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In this paper, we propose a dynamical model to capture cascading failures among interconnected orga-
nizations in the global financial system and develop a framework to investigate under which conditions 
organizations remain healthy. The contribution of this paper is threefold: i) we develop a dynamical 
model that describes the time evolution of the organizations’ equity values given nonequilibrium initial 
conditions; ii) we characterize the equilibria for this model; and iii) we provide a computational method 
to anticipate potential propagation of failures.
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1. Introduction

In the wake of recent events concerning the collapses of Sili-
con Valley Bank and Credit Suisse (CS), the focus of this paper is 
to investigate the propagation of failures in financial systems. The 
global financial system is the product of a large number of finan-
cial interdependencies among governments, banks, firms, smaller 
and larger companies, private citizens, etc. In the same spirit of the 
related literature, we make use of the term organization in a broad 
sense including all these entities and individuals. These organiza-
tions hold each other’s shares, debts and obligations in variable 
proportions. As a result, when a failure occurs, this can propagate 
through the network of interdependencies bringing other organi-
zations to bankruptcy. Failures can take the form of bankruptcies, 
defaults, and other insolvencies. Indeed, cascading defaults and 
failures account for one of the highest risks for the global financial 
system, let aside those institutions that are considered too big to 
fail, e.g., central banks. A less recent example, but equally promi-
nent, concerns the interventions put together by the European 
Commission to save Greece and Spain from default following the 
historic quote “whatever it takes” by ECB President Mario Draghi 
(July 23rd, 2012) [12].
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In this paper, we study the role of cascading failures among 
organizations linked through a network of financial interdependen-
cies in the global financial system. Our aim is to develop a model 
that describes the risks associated with the propagation of failures 
in the network as well as the design of effective responses to mit-
igate the impact of financial contagion. Indeed, in the proposed 
model we highlight three relevant aspects: i) the interdependen-
cies in a financial system through cross-holdings of shares or other 
liabilities; ii) the market price of assets owned by each organiza-
tion; iii) and a failure cost incurred by each organization. Indeed, 
when the value of a financial organization decreases below a fail-
ure threshold, additional losses propagate through the network 
leading to a cascade of failures.

Related works. The first structural framework to study the prop-
agation of shocks in inter-bank lending was originally proposed 
in a pioneering work by Eisenberg and Noe in 2001 [11]. The 
main contribution of that work is the introduction of a model that 
captures the contagion from individual organizations to other orga-
nizations in an inter-bank lending network. The contagion occurs 
at individual nodes and propagates in the network, leading to new 
equilibrium points representing the agreed mutual payments.

Their model illustrated how shocks to individual organizations 
can propagate through inter-bank lending networks. Indeed, con-
tagion develops instantaneously, bringing the network to a new 
equilibrium on an agreed set of mutual payments. Subsequently, 
there has been a substantial body of work analyzing and gener-
alizing this framework. For example, the authors in [9] and [2]
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studied the way in which the structure of network graphs, such 
as hubs, sparsity, and asymmetry structure, influences the shock 
propagation and the magnitude of the aggregate fluctuation. Their 
study provides insights on the optimal structure for inter-bank 
lending networks, which can be further extended along similar 
lines of works on complex networks [21]. Their model can accom-
modate a variety of settings. For production networks, the model 
represents the input-output relationship and determines the out-
put equilibrium [2], whereas for financial systems, it calculates the 
clearing loan repayments, involving the systemic risk of default 
cascade [11].

Later, the preliminary research proposed by Eisenberg and Noe 
was extended in several directions. A body of literature dating 
back to the work by Elsinger [13] and then followed by Elliott et 
al. [12], Rogers and Veraart [20], and Glasserman and Young [16]
considered bankruptcy costs and their impact onto the financial 
system. As a consequence of these costs, financial organizations 
can in turn fail and drag other organizations to bankruptcy. Simul-
taneously, cross-holdings were considered by Elsinger [13], Elliott 
et al. [12], Fischer [15] and Karl and Fischer [18]. An important 
aspect in many of these works is that cross-holdings inflate the 
value of the financial system and thus the net value of each orga-
nization needs to be adjusted by a factor that preserves the real 
value in the system [6]. The work by Weber and Weske considers 
both these aspects and integrates them into a system that is able 
to capture fire sales as well [23].

In particular, the work by Elliott et al. highlighted the fact that 
in the current highly interconnected financial system, where banks 
and other institutions are linked via a network of mutual liabil-
ities, a financial shock in one or few nodes of the network may 
hinder the possibility for these nodes to fulfill their obligations 
towards other nodes, and therefore may provoke default [12]. A 
recent work by Birge [4] investigates an inverse optimization ap-
proach based on the decisions from national debt cross-holdings to 
address the propagation and extent of failures in the network.

However, the common assumption that all payments are si-
multaneous is quite unrealistic. For this reason, several recent 
works, e.g., see [3,7,10,17], propose time-dynamic extensions of 
this model. The work by Calafiore et al. considers the problem 
of reducing the financial contagion by introducing some targeted 
interventions that can mitigate the cascaded failure effects. They 
consider a multi-step dynamic model of clearing payments and in-
troduce an external control term that represents corrective cash 
injections made by a ruling authority [8]. Similarly, a case study 
on the Korean financial system is proposed by Ahn and Kim where 
the authors study the interventions in the form of liquidity injec-
tion into the financial system under economic shocks [1]. Finally, 
a recent work by Ramirez et al. investigated a stochastic discrete-
time model where the mean and covariance error are studied with 
focus on the steady-state solution [19].

Contribution. The contribution of this work is threefold. Firstly, 
we introduce the formulation of a dynamical model for cascading 
failures in financial systems. This model is novel with respect to 
the literature, and in particular to the work by Elliott et al., as in 
the following:

• Our model captures the transient response, allowing us to 
study the market response to disturbances, and uncertainty in 
the form of initial conditions not already at an equilibrium.

• Our model can predict the future evolution of the market, 
allowing us to characterize the equilibria and study local sta-
bility.

• Finally, it allows for the study of sensitivity with respect to the 
parameters. Moreover, in the case of time-varying parameters, 
e.g., the prices of assets, our model is able to accommodate for 
fluctuations and convergence to a stable trajectory.
2

The second contribution of this paper is the stability analysis of the 
equilibrium points of the proposed system. In particular, we show 
the existence of these equilibria, their uniqueness and provide an 
explicit expression for them. The third contribution is a computa-
tional method via sign-space iteration that allows us to compute 
the attractive equilibrium point for given initial conditions.

The paper is organized as follows. First, we introduce the nota-
tion. In Section 2, we present the networked model. In Section 3, 
we investigate the existence, uniqueness and stability of the equi-
librium points of our system. In Section 4, we illustrate the com-
putational algorithm. Finally, in Section 5, we discuss concluding 
remarks and future directions.

Notation. The symbols 0n and 1n denote the n-dimensional col-
umn vector with all entries equal to 0 and to 1, respectively. The 
identity matrix of order n is denoted by In . Let J [k] := diag(1 −
2φ[k]), where vector φ[k] represents the integer k in binary repre-
sentation; we denote the generic orthant k by X k , namely, X k :=
{x ∈ Rn| J [k]x ≥ 0}. Given a generic vector V ∈ Rn , let the opera-
tor y = φ(V ) be such that the ith component yi = 0 if V i ≥ 0 or 
yi = 1, otherwise. The notation V ≥ 0 for a generic vector V or 
M ≥ 0 for a generic matrix M is to be intended elementwise.

A square real matrix M ∈ Rn×n is said to be Metzler if its off-
diagonal entries are nonnegative, namely, Mi, j ≥ 0, i �= j. Every 
Metzler matrix M has a real dominant eigenvalue λF (M), which 
is referred to as Frobenius eigenvalue. The corresponding left and 
right vectors associated with λF (M) are referred to as left and 
right Frobenius eigenvectors, respectively. A square real matrix M
is said to be Hurwitz if all its eigenvalues lie in the open left half 
plane. A square matrix is said to be Schur if all its entries are real 
and its eigenvalues have absolute value less than one [14].

2. Problem formulation

In this section, we introduce the model of a networked finan-
cial system, where a number of organizations are linked through 
financial interdependencies. To this aim, we consider a set of orga-
nizations N = {1, . . . , n}. Each organization i ∈ N is described by an 
equity value V i ∈ R, which represents the total values of its shares. 
Organizations can invest in primitive assets, namely, mechanisms 
that generate income in the form of a net flow of cash over time. 
We consider a set of primitive assets M = {1, . . . , m}. We denote 
the market price of asset k by pk and the share of the value of 
asset k held by organization i by Dik ≥ 0. Each organization can 
also hold shares of other organizations; for any pair of organiza-
tions i, j ∈ N , let Cij ≥ 0 be the fraction of organization j owned 
by organization i.

The equity values of organizations can be determined by the 
following discrete-time dynamical model:

V (t + 1) = C V (t) + Dp − Bφ(V (t) − ¯V ), (1)

where t ∈ Z+ , C is a nonnegative and nonsingular matrix where 
Cii = 0 and 1�

n C < 1�
n which means that the equity value of each 

organization held by other organizations cannot exceed the equity 
value of the organization itself, D is a positive matrix, p a nonnull 
nonnegative vector, B = diag(β) is a nonnegative diagonal matrix 
with entries βi > 0, i ∈ N , ¯V is the vector of threshold values ¯V i
for all i below which organization i incurs a failure cost βi and 
φ(V − ¯V ) the vector of indicator functions taking value 1 if V i < ¯V i
and 0 if V i ≥ ¯V i . The first term in (1) takes into account the cross-
holdings, the second term describes the primitive assets held by 
each organization and the last term accounts for the discontinuous 
drop imposed by the cost of failure.

The main difference with the papers in the literature is that our 
model, namely, system (1), captures the impact of the transient 
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Fig. 1. Example 1. Given identical initial conditions and parameters, we consider two scenarios where p(t) is a time-varying signal with same size of perturbation but different 
duration. In the first scenario, both companies remain healthy (top), whereas, due to the transient, one company fails in the second scenario (bottom). (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)
onto the steady-state market values. In order to emphasize this, 
we present the following example.

Example 1. Consider system (1) with N = 2 organizations, M = 2
assets. The initial condition V (0) is set to be random in [2, 5]. 
Let C = [0 0.025; 0.005 0], D = [0.05 0.05; 0.05 0.05], β = 12, and 

¯V = 1.5 12.
Now, let us consider two scenarios and let the asset price be 

a time-varying signal p(t) that changes over time. In the first sce-
nario, p(t) is set to 20 at the start of the simulation for both assets, 
M = 1, 2; a perturbation of one time instant in length occurs at 
t = 4, making the price drop to 14.9. Likewise, in the second sce-
nario, p(t) is set to 20 at the start of the simulation for both 
assets, M = 1, 2; the size of the perturbation is the same as before, 
namely changing the value of p(t) to 14.9, but the time win-
dow in which the perturbation occurs spans many time instants, 
namely, from t = 4 to t = 20. Fig. 1 depicts the two scenarios (top-
left and bottom-left) and the corresponding p(t) (top-right and 
bottom-right). Fig. 1 (top) shows the time evolution of the system, 
where the dashed red line represents the threshold: in this sce-
nario, both companies remain healthy. Fig. 1 (bottom) shows the 
situation where a longer-lasting perturbation affects the dynamics 
leading to an equilibrium point where one company fails.

Remark. Despite the simplicity of this toy problem, the example 
shows the ability of our model to capture the impact of the tran-
sient response to the system dynamics and, thus, the convergence 
to other potential equilibria, even though the final value of p(t) is 
the same in both scenarios. This nonlinear behavior marks the dif-
ference with what was previously investigated in the literature and 
allows us to study perturbations of the market rather than just the 
system state at an equilibrium.

3. Characterization of the equilibria

In this section, we study the equilibria of system (1). From the 
condition that 0 ≤ Bφ(V (t) − ¯V ) ≤ B , and recalling that C is non-
negative we derive the following preliminary result.
3

Theorem 1. V (t) ≥ 0, ∀t ≥ 0 and V (0) ≥ 0n if and only if

Dp − β ≥ 0. � (2)

Under condition (2), system (1) is a positive nonlinear switched 
system since vector φ(V (t) − ¯V ) can take a finite number of values 
φ[k] , with k = 0, 1, 2, · · · , 2n − 1. For instance, with n = 3 we have:

φ[0] = 0n, φ
[1]
3 =

⎡
⎣ 0

0
1

⎤
⎦ , φ[2] =

⎡
⎣ 0

1
0

⎤
⎦ , φ[3] =

⎡
⎣ 0

1
1

⎤
⎦ ,

φ[4] =
⎡
⎣ 1

0
0

⎤
⎦ , φ[5] =

⎡
⎣ 1

0
1

⎤
⎦ , φ[6] =

⎡
⎣ 1

1
0

⎤
⎦ , φ[7] = 1n.

As such, system (1) may possess at most 2n equilibria in total. 
The equilibria in the kth orthant, denoted by V

[k]
and character-

ized by the index k is given by

V
[k] = (In − C)−1(Dp − Bφ[k]), s.t. φ(V

[k] − ¯V ) = φ[k]. (3)

Note that V = 0 cannot be an equilibrium of the system since 
Dp > 0 and that, if (2) holds, V

[k]
> 0. In the kth orthant the dif-

ference Y [k](t) = V (t) − V
[k]

follows the autonomous dynamics

Y [k](t + 1) = C Y [k](t). (4)

Since C is nonnegative with 1�
n C < 1�

n , it turns out that C is 
Schur-stable. Therefore, the following theorem can be stated.

Theorem 2. Any equilibrium V [k]
which is in the interior of the kth or-

thant X k is locally asymptotically stable. �
Remark. Note that there could be equilibria on the discontinuity 
points, but these are fragile (unstable) and are not considered.

Example 2. Consider system (1) with N = 20 organizations, M =
10 assets. The initial condition V (0) is set to be random in [0, 30]. 
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Fig. 2. Example 2. Since condition (2) is satisfied, V (t) ≥ 0,∀t ≥ 0 (left); network topology in the first four time instants (right).
Let C be set to random values in [0, 0.01] such that Cii = 0 and 
1�

n C < 1�
n . Finally, let

D = 0.05 1201�
10 p = 10 1�

10,

β = 0.4 120, ¯V = 5 120.

It is straightforward to see that Dp − β = 41�
20 ≥ 0. Therefore, in 

accordance to Theorem 1, the values of all companies remain pos-
itive, namely, V (t) ≥ 0, ∀t ≥ 0. Fig. 2 depicts this scenario. Fig. 2
(left) shows the time evolution of the system, where the dashed 
red line represents the threshold. Fig. 2 (right) shows the network 
topology in first four instants, where companies are indicated by 
colored nodes and edges indicate the cross-holdings between com-
panies: the companies whose values are above the threshold are 
indicated in blue, and in red, otherwise.

Remark. This example shows that if the condition in Theorem 1
holds true, the equity values of all organizations will remain pos-
itive at all time. This provides an important addition to previous 
studies on this topic, as we are able to predict the behavior of the 
system at every time instant.

We now turn our attention to the existence and uniqueness of 
the equilibrium points in orthants 0 and 2n − 1, which we hence-
forth refer to as positive and negative equilibrium points, respec-
tively. To this aim, consider:

V (t + 1) = C V (t) + Dp − Bφ(V (t) − ¯V ),

x(t) = V (t) − ¯V .

The above system can be rewritten as

x(t + 1) := Cx(t) + r − Bφ(x(t)),
r := (C − In) ¯V + Dp.

(5)

The above is a monotone system since φ(y) ≥ φ(x) if y ≤ x. We 
can now prove the following theorem.

Theorem 3. Consider system (5). In each open orthant X k, there exists 
at most one equilibrium. Furthermore, the following points hold true:

1. There exists an equilibrium point x̄ ≥ 0 if and only if (In − C)−1r ≥
0.
4

2. If (In − C)−1(r − β) ≥ 0, then there exists an equilibrium point x̄ ≥
0 and it is the unique equilibrium.

3. There exists an equilibrium point x̄ < 0 if and only if (In − C)−1(r −
β) < 0.

4. If (In − C)−1r < 0, then there exists an equilibrium point x̄ < 0 and 
it is the unique equilibrium. �

Proof. First, let us prove the first statement, namely, if an equilib-
rium exists in orthant k, it is unique. Let

x̄[k] = (In − C)−1(r − Bφ[k]) ∈ X k

be the generic equilibrium point in the kth orthant. By contradic-
tion, let us assume that a second equilibrium point exists in the 
same orthant. It is straightforward to see that the calculation with 
a given φ[k] would produce the same equilibrium point. Note that 
in the rest of the proof, since C is Schur, then (C − In) is Hurwitz 
and Metzler and, therefore, the inverse of the negative, namely, 
(In − C)−1 ≥ 0, elementwise [14].

Let us now prove the rest point by point.

1. Let (In − C)−1r ≥ 0, then x̄ = (In − C)−1r ≥ 0 ∈ X 0. Vice versa, 
assume that there exists a generic equilibrium x̄ ≥ 0, then x̄ ∈
X 0. Therefore, φ(x̄) = 0 and (In − C)−1r ≥ 0.

2. Let (In − C)−1(r − β) ≥ 0, then (In − C)−1r ≥ (In − C)−1β ≥ 0. 
It follows from the first point that there exists an equilibrium 
x̄ ≥ 0. Moreover, assume there exists an equilibrium x̄[k] in or-
thant X k , i.e., x̄[k] = (In − C)−1(r − Bφ(x[k])) ≥ (In − C)−1(r −
β) ≥ 0. Then, the unique equilibrium is in orthant X 0.

3. Let (In − C)−1(r − β) < 0, then x̄ = (In − C)−1(r − β) < 0 ∈
X 2n−1. Vice versa, assume that there exists a generic equilib-
rium x̄ < 0, then x̄ ∈X 2n−1. Therefore, x̄ = (In − C)−1(r − β) <
0.

4. Let (In − C)−1r ≤ (In − C)−1(r − β) < 0, then from point 3, 
there exists an equilibrium x̄[k] < 0. Moreover, assume there 
exists an equilibrium x̄[k] in orthant X k , i.e., x̄[k] = (In −
C)−1r − Bφ(x[k]) ≤ (In − C)−1r < 0. Then, the unique equilib-
rium is in orthant X 2n−1.

This concludes our proof. �

Example 3. Consider system (5) with N = 20 organizations, M =
10 assets. The initial condition x(0) is set to be random in [0, 30]. 



L. Stella, D. Bauso, F. Blanchini et al. Operations Research Letters 55 (2024) 107122

Fig. 3. Example 3. The equilibrium point x̄ ≥ 0 exists and is unique as condition 2 of Theorem 3 holds true (top); similarly, since the 4-th condition of Theorem 3 holds true, 
the equilibrium point x̄ < 0 exists and is unique (bottom).
Table 1
Set of parameters for each simulation.

Simulation D p β ¯V
I 0.06 1201�

10 10 1�
20 0.4 120 5 120

II 0.03 1201�
10 10 1�

20 0.4 120 5 120

Let C be set to random values in [0, 0.01] such that Cii = 0 and 
1�

n C < 1�
n . We provide two sets of simulations. Table 1 includes 

all the other parameters for each simulation.
In the first set of simulations, the positive equilibrium, namely, 

x̄ ≥ 0 exists and is unique. This is in accordance with condition 1 
and condition 2 of Theorem 3. This can be seen in Fig. 3 (top-left). 
Similarly, in the second set of simulations, since the third and last 
conditions of Theorem 3 hold true, the negative equilibrium point, 
i.e., x̄ < 0, exists and is unique. Fig. 3 (bottom-left) shows the sec-
ond set of simulations. Fig. 3 (right) shows the network topology in 
the first and third instant for each set of simulations. Colors have 
the usual meaning.

Remark. A physical interpretation of this example follows. The 
translated variable x allows us to study the propagation of failures 
over time. If the conditions in Theorem 3 hold true, we can show 
whether the system converges to the equilibrium point in which 
all organizations are healthy or to the equilibrium point where all 
fail.

Now, we provide a sufficient condition that guarantees that no 
equilibrium point in the negative orthant exists with respect to a 
subgraph of the cross-sharing C .

Proposition 1. Given a square principal submatrix of C , denoted by C̃ , if 
the following holds:

¯V i <
(Dp − β)i

1 − λF (C̃)
, ∀i, (6)

where C̃ is a principal sparse subgraph of C , then there does not exist 
the negative equilibrium point, i.e., at least one organization remains 
healthy.
5

Proof. Assume that equation (6) holds true. Since λF (C̃) ≤ λF (C)

[14], then

¯V i <
(Dp − β)i

1 − λF (C)
, ∀i.

Let x > 0 be the left Frobenius eigenvector of C , i.e., x�C =
λF (C)x� . Then,

x�
¯V <

x�(Dp − β)

1 − λF (C)
= x�(In − C)−1(Dp − β),

so that, being Dp + (C − In) ¯V = r, we have:

x�
¯V < x�(In − C)−1(r − (C − In) ¯V − β),

x�
¯V < x�

¯V + x�(In − C)−1(r − β),

x�(In − C)−1(r − β) > 0.

The above implies (In − C)−1(r − β) ≮ 0. From point 3 of Theo-
rem 3, then no equilibrium x̄ < 0 exists. �

Remark. Condition (6) provides a relation among three main ele-
ments of the original system: the thresholds, the underlying topol-
ogy and the external assets. Therefore, since it is desirable that the 
system does not converge to the negative equilibrium point, by vi-
olating this condition on ¯V we ensure that at least one company 
is healthy.

4. Sign-space iteration

In this section, we analyze the behavior of the trajectories of 
financial organizations that are below and above the threshold. To 
this end, let us rewrite system (5) in a more compact way as:

x(t + 1) = Cx(t) + �(x(t)), (7)

where �(x) := r − Bφ(x) and, in particular, with a slight abuse of 
notation, the following

�(x) = �(sign(x)), �k ∈ {ψ−
k ,ψ+

k }
depends on the sign of x, ψ−

k = rk − βk and ψ+
k = rk can both take 

positive and negative values. Here, the sign(x) function is defined 
as:
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sign(x) := 1 − 2φ(x) =
{ +1, if x ≥ 0

−1, if x < 0.

Let P = (I −C)−1. Then, an explicit expression for a candidate equi-
librium is given by

x = P�(x),

for ψk ∈ {ψ−
k , ψ+

k }. There are 2n such candidates.
Let σ be a sign vector σ(k) ∈ {−, +} and define the iteration

σ(k + 1) = sign [P�(σk)] , (8)

and consider a fixed point of this iteration (if any)

σ̄ = sign [P�(σ̄ )] . (9)

The vector x is a rest point if and only if σ = sign(x) satisfies (9). 
In other words, equation (9) characterizes all the rest points and 
finding such rest points is equivalent to finding fixed points of the 
sign iteration.

The next result follows immediately from the monotone nature 
of our system, which builds on the condition that �(y) ≥ �(x) if 
y ≥ x.

Lemma 1. Iteration (8) is monotone: if σ A(0) ≤ σ B(0) are initial sign 
vectors, then the corresponding iteration satisfies σ A(k) ≤ σ B(k).

To compute the worst case rest point we initialize σ(0) =
[− −· · ·−]� . If σ(1) has all − signs we have a rest point (all orga-
nizations fail). Conversely, let us assume there are + signs. These 
are nodes that cannot fail. For instance,

σ(0) = [− − − − − − −−]� ⇒ σ(1) = [− + − − + + −−]�
means that nodes 2, 5, and 6 cannot be negative at the equilib-
rium, due to the monotonicity. These are safe nodes. We denote by 
Isaf e(k) the set of safe nodes, namely those that have + signs at 
the kth iteration. Initially, Isaf e(0) = ∅, then it cannot reduce to

Isaf e(0) ⊆ Isaf e(1) ⊆ Isaf e(2) . . .

Therefore, the iteration converges, stopping when σ(k + 1) =
σ(k) = σ W . In turn, this means Isaf e(k + 1) = Isaf e(k) = I W

saf e . This 
corresponds to the worst equilibrium x̄W := P�(σ W )).

By symmetry, we can iterate from the + equilibrium. In this 
case the safe node set cannot grow, namely,

Isaf e(0) ⊇ Isaf e(1) ⊇ Isaf e(2) . . .

The iteration converges to some σ B and the set of safe nodes 
converges to I B

saf e . This corresponds to the best equilibrium x̄B :=
P�(σ B)). The next result follows immediately from the above.

Lemma 2. Any trajectory σ(k) satisfies the property

σ W ≤ σ(k) ≤ σ B .

The above bounds hold true also for the fixed points, i.e.,

σ W ≤ σ̄ ≤ σ B .

This means that any fixed point for the system satisfies

P�(σ w)) = x̄W ≤ x̄ ≤ x̄B = P�(σ B).

If (Pψ−)i > 0, the ith component is always positive (fixed point 
of the iterative scheme). Likewise, if (Pψ+)i < 0, the ith compo-
nent is always negative.
6

Consider the trajectory of system (5) starting from the negative 
candidate equilibrium as:

xW (t), xW (0) = P�−.

This sequence is monotonically nondecreasing. Indeed,

xW (1) = CxW (0) + �−

= P�− + �(xW (0)) − (I − C)P�−

= xW (0) + �(xW (0)) − �− ≥ xW (0).

Then, recursively, by monotonicity, we have

xW (t + 1) ≥ xW (t).

Therefore xW (t) converges to an equilibrium x̄W from below. Con-
versely, consider the trajectory of system (5) starting from the 
positive candidate equilibrium as:

xB(t), xB(0) = P�+.

This sequence is monotonically nonincreasing, and symmetri-
cally to the above xB (t) converges to an equilibrium x̄B from above.

Necessarily, these equilibria are related to the bounds σ W and 
σ B introduced before, then we have

x̄W ≥ P�(σ w), x̄B ≤ P�(σ B),

since these are conditions that hold true for all equilibria.
In fact, the inequalities are satisfied with equal sign. Indeed the 

initial conditions satisfy

xW (0) = P�− ≤ x̄W , xB(0) = P�+ ≥ x̄B ,

so xW (t) cannot become greater than x̄W and xB(t) cannot become 
smaller than x̄B .

Remark. Equilibria x̄W and x̄B are attractors w.r.t. the initial con-
ditions in orthant 2n−1 and 0, respectively.

As it is clear from the previous derivation, we further remark 
that there are points where the + and − are fixed from initializa-
tion. In particular, the indices where

(Pr)i < 0

holds true are − in all iterations. Vice versa, the indices where

(P (r − β))i > 0

holds true are + in all iterations.

Theorem 4. Consider system (7). Let i = 1, . . . , n.

• Case 1. Let (Pr)i < 0. Then, x̄i < 0.
• Case 2. Let (P (r − β))i ≥ 0. Then, x̄i ≥ 0.

Proof. The proof addresses the above two points one by one.

• Case 1. The following

x̄i =
∑

j

P i jr j −
(∑

j

P i jβ j + · · ·
)

is always negative as the first sum is negative and the quantity 
after the subtraction is positive.
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Fig. 4. Behavior of the system representing 9 countries and the cross-holdings among them.
• Case 2. The following

x̄i =
(∑

j

P i jr j −
∑

j

P i jβ j

)
+ · · ·

is always positive as the first components in parentheses are 
positive and the other quantities are also positive.

This concludes our proof. �

Remark. The convergence of the trajectory to a specific configura-
tion of signs means that there exist no oscillations for the dynam-
ical system in the corresponding orthant and the market values 
converge to the equilibrium point in that orthant.

A direct consequence of Theorem 4 is the following result, 
which provides a bound on the number of failed organizations 
(and saved ones).

Corollary 1. The number of failed organizations nF is such that 1�
n φ((In

− C)−1r) ≤ nF ≤ 1�
n φ((In − C)−1(r − β)). �

Proof. From Theorem 3, x̄max = (In − C)−1r and x̄min = (In −
C)−1(r − β) such that a generic equilibrium x̄, it holds x̄min ≤ x̄ ≤
x̄max. Since 1�

n φ(x̄) = nF , the number of failed organizations obeys 
the stated inequality, equivalent to

1�
n φ(−¯V + (In − C)−1 Dp)

≤ nF ≤ 1�
n φ(−¯V + (In − C)−1(Dp − β)).

This concludes our proof. �

Example 4. Before concluding the paper, we provide one last ex-
ample in the spirit of [4,12]. We now consider system (1) with 
N = 9 organizations, M = 9 assets. In particular, our analysis in-
volves the cross-holdings among nine countries, i.e., France (FR), 
Germany (DE), Greece (GR), Italy (IT), Japan (JP), Portugal (PT), 
Spain (ES), United Kingdom (GB) and USA (US).

The matrix of cross-holdings C is summarized in Table 2. We 
assume that D = IN , and p is proportional to the countries GDP 
as shown in Table 3. The initial condition V (0) is set to be 
V (0) = [15.2838, 19.9137, 0.9863, 9.0642, 28.3350, 0.7829, 8.8020, 
12.1361, 59.8130]� as in [4,12]. We set β = 0.5 19 and V = 10 19.
¯
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Table 2
Table providing the values of the matrix of cross-holdings C , adapted 
from [4].

FR DE GR IT JP PT ES GB US

FR 0 .03 .01 .07 .01 .04 .04 .05 .04
DE .04 0 .06 .03 .00 .05 .04 .09 .04
GR .00 .00 0 .00 .00 .00 .00 .00 .00
IT .01 .03 .00 0 .00 .01 .02 .01 .00
JP .04 .02 .00 .02 0 .01 .01 .06 .10
PT .00 .00 .00 .00 .00 0 .00 .00 .00
ES .01 .02 .01 .02 .00 .15 0 .09 .02
GB .03 .02 .01 .01 .01 .02 .01 0 .04
US .04 .02 .01 .02 .02 .02 .02 .09 0

Table 3
Original primitive asset values p [4].

Country Relative GDP

FR 12.29
DE 16.81
GR 1.02
IT 9.30
JP 20.00
PT 1.00
ES 6.00
GB 12.99
US 75.70

We show the behavior of the nine countries and their conver-
gence to V ≥ 0. This is in accordance with Theorem 1. Fig. 4 shows 
this scenario.

Remark. This last example provides an application of Theorem 1
in a real life scenario where the organizations are represented by a 
set of countries. Analogously to Example 2, we can determine the 
evolution of the equity values since the condition of Theorem 1
holds true, meaning that the equity value of every country will 
remain positive at all times. It is worth noting that Italy is unsta-
ble (below the threshold, fail) at time t = 1 and becomes stable 
(above the threshold, healthy) at time t = 2: this behavior can be 
explained by the dynamical nature of our system. Indeed, at time 
t = 0, the market is not at an equilibrium, and the equity value 
of each organization is subject to fluctuations based on the tran-
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sient response of our system. This example shows the impact of 
the dynamics onto a financial system.

5. Conclusions

In this paper, we study the propagation of failures in financial 
systems. Future works include: i) the characterization of the invari-
ance of each orthant of the 2n space and of the equilibria in each 
orthant [5], ii) the mean-field game under disturbances where the 
number of organizations is large [22], and iii) asset investments as 
feedback control design.
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