
npj | unconventional computing Article

https://doi.org/10.1038/s44335-024-00013-1

Adiabatic leaky integrate and fire neurons
with refractory period for ultra low energy
neuromorphic computing
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In recent years, the in-memory-computing in charge domain has gained significant interest as a
promising solution to further enhance the energy efficiencyof neuromorphic hardware. In thiswork,we
explore the synergy between the brain-inspired computation and the adiabatic paradigm by
presenting an adiabatic Leaky Integrate-and-Fire neuron in 180 nm CMOS technology, that is able to
emulate the most important primitives for a valuable neuromorphic computation, such as the
accumulation of the incoming input spikes, an exponential leakage of the membrane potential and a
tunable refractory period. Differently from previous contributions in the literature, our design can
exploit both the charging and recovery phases of the adiabatic operation to ensure a seamless and
continuous computation, all the while exchanging energy with the power supply with an efficiency
higher than 90%over awide range of resonance frequencies, and even surpassing 99% for the lowest
frequencies. Our simulations unveil a minimum energy per synaptic operation of 470 fJ at a 500 kHz
resonance frequency, which yields a 9x energy saving with respect to a non-adiabatic operation.

Computers designed according to the von Neumann separation between
processing andmemory, tightly synchronized by clock signals and based on
a high-precision digital representation have not been conceived for the
complex cognitive tasks and the extreme energy efficiency required by edge
artificial intelligence (AI) applications. In-memory-computing has thus
emerged as a compellingparadigmto improve energy efficiency inhardware
solutions dedicated to AI. Moreover, neuromorphic computing is being
actively explored as a bio-inspired approach to information processing that
is based on spiking neural networks1, and is capable of sophisticated tasks
including real-world sensory processing2. The essential components of
neuromorphichardware are artificial synapsesandneurons (see Fig. 1),with
artificial synapses being pivotal also for crossbar arrays employed in accel-
erators for neural network inference3–5.

Many implementations of artificial synapses have been proposed
including CMOS sub-threshold circuits6–9, switched capacitors10, oxide-
RAM11, and Li-ion transistors12. Moreover, in order to reduce the area and
improve the energy efficiency, single-device synapses have been explored
using diverse kinds of memristors13–15.

Capacitive synapses can enable a highly energy efficient, charge
domain in-memory-computing16–18, and non-volatile tunable capacitors, or
memcapacitors, could provide an ideal platform for such an
implementation19–22. In fact, in contrast to memristors, the read-out of
capacitive synapses is not inherently dissipative23,24. Nevertheless, the usual
operation of capacitors, sketched in Fig. 1b, implies the dissipation in the

driving circuitry of an energy comparable to the energy stored in the
capacitor itself.

Thus, in the quest for a further leap forward in the energy efficiency of
neuromorphic hardware and in-memory-computing, the adiabatic opera-
tion of the capacitors seems very attractive22,25.

The adiabatic operation illustrated by Fig. 1c has already been explored
for logic circuits, but without reaching a significant impact. This was due to
the challenges in the design of logic gates and of multi-phase power-clock
generators, to the penalty in dynamic performance26, as well as to the fact
that the adiabatic operation can effectively suppress the dynamic energy but
not as much the static leakage energy, whose impact has become com-
paratively more important with the scaling of CMOS technologies and at
low operating frequencies.

The adiabatic operation can be much more rewarding in neuro-
morphic circuits employing capacitive synapses22,25, because these bio-
inspired circuits inherently target a relatively low-frequency operation and,
moreover, the dynamic energy consumption tends to dominate the static
dissipation due to the use of quite large capacitors.

In this paper, we expand on our previous work in ref. 27 by presenting,
for the first time to our knowledge, an adiabatic Leaky Integrate-and-Fire
neuron featuring an accumulation of the incoming input spikes, an expo-
nential leakage of the membrane potential and a tunable refractory period.
We report transistor-level simulations, carried out with the commercially
available XP018-180 nmXFABCMOS technology, demonstrating that our
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design is able to recover the charge supplied to the capacitive synapses and
soma with minimal losses, in fact the circuit can reach an energy efficiency
higher than 99% for the slowest resonance frequencies. Our results reveal a
minimum energy per synaptic operation of 470 fJ at a 500 kHz resonance
frequency with a supply voltage VDD= 1.8 V. Such an energy per synaptic
operation translates into a 9× energy saving with respect to a non-adiabatic
operation.

Results
The adiabatic architecture proposed in thiswork is shown in Fig. 2. The core
of our circuit is a crossbar array of synapses which natively implements a
spikingHopfield networkwith self-recursion (see Fig. 2b). Nonetheless, any
other network architecture can be obtained by pruning the undesired net-
work connections, namely by setting their corresponding synaptic weight to
zero. The spikes are distributed through the network based on the Address-
Event Representation (AER) protocol28. In particular, both the word-lines
(WL) and the neurons on the bit-lines (BL) are identified by matching

identifiers, so that the spikes fired by the i-th neuron can be forwarded to all
neurons through the synapses of the i-th word-line.

In our architecture, all the energy involved in the neuromorphic
computation is supplied to theneurons and synapses inanadiabatic fashion,
thus greatly reducing the conduction losses in the circuit.More details about
the operation of the systemwill be presented in the “Discussion” section. In
brief, upon each input spike, an inductive driver (yellow) resonates with the
target capacitive word-line, which consists of differential capacitive synapses
(orange) that form two capacitive dividers with the differential soma of the
neurons (blue). Thanks to the resonance, the driver can adiabatically
transfer or recover energy to and from the word-lines. The supplied current
is weighted by the synapses and then integrated by the soma into the dif-
ferential membrane potential (ΔVm) as a function of their synaptic weight
(SW). Finally, the membrane potential is monitored by the neuron com-
parator, whichfires an output spike upon the crossing of a certain threshold.

One specific novelty of our design is its capability to make use of both
the adiabatic charging and recovery phases to accumulate the incoming

Fig. 1 | Adiabatic neuromorphic computing. a Sketch of an artificial spiking
neuron in a spiking Hopfield neural network with self-recursion. The input spikes
are weighted by the synapses and then integrated into the membrane potential,
which finally fires an output spike upon reaching an appropriate threshold. b Non-
adiabatic driving of a capacitor by an abrupt input voltageVIN having practically null
rise and fall times (T = 0). The dissipation during each charging or discharging is
1
2CVDD

2 and does not depend on R. c Adiabatic driving of a capacitor by a VIN

waveform with rise and fall times (T) sufficiently longer than the time constant
τ = RC of the circuit. In this case, the conduction losses become proportional to τ/T
and so can be arbitrarily reduced by slowing down the driving signal. Since in the
charging-discharging cycle only a fraction of the supplied energy is dissipated on R,
during the discharging the power supply can recover a significant fraction of the
supplied energy.

Fig. 2 | Schematic of the adiabatic neuromorphic architecture. a Global archi-
tecture featuring an inductive driver (yellow) that resonates with the word-line
capacitance selected by its WL controller (pink). Each word-line comprises a row of
differential synapses (orange) that weigh and forward the spikes to the soma of the
neurons on the bit-lines (blue), where they are integrated into the differential
membrane potential (ΔVm), that is finally monitored by a comparator. b Time-
multiplexing of a single driver among all the neurons of the Hopfield network.

cDetails of the WL controller. d Synapse controller which manipulates the internal
configuration of the synapse based on the leakage and refractory period of the
corresponding neuron. e Binary-encoded capacitor bank that implements the dif-
ferential capacitive synapse. f Encoding of the synaptic weight and corresponding
number of Least Significant Bit (LSB) capacitors that form the positive and negative
synaptic capacitors (C ±

syn).
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spikes in the membrane potential of the neurons. Following the same
working principle, a synchronous spiking clock (CLK) provides the neurons
with an adiabatic time-base, which is used to induce discrete inhibitions of
themembrane potential, so as to achieve an adiabatic implementation of the
leakage and refractory period of the neurons.

Figure 3 shows an example of the overall computation. The train of
spikes from the neurons (black SPK) and clock spikes (gray CLK) in
Fig. 3a are forwarded to the neurons through four different synaptic
weights (SW), resulting in different behaviors of their membrane
potential, which are reported in Fig. 3c–f. In particular, each input SPK
increases the membrane potential proportionally to the excitatory SW,
and then the membrane potential exponentially decays towards the
resting state due to the CLK-driven leakage of the neuron. Furthermore,
whenever themembrane potential overcomes the spiking threshold set by
the comparator (dashed lines), the neurons fire the output spikes of
Fig. 3b and then enter a refractory period. The black triangles show how
the circuit can adjust the duration of the refractory period of the neurons,
which are also reported in the figure. As a reference, the pink neuron
having the highest SWaswell as the shortest refractory period exhibits the
most lively spiking activity.

Below, Fig. 3g reports the energy supplied to the circuit over time
(black), as well as the total energy stored in all its internal capacitors (gray).
Since the energy remaining in the synapses and neurons plays an active role

in the computation, the actual dissipated energy is evaluated as the differ-
ence between the supplied and said stored energy.

The simulations on the left side of Fig. 3 were repeated for many
different resonance frequencies fLC. The resulting energy performance are
analyzed as a function of fLC in the right side of Fig. 3, where they are
expressed in terms of Energy per Synaptic Operation (ESOP), namely nor-
malized to the number of spikes (including clock spikes), and to the number
of synapses served by each WL.

First, the left y-axis of Fig. 3h reports the total conduction losses, which
correspond to the adiabatic driving efficiency on the right y-axis. Such
efficiency is here defined as the difference between the conduction losses
resulting fromour adiabatic operation (green), and the non-adiabatic upper
limit 1

2CWLVDD
2 obtained by operating our circuit in a completely non-

adiabatic mode (red line). A distinctive feature of adiabatic systems is the
systematic reduction of the conduction losses for decreasing fLC

29. As can be
seen, our design results in conduction losses roughly proportional to the
square root of fLC, consistently with the frequency-dependent optimization
of the transmission gates discussed in “Methods” and in Supplementary
Note 4. Thanks to such a frequency scaling, our adiabatic efficiency remains
higher than 90% over the whole explored frequency range and even exceeds
a 99% efficiency at the lowest resonance frequencies.

In Fig. 3i it is shown the dynamic ESOP, which comprises the con-
duction losses of Fig. 3h (green), as well as the energy consumed by the

Fig. 3 | Neuromorphic computation and ultra-low energy performance. Example
of the neuromorphic computation. a Synchronous clock spikes (CLK, gray) that
provide a time base for both the neuron leakage and refractory period, and asyn-
chronous spikes (SPK, black)weighted by the synaptic weights. bOutput spikes fired
by the neurons in (c) to (f) for different synaptic weights (SW) and duration of the
refractory period (REFR). All neurons share the same time constant for the expo-
nential leakage. g Time evolution of the energy supplied to the circuit (black) and
stored in the capacitors (gray), whose difference provides the dissipated energy.
Energy performance simulated from the example on the left and expressed in terms
of Energy per Synaptic Operation. hAdiabatic conduction losses (green line) versus
the resonance frequency fLC and corresponding adiabatic efficiency (right y-axis),

defined as the saving with respect to the non-adiabatic energy dissipation (red line).
i Dynamic energy per synaptic operation comprising the conduction losses (green)
and the consumption of the logic (gray) plotted versus fLC. j Total ESOP extracted at
the TypicalMean at 27 °C (TM, green),Worst Power at 0 °C (WP, yellow) andWorst
Speed at 100 °C (WS, cyan) corners including both the dynamic and static energy
contributions (reported for TM corner only). The opposite fLC dependence of the
dynamic and static energies results in aMinimumEnergy Point (MEP, colored stars)
at fLC= 500 kHz for all corners and corresponding to 470 fJ for the TM corner.
k Comparison between the nominal (TM@ 27 °C) adiabatic MEP at fLC= 500 kHz
and the corresponding energy in nominal non-adiabatic mode.
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auxiliary logic (gray). The Dynamic ESOP mirrors the scaling of the con-
duction losses at relatively high frequencies, while it deviates at the lower
frequencies as the consumption of the logic circuits becomes progressively
dominant with respect to the adiabatic conduction losses.

In adiabatic systems operating at low frequencies, the static dissipation
maybecome thedominant source of energy consumption.As such, the static
powerof each sub-circuit has been thoroughly evaluated for eachcorner, and
it is reported in Supplementary Note 4 for the TM corner at 27 °C only.

Figure 3j reports the total ESOPsof all the design corners (colored solid
lines), obtained by adding the dynamic energy of Fig. 3i to the static energy
estimated for the full crossbar; the corners TM, WS, WP are defined and
described in the “Simulation Framework” paragraph of the “Methods”
section. The isolated dynamic (black dotted line) and static energy (black
dashed line) are also shown in Fig. 3j, but only for the TM corner at 27 °C.
The opposite frequency scaling of the static and dynamic energy leads to a
Minimum Energy Point (MEP, colored stars) at a resonance frequency of
about 500 kHz for all corners.

Inparticular, thanks to thehighadiabatic efficiency reachedbyboth the
TM at 27 °C (green) andWP at 0 °C (yellow) corners, their MEPs result as
lowas470 fJ and490 fJ, respectively.Ontheotherhand, for theWScorner at
100 °C (cyan) the MEP increases to 620 fJ, due to both higher conduction
losses (owing to a higher resistance of the transmission gates) and higher
static consumption (due to a degradation of theMOSFETs off-current at the
high operating temperature).

As summarized in Fig. 3k, the nominal MEP yields a 9× energy saving
compared to an identical circuit operated in a completely non-adiabatic
mode. The detailed energy breakdown of the nominal adiabatic and non-
adiabatic benchmarks can be found in Supplementary Note 5.

In Table 1, we compare the performance of our adiabatic LIF neurons
with previously published neuromorphic circuits, including digital
implementations30,31, mixed-signal subthreshold options8,9, and adiabatic
circuits25. Mixed-signal systems tend to reach an energy efficiency higher
than digital solutions, albeit at the cost of a lower configurability. Compared
to the adiabatic perceptron in ref. 25, this work has both introduced novel
functional aspects and achieved a lower overall ESOP. Indeed, our results
suggest that the adiabatic operation is a promising option to further improve
the energy-efficiency of neuromorphic circuits.

Discussion
Adiabatic resonance-driven charge recovery
The inductive driver (yellow in Fig. 2a) is tasked to transfer the energy back
and forth between the power supply (VDD) and the target WL of the

crossbar. In particular, the driver consists of an inductor L and a large flying
capacitor CFLY, which is pre-charged at VDD/2 and should always preserve
such a voltage. The operation of the driver is demonstrated in Fig. 4. The
arrival of each input spike (Fig. 4a) starts the adiabatic integration phase
(INTG, Fig. 4b), where the selected WL controller enables a transmission
gate (TG-WL, see Fig. 2b) to connect the driver to the word-line. This
triggers the resonance between the inductance L and the series of CFLY and
the WL capacitance CWL. Such resonance is crucial to convert any abrupt
voltage step across the inductor to an adiabatic-compatible voltage swing
that drives the WL capacitance. In particular, if the WL voltage begins at
GND/VDD, the connection with the driver causes a positive/negativeVDD/2
voltage drop across the inductor. In turn, this triggers the rising/falling

Table 1 | Comparison with state-of-the-art

Chip Name Loihi ODIN DYNAP-SE2 — — —

Reference Davies Frenkel Richter Rubino Maheshwari Massarotto
IEEE Micro30 IEEE TBCAS31 IOP Neuro8 IEEE TCAS9 IEEE TCAS25 This work

Implementation Digital Digital Mixed: Subthreshold Mixed: Subthreshold Mixed: Adiabatic Mixed: Adiabatic

Technology 14 nm FinFET 28 nm FDSOI 180 nm 22 nm FDSOI 180 nm 180 nm

Supply Voltage 0.5–1.25 V 0.55–1 V 1.8 V 0.8 V 1.8 V 1.8 V

Neuron Model CUBA-LIF LIF & Izhikevich LIF & exLIF AdExp-I&F Perceptron LIF

Dynamics N/A Bio. to accel. Biological Biological — Biological

Synaptic Weight 9 bit 3+1 bit 4+2 bit N/A 8 bit 8 bit

ESOP - Energy per >23.6 pJa >12.7 pJ 150 pJb <14 pJc 8.5 pJd >470 fJ

Synaptic Operation @ VDD= 0.75 V @ VDD= 0.55 V @ Fire rate = 80 Hz @ Fire rate = 30 Hz @ fLC= 1MHz @fLC= 500 kHz

(Experimental) (Experimental) (Experimental) (Simulation) (Simulation) (Simulation)

Comparison of Energies per Synaptic Operation with previously published low-power neuromorphic circuits. The notes of the table report details about the definition and evaluation of the ESOP in the
different references.
aDoes not account for either synaptic or neuron update energy; extracted from pre-silicon SDF and SPICE simulations, in accordance with early post-silicon characterization.
bEnergy per “Neuron Spike Operation", comprising one-to-many MAC-like operations depending on the integration period and on the assumed time-step fidelity.
cEnergy reported versus the average neuron firing rate. At less biologically-plausible rates higher than 30 Hz, the ESOP has been shown to decrease (e.g., 850 fJ at 1 kHz).
dTheESOP for an 8-bit synapticweight is reportedonly for a resonance frequency fLC = 1MHz.Out of the total 8.5 pJ ESOP, 4 pJ are due to the adiabatic conduction losses and control logic of the switches,
while the remaining 4.5 pJ are due to the neuron comparator implemented with RRAMmemristors.

Fig. 4 | Adiabatic driving and charge recovery. a Asynchronous input spikes that
trigger either a charging or a recovery phase. b adiabatic integration phase (INTG)
followed by a HOLD phase that corrects the incomplete transition of the word-line
before the comparator evaluates the membrane potential (EVAL). cWord-line
voltage which is alternatively charged (red) and discharged (green) at any sub-
sequent spike. The insets show the correction during the HOLD phase. d Sinusoidal
current waveform that transfers a chargeCWLVDD back and forth between the supply
and the WL upon each spike. The zero-current switching points are marked with a
black star.
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sinusoidal swing of the word-line voltage shown in Fig. 4c, which can be
expressed as:

VWL ¼
VDD

2
1∓ cos 2πf LC t � t0

� �� �� � ð1Þ

with upper and lower sign applying respectively to falling and rising. The
charging/discharging of theWL is drivenby the positive/negative sinusoidal
current reported in Fig. 4d, which can be written as:

IL ¼ ± IL;pk sin 2πf LC t � t0
� �� �

ð2Þ

where t0 is the spike arrival instant, fLC the resonance frequency and IL,pk =
πCWLVDDfLC is the peak amplitude of the current oscillation. Upper and
lower signs in Eqs. (1) and (2) correspond to a VWL waveform starting at
GND or VDD, respectively.

Without any external intervention, the resonance would continue to
shuttle energy from the power supply to the WL during the upswing
(charging phase in red), and recover that same energy back during the
downswing (recovery phase in green). All the resistive elements on the path
of the current would however damp such oscillation by dissipating energy
via Joule heating.

In our architecture, however, the timer forces the WL controller to
disable the TG-WL and so interrupt the INTG phase after a single half-
period TLC/2, namely when the word-line nominally completes the charge
to VDD (charging phase) or the discharge to GND (recovery phase). Such a
timing ensures the zero-current switching of the TG-WL, which is a well-
known requirement for achieving an adiabatic operation because it mini-
mizes the losses when turning off the transistors32.

As it can be seen in Fig. 4, the input spikes trigger INTG phases that
alternatively start with either a completely charged or dischargedword-line.
This behavior ensures the seamless alternation of charging and recovery
phases despite the identical control signals. For clarity, we will denote the
spikes that trigger a charging phase as charging spikes, and those triggering a
recovery phase as recovery spikes.

After any INTG, theword-line is kept inHOLD(yellowof Fig. 4b) until
the next INTG. While in HOLD, the tristate of the WL controller takes
control of theword-lineby enforcing and thenmaintaining eitherVDD (after
a chargingphase)orGND(after a recoveryphase).As shown inFig. 2b, such
tristate consists of a Toggle Flip-Flop (T-FF), which inverts its output upon
each input spike thus mirroring the transitions of the word-line, and then a
transmission gate (TG-TRS) that disconnects T-FF during the adiabatic
integration. Before the evaluation by the comparator (EVAL, gray in Fig.
4b), theHOLDphase corrects any incomplete chargingordischargingof the
word-line, as shown in the insets of Fig. 4c. In doing so, both the T-FF and
the TG-TRS produce non-adiabatic conduction losses which, as such,
depend only on the amplitude of the correction required by theWL voltage
but not on the sizing of the transistors.

Capacitive synapses and soma
Our architecture employs differential capacitive synapses realized with the
binary-encoded capacitor bank sketched in Fig. 2e, which gets split by a
digital encoding of the Synaptic Weight (SW) in two differential synaptic
capacitors, Cþ

syn and C�
syn. In particular, depending on the i-th bit of the

synaptic weight (SWi), a row of transmission gates (TG-SYN) connect the
i-th capacitor (Csyn,i) either to the left branch to make up the positive
synaptic capacitor (SWi = 1), or to the right to be part of the negative
one (SWi= 0).

Such differential structure serves two interlinked purposes. First, it
represents the synaptic weight in the difference between the two synaptic
capacitors (i.e., SW / ðCþ

syn � C�
synÞ), which can be either positive for an

excitatory synapse (Cþ
syn >C

�
syn), negative for an inhibitory synapse

(Cþ
syn <C

�
syn), or null (C

þ
syn ¼ C�

syn). Second, it results in a total synaptic
capacitance Csyn ¼ ðCþ

syn þ C�
synÞ independent of the synaptic weight, thus

ensuring a good tracking of the resonance irrespectively of the synaptic

weight andwithout resorting to a large equalizing capacitor25. In the table of
Fig. 2f are reported the attainable valuesof the synapticweight, togetherwith
their digital encoding and their corresponding Cþ

syn and C�
syn capacitances

expressed in termsofnumberof Least SignificantBits (LSB).Moredetails on
the variability of the capacitor bank and on the linearity of the resulting
transfer function can be found in Supplementary Note 1.

Below the synapses, there is another row of transmission gates (TG-
SOMA, see Fig. 2a, e) that connect each synaptic capacitor to one of the two
identical capacitorsCsoma that form the differential soma that acts as the bit-
line shared by all WLs. The differential membrane potential ΔVm between
the Csoma capacitors represents the neuron membrane potential that is
finally monitored by the neuron comparator, which is described in Sup-
plementary Note 2.

As it will be detailed in the following sections, each synapse is con-
trolled by a synapse controller (SYN-CTRL, see Fig. 2d), which dynamically
manipulates all theTG-SYNsandTG-SOMAsdepending on the state of the
neuron and word-line, respectively. In particular, the SYN-CTRL can
dynamically set the SW to zero to ignore the incoming spikes (e.g., during
the refractory period), or restore it to its user-defined value. As for the TG-
SOMAs, they select which synapse C ±

syn is connected to each node V ±
m .

Moreover, theTG-SOMAscan alsobedisabled toput theword-line in IDLE
and enable the multiplexing of the external inductor among multiple WLs
(Fig. 2b).

Accumulation of charging and recovery spikes
In previous literature, the resonant adiabatic driving was successfully
employed to computeMultiply-and-Accumulate (MAC) operations25,33. As
sketched in Fig. 5a, in those designs the charge is adiabatically provided
during an initial charging phase as the input to each branch of theWL (xi).
Such inputs are then weighted by capacitive synapses (wi) and accumulated
into the terminal somas shared by multiple WLs, whose voltage is finally
interpreted as the result of the MAC operation (∑iwixi). Immediately
afterward, the charge is recovered by adiabatically discharging the synapse-
soma capacitive dividers. As a consequence, each recovery phase cancels out
the effect of the previous charging phase, thusmaking eachMAC operation
independent of the previous ones.

However, in order to implement the functionalities required by a
spiking neural network, the results of many MAC operations need to be
accumulated into the soma along successive computation cycles. To this
purpose, in our architecture, the charging and the recovery phases have a
cumulative effect on the membrane potential of the neurons, as sketched in
Fig. 5b, which is crucial to compute a valuable MAC operation during both
adiabatic phases. In particular, the recovery phase accomplishes both a
computational task bymodifying themembrane potential, and an electrical
one by enabling the adiabatic recovery of the charge transferred and then
stored in the WL by the previous charging phase.

The accumulation of the input spikes is achieved thanks to a proper
reconfiguration of the differential structure of both the synapses and neu-
rons. The Cþ

syn, C
�
syn can be connected either at Vþ

m or V�
m to form two

capacitive dividers that govern the charge induced to the corresponding
Csoma. In particular, the larger synaptic capacitor will induce a larger charge
variation δQsoma in the connected Csoma as dictated by:

δQsoma ¼ ΔVWL

Csoma C
±
syn

Csoma þ C ±
syn

" #
ð3Þ

where the upper and lower signs correspond to the Csoma connected to
respectivelyCþ

syn and C
�
syn, whileΔVWL is the voltage swing at the word-line

induced by the input spike, namelyΔVWL =+VDD for a charging spike and
ΔVWL =−VDD for a recovery spike (see Fig. 4c).

The resulting charges in the twoCsoma capacitors give rise to two single-
ended potentialsV ±

m and thus to a differential voltage ΔVm ¼ ðVþ
m � V�

mÞ
that represents the neuron membrane potential.
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In order to accumulate the effects produced by many δQsoma on the
differential membrane potential, the SYN-CTRL inverts the capacitive
dividers by properly controlling theTG-SOMAs through the signalD.More
specifically, the following configurations are possible: (1) direct divider used
during charging spikes (D = 1,Cþ

syn connected toV
þ
m and C�

syn connected to
V�

m); (2) inverted dividerused during recovery spikes (D = 0,Cþ
syn connected

to V�
m and C�

syn connected to Vþ
m); (3) IDLE mode, where D is bypassed to

disable all TG-SOMAs and thus disconnect the WL. This latter configura-
tion makes it possible to multiplex the inductor among multiple WLs.

Figure 5c,d illustrate an example for a positive synaptic weight
(obtained by setting Cþ

syn >C
�
syn), where the direct divider makes each

charging spike charge the positive soma more than the negative one, thus
increasing their differential membrane potential. Conversely, the inverted
divider makes each recovery spike discharge the negative soma more than
the positive one, which increases again the differential membrane potential,
thus accumulating its contribution to the charging spikes. Figure 5e, f
illustrate such behavior also for a negative synaptic weight (namely
for Cþ

syn <C
�
syn).

By doing so, every spike yields a change δVm of the differential
membrane potential equal to:

δVm ¼ VDD

Cþ
syn

Cþ
syn þ Csoma

�
C�
syn

C�
syn þ Csoma

" #
ð4Þ

If we let sw = SW/2Nbit be the signed synaptic weight SW normalized
between−1 and+1, and recall theCsyn definitionCsyn ¼ ðCþ

syn þ C�
synÞ, the

synaptic capacitances can be expressed in terms of sw as C ±
syn ¼

Csynð1 ± swÞ=2 and substituted in Eq. (4) to obtain:

δVm ¼ VDD
cð1þ swÞ

1þ cð1þ swÞ �
cð1� swÞ

1þ cð1� swÞ

� �
ð5Þ

where c =Csyn/(2Csoma). We reiterate that, for a given synaptic weight, δVm

is the same for both charging and recovery spikes.
Finally, by neglecting the neuron leakage that will be discussed in the

following sections, we can estimate as NSPK=Vth/δVm the number of suc-
cessive excitatory spikes necessary for a neuron to cross the thresholdVth of
the comparator starting from the resting state at ΔVm = 0.

Spiking clock as adiabatic time reference
In biology, it is observed that themembrane potential of the neurons decays
exponentially towards its resting potential due to the leakage of ions through
the neuron membrane34. In complex SNNs, the inclusion of this leakage
mechanism into a Leaky Integrate-and-Firemodel (LIF, see Fig. 6a) enables
the neurons to process temporally structured stimuli that carry relevant
information also through the arrival times of the spikes35. This is the case for
many edge applications such as real-time keyword spotting, health mon-
itoring and gesture recognition36–38. Indeed, for this kind of tasks, it has been
extensively demonstrated that the LIF model performs remarkably better
than the simpler Integrate-and-Fire (IF) model, particularly in terms of an
increased noise-robustness, better generalization capabilities and higher
network accuracy39,40.

In neuromorphic circuits, the leakage of the membrane potential is
typically realized with a resistance R that discharges the soma C with an
exponential time decay and a time constant τ = RC, as illustrated in Fig. 6a.
In bio-inspired architectures that target both low-energy and biologically
plausible time-scales, the required high effective resistance is typically rea-
lized with FETs working in the sub-threshold region9,41. Such imple-
mentations, however, are inherently dissipative andnot compatiblewithour
adiabatic approach.

For this reason, in our architecture, we devised an adiabatic imple-
mentation of the leakage, which makes use of the inductor to gradually
decrease the membrane potential via adiabatic steps.

As it is depicted in Fig. 6b, a time reference is obtained by propagating
through the network periodic clock spikes (CLK) with a fixed spiking rate
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Fig. 5 | Accumulation of charging and recovery spikes. a Sketch of an adiabatic
multiply-and-accumulation operation (MAC). The charge is first supplied adia-
batically (red), then adiabatically recovered (green) after sampling the outcome of
the MAC (blue), thus resetting the state of the integrating capacitor. b Sketch of an
adiabatic neuromorphic operation, whereby an alternation of charge (red) and
recovery (green) spikes are accumulated into the membrane potential of the soma.
Synapse-soma capacitive dividers controlled by the signal D during the charging

(red) and recovery phase (green) for either a positive synaptic weight (Cþ
syn >C

�
syn,

c, d in blue) or a negative synaptic weight (Cþ
syn <C

�
syn , e, f in orange). In (c) and (e),

the larger synapse results in a greater charging of theCsoma connected respectively at
Vþ

m andV�
m , thus increasing and reducing ΔVm, respectively. Conversely, in (d) and

(f), the larger synapse results in a greater discharging of the Csoma connected
respectively at V�

m and Vþ
m , again increasing and reducing ΔVm.
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fCLK, in addition to the asynchronous spikesfired by the neurons (SPK). The
time resolution is set by the spiking period TCLK ¼ f CLK

�1 of the CLKs.
Indeed, the fCLK should be adequately faster than the average fSPK to
approximate the desired time decay of the membrane potential by a large
number of small steps given by Eq. (5).

TheCLK is distributed to the neurons via an additional clock word-line
(CLK-WL),which inhibits themembranepotential following adecayprofile
that depends on the negative Decay Linearity factor (DL) of the clock for-
warders (CLK-FWD). Actually, the CLK-FWDs and their decay linearity
factors are electrically and functionally analogous to inhibitory synapses
withnegative synapticweights, as they bothdrive themembranepotential in
discrete steps given by Eq. (5).

As such, our leakage implementation can be interpreted at the network
level as illustrated byFig. 6c, namely by a clockedneuron thatfires inhibitory
spikes with a fixed period TCLK to all the other neurons of the network.

Adiabatic neuron leakage
In order to implement a biologically plausible neuron leakage, it is
necessary for the membrane potential to follow an exponential decay,
whereby each discrete step gradually decreases in magnitude until the
neuron returns to its resting state. Indeed, a negative decay linearity factor
cannot achieve such an exponential decay, because it yields a linear
dynamics with fixed voltage steps given by Eq. (5), namely a linear time
dependence with a fixed rate d(ΔVm)/dt proportional to the DL, as
depicted in Fig. 6d. Instead, the exponential decay in Fig. 6e can be
achieved by exploiting a specific feature of the capacitive network in
Fig. 6f, g occurring when DL is set to zero.

In fact, during each integration phase (INTG, see Fig. 4), the change
induced to the membrane potential has two different origins:

1. First, at the very start of the INTG, the inversion of the dividers from
the configuration in Fig. 6f to that in Fig. 6g triggers a non-adiabatic
andnearly instantaneous redistribution of charge between theC ±

syn and
Csoma capacitors that slightly reduces the membrane potential towards
zero proportionally to its starting value during Fig. 6f.

2. Second, during the adiabatic integration, the membrane potential
varies according to Eq. (5), i.e., proportionally to either the synaptic
weight (for the neuron spikes) or the decay linearity factor (for theCLK
spikes).

In SupplementaryNote3,we show that the tiny changeofΔVm induced
by a single event (1) can be approximated as −ΔVm⋅Csyn/Csoma, which is
negligible compared to the ΔVm produced by a non-null SW or DL value
during the phase (2). Still, the charge redistribution occurring in phase (1)
can be exploited to achieve an exponential decay of themembrane potential
by concatenatingmany clock spikes withDL= 0, as demonstrated in Fig. 6e.
In particular, such a charge redistribution can be modeled as an equivalent
resistance Req resulting in a time constant TCLK given respectively by:

Req ¼ 2 � TCLK

Csyn
) τeq ¼ TCLK � Csoma

Csyn
ð6Þ

as it is sketched in the inset of Fig. 6h.
This exponential decay can be easily scaled in time by the clock period

TCLK, as confirmed by the simulations in Fig. 6h which are in excellent
agreement with Eq. (6). Moreover, the time constant of the decay depends
on the ratio between the synaptic and soma capacitors, which guarantees a
stable matching independent of the working temperature, as opposed to
other leakage implementations relying on discrete resistive elements9,41.

V
+

Fig. 6 | Spiking clock as time-base for adiabatic neuron leakage and refractory
period. a Leaky-Integrate-and-Fire (LIF) neuron model. bDistribution of the clock
spikes (CLK) to the neurons. The Clock Forwarders (CLK-FWD) of a dedicated
Clock Word-line (CLK-WL) are electrically analogous to inhibitory synapses. c
Network-level interpretation of the spiking clock. d, e Time decay of the membrane
potential forTCLK = 100 μs, whose linearity is set by the decay linearity factor (DL) of
the CLK-FWD: d linear decays obtained with increasingly negative DLs and
exploited for the neuron refractory period. e exponential decay achieved with null
DL and used to implement the neuron leakage; f, g Inversion of the capacitive

dividers and corresponding charge sharing in the capacitors network (orange).
h Resistance (Req, left y-axis) and exponential time constant (τeq, right y-axis) of the
equivalent RC circuit in the inset, as a function of the clock period. The simulations
of the exponential decay at theTypicalMean at 27 °C (TM, orange circles) andWorst
Speed at 100 °C (WS, yellow crosses) corners agree with the model of Eq. (6)
(dashed), and demonstrate the insensitivity to the operating temperature. Biologi-
cally plausible time constants in the order of the ms can be achieved with TCLK in the
range of hundreds of μs.
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Nonetheless, if we relax the requirement for a biologically plausible
exponential leakage, the linear decay can be more easily adjusted by tuning
both the TCLK and decay linearity. In principle, the DL can also be trained
alongside the synaptic weights to optimize the leakage behavior of each
neuron, which is seen to improve the performance of the network42,43.

The leakage of each neuron is controlled by the LEAK signal, which is
activated by the comparator whenever ΔVm > 0, and resets back to zero
when the neuron returns to its resting state. In this latter case, the controller
of the clock forwarder re-configures its DL to zero so that the CLK cannot
reduce the membrane potential any further, all the while conveniently
correcting any undershoot below ΔVm = 0 thanks to the aforementioned
charge redistribution (Eq. (6)). The SYN-CTRL enforces a similar control to
mask also any inhibitory SPK when the neuron is in its resting state. It’s
important to stress that the incoming spikes cannot be masked simply by
turning off the TG-SOMAs, because that would change the overall capa-
citance of the WL and the actual resonance frequency, thus compromising
the zero-current switching of the driver.

Adiabatic refractory period
Another fundamental behavior observed in biological neurons is the pre-
sence of a refractory period that follows the firing of an output spike. During
this time, the neuron is unresponsive to any additional stimuli, and so is
unable to fire new output spikes. At the network level, this ultimately limits
the maximum spiking activity in the network44.

In our architecture, even the refractory period is implemented adia-
batically by making use of the time-base provided by the clocking spikes to
keep track of the elapsed time directly in the membrane potential of the
neurons. The comparator of each neuron starts its own refractory phase by
raising the REFR signal when its membrane potential crosses the spiking
threshold, which marks the firing of an output spike. While REFR=1, the
SYN-CTRLs reconfigure all the synapses belonging to the neuron to a null
synaptic weight, so as tomask any incoming input spike until the refractory
phase has ended. At the same time, the decay linearity may also be changed
to a different negative value to make the duration of the refractory period
uncorrelated from the neuron leakage. The periodic arrival of each CLK
discharges the membrane potential towards zero in discrete steps that are
proportional to the programmed DL. Finally, the refractory phase ends
when the membrane potential returns to the zero-voltage resting state.

In our architecture, the refractory period is implemented by the linear
decay of Fig. 6d, which allows us to achieve biologically plausible refractory
periods in the sub-ms to ms range45–47, while still maintaining the time
constant for the membrane potential leakage longer than the ms48. The
duration of the refractory period can be estimated as TREFR = TCLKVth/δVm,
and so it depends on both TCLK and the refractory linearity factor through
the δVm given by Eq. (5). This flexibility could be exploited to tailor the
refractory periodof eachneuronon the specific application, so as to enhance
the encoding capabilities of the network49.

Design scaling and perspectives
In this work, we have reported how the seamless alternation between the
charging and recovery phases of the resonance-powered adiabatic driving
can be exploited to implement a Leaky Integrate-and-Fire artificial neuron.
In particular, we have demonstrated the main primitives required for a
valuable neuromorphic computation, namely the accumulation and
weighting of the incoming input spikes, an exponential leakage of the
membrane potential and a tunable refractory period. These functionalities
have been implementedwith an adiabatic efficiency higher than 90%over a
wide rangeof resonance frequencies, and even surpassing 99% for the lowest
frequencies. The frequency scaling of the dynamic and static energy con-
sumption has unveiled a minimum energy per synaptic operation of about
470 fJ at a resonance frequency around 500 kHz, yielding a 9× energy saving
with respect to the non-adiabatic operation.

As of now, the admittedly quite large size of the capacitors employed in
our design hinders a large-scale integration of the synaptic crossbar.
However, more advanced technologies can offer a higher capacitance

density per unit area even in BEOL capacitors and also reduce the on-
resistance per unit width of the transistors, thus improving both the con-
duction and driving losses and, in turn, the overall energy efficiency. On the
other hand, technology scalingmay also bring along an increase of the static
power, which is the main limitation to the reduction of the ESOP at low
operating frequency in any adiabatic system.

Moreover, CMOS compatible memcapacitors, capable of a non-
volatile storage of the capacitive synaptic weights, represent emerging
devices that are inherently synergetic with the adiabatic operation, thus
opening novel perspectives for charge-based, adiabatic neuromorphic
computing.

The best validation of the circuitry solutions proposed in this work is a
tape-out in the commercial 180 nm technology employed throughout our
design, which is in fact our top-of-the-list item for the future work.

Methods
Simulation framework
All the results presented in this work have been obtained from transistor-
level Spectre simulations carried out with CADENCE® Virtuoso® Studio
version IC23.1, loaded with the commercially available XP018-180 nm
XFAB CMOS technology with supply voltage VDD = 1.8 V. The simulation
outputs have been post-processed through the Virtuoso ADE Explorer and
Virtuoso ADE Assembler environments.

The results presented in this work have been evaluated for various
operating temperatures and for the design corners provided by the tech-
nology manufacturer. In particular, the explored corners are defined as
follows: Typical Mean (TM) refers to the nominal characteristics of both
transistors and capacitors; Worst Power (WP) corresponds to transistors
more conductive than the TMcase, coupledwith a lowerBEOL capacitance
per unit area compared to the TM case; Worst Speed (WS) refers to lower
conductive transistors, coupled with a higher BEOL capacitance per
unit area.

Circuit design
In this work, we implemented the synapse with a capacitor bank in the
BEOL in order to ensure a very good linearity of the synaptic weight. In
particular, the synapses have been designed for anNbit = 8 resolution of the
synaptic weight with an elementary, LSB capacitance of (10.0 ± 0.4) fF. This
results in a full-scale synaptic capacitance (Csyn) equal to 2Nbit = 256 times
said LSB, namely about (2.56 ± 0.10) pF.

On the other hand, each soma capacitor (Csoma) has an effective
capacitance of around (51.0 ± 1.6) pF and has been implemented in the
active silicon area using grounded minimum-sized n-MOSFETs each
contributingwith (342 ± 11) aF, and so leverage their higher capacitanceper
unit area compared to the BEOL capacitors. The variability of these capa-
citors was investigated by means of Monte Carlo simulations and the
resulting statistical distributions can be found in Supplementary Note 1.

Indeed,despite thedifferential structureof the synapses, the totalword-
line capacitance (CWL) inevitably depends slightly on the synaptic weights
due to the synapse-soma dividers. In particular, during the benchmark of
Fig. 3, we estimated the total CWL as about 630 pF. Moreover, based on the
technology specifications for the interconnections, the parasitics in the
capacitor bank are expected to be tiny compared to the word-line capaci-
tance and can thus be safely neglected.

The flying capacitance of the driver (CFLY) can be implemented off-
chip and, as such, it was designed much larger than CWL and set to 100 μF.
Such a largeCFLYhelpsmaintain stable itspre-chargedVDD/2 voltageduring
the adiabatic resonance.

Different resonance frequencies fLC have been obtained by changing
the inductance of the driver asL ¼ ð2πf LCÞ�2=CWL, where the contribution
of CFLY to the resonance condition has been safely neglected due to the
condition CFLY≫CWL. At the MEP condition illustrated in Fig. 3j, the
inductance turns out to be about 100 μH, which is compatible with an off-
chip implementation and in line with previous papers25. The volume
occupied by the inductor is roughly proportional to its maximum stored
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energy50, so namely proportional to L � IL;pk2, where IL,pk = πCWLVDDfLC is
the peak amplitude of the current oscillation. Hence, due to the opposite fLC
dependence of L and IL;pk

2, we expect that the inductor volume should be
roughly independent of the resonance frequency.

Optimization of the transmission gates
When a capacitor C is charged or discharged by an abrupt voltage step, the
conduction losses are always equal to 1

2CVDD
2 and so do not depend on the

effective resistanceR of the charging circuit. On the other hand,when such a
capacitor is driven adiabatically, the conduction losses become proportional
to τ = RC (refer to Fig. 1c).

In our architecture, R is the resistance of the transmission gates (TGs)
present on the path of the resonant current. Hence, R can be lowered by
sizing the TGs with a minimum channel length and a large channel width
W. However, by enlargingWwe also increase the gate input capacitance of
the TGs and, in turn, the energy required to drive them. As a consequence,
the total ESOPdissipatedby a transmissiongate involves a trade-off between
the adiabatic conduction dissipation and the non-adiabatic driving losses.

Weminimized the overall energywith respect to theW of eachn-MOS
and p-MOS of the TGs, resulting in a minimum dissipation per transistor
given by:

ESOPopt
tot ¼ VDDIpk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RDS CG

f LC

s
ð7Þ

whereRDS andCG are respectively the triode resistance and gate capacitance
per unit width of a minimum length MOSFET, while Ipk is the peak
amplitude of the current flowing through said transistor during the
resonance.

This minimum energy is achieved for an optimum width given by:

Wopt ¼
1
2

Ipk
VDD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RDS

CG

1
f LC

s
ð8Þ

This optimization has been computed for every TG and at each
explored resonance frequency, resulting in adiabatic conduction losses
scaling with the square root of fLC, as also confirmed by our simulations (see
Fig. 3h).

More details and numerical results about the optimization of the TGs
can be found in Supplementary Note 4.

Evaluation of the energy performance
This work aimed to explore the synergy between the brain-inspired neu-
romorphic computation and the adiabatic operation tominimize the energy
per operation of the system. As such, a thorough evaluation of the energy
performance is of utmost importance to assess quantitatively the effective-
ness of our adiabatic design.

The energy figures of Fig. 3 have been extracted from a transient
simulation involving 100 spikes forwarded to 256 neurons either through a
single WL of synapses, for the asynchronous neuron spikes, or through a
clock WL, for the clocking spikes.

The 256 neurons have been grouped into four different classes based on
the synaptic weight of their input synapse, where the neurons belonging to
the sameclass share the samevalueof the synapticweight (SW)andsoexhibit
the sameprofile of theirmembrane potential. In particular, such fourweights
have been chosen as +32 (+0.125), +64 (+0.25), +128 (+0.5), and +256
(+1.0) so as to emulate the different spiking behaviors shown in Fig. 3c–f.

The evaluation of the energy performance is based on three different
energy components:
• energy supplied by a tree of ideal voltage sources where each

branch (B) provides VDD to a single sub-circuit, calculated as
EsupplyðtÞ ¼

PNB
j¼1

R
tVDDIjðtÞdt, where Ij(t) is the current supplied to

the j-th branch and NB is the number of branches;

• conduction losses on all the transmission gates (TG) computed by
EcondðtÞ ¼

PNTG
k¼1

R
tΔVkðtÞIkðtÞdt, where Ik(t) and ΔVk(t) are respec-

tively the current and the voltage drop across the k-th TG and NTG is
the number of TGs;

• energy stored in all the capacitors estimated as
Ecap ¼

PNC
l¼1

1
2Cl ΔVlðtÞ2, where ΔVl(t) is the voltage drop across

the l-th capacitor Cl and NC is the number of capacitors.

From these three contributions, we can compute the instantaneous
dissipated energy as:

EdissðtÞ ¼ Esupply � Ecap ¼ Econd þ Elogic ð9Þ

where we recall that Ecap can be to a large extent recovered thanks to the
adiabatic operation. We note that Eq. (9) can also be used to determine the
energy consumption due to the logic (Elogic).

All the aforementioned energy contributions are simulated over time
and, from their final value at t = tend, the Energy per Synaptic Operation for
either the overall dissipation Ediss, conduction losses Econd and logic con-
sumption Elogic can be obtained as:

ESOP ¼ Ediss; Econd or Elogic @ tend
Nneur � ðNSPK þ NCLK Þ

ð10Þ

where (NSPK+NCLK) is the total number of neuron (SPK) and clock spikes
(CLK), while Nneur denotes the number of neurons, also corresponding to
the number of synapses served by each WL.

The ESOP of the logic includes both the dynamic and the static
components. The static energy absorbed by each sub-circuit was also iso-
lated in the overall transient Ediss(t). Hence, by subtracting such a static
component from the ESOP, we could in turn identify the dynamic com-
ponent reported in Fig. 3i. The breakdown of the total ESOP into the
different dynamic and static contributions is discussed in Supplementary
Note 5.

The extraction of the static power of each sub-circuit also allowed us to
accurately estimate the total static power absorbed by the complete crossbar
(see Fig. 3j), which comprises 256 synaptic WLs and one clock WL, all
connected to 256 neurons.

Finally, the benchmark on the left side of Fig. 3 has been repeated in a
wide range of resonance frequencies, by re-resizing the transmission gates at
each frequency according to the optimized channel width in Eq. (8).

Adiabatic and non-adiabatic operating modes
Our architecture can be operated either in an adiabatic or in a non-
adiabatic mode.

When operated in adiabatic mode, the energy is provided adiabatically
during the integration phase (INTG, see Fig. 4) by the resonance between
the capacitive WL and inductive driver. Then, we recall that every INTG
phase is followed by a HOLD phase (yellow in Fig. 4b), that non-
adiabatically supplies energy to the word-line to correct any incomplete
charging or discharging of its voltage.

Hence, the non-adiabatic operatingmode can be achieved by skipping
the adiabatic INTG altogether or, equivalently, by using only the HOLD
phase to supply the charge non-adiabatically to all synapses and neurons.

Therefore, we evaluated the efficiency of the adiabatic driving shown in
Fig. 3h and the energy saving reported in Fig. 3k by simulating the bench-
mark on the left side of Fig. 3 in both adiabatic and non-adiabatic
operation mode.

Our analysis confirmed that, when the system is operated in non-
adiabatic mode, the energy consumption is dominated by the conduction
losses in the transmission gates, which amount to about 4 pJ per synaptic
operation (see ESOPcond in Fig. 3h), independently of the resonance fre-
quency and of the sizing of the TGs. The detailed breakdown of the energy
consumption in non-adiabatic mode is shown in Supplementary Note 5.
Finally, we also exploited the non-adiabatic losses to accurately estimate the
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actual total word-line capacitance during our benchmark as CWL ¼
2NneurESOPcond=VDD

2 ¼ 630 pF, which was used to compute the induc-
tance required to achieve each resonance frequency.

Data availability
The authors declare that the data supporting this work are available within
the main paper and its supplementary information. The data are also
available from the corresponding author upon reasonable request.
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