote

the values of A3+
n , B3+

n ,W 3+
n and Yn for a specific value of γn . Then:

� = min
{
n = 1, . . . , τ − 1 s.t. Yn(2) ≥ Yn(1) + V

(
A3+
n (1), B3+

n (1), rn, Mn, n
3+)} .

Under the dynamic withdrawal strategy, the PH can freely choose the value of γ

∈ [0, 2], for each withdrawal opportunity. Then, she can choose not to withdraw, or
to withdraw more or less than the minimum guaranteed amount, with the maximum
withdrawal implying the early termination of the contract. Equation (7) also holds in
this case. Here, we suppose that the PH chooses the value of γn that maximizes the
total wealth she received, so that the value of γn is defined as:

γn = arg max
γ∈[0,2]

[
Yn(γ ) + V

(
A3+
n (γ ), B3+

n (γ ), rt , Mn, n
3+)] .
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Finally, let us consider the full dynamic strategy,which extends the dynamic strategy
by admitting that PH can perform total surrenders even in the time between two
anniversaries. In this case, as usual, at any time t ≥ 0 which is not an anniversary, the
following equation holds

V (At , Bt , rt , Mt , t) = max
{
At
(
1 − κ	t


)
, C (At , Bt , rt , Mt , t)

}
,

where C (At , Bt , rt , Mt , t) is the continuation value, that is the expected value of future
discounted cash flows if the surrender option is not exercised at time t .

Remark 4 The criterion for selecting the optimal strategy is based on maximizing the
expected value, under risk-neutral probability, of the payment from the insurer to the
insured.Alternatives havebeenproposed in the literature (see e.g.Choi 2017orMoenig
2021), which are based, for example, on maximizing expected utility. Our model can
be adapted to consider these cases as well. In particular, in this case, the value of
the policy should be calculated separately according to the insurer and according to
PH. The latter determines the optimal withdrawal strategy, which is then used in the
assessment of the cost of cover according to the insurer.

Remark 5 Bacinello et al. (2024) prove by backward induction that, if the optimality
criterion is the maximisation of the value of total wealth, the optimal exercise strategy
always consists of one of these three actions: to withdraw nothing, to withdraw the
guaranteed minimum amount or to withdraw the maximum possible (by ending the
contract). Such a feature of GLWB contracts is also known as the bang bang condition.
From the results of the numerical experiments, we found the same result for our
product. Although the numerical method we propose has no difficulty in handling
even intermediate withdrawal values, limiting the choice of possible range values
would lead to a more efficient numerical procedure.

Remark 6 We calculate the price of our insurance products based on a risk-neutral
valuation approach. In this framework, we assume that the risks associated with death
and disability can be diversified, as supported by Milevsky and Salisbury (2006). If
this assumption does not hold, the risk-neutral valuation can be modified through an
actuarial premium principle, as noted by Gaillardetz and Lakhmiri (2011).

3.2 Similarity reduction

GLWB-type variable annuities are interesting from a computational point of view as
their value is proportional to the ratio of the account value to the benefit base. In
mathematical terms, for every positive constant η,

η · V (At , Bt , rt , Mt , t) = V (ηAt , ηBt , rt , Mt , t) .

This property, which has already been exploited in the literature (see e.g. Shah and
Bertsimas 2008, Forsyth and Vetzal 2014 or Goudenége et al. 2016) also applies to the
contract we consider in this paper, since all cash flows are proportional to the account
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value and to the benefit base. This useful property makes it possible to reduce the size
of the problem, assuming B to be constantly equal to its initial value P . In fact, taken
η = P

Bt
, one obtains

V (At , Bt , rt , Mt , t) = Bt

P
· V
(
At

Bt
P, P, rt , Mt , t

)
.

As a result, the evaluation of the contract is more efficient from a numerical point of
view.

3.3 The numerical method

The numerical method, termed Tree-LTC, we propose to evaluate the GLWB-LTC
contract in the BS-CIR model is an adapted and improved version of the tree model
introduced by Appolloni et al. (2015), that is suitable to our purposes in that it allows
the evaluation of American derivative instruments in the considered stochastic model
framework. Furthermore, themethod in Appolloni et al. (2015) proves to be robust and
stable fromanumerical point of view. In a nutshell, themethod constructs two trees that
discretize the short interest rate and the underlying respectively. Subsequently, these
structures are combined to obtain a two-dimensional tree. The transition probabilities
relative to the nodes of the tree are computed by matching the conditional mean and
the conditional covariance between the continuous and the discrete processes.

3.3.1 The tree for the interest rate

The first step of the algorithm is to create a lattice to discretize the stochastic rate
r . Appolloni et al. (2015) suggest using a variation of the tree proposed by Nelson
and Ramaswamy (1990), which matches a first-order approximation of the first two
moments of the process r . Such a tree works rather well when the maturities involved
are relatively short, but the computational cost can become high in the case of long
maturities, such as those involved by our product. So here we propose an updated
version of that tree that allows us to limit the number of nodes considered in the
discretization. In practice, thanks to the properties of the CIR process, it is necessary
to consider only nodes between zero and a maximal value that depends only on the
discretization step, in order to obtain a Markov chain that converges weakly to the
continuous process r .

Specifically, we consider a binomial tree which is used to define a Markov chain
which matches a suitable approximation of the first and the second moment of the
continuous time process r . This feature guarantees weak convergence to the CIR
process, as reported by Nelson and Ramaswamy (1990). First of all, let T ∈ N be the
maximum duration in years of the GLWB-LTC contract. For example, if the age of the
PH at contract inception is 60, then T = 122− 60 = 62. Let us divide such period in
NT time steps, so that the time increment is �t = 1/N . We approximate the process
r in [0, T ]with a discrete time process r̄ = {r̄i }i=0,...,NT , so that r̄i approximates ri�t .
The possible values of the process r̄ are defined as follows: for i = 0, 1, . . . , NT and
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k = 0, 1, . . . , i we set with

Ri,k =
(
max

(√
r0 + (2k − i)σr

√
�t, 0

))2
.

In particular, we observe that, if i is even, the initial interest rate r0 is included among
these values as Ri,i/2 = r0. Moreover, we observe that, if we set

k(i) =
⌊
i

2
− 1

σr

√
r0
�t

⌋
,

then for all values k = 0, . . . , k(i), it holds thatRi,k = 0, so one can consider only the
values k = kmin(i), . . . , i , where kmin(i) = max

{
0, k(i)

}
. With respect to Appolloni

et al. (2015), we thus manage to reduce the number of nodes to be processed during
contract evaluation, by avoiding zero-value duplication.

Let us now proceed to discuss the possible state transitions between time steps
and their probabilities. First of all, we define (μr )i,k = kr

(
θ − Ri,k

)
as the drift

coefficient at Ri,k . Then, for a node Ri,k , Appolloni et al. (2015) define the level of
the upcoming two nodes as

kACZd (i, k) = max
{
k∗ : 0 ≤ k∗ ≤ k and Ri,k + (μr )i,k �t ≥ Ri+1,k∗

} ∪ {0} , (8)

kACZu (i, k) = min
{
k∗ : k + 1 ≤ k∗ ≤ i + 1 and

Ri,k + (μr )i,k �t ≤ Ri+1,k∗
} ∪ {i + 1} . (9)

Here, for k = kmin(i), . . . , i , we set

kd(i, k) = max
{
kACZd (i, k), kmin(i + 1)

}
, (10)

ku(i, k) =
{
kACZu (i, k) if Ri,k < θ,

kd(i, k) + 1 otherwise.
(11)

Moreover, it is possible to prove (see Appendix B) that for each time step i , there exists
an index, denoted by kmax(i) so that all nodesRi,k with k > kmax(i) cannot be reached
when starting from R0,0 = r0. Therefore, one can discard from the tree those nods.
Therefore, the only useful nodes for defining the tree are those that verify the relation
kmin(i) ≤ k ≤ kmax(i). We stress out that this observation improves the efficiency of
the algorithm, as it reduces drastically the computational cost, in particular when a
high number NT of time steps is employed.
The transition probabilities among the nodes are defined tomatch thefirst order approx-
imation of the first moment of the CIR process. Starting from the node (i, k), the
probability that the process jumps to (i + 1, ku(i, k)) is defined as

pRi,k = max

{
0,min

{
1,

(μr )i,kh + ri,k − ri+1,kd (i,k)

ri+1,ku(i,k) − ri+1,kd (i,k)

}}
. (12)

Of course, the probability that the process r jumps to (i + 1, kd(i, k)) is 1 − pRi,k .

123



The life care annuity: enhancing...

3.3.2 The tree for the account value

The second step of the Tree-LTC algorithm is to create a lattice to discretize the
underlying, i.e. account value A. Specifically, we approximate the process A in [0, T ]
with a discrete time process Ā = {

Āi
}
i=0,...,NT , so that Āi approximates Ai�t . In

Appolloni et al. (2015), this grid of values, generated from a uniform mesh of values
for the log-price of the account value, is time-dependent: the number of nodes grows
linearly with the number of time steps, as usual in any tree structure. In our case,
this fact hampers the evaluation of the GLWB-LTC contract because, as payments are
made, the account value may experience downward movements due to withdrawals,
thus assuming values outside the mesh of nodes in the tree. Consequently, we prefer
to discretize the account value by a complete grid of values, which does not change
over time and which defines the support for a Markov chain. Specifically, we set two
values, Amin ≈ 0 and Amax >> P (P is the initial value for A), and create a uniform
mesh between the logarithm these two values. Specifically, we set

jmin = −min
{
j∗ ∈ Z s.t. P · exp

(
j∗ · σ

√
�t
)

≥ Amin

}
+ 1,

jmax = max
{
j∗ ∈ Z s.t. P · exp

(
j∗ · σ

√
�t
)

≤ Amax

}
+ jmin,

and for j = 1, . . . , jmax, we define the node values as

A j = P · exp
(
( j − jmin) σ

√
�t
)

,

so thatA1 ≈ Amin,A jmin = P, andA jmax ≈ Amax. Moreover, since the account value
can also be empty, we include zero among the possible values by setting A0 = 0.
Finally, we define GA = {A j , j = 0, 1, . . . , jmin, . . . , jmax

}
as the set of the nodes of

the lattice for A.

3.3.3 The joint distribution

The marginal transition probabilities for the lattice for A are not defined directly.
Instead, joint probabilities are defined for the pair

(
A j ,Ri,k

)
. Specifically, suppose

that at the i-th time step the location of the couple
(
Āi , r̄i

)
is given by

(
Āi , r̄i

) =(
A j ,Ri,k

)
. We begin the definition of the transition probabilities by assuming j > 0,

so that A j > 0. We define

jd(i, j, k) = max
{
j∗ s.t. 1 ≤ j∗ < j and A j · (1 + Ri,k�t

) ≥ A j∗
} ∪ {1} ,

ju(i, j, k) = min
{
j∗ s.t. j < j∗ ≤ jmax and A j · (1 + Ri,k�t

) ≤ A j∗
} ∪ { jmax} .

Moreover, it is possible to prove that, as �t tends to zero, jd(i, j, k) and ju(i, j, k)
converge respectively to j and j + 1 for all j = 2, . . . , jmax − 1 (see Appendix C).
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The probability of an up-movement of the tree for Ā is set as:

pA
i, j,k = max

{
min

{
A j · (1 + Ri,k�t

)− Aid (i, j,k)

A ju(i, j,k) − A jd (i, j,k)
, 1

}
, 0

}
.

To simplify notation, we write jd , ju and pA
u instead of jd(i, j, k), ju(i, j, k) and

pA
i, j,k respectively, leaving the dependence on i, j and k, taking it as for granted.

Moreover, let pA
d = 1 − pA

u the probability for a down movement.
Now, let us denote with kd and ku the position of future nodes from Ri,k (also in

this case we omit the dependence on i and k), and let pRd and pRu be the probabilities
for a down and an up movement of the process r , respectively.

Starting from an assigned node, the discrete time processes Ā can move to two
future nodes, and so does the process r̄ . Thus, the future nodes associated with the
pair

(
A j ,Ri,k

)
are four, namely:

(
A jd ,Ri+1,kd

)
,
(
A jd ,Ri+1,ku

)
,
(
A ju ,Ri+1,kd

)
,
(
A ju ,Ri+1,ku

)
,

and let

pd,d , pd,u, pu,d , pu,u,

be the corresponding probabilities. These probabilities are determined as the unique
solution of the following linear system, whose equations correspond to imposing the
matching of the first twomoments for both the processes r and A, and of the covariance
between the two processes:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pd,d + pd,u + pu,d + pu,u = 1,

pd,d + pd,u = pA
d ,

pd,d + pu,d = pRd ,

md,d pd,d + md,u pd,u + mu,d pu,d + mu,u pu,u = ρσrσF
√
Ri,kA j�t,

(13)

with

md,d = (
A jd −A j

)(
Ri+1,kd −Ri,k

)
,

mu,d = (
A ju −A j

)(
Ri+1,kd −Ri,k

)
,

md,u = (
A jd −A j

)(
Ri+1,ku −Ri,k

)
,

mu,u = (
A ju −A j

)(
Ri+1,ku −Ri,k

)
.

This system always admits one and only one positive solution, as discussed in
Appendix C. Finally, we discuss the case i = 0, which corresponds to A0 = 0.
The value 0 is an absorbing class for the account value: once A is depleted, it can
no longer become positive again. Therefore, if

(
Āi , r̄i

) = (A0,Ri,k
)
, then the nodes

reachable by the process at the next instant are
(
A0,Ri+1,kd

)
and

(
A0,Ri+1,ku

)
, with

probabilities equal to pRd and pRu respectively.
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3.4 Pricing

We apply the Tree-LTC method to compute an approximation V̄ of the GLWB-LTC
contract value V . First of all, we set N , the number of time steps per year (as defined
in Sect. 3.3.1), Amin and Amax, the limits for the positive nodes of GA (as defined in
Sect. 3.3.2). In addition, we recall that T is the difference between 122 (maximum age)
and the initial age x0 of the insured. At each time step i of the Tree-LTC algorithm,
we define a grid of values to diffuse the processes Ā, r̄ and M :

Gi = GA × Gi
r × {1, . . . , 7} , (14)

where the set {1, . . . , 7} describes the health states of the PH. For each anniversary
n = 0, . . . , T , we define a function V̄n which approximates the real contract fair value
at the year n. Specifically, for any point

(
A j ,RnN ,k, k

) ∈ G we have

V̄n
(
A j ,RnN ,k, h

) ≈ V
(
A j ,RnN ,k, h, n

)
.

We stress out that, by similarity reduction discussed in Sect. 3.2, we can assume
Bn = P for all anniversaries, so, hereinafter,Gn and Ln (Mn) are computed according
to B1+

n = B2+
n = P . The computation of the function V̄n is achieved by proceeding

backward in time. At maturity, i.e. n = T and i = NT , no PH is longer alive, so we
set:

V̄T
(
A j ,RNT ,k, h

) = GT + max
(
0,A j − GT

)
.

Let us now consider a general anniversary n ∈ {0, . . . , T − 1} and assume that we
have already calculated the function V̄n+1 at the anniversary n + 1. To compute V̄n on
the grid GnN for h = 7, just set

V̄n
(
A j ,RnN ,k, 7

) = Gn + max
(
0,A j − Gn

)
.

As far as the health state h �= 7 is considered, the following actions are carried out
in this specified order.

1. Mix thevalues of V̄n+1 according to thehealth transitionprobability ph,h′ (n, n + 1)
(from state h at year n to state h′ at year n + 1). Specifically, we define:

V̄mix
n+1

(
A j ,R(n+1)N ,k, h

) =
7∑

h′=1

ph,h′ (n, n + 1) V̄n+1
(
A j ,R(n+1)N ,k, h

′) .

2. Compute the discount expected value of themix, by using the Tree-LTC algorithm.
Specifically, we divide the time lapse [n, n+ 1] into N sub-intervals. Let us term:

V̄n,N
(
A j ,R(n+1)N ,k, h

) = V̄mix
n+1

(
A j ,R(n+1)N ,k, h

)
,
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as the contract value at time n + 1 before any payment is performed. For each
sub-time step i = (n+ 1)N − 1, . . . , nN we employ the Tree-LTC algorithm. We
distinguish some cases.

(a) If j = 0, that is A j = 0, then

V̄n,i
(
A0,Ri,k, h

)

= e−�tRi,k
[
pRd V̄n,i+1

(
A0,Ri+1,kd (k), h

)

+pRu V̄n,i+1
(
A0,Ri+1,ku(k), h

)]
.

(b) If j = 2, . . . , jmax − 1,

V̄n,i
(
A j ,Ri,k, h

)

= e−�tRi,k
[
pd,d V̄n,i+1

(
A jd ( j,k),Ri+1,kd (k), h

)

+ pd,uV̄n,i+1
(
A jd ( j,k),Ri+1,ku(k), h

)

+ pu,d V̄n,i+1
(
A ju( j,k),Ri+1,kd (k), h

)

+pu,uV̄n,i+1
(
A ju( j,k),Ri+1,ku(k), h

)]
.

(c) If j = 1 or j = jmax, we use linear interpolation to estimate V̄n,i
(
A j ,Ri,k, h

)
.

That is because the points A1e−σF
√

�t and A jmaxe
σF

√
�t are not included in

the grid GA, and therefore it is necessary to impose some boundary conditions
to determine the value of the contract at these points. This condition can be
justified by the fact that when the account value is very large or very small, the
contract value tends to behave as a linear function of the account value itself,
as already remarked and exploited by Forsyth and Vetzal (2014). Specifically,
we set

V̄n,i
(
A1,Ri,k, h

) = V̄n,i
(
A3,Ri,k, h

)− V̄n,i
(
A2,Ri,k, h

)

A3 − A2

(A1 − A2) + V̄n,i
(
A2,Ri,k, h

)
,

V̄n,i
(
A jmax ,Ri,k, h

) = V̄n,i
(
A jmax−2,Ri,k, h

)− V̄n,i
(
A jmax−1,Ri,k, h

)

A jmax−2 − A jmax−1(
A jmax − A jmax−1

)

+ V̄n,i
(
A jmax−1,Ri,k, h

)
.

Moreover, if the full dynamic approach is considered, at each sub-time step i , we
replace V̄n,i

(
A j ,Ri,k, h

)
with

max
{
A j (1 − κn) , V̄n,i

(
A j ,Ri,k, h

)}

to account for the possibility of a total surrender at time t = i�t .
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3. Account for the possible withdrawal (only if n > 0). We term V̄3+
n = V̄n,nN

the contract value at anniversary n after all payments are performed. Let γ =
γn
(
A j ,RnN ,k, h

)
be the value determined according to the withdrawal strategy

considered, for the withdrawal at the n-th anniversary, for An = A j , Bn = P ,
r = RnN ,k and Mn = h. The contract value before the withdrawal takes place,
denoted by V̄2+

n is computed as follows. So

• If γ = 0, then

V̄2+
n

(
A j ,RnN ,k, h

) = (1 + b) V̄3+
n

( A j

1 + b
,RnN ,k, h

)
. (15)

• If 0 < γ ≤ 1, then

V̄2+
n

(
A j ,RnN ,k, h

) = V̄3+
n

(
max

(
A j − Wn, 0

)
,RnN ,k, h

)+ Yn, (16)

with Wn and Yn as in (5).
• If 1 < γ ≤ 2, then

V̄2+
n

(
A j ,RnN ,k, h

) = (2 − γ ) V̄3+
n

(
max

(
A j − Wn, 0

)

(2 − γ )
,RnN ,k, h

)
+ Yn,

(17)

with Wn and Yn as in (6).

We stress out that in Eqs. (15), (16) and (17), the post-withdrawal value of A may
not be in the grid GA. In this case, interpolation is used to compute V̄3+

n .
4. Pay the LTC (only if n > 0). We term V̄1+

n the contract value at anniversary n
before the payment of the LTC. Then

V̄1+
n

(
A j ,RnN ,k, h

) = V̄2+
n

(
max

(
A j − Ln(h), 0

)
,RnN ,k, h

)+ Ln(h).

5. Fees adjustment. We term V̄−
n the contract value at anniversary n before fees are

withdrawn. Then

V̄−
n

(
A j ,RnN ,k, h

) = V̄1+
n

(
max

(
A j (1 − α) − βP, 0

)
,RnN ,k, h

)
.

Through the above equations, by moving backward in time, it is possible to calculate
the price of the contract up to the initial time t = 0. Specifically, the initial price
V
(
P, P, r0, M0, 0−) is approximated by V̄−

0

(
A jmin ,R0,0, M0

)
.

Remark 7 In the case of dynamic withdrawal, the identification of the optimal with-
drawal strategy can be done by comparing, for different γ values on a mesh from
γ = 0 to γ = 2, the one that maximizes the overall value of the contract V̄2+

n , which
can be computed by Eqs. (15), (16) or (17).
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Remark 8 The previously described procedure, which is valid for the stochastic BS-
CIR model, can be easily readapted to the Black and Scholes sub-model. Indeed, it
will be sufficient to assume a constant interest rate.

Remark 9 A common practice in the field of variable annuities is to calculate the value
of the α parameter that makes the contract fair, that is V̄−

0

(
A jmin ,R0,0, M0

) = P .
This calculation can be done easily by iterating the initial price calculation for different
values of α, based on an appropriate zero-search scheme, such as the secant method
we employed.

Remark 10 The proposed evaluation technique has several advantages in itself: the
number of nodes used at each time-step to discretise the continuous processes is
bounded. In addition, the interpolation technique allows for simple and efficient han-
dling of jumps in the account value due to withdrawal payments. Furthermore, various
exercise strategies, such as the dynamic strategy, can be handled with very little com-
putational effort.

4 Numerical results

In this Section, we present the results of some numerical tests in which we test the
evaluation procedure based on the Tree-LTC algorithm. Specifically, we calculate the
fair value of the fee parameter α (see Remark 9) as certain parameters change, such
as, for example, the age x0 of the PH at inception or the withdrawal strategy. Under
the static withdrawal strategy, we compare the fair fee α arising from the Tree-LTC
against the ones obtained by implementation of a classical Monte Carlo method. Such
tests are performed under the assumption of stochastic interest rates, but also within
the Black-Scholes model framework. In this simpler setting, indeed, we are able to
compare more closely the performance of our algorithm against the performance of
the Monte Carlo method with control variates that is used by Hsieh et al. (2018) for
the pricing of the considered contract.

In Table 1, we report a brief description of the parameters that characterize the
contract and the underlying stochastic models, along with the respective symbols and
the values we assigned to them within our numerical experiments. We also point out
that, for the tests performed with the Black-Scholes model, we assume r = r0 = 5%.
Furthermore, the guaranteed minimum withdrawal rate g is indexed to the age of the
PH: 3% for a 60-year-old with an increase of 0.1% for each additional year of age.
This choice is made to make the value of the contract more homogeneous: a person
aged 80 has a shorter life expectancy than one aged 60, so to make the contract more
equitable we need to increase the guaranteed amount for withdrawals.

As far as the BS-CIR model is considered, we assume a negative value for the
correlation parameter ρ, specifically ρ = −0.25. In fact, in financial markets, the rela-
tionship between stock market performance and interest rates can vary, but typically
exhibits a negative correlation. However, in the following we will analyse different
values for ρ and their effects on the value of the contract (see Fig. 1).

Before presenting the numerical results, we point out that both the Tree-LTC algo-
rithm and the Monte Carlo methods are implemented in the C language and were run
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Table 2 Parameter setup for the
numerical algorithms when the
Black–Scholes model is
considered

Setup MC MC-CV Tree-LTC

A 1 · 106, 1 1 · 106, 1 100, 100

B 2 · 106, 1 2 · 106, 1 200, 200

C 4 · 106, 1 4 · 106, 1 400, 400

D 8 · 106, 1 8 · 106, 1 800, 800

on the same machine (i5-1035G1 CPU processor, 8 GB RAM) in order to compare
computation times.

4.1 The Black–Scholes model

In this Subsection, we work in the framework of the Black–Scholes model for the
description of the dynamics of the underlying fund, without any stochastic assumption
about the interest rate. Indeed, Hsieh et al. (2018) consider a non-stochastic interest
rate and a static withdrawal strategy and their approach to the contract evaluation relies
on the Monte Carlo method with control variates (MC-CV). Accordingly, choosing
the most simple setting for the interest rate and the withdrawal strategy allows us to
preliminarly validate the Tree-LTC, by comparing its pricing performance against the
one of the Monte Carlo and the MC-CV methods. Specifically, MC-CV is a Monte
Carlo algorithm that exploits the following four control variates to reduce the variance
of the results:

C1 = A−
τ e

−rτ − E
Q
[
A−

τ e
−rτ ] ,

C2 = Fτ − E
Q [Fτ ] ,

C3 =
τ∑

n=1

(Gn + Ln (M(n))) − E
Q

[
τ∑

n=1

(Gt + Ln (M(n)))

]
,

C4 = τ − E
Q [τ ] .

(18)

Please, observe that τ is the anniversary year immediately after the PH’s death.
First of all, we test the convergence of the three considered algorithms by changing

the number of discretization steps. In particular, we consider four parameter config-
urations, denoted by the letters A, B, C and D, as shown in Table 2. In particular, as
far as the Monte Carlo algorithms are considered we report the number of simula-
tions and the number of time discretization steps (in the Black-Scholes model, exact
simulation is possible, so we always consider only one step per year). As far as the
Tree-LTC algorithm is employed, we report first the number N of time steps per year,
and then the factor f A which is used to compute Amin and Amax as Amin = P/ f A and
Amax = P · f A.

Convergence results are displayed inTable 3. Specifically,we compute the fair value
of α for a PH with entry age x0 = 60, by changing the parameter setup. Moreover,
we consider both a GLWB product that includes a LTC guarantee amounting to 6%
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Table 3 The fair values of α (in basis points), in the Black–Scholes model, by changing the numerical setup
and by assuming the presence (c = 6%) or absence (c = 0) of LTC

Setup c = 0.06 c = 0
MC MC-CV Tree-LTC MC MC-CV Tree-LTC

A 154.70 ± 1.60
(34)

154.71 ± 0.66
(31)

154.37
(0.3)

55.07 ± 1.35
(27)

54.95 ± 0.45
(27)

54.62
(0.2)

B 154.76 ± 1.13
(53)

154.36 ± 0.46
(66)

154.44
(0.6)

55.27 ± 0.95
(61)

54.67 ± 0.32
(53)

54.76
(0.4)

C 154.84 ± 0.80
(128)

154.30 ± 0.33
(111)

154.46
(0.8)

55.25 ± 0.67
(113)

54.64 ± 0.22
(107)

54.80
(1.0)

D 154.83 ± 0.56
(212)

154.49 ± 0.23
(213)

154.47
(1.7)

55.12 ± 0.48
(229)

54.76 ± 0.16
(224)

54.81
(1.8)

The values in parentheses indicate computational time in seconds

of the inflation-indexed benefit base, i.e., c = 0.06, and, for comparison purposes, a
GLWB product that does not include a LTC guarantee, i.e., c = 0 (traditional GLWB
annuity). The findings outlined in Table 3 indicate that the point estimate of α obtained
via the Tree-LTC method lies within the confidence intervals established by the first
twoMonte Carlo methods. This consistency underscores the compatibility of the three
numerical techniques in determining the estimated values of α. The MC-CV method
turns out to be more effective than the MCmethod: the confidence interval amplitudes
are smaller for approximately the same computational time. The results produced by
the Tree-LTC method are much more stable than the results related to the other two
methods, and the computational times are significantly shorter. For all the considered
numerical methods, setup D, the most accurate by far, was also used in the other
numerical tests, presented below.

In Table 4, we show the fair values of α at different entry ages for the PH, being
five years apart. Also in this case, we consider both the case where the LTC payment
is provided and the case where no LTC benefit is granted. We see that the outcomes
of the tree numerical methods point to the same pattern of the fair value of α as age
increases. Furthermore, we remark that embedding the LTC component increases the
fair value of α, but to a small extent, never exceeding 120 basis points of the value
of the traditional GLWB annuity. In Table 5, we show the fair values of α under
the same BS assumption for the dynamics of the mutual fund, but under different
cases for the withdrawal strategy, either static, or mixed or dynamic or full dynamic.
This implies the exclusive use of the Tree-LTC algorithm. Indeed, according to the
previous evidence, the proposed algorithm turns out to be the most accurate and the
fastest among the competing methods. Furthermore, among the considered numerical
methods, the Tree-LTC is the only one able to tackle, in a straightforward way, the
stochastic control problem involved by the the dynamic withdrawal strategy. The age
being fixed, the more numerous the withdrawal options for the PH the higher the fair
value of the fee α. Nevertheless, such an increase in α appears modest and the total
cost never exceeds 250 basis points.

To conclude this battery of tests, we investigate what impact the LTC and the with-
drawal strategy have on the initial contract price. Table 6 shows the prices, calculated
using the Tree-LTC method, of the GLWB-LTC contract as the age of the PH, the
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Table 5 The fair values of α (in basis points), in the Black-Scholes model, by changing the entry age of the
PH, the presence (c = 6%) or absence (c = 0) of LTC, and the withdrawal strategy (static, mixed, dynamic
or full dynamic)

c = 0.06 c = 0
Entry Strategy: Strategy:
Age Static Mixed Dynamic Full dyn Static Mixed Dynamic Full dyn

60 154.46 217.02 229.62 244.55 54.80 82.14 85.74 88.06

65 166.86 211.19 222.85 233.86 55.36 74.64 77.63 79.33

70 166.80 195.30 205.67 212.76 49.13 61.33 63.62 64.76

75 156.93 173.33 182.20 186.09 38.24 45.06 46.70 47.38

80 140.27 148.44 155.74 157.49 25.04 28.28 29.38 29.74

The values in parentheses indicate computational time in seconds

withdrawal strategy and the amount of the LTC change. In the cases considered here,
for each value of x0, α is set equal to the fair value in the case of static withdrawal,
for c = 0%. For this reason, the price in the seventh column of Table 6 is always
100.00. More generally, the prices for c = 0 are all close to 100. We then observe
that the values for all the strategies with respect to c = 6% are greater than 100, as
to be expected, but never exceed 10 monetary units with respect to the relative cases
for c = 0. This cost is not very large if one takes into account that LTC significantly
increases the guaranteed minimum payment in the case of disability. This small price
difference may be attractive to buyers, incentivizing them to purchase policies with
LTC.

4.2 The Black-Scholes CIRmodel

We enrich our discussion, by assuming that the mutual fund evolves according to
the Black-Scholes CIR model, namely by adding to the previous modelling setting a
stochastic representation of the underlying short interest rate. In this respect, it is not
possible to use the Monte Carlo control variates technique in Hsieh et al. (2018), since
there are no closed formulas for the expected values in (18) (with the only exception of
E
Q [τ ]). Therefore, we test the performance of the Tree-LTC only against the standard

Monte Carlo method.
Also in this model, we begin by testing the convergence of the Tree-LTC algorithm

by comparing it with a standardMonte Carlo method. Again, we consider four numer-
ical configurations, that are defined by the numerical setups provided in Table 7, with
the same arrangement used for the BS model: as far as the MC method is considered,
we report the number of simulations and then the number of simulation time steps
per year. As far as the Tree-LTC method is considered, we report the number of time
steps and the factor f A. In this model, given that the valuation of the fair value of α

requires a greater computational effort, in order to speed up the contract valuation pro-
cedure, for both numerical methods, we first perform a rough estimation of fair α using
configuration A, and then run the procedure around this approximation using the refer-
ence configuration (B, C or D). The fair values of α, computed with respect to the four
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Table 7 Parameter setup for the
numerical algorithms when the
BS-CIR model is considered

Setup MC Tree-LTC

A 1 · 106, 25 25, 100

B 2 · 106, 50 50, 200

C 4 · 106, 100 100, 400

D 8 · 106, 200 200, 800

Table 8 The fair values of α (in basis points), in the BS-CIR model, by changing the numerical setup and
by assuming the presence (c = 6%) or absence (c = 0) of LTC

Setup c = 0.06 c = 0.00
MC Tree-LTC MC Tree-LTC

A 157.16 ± 3.56
(32)

159.24
(3)

53.47 ± 3.05
(32)

54.61
(4)

B 159.14 ± 2.63
(151)

159.39
(14)

53.58 ± 2.24
(150)

54.92
(15)

C 158.76 ± 1.85
(699)

159.44
(81)

55.03 ± 1.54
(500)

55.00
(75)

D 159.84 ± 1.30
(1804)

159.45
(431)

55.17 ± 1.04
(1508)

55.02
(379)

The values in parentheses indicate computational time in seconds

setups, are reported in Table 8. The results obtained here have similar characteristics to
those obtained in the Black-Scholes model: both models produce compatible results,
but the Tree-LTC method produces more stable results in less computational time.
Table 9 presents the outcomes as the PH’s age varies, and whether LTC is included or
not. The two numerical methods deliver very similar results about the age pattern of
the fair value of α. When considering the impact of the PH’s starting age, it is evident
that making the withdrawal rate g vary with the initial age x0 of the insured results
in fair values of α that are closely aligned across the considered ages. Furthermore,
when comparing the cases for c = 6% and c = 0, it is clear that the addition of LTC
to the insurance policy does lead to a higher fair value for α. However, in the exam-
ined scenario, this increase never surpasses 130 basis points, a value that is generally
considered acceptable.

We deepen our analysis on the fair value of α by assessing how it changes with
several factors changing: the PH’s initial age, the withdrawal strategy (static, mixed,
dynamic and full dynamic), and the fund volatilityσF .We report the results inTable 10.
We can observe that the fair value of α increases when considering a withdrawal strat-
egywith awider range ofwithdrawal possibilities.Moreover, the inclusion of advanced
withdrawal strategies does not penalize the computational cost of the algorithm: when
switching from the static strategy to the full dynamic strategy, in most cases, the com-
putational times do not significantly increase. We also observe that the fair value of
α increases as σF increases. The increase does not depend much on the initial age
of the insured. Instead, it is more sensitive to the withdrawal strategy: the greater the
volatility, the greater the opportunities to exploit a flexible strategy efficiently. This
can have implications on the attractiveness of the insurance products due to higher
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Table 9 The fair values of α (in basis points), in the BS-CIR model, by changing the entry age of the PH
and by assuming the presence (c = 6%) or absence (c = 0) of LTC

Entry c = 0.06 c = 0.00
Age MC Tree-LTC MC Tree-LTC

60 159.84 ± 1.30
(1804)

159.64
(81)

55.81 ± 1.09
(1885)

55.00
(75)

65 170.10 ± 1.40
(1736)

170.98
(60)

54.49 ± 1.12
(1706)

55.25
(61)

70 169.89 ± 1.45
(2251)

169.63
(55)

48.62 ± 1.17
(1581)

48.64
(55)

75 159.14 ± 1.49
(2042)

158.45
(50)

38.06 ± 1.21
(1478)

37.43
(52)

80 140.32 ± 1.51
(1285)

140.70
(45)

23.97 ± 1.26
(1277)

24.06
(44)

The values in parentheses indicate computational time in seconds

contract value and thus higher contract fees. For this reason, the use of volatility risk
mitigation techniques to limit σF (see, for example, Berardi and Tebaldi 2024) can be
an effective choice.

As a further step in our analysis, we assess also how the fair value of α changes
with the volatility of the interest rate, namely σr . We report the outcomes in Table 11,
where we show four possible values for σr . We can notice that the fair values of α

for σr = 0.001 are very close to those for the BS model, reported in Table 4, since
for σr = 0 the BS-CIR model reduces to the nested BS model. Moreover, for this
particular case, the computational times are higher than usual: this is due to the fact
that the smaller σr is, the greater the number of nodes of the interest rate tree between
r0 and zero. However, in line with standard practice, we report this very particular
parameter setting only for comparison purposes between the BS-CIR and the BS
models, since it is not interesting from a practical point of view when the stochastic
interest rate is considered. Secondly, we observe that, as σr increases, the fair value of
α initially tends to decrease slightly, and then to increase. This particular dynamics is
related to the specific choice of a negative correlation coefficient ρ, that has been set
equal to −0.25. Such a choice is consistent with market observations, as previously
explained in the beginning of Sect. 4. In this respect, we study the effect of correlation
coefficient ρ on the fair value of α. Figure 1 represents the fair value of α as a function
of σr for different values of the correlation parameter ρ, when a static withdrawal
strategy is employed. We emphasize that the values used to generate this Figure was
calculated using the Tree-LTC algorithm, but, as a robustness check, they were also
validated by theMonteCarlomethod.As it can be seen,when the correlation parameter
is negative, the fair value of α (and thus the price of the contract) initially tends to
decrease and then grows, whereas when ρ is positive there is only growth. This aspect
is important when selecting the fund to which to link the policy, preferring funds that
are negatively correlated with interest rate trends.

As a further analysis, we assess what the optimal withdrawal strategy should be
under different assumptions about the amount of the account value, the interest rate,
the health status of the PH and the time of contract evaluation. The results are presented
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Table 11 The fair values of α (in basis points), in the BS-CIR model, for a GLWB-LTC with c = 6%, by
changing the entry age of the PH, the withdrawal strategy and the volatility σr of the interest rate

Entry BS CIR-with σr = 0.001 BS CIR-with σr = 0.05
Age Static Mixed Dynamic Full dyn Static Mixed Dynamic Full dyn

60 154.35
(801)

216.78
(1044)

229.35
(1308)

244.12
(993)

153.72
(66)

213.91
(84)

226.70
(85)

240.84
(86)

65 166.75
(801)

210.99
(959)

222.64
(1201)

233.52
(1265)

165.97
(60)

208.45
(74)

220.30
(88)

230.71
(98)

70 166.70
(814)

195.14
(885)

205.49
(1056)

212.50
(1094)

165.69
(60)

192.87
(68)

203.42
(82)

210.10
(96)

75 156.84
(761)

173.20
(793)

182.06
(953)

185.91
(996)

155.62
(52)

171.19
(64)

180.22
(74)

183.87
(86)

80 140.19
(577)

148.34
(715)

155.63
(859)

157.37
(885)

138.84
(45)

146.56
(54)

154.00
(65)

155.65
(115)

BS CIR-with σr = 0.10 BS-CIR with σr = 0.15
Static Mixed Dynamic Full dyn Static Mixed Dynamic Full dyn

60 159.64
(81)

220.69
(80)

234.38
(111)

249.25
(77)

171.59
(63)

237.22
(105)

252.52
(110)

269.54
(113)

65 170.98
(60)

213.79
(394)

226.45
(96)

237.26
(112)

181.77
(58)

226.99
(88)

241.01
(107)

253.12
(103)

70 169.63
(55)

196.81
(68)

208.03
(87)

214.90
(101)

178.42
(57)

206.84
(76)

219.18
(96)

226.76
(94)

75 158.45
(50)

173.91
(71)

183.48
(85)

187.21
(91)

165.21
(52)

181.25
(52)

191.70
(83)

195.77
(83)

80 140.70
(45)

148.31
(58)

156.18
(77)

157.83
(87)

145.67
(46)

153.50
(61)

162.04
(73)

163.81
(75)

The values in parentheses indicate computational time in seconds

in the Fig. 2. In this Figure, we display the dynamic optimal withdrawal strategy for a
GLWB-LTCcontract, as a function of the account value A2+

n (x-axis) and of the interest
rate rn (y-axis), varying the anniversaryn and the health status of thePH,Mn . The green
region denotes the points for which it is convenient not to withdraw (γn = 0), the white
region for which it is convenient towithdraw at the guaranteedminimum rate (γn = 1),
and the orange region for which it is convenient to terminate the contract (γn = 2).
Looking at the various cases analysed, we can see that when the account value takes
high values, surrendering is the best choice: the cost of fees is not worth the insurance
coverageprovidedby the contract.Whenanalysing the effect of interest rates,wenotice
that the higher the interest rate, the more convenient the choice of surrender option.
On the other hand, when the interest rate is low and the account value takes on values
close to the initial premium, the most convenient choice is not to withdraw and thus to
let the benefit base increase in its value. This implies to reserve a higher LTC payment
in case of disability at the subsequent anniversaries and/or a higher withdrawal. This
aspect emphasizes an important advantage of flexible withdrawal strategies, especially
in relation to insurance policies offering protection from health risks. Indeed, the PH is
given more choice about how much to save for protection from the possible disability
states at future times. When analyzing the optimal withdrawal strategy with respect to
time, we notice that as the PH grows old, the most convenient is for her to withdraw
at the minimum guaranteed rate and thus to undertake a decumulation strategy as the
component of disability protection becomes more and more important. The passing of
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Fig. 1 The fair value of α (in basis points), in the BS-CIRmodel, for a GLWB-LTCwith c = 6%, X0 = 60,
and different value of ρ. The withdrawal strategy is assumed to be the static one. The black dotted line has
a constant y-value equal to the fair value of alpha in the Black-Scholes model

time has a further effect: in the early years it is less convenient to terminate the contract
early because of the cost charged for withdrawals beyond the guaranteed minimum.
After seven years this penalty disappears and it is then more convenient to surrender.
Finally, when the PH is very old, the most convenient choice is a standard withdrawal,
almost always: it is neither worthwhile to give up a withdrawal (the cost of giving up
does not pay off over time) nor to terminate the contract (the PH loses the insurance
coverage).

5 Conclusions

Ageing and disability cannot be disentangled. Private insurance sector can fill the
gaps of public social protection systems. It is important to overcome the small market
penetration of LTC private insurance, by making insurance products more attractive
to the demand-side.

The state-of-the-art has proposed insurance products that bundle longevity, disabil-
ity and downside risks. For instance, Hsieh et al. (2018) proposed the LCA-GLWB
insurance contract, namely variable long-termcare annuities, granting the policyholder
to withdraw a contractually defined fraction of the benefit base until she remains alive.
The key idea of our paper is to providemore general features for this insurance product
and to refine its pricing method. In particular, we depart from the existing literature on
variable long-term care annuities by introducing the opportunity for the policyholder
to choose howmuch to withdraw (dynamic withdrawal strategy), including the surren-
der option. We name “GLWB-LTC” the insurance product embedding LTC payouts
and dynamic withdrawals.
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Fig. 2 Dynamic optimal withdrawal strategy for a GLWB-LTC contract, as a function of account value
A2+n (x-axis) and interest rate rn (y-axis), varying the anniversary n and the health status of the insured Mn .
The green region denotes the points for which it is convenient not to withdraw (γn = 0), the white region
for which it is convenient to withdraw at the guaranteed minimum rate (γn = 1), and the orange region for
which it is convenient to terminate the contract (γn = 2)

The state-of-the-art emphasizes, in relation to GLWB variable annuity contracts,
that the surrender option is generally attractive to the demand side, as policyholders
may be less prone to perceive insurance securities as illiquid investments. Through
our numerical results, coming from the pricing of the GLWB-LTC product, we show
that the dynamic withdrawal strategy acquires even more relevance within the GLWB
annuity product that offers protection from disability risks.

Our numerical analysis leads to interesting and original findings with important
implications on both the social value and the attractivity of the GLWB-LTC product.
These findings mainly relate to the advantages of the dynamic withdrawal strategy,
also under the policyholder’s perspective. In particular, the policyholder can choose
more flexibly how much to save for protection from the possible state of disabled at
future times.

Future research paths could explore how the fund volatility impacts on the valuation
of theGLWB-LTCproduct andmethods to refine its design for better protection against
this risk. This could be important since this kind of products combines insurance and
investment components.

A Appendix: Transition intensities

The intensities for the health state transitions are computed from the coefficients
reported in Table 8, page 68 in Pritchard (2006). Specifically, depending on which
provides a better fit, for i ∈ {1, . . . , 6} and j ∈ {1, . . . , 6, 7} \ {i}, the transition
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intensities are defined as

qx0i, j = Ai, j + Bi, j · exp (Ci, j (x0 + t − 68.5)
)

or

qx0i, j = Ai, j + Di, j · (x0 + t)

with a lower bound of zero on all intensities at all ages. In addition for i ∈ {1, . . . , 6}

qx0i,i = −
∑

j �=i

qx0i, j .

Finally, for j ∈ {1, . . . , 7} , qx07, j = 0.

B Appendix: upper bound for the interest rate tree

In this Appendix, we demonstrate the existence of a value, denoted as Rmax(i), such
that for the interest rate tree, all nodes below Rmax(i) exclusively have successors that
are smaller than Rmax(i). To determine this value, we begin by solving the equation
presented below, with respect to k(i):

kd(i, k(i)) = k(i) − 1. (19)

By solving Eq. (19), one obtains

k(i) =
⌈−2 (�t)3/2 kr

√
r0σr +

√
�t2σ 2

r

(
�tkr

(
4θkr − σ 2

r

)+ σ 2
r

)+ �t2ikrσ 2
r + �tσ 2

r

2�t2krσ 2
r

⌉
.

We define Rmax(i) = Ri,k(i). It is possible to prove that

θ < Rmax(i) < R =
(√

�t2σ 2
r

(
�tkr

(
4θkr − σ 2

r

)+ σ 2
r

)+ 4�t2krσ 2
r + �tσ 2

r

)2

4�t3k2r σ
2
r

(20)

so that Rmax(i) is bounded by a constant R which does not depend on i . Now, if
k ≤ k(i), then

Ri+1,kd (i,k) < Ri+1,ku(i,k) ≤ Ri+1,ku(i,k(i))
= Ri+1,k(i) < Ri,k(i),

as we exploited the relation ku(i, k(i)) = k(i) which comes from Eqs. (10), (19) and
(20). Therefore,Ri,k ≤ Ri,k(i) implies that bothRi+1,kd (i) andRi+1,ku(i) are smaller
or equal to Ri,k(i). Thus, starting from r0 < Rmax(i), it is not possible to reach the
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Fig. 3 An example of construction of the interest rate tree. Parameters used: r0 = θ = 0.02, kr = 1, σr =
0.05, T = 5,�t = 0.5

nodes above Rmax(i). So, we have proved that at time i the discrete process r̄ cannot
assume value grater thanRi,k(i). Moreover, the nodeRi,k(i) may be unreachable itself

if ku(i − 1, k(i − 1)) < k(i). Therefore, one can improve even more the selection of
the nodes by considering only the value of k smaller than k(i) and ku(i − 1, k(i − 1)).
Finally, we set kmax(i) = min

{
k(i), i, ku(i − 1, k(i − 1))

}
. To conclude, at time step

i , the only nodes to be considered are those with k between kmin(i) and kmax(i), with
kmin(i) defined in Sect. 3.3.1. Figure 3 shows an example of the tree construction.
The red points are nodes Ri,k that satisfy the relation kmin(i) ≤ k ≤ kmax(i) and
are those actually used in the Tree-LTC algorithm, while the blue points are the first
order approximation of their expected values at next time step. The green points are
the nodes that satisfy the relation kmax(i) < k ≤ k(i). These green nodes, although
their value is less than Rmax(i), are unreachable and can be discarded. The grey points
are the nodes that satisfy the relation k(i) < k ≤ i . The dotted black line corresponds
to the constant R which is greater than Rmax(i) for all values of i . Again, we stress
out that that all the grey and green nodesRi,k cannot be reached from the initial node
R0,0, so they can be discarded and do not need to be processed, thus reducing the
computational cost of the Tree-LTC algorithm.
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C Appendix: analysis of the transition probabilities

In this Appendixwe discuss the transition probabilities of the proposed bi-dimensional
tree, employed within the Tree-LTC algorithm. In particular, our method differs from
the method of Appolloni et al. (2015) for 3 reasons: with reference to the tree for the
interest rate, the nodes with zero repeated value are discarded (we only keep one node
with zero value); furthermore, when Ri,k ≥ θ , the up node is defined as the down
node plus 1; finally, with reference to the tree for the underlying, all nodes between
two extreme values are considered and a linearity condition at the edges is exploited to
estimate the value of the contract outside the considered nodes.We go through Lemma
2, Lemma 4 and Proposition 6 presented in Appolloni et al. (2015) and we show step
by step how to re-adapt the original proofs.

In the following, let us consider a node Ri,k such that kmin(i) ≤ k ≤ kmax(i).

Lemma 2 Let θ∗ < θ and θ∗ > θ be such that

0 < θ∗ <
θ ∧ r0

2
and θ∗ > 2(θ ∨ r0).

Then there exists a positive constant h1 = h1(θ∗, θ∗, k, θ, σr ) < 1 such that for every
�t < h1 the following statements hold.

(i) If 0 ≤ Ri,k < θ∗
√

�t then kd(i, k) ∈ {k, k + 1} and ku(i, k) ∈ {k+1, . . . , i+1}.
Moreover, there exists a positive constant C∗ > 0 such that

|Ri+1,kd (i,k) − Ri,k | ≤ C∗ (�t)3/4 , (21)

and

|Ri+1,ku(i,k) − Ri,k | ≤ C∗ (�t)3/4 . (22)

(ii) If θ∗
√

�t ≤ Ri,k < θ∗√�t then kd(i, k) = k and ku(i, k) = k + 1. Moreover,
one has

Ri+1,kd (i,k) − Ri,k = −σ
√
Ri,k�t + σ 2

4
�t, (23)

and

Ri+1,ku(i,k) − Ri,k = σ
√
Ri,k�t + σ 2

4
�t . (24)

Proof The proof of (i) is very similar to the original one. We start by pointing out that
in this particular case, it has been proven that kACZd (i, k) = k, so, with respect to our
tree, kd(i, k) = max {k, kmin(i + 1)}.
• If Ri,k > 0, then Ri+1,k+1 > Ri,k > 0 and kmin(i + 1) ≤ k. Then kd(i, k) =
max {k, kmin(i + 1, k)} = kACZd (i, k) and the original proof about is not altered.
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• If Ri,k = 0, then k = kmin(i, k) and Ri+1,k ≤ Ri,k = 0, so kmin(i + 1, k) ≥ k.
Moreover, since k ≥ kmin(i, k), then Ri,k+1 > 0 and kmin(i + 1, k) ≤ k + 1, so
kmin(i + 1, k) = k or kmin(i + 1, k) = k + 1.

– If kmin(i + 1, k) = k, then kd(i, k) = max {k, k} = kACZd (i, k), and one
continues as in the original proof.

– If kmin(i + 1, k) = k + 1, then kd(i, k) = max {k, k + 1} = k + 1 and
Ri+1,kACZd (i,k) = 0, so |Ri+1,kd (i,k) − Ri,k | = 0 ≤ C∗ (�t)3/4 and nothing
changes for ku(i, k).

The proof of (ii) is direct. In fact, in this case Ri,k > 0, so, as discussed before,
kd(i, k) = kACZd (i, k), and, by definition, ku(i, k) = kACZd (i, k) + 1 = k + 1. The
proof of equations (23) and (24) follows as in the original reasoning. ��
Lemma 4 Let r∗ be fixed. Then there exists h2 = h2(r∗, σF ) < 1 such that for every
�t < h2 and (i, k) such that Ri,k ∈ [0, r∗] one has

jd(i, j, k) = j − 1 and ju(i, j, k) = j + 1 (25)

for all j = 2, . . . , jmax − 1. As a consequence, for �t < h2 and for every (i, k) such
that ri,k ∈ [0, r∗] one has

A ju(i, j,k) − A j = A j

(
eσF

√
�t − 1

)
and A jd (i, j,k) − A j = A j

(
e−σF

√
�t − 1

)
.

(26)

Proof First of all, we observe that A j−1 = A j e−σF
√

�t and A j+1 = A j eσF
√

�t .
Moreover, for j∗ < j one hasA j∗ ≤ A j < A j

(
1 + Ri,k�t

)
, so jd(i, j, k) = j − 1.

Concerning the up movement, one has to prove that for �t sufficiently small one has

A j
(
1 + Ri,k�t

) ≥ A j e
σF

√
�t

or equivalently

Ri,k�t ≥ eσF
√

�t − 1.

This is true since
(
eσF

√
�t − 1

)
− Ri,k�t ≥ σF

√
�t − Ri,k�t = √

�t
(
σF − Ri,k

√
�t
)

.

Finally, the last term of the previous equality is positive for �t <
(
σF/Ri,k

)2. ��
Proposition 6 Let r∗ > 0 and A∗ > 0 be fixed and set I∗ = {(i, j, k) : 1 < j <

jmax,Ri,k ≤ r∗,A j ≤ A∗}. Let θ∗ be as in Lemma 2 and (i, j, k) ∈ I∗. We set:
(i) if (i, j, k) ∈ I∗ and ri,k < θ∗

√
�t then

pu,u = pA
i, j,k p

R
i,k,
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pu,d = pA
i, j,k

(
1 − pRi,k

)
,

qd,u = pRi,k

(
1 − pA

i, j,k

)
,

qd,d =
(
1 − pA

i, j,k

) (
1 − pRi,k

)
;

(ii) if (i, j, k) ∈ I∗ and ri,k ≥ θ∗
√

�t then the four transition probabilities are set as
the solutions of linear system (13).

Then there exists h3 < 1 and a positive constant C such that for every �t < h3 and
(i, j, k) ∈ I∗ the above probabilities are actually well defined.

The proof of this result is based on the properties demonstrated in the previous
Lemmas2 and4.Below there are somedetails.Case (i) is handled by an approximation:
when Ri,k is close to zero, no correlation is assumed, which is exactly the case for
Ri,k = 0. Case (ii) is solved by studying the linear system (13) directly: explicit
formulae for the solutions can be determined and it is shown that for sufficiently small
�t , the four probabilities obtained are all non-negative.

To conclude, we observe that, thanks to the results of Lemmas 2 and 4, and Propo-
sitions 6, Appolloni et al. (2015) prove the weak convergence of the discrete process
Ā, r̄ to the corresponding continuous processes.
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