
Characterizing the Nature of Programs for educational purposes
Violetta Lonati∗

Università degli Studi di Milano
Italy

violetta.lonati@unimi.it

Andrej Brodnik∗
University of Primorska / Ljubljana

Slovenia
andrej.brodnik@upr.si

Tim Bell
University of Canterbury

New Zealand
tim.bell@canterbury.ac.nz

Andrew Paul Csizmadia
Newman University, Birmingham

United Kingdom
a.p.csizmadia@newman.ac.uk

Liesbeth De Mol
CNRS, Université de Lille

France
liesbeth.de-mol@univ-lille.fr

Henry Hickman
University of Canterbury

New Zealand
henry.hickman@pg.canterbury.ac.nz

Therese Keane
Swinburne University of Technology

Australia
tkeane@swin.edu.au

Claudio Mirolo
University of Udine

Italy
claudio.mirolo@uniud.it

Mattia Monga
Università degli Studi di Milano

Italy
mattia.monga@unimi.it

Matti Tedre
University of Eastern Finland

Finland
matti.tedre@uef.fi

ACM Reference Format:
Violetta Lonati, Andrej Brodnik, Tim Bell, Andrew Paul Csizmadia, Lies-
beth De Mol, Henry Hickman, Therese Keane, Claudio Mirolo, Mattia
Monga, and Matti Tedre. 2022. Characterizing the Nature of Programs
for educational purposes. In Proceedings of the 27th ACM Conference on
Innovation and Technology in Computer Science Education Vol 2 (ITiCSE
2022), July 8–13, 2022, Dublin, Ireland. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3502717.3532173

ABSTRACT
Programming plays a paramount role in many educational policies
and initiatives. However, the current focus on coding skills poses a
risk of giving pupils an over simplistic and impoverished idea of
what programming means and involves. Their experiences would
be much more significant if learning were aimed at understanding
the richness of the nature of programs.

Programs are strange creatures that escape simple definitions:
they are real – they affect our real lives; they are abstract – they
process abstract entities; and they are concrete – they take up space
in digital devices memory, and can be copied, transferred, corrupted.
Thus, understanding the multifaceted nature of programs is crucial
knowledge for all citizens of the digital era, and a fundamental

∗co-leader

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9200-6/22/07. . . $15.00
https://doi.org/10.1145/3502717.3532173

component of such an understanding is getting a sense of how
programs are created and work (i.e., the programming process).

To the best of our knowledge, there is no Nature of Programs
framework (a set of statements describing the nature of programs)
that teachers and policy makers can use to shape their practice and
targets. Our goal is to develop such a framework, by collecting and
organizing contributions from CER, CS experts, and educators.

BACKGROUND AND RELATED WORK
The focus on programs. Computer programs are part of our daily

life, we use them, we provide them with data, they support our deci-
sions, they help us remember, they control machines, etc. Programs
are made by people, but in most cases we are not their authors, so
we have to decide if we can trust them. Programs enable computers
and computer-controlled machines to behave in a large variety of
ways. They bring the intrinsic power of computers to life. Programs
have a variety of properties that all citizens must be aware of; due
to the intangible nature of programs (NoP), most of these properties
are unusual and peculiar, but fundamental for understanding the
digital world. In other terms, understanding the NoP is a key com-
ponent of the computing literacy: it is crucial to enable a creative
and conscious use of computing devices, and should be one of the
main outcomes of computing education — alongside with, e.g., the
development of problem solving and computational thinking skills.
Moreover it should be part of any effort aimed at bringing digital
competences to the general public. An attempt in this direction has
been carried out by the WG proponents in the occasion of defining
the Programming competence in DigComp 2.2 framework [16]; the
outcome of this work is a preliminary list of knowledge statements
and examples about the NoP as reported in [2].

However, the full understanding of NoP might not be a natural
learning outcome of CS activities. For instance, using visual pro-
gramming environments does not imply that students are able to

Session: Working groups ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

572

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3502717.3532173
https://doi.org/10.1145/3502717.3532173

recognize that the programs they write have the same nature as
the “apps” they use on their mobile phones. Similarly, unplugged
activities aimed at developing computational thinking skills might
be perceived as disconnected from the use of digital devices and
programs in everyday life [8, 12]. To overcome these limited per-
spectives, teachers need to be aware of what NoP is, and use this
knowledge to inform their teaching practice.

Programs, programming, and computational thinking. The cen-
trality of programming in CS is reflected in most computing educa-
tion initiatives1, which indeed often include some type of program-
ming activity, mainly under the term ‘coding’. One can even argue
that, for many teachers, CS is just a synonym for coding [15].

Another fundamental component of computing education re-
volves around the idea of Computational Thinking (CT) [18]. Even
if there is no its ultimate definition, this idea concerns the ability
to address “problems in a way that enables us to use a computer
and other tools to help solve them” [6]. CT encompasses a variety
of creative cognitive processes and activities, like modeling real-
life situations, representing information in digital form, organizing
data, analyzing and generalizing computational solutions, assessing
their social impact, etc. In other terms, CT goes far beyond coding
and tries to represent and value the greater richness of computing.
Since the above mentioned activities play a fundamental role also
in the process of designing programs, our WG approach shares
a similar scope as CT. A fundamental difference is that CT-based
frameworks mostly focus on CT practical and cognitive skills, while
here we chose to reflect about the underlying knowledge about the
NoP, that CT activities should both promote and stem from.

Historical and philosophical perspective. As one can expect, the
NoP has had a relevant role in the broader discussion about the
nature of CS. Some very significant contributions on the issue ap-
peared in the ’80–90s [3, 11, 17], including the triggering question
“Is CS a science?”. CS and its impact on society has greatly evolved
since, see e.g. [4, 5, 10] for more recent contributions on the na-
ture of CS, and [13] for an articulate presentations of a historical
perspective. Such a discussion, however, has been conducted by
and for CS, philosophy, and history matter experts, and has rarely
reached a wider audience. Notable exceptions are [1, 4, 14].

Focusing on programs, the ongoing project “PROGRAMme” starts
with the premises that the seeminingly simple question “What is a
computer program?” has no simple answer today2. It thus aims at
developing “a coherent analysis and pluralistic understanding of
‘computer program’ and its implications to theory and practice”, by
taking a historical and philosophical approach. The project plans to
consider the various characterizations of programs that derive from
different viewpoints and pertain to different historical phases of
the development of the discipline (either in academia or industry).

Considering “PROGRAMme” and the mentioned references on
the nature of CS, we take a different approach. Instead of analyzing
and contrasting the different points of view about the NoP, we want
to identify the fundamental tenets that bring together different
views. Specifically we target the educational arena with a goal to

1Cf. CS4ALL (https://www.csforall.org/) and Informatics for All Coalition (https://
www.informaticsforall.org).
2See the project website https://programme.hypotheses.org

develop a NoP framework that teachers and educational policy
makers can use in framing CS teaching practice and curricula.

The Nature of Programs and the Nature of Science. The expression
“Nature of Programs” draws inspiration from “Nature of Science”
(NoS), an expression from the ’70s that refers to the fundamen-
tal characteristics of science knowledge and scientific inquiry, as
derived from how it is produced: a necessary knowledge to make
informed decisions with respect to the ever-increasing scientifically-
based personal and societal issues [9]. NoS is a significant compo-
nent of scientific literacy and it is argued that NoS cannot be learned
simply by studying science concepts or attending science labs, but
it must be addressed explicitly with active reflective practice and
discussions among students in their learning contexts [7]. This also
implies that teachers should have a “shared accurate view of NoS”
and agree that NoS needs to be taught and assessed explicitly [9].

CS education would benefit as well from a similar approach,
in order to boost its contribution in creating a CS-literate society
that is able to make informed decisions on CS-related issues. This
working group proposes a first step in this direction, focusing on
the Nature of Programs (including the way that they are created
and built), due to the role that programs play in CS and all society.

REFERENCES
[1] Tim Bell, Paul Tymann, and Amiram Yehudai. 2018. The Big Ideas in Computer

Science for K-12 Curricula. Bull. EATCS 124 (2018).
[2] Andrej Brodnik, Andrew Csizmadia, Gerald Futschek, Lidija Kralj, Violetta Lonati,

Peter Micheuz, and Mattia Monga. 2021. Programming for All: Understanding
the Nature of Programs. CoRR abs/2111.04887 (2021). arXiv:2111.04887

[3] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker,
A. Joe Turner, and Paul R Young. 1989. Computing as a discipline. Computer 22,
2 (1989), 63–70.

[4] Peter J. Denning and Craig H. Martell. 2015. Great Principles of Computing. The
MIT Press.

[5] Amnon H. Eden. 2007. Three Paradigms of Computer Science. Minds Mach. 17, 2
(jul 2007), 135–167. https://doi.org/10.1007/s11023-007-9060-8

[6] International Society for Technology in Education(ISTE) and Computer Science
Teachers Association (CSTA). 2011. Operational Definition of Computational
Thinking for K12 Education. https://cdn.iste.org/www-root/Computational_
Thinking_Operational_Definition_ISTE.pdf

[7] Norman G. Lederman. 2013. Nature of science: Past, present, and future. In
Handbook of research on science education. Routledge, 845–894.

[8] Violetta Lonati, Dario Malchiodi, Mattia Monga, and Anna Morpurgo. 2015.
Is coding the way to go?. In 8th ISSEP (Ljubljana, Slovenia) (LNCS, Vol. 9378),
Andrej Brodnik and Jan Vahrenhold (Eds.). Springer International Publishing,
Switzerland, 165–174. https://doi.org/10.1007/978-3-319-25396-1_15

[9] National Science Teachers Association. 2020. Nature of Science. https://www.
nsta.org/nstas-official-positions/nature-science

[10] William J. Rapaport. 2005. Philosophy of Computer Science: An Introductory
Course. Teaching Philosophy 4 (2005), 319–341. Issue 28.

[11] Mary Shaw. 1985. The Nature of Computer Science. In The Carnegie-Mellon
Curriculum for Undergraduate Computer Science. Springer, 7–12.

[12] Rivka Taub, Michal Armoni, and Mordechai Ben-Ari. 2012. CS Unplugged and
Middle-School Students’ Views, Attitudes, and Intentions Regarding CS. ACM
Trans. Comput. Educ. 12, 2, Article 8 (April 2012), 29 pages.

[13] Matti Tedre. 2014. The Science of Computing: Shaping a Discipline. CRC Press.
[14] Matti Tedre. 2018. The Nature of Computing as a Discipline. In Computer Science

Education. Perspectives on Teaching and Learning in School, Sue Sentance, Erik
Barendsen, and Carsten Schulte (Eds.). Bloomsbury Publishing, Chapter 1.

[15] Mike Tissenbaum and Anne Ottenbreit-Leftwich. 2020. A Vision of K-12 Com-
puter Science Education for 2030. Commun. ACM 63, 5 (April 2020), 42–44.

[16] Riina Vuorikari, Stefano Kluzer, and Yves Punie. 2022. DigComp 2.2: The Digital
Competence Framework for Citizens - With new examples of knowledge, skills and
attitudes. Joint Research Centre (European Commission), European Union.

[17] Peter Wegner. 1976. Research Paradigms in Computer Science. In Proceedings
of the 2nd International Conference on Software Engineering (San Francisco, Cal-
ifornia, USA) (ICSE ’76). IEEE Computer Society Press, Washington, DC, USA,
322–330.

[18] Jeannette M Wing. 2006. Computational thinking. CACM 49, 3 (2006), 33–35.

Session: Working groups ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

573

https://www.csforall.org/
https://www.informaticsforall.org
https://www.informaticsforall.org
https://programme.hypotheses.org
https://arxiv.org/abs/2111.04887
https://doi.org/10.1007/s11023-007-9060-8
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
https://doi.org/10.1007/978-3-319-25396-1_15
https://www.nsta.org/nstas-official-positions/nature-science
https://www.nsta.org/nstas-official-positions/nature-science

	References

