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Abstract
In a recent paper Abeyaratne et al. (J. Mech. Phys. Solids 167:104958, 2022) concerning
the stability of surface growth of a pre-stressed elastic half-space with surface tension, it
was shown that steady growth is never stable, at least not for all wave numbers of the per-
turbations, when the growing surface is traction-free. On the other hand, steady growth was
found to be always stable when growth occurred on a flat frictionless rigid support and the
stretch parallel to the growing surface was compressive. The present study is motivated by
these somewhat unexpected and contrasting results.

In this paper the stability of a pre-compressed neo-Hookean elastic half-space undergo-
ing surface growth under plane strain conditions is studied. The medium outside the grow-
ing body resists growth by applying a pressure on the growing surface. At each increment of
growth, the incremental change in pressure is assumed to be proportional to the incremen-
tal change in normal displacement of the growing surface. It is shown that surface tension
stabilizes a homogeneous growth process against small wavelength perturbations while the
compliance of the surrounding medium stabilizes it against large wavelength perturbations.
Specifically, there is a critical value of stretch, λcr ∈ (0,1), such that growth is linearly sta-
ble against infinitesimal perturbations of arbitrary wavelength provided the stretch parallel
to the growing surface exceeds λcr. This stability threshold, λcr, is a function of the non-
dimensional parameter σκ/G2, which is the ratio between two length-scales σ/G and G/κ ,
where G is the shear modulus of the elastic body, σ is the surface tension, and κ is the
stiffness of the surrounding compliant medium.

It is shown that (a) λcr → 1 as κ → 0 and (b) λcr → 0+ as κ → ∞, thus recovering
the results in Abeyaratne et al. (J. Mech. Phys. Solids 167:104958, 2022) pertaining to the
respective limiting cases where growth occurs (a) on a traction-free surface and (b) on a
frictionless rigid support. The results are also generalized to include extensional stretches.
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1 Introduction

1.1 Surface Growth Is Ubiquitous

Surface growth – the addition of new material to the surface of a solid body – occurs in
a variety of contexts, perhaps the most familiar being the solidification of water on the
surface of an ice cube below the freezing temperature. Other examples include 3D-printing,
chemical vapor deposition, the growth of hard tissue like bone, and the polymerization of
actin networks in the cytoskeleton of a biological cell.

1.2 Compliant Resistance to Surface Growth

Actin polymerization plays a central role in cell biology; see, for example, the review arti-
cles [5], [26], [32] and the references therein. In a series of intriguing experiments, Parekh
et al. [30], Chaudhuri et al. [12] and Bieling et al. [7], polymerized an actin network be-
tween an AFM (atomic force microscope) cantilever and a fixed surface. One end of the
cantilever was functionalized with an actin nucleating agent and this led to polymerization
at that end. Once the growing actin network reached the fixed surface, it pushed against the
cantilever during further growth, with the elasticity of the cantilever providing a compliant
resistance to growth. Similarly, an actin network growing inside a cell pushes against the
cell membrane which provides a compliant resistance to growth.

1.3 Instability of Surface Growth

Surface instability is well-known in materials science where growing surfaces can become
unstable due to a coupling between growth and stress, e.g., Mullins and Serkeka [27], Asaro
and Tiller [6] and Grinfeld [19].

Symmetry-breaking instabilities are frequently encountered in biology during surface
growth. An example of this was seen in the striking experiments of Noireaux et al. [29],
Cameron et al. [11] and others in which they chemically treated the surface of a micron-
size rigid bead immersed in a solution of free actin monomers. The actin monomers were
attracted to the surface of the bead where they polymerized and attached onto the actin
network growing around the bead. Each newly formed layer of solid at the bead surface
pushed out the previously formed solid which induced stress in the network; for modeling of
this spherically symmetric growth process see Noireaux et al. [29], Dafalias et al. [14], [15]
and Tomassetti et al. [35]. When the growing actin shell reached a certain critical thickness
it lost spherical symmetry and developed a “comet tail”; see van der Gucht et al. [20]; Prost
et al. [31]; and John et al. [23].

1.4 Continuum Mechanical Modeling of Surface Growth

The addition of new material points to the surface of a growing body leads to a time-
dependent reference configuration, with the evolution of the reference configuration being
intimately tied to the accretive growth of the body. Modeling this is challenging. Inspired
by the seminal paper of Skalak et al. [33], some progress was made by Tomassetti et al.
[35] when the geometry is simple, e.g., one dimensional, planar or cylindrically/spherically
symmetric. An alternative Eulerian approach, which seeks to by-pass consideration of the
reference configuration, has been developed by Naghibzadeh et al. [28].

The growth process itself is characterized by a kinetic law relating the propagation speed
of the boundary in the reference configuration (which is a measure of the rate at which new
material is added to the body) and a power conjugate thermodynamic driving force.
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1.5 A Recent Study

In a recent paper [4], we examined the stability of steady surface growth of a pre-stressed
elastic half-space with surface tension. While several mechanical boundary conditions at the
growing surface were considered, the two of interest to us here are (a) the case where the
growing surface is traction-free, and (b) the case where growth occurs on a flat friction-
less rigid support. These cases were motivated by the boundary conditions at (a) the outer
and (b) the inner surfaces of the actin shell growing around a bead mentioned above. By
constructing steady solutions and examining their linearized stability, we showed that the
steady solution in the former case, (a), is never stable, at least not for all wave numbers of
the perturbations, and that it is always stable in the latter case (b) when the stretch parallel
to the growth surface is compressive. The present study was motivated by these somewhat
unexpected and contrasting results.

In the absence of growth, the problem studied in [4] is the classical Biot instability prob-
lem for a half-space, albeit with somewhat more general boundary conditions. In the most
familiar case, where the boundary of the half-space is traction-free and surface tension is
ignored, Biot [8] showed that the body became unstable through a surface instability when
the stretch parallel to the boundary reached the value λBiot (≈ 0.5437) given by the unique
real, positive root of the polynomial equation λ6 + λ4 + 3λ2 − 1 = 0. In such a surface in-
stability mode, the infinitesimal deformation superposed on the homogeneous one involves
periodic oscillations parallel to the boundary and exponential decay away from it. There is a
substantial literature on various questions and generalizations of this problem, e.g., the sta-
bility of the deformation1 [13]; generalization beyond the neo-Hookean model to arbitrary
incompressible isotropic materials [16]; the rich phenomena seen beyond plane strain [34];
generalization to hydrogels [24]; loading by electrostatic stress [22]; and so on.

1.6 The Present Study and Its Key Results

In the present study we again consider the growth of a pre-stressed neo-Hookean half-space,
but now allow the medium outside the body to be compliant and to afford some resistance to
growth. Specifically, the medium on the outside is assumed to apply a pressure on the bound-
ary of the growing body such that, at each increment of growth, the incremental change in
pressure is proportional to the incremental change in normal displacement of the growing
surface. This was motivated in part by the examples described previously in Sect. 1.2, and by
the simple fact that our previous study [4] corresponds to the limiting cases of a compliant
environment when its stiffness tends (a) to zero and (b) to infinity respectively.

We first construct a time-dependent spatially homogeneous growth process conforming
to the boundary-initial value problem, that for brevity, we refer to as a “homogeneous so-
lution”. During such a growth process, the deformation is spatially homogeneous and time-
independent, but the body undergoes an unsteady time-dependent evolution. This is because
when, for example, the driving force for growth is positive at the initial instant, the body
starts to grow through accretion at its boundary. As it grows, the boundary moves outwards
and so the pressure applied on it by the surrounding medium increases. As the pressure in-
creases, the driving force decreases, and so does the rate of growth. Eventually, as t → ∞,
the driving force vanishes, growth stalls, and the body reaches equilibrium.

Next, we study the linearized stability of a homogeneous solution and show that there is
a critical stretch λcr ∈ (0,1) such that growth is stable when the compressive stretch parallel

1Biot’s analysis shows that the problem has a second solution close to the homogeneous one when λ = λBiot
but does not, strictly, address stability.
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to the boundary of the body is greater than this value. There are two length-scales in the
problem, σ/G and G/κ where G is the shear modulus of the neo-Hookean elastic body, σ

the surface tension and κ the stiffness of the surrounding medium. We show that the stability
threshold λcr is a function of the nondimensional parameter σκ/G2 that is the ratio of these
two length-scales. Moreover, we find that λcr → 1 as κ → 0 and λcr → 0+ as κ → ∞, thus
recovering the aforementioned results in [4] as special cases.

In Appendix C we generalize these results to include extensional stretches. It is shown
there that in general there are two critical values of stretch, λ±

cr, which demarcate the range of
stability. The stretch λ−

cr ∈ (0,1) is compressive (and coincides with the stretch λcr referred
to above) while λ+

cr ∈ (1,1/λBiot) is extensional. The homogeneous solution is stable against
all perturbations when the stretch parallel to the free surface lies between these two critical
values of stretch. The stretch λ+

cr → 1 when κ → 0 and λ+
cr → 1/λBiot when κ → ∞.

1.7 Organization of the Rest of the Paper

The basic equations pertaining to the problem of interest are presented in the preliminary
Sect. 2. Next, in Sect. 3, we specialize the field equations and boundary conditions to a
semi-infinite neo-Hookean body whose boundary is a flat plane. We then construct a ho-
mogeneous solution to the problem which, as already mentioned, involves a homogeneous
time-independent deformation but a non-steady time-dependent evolution of stress, driving
force and boundary location. Thereafter, in Sect. 4, we perturb the homogeneous solution,
keeping in mind that as part of perturbing the solution, one must also perturb the domain on
which it is defined, i.e., the reference configuration. This is related to the fact that the prob-
lem at hand is a free boundary-initial value problem and the (time-dependent) domain of the
solution is one of the unknowns. An inhomogeneous time-dependent process is now consid-
ered and linearized about the homogeneous solution. This leads to the linearized problem.
Finally in Sect. 5 we analyze the linearized problem with a focus on the question of whether
perturbations grow or decay with time. In Appendix A we establish some formulae used
elsewhere and in Appendix B we derive the expression for the driving force in the presence
of both the boundary pressure and surface tension. The results of this paper are generalized
to include extensional stretches in Appendix C.

2 Preliminaries

We will be concerned with plane strain throughout and will not need to refer to the out-of-
plane components of vector and tensor fields.

In the reference configuration, the body occupies a time-dependent (two-dimensional) re-
gion RR(t) that is bounded by the curve SR(t). Because we are allowing for surface growth,
i.e., the addition of material particles to the body at SR(t), the region RR(t) and its boundary
SR(t) will be time-dependent in general.

At each instant t during an evolution process, the particle located at ξ in the reference
configuration is mapped to the position y(ξ , t) in the current configuration. In the current
configuration the body occupies the region R(t) = y(RR(t), t) that is bounded by the curve
S(t) = y(SR(t), t). The regions occupied by the body in the reference and current configu-
rations, and their boundaries, are shown schematically in Fig. 1. We denote the unit outward
normal vectors on SR and S by nR and n respectively.

The motion of the boundary SR(t) in the reference configuration is solely due to surface
growth, and when we characterize the kinetics of surface growth below, we will make use
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Fig. 1 Schematic depiction of the time-dependent regions RR(t) and R(t) occupied by a body in the refer-
ence and current configurations and their boundaries SR(t) and S(t). The velocities of points on the moving
curves SR(t) and S(t) are VR and V, and the unit outward normal vectors are nR and n. The body is sur-
rounded by a compliant medium

of the propagation speed VR · nR of SR. On the other hand, the motion of the boundary S(t)

in the current configuration is due to both growth and deformation. As the body grows and
the curve S(t) moves outwards, it pushes against the surrounding medium which we assume
applies a pressure on the growing body. In order to characterize this mechanical boundary
condition we will need the propagation speed V · n of S(t). When speaking of velocities, it
is important to distinguish between the velocities of points that move with these curves and
the velocity v of the material particle that is instantaneously located on the boundary. The
relation between them can be derived by differentiating y∗(t) = y(ξ ∗(t), t) with respect to
time where ξ ∗(t) and y∗(t) are corresponding points on the propagating surfaces SR(t) and
S(t). This leads to

V = FVR + v, (1)

where v = ∂y(ξ , t)/∂t is particle velocity and

F := gradξ y (2)

is the deformation gradient tensor. In the absence of growth VR = o, and therefore V = v as
usual.

The dissipation rate associated with surface growth can be shown to be f VR where

f := �μ + SnR · FnR − W(F) (3)

is the thermodynamic driving force and VR = VR · nR is the propagation speed of the ref-
erential boundary. Here �μ > 0 is the difference between the chemical energy (per unit
reference volume) of a free material particle unattached to the growing body and that of a
material particle bound to the body; S is the Piola stress and W(F) is the strain energy den-
sity. A derivation of (3) is sketched in Appendix B, generalizing the calculation of Tomassetti
et al. [35] to include both the pressure loading and surface tension.

In general irreversible processes, driving forces and their conjugate fluxes are identified
from the dissipation (entropy-production) rate, and the kinetics of such processes are then
taken to be characterized by relations between these fluxes and driving forces; see for exam-
ple Chap. 14 of Callen [10], Chap. 14 of Kestin [25], and Abeyaratne and Knowles [1], [2],
[3]. Following this approach, we assume the kinetics of surface growth to be described by a
relation between the normal growth speed VR and the conjugate driving force f :

VR = V(f ). (4)
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Note that this is essentially a kinetic law for the mass flux ρRVR associated with growth
where ρR is the referential mass density. The kinetic response function V(f ) characterizes
growth and the dissipation inequality f VR ≥ 0 requires that V(f )f ≥ 0. We shall assume
V(f ) to be monotonically increasing with V(0) = 0:

V′(f ) > 0, V(0) = 0. (5)

Thus, the larger the driving force, the faster the growth. When f > 0 the speed VR > 0 and
so the boundary SR moves outwards and material is added to the body (accretion); when
f < 0 the speed VR < 0 and so SR moves inwards and material is removed from the body
(ablation). There is no growth at zero driving force.

We now turn to the mechanical boundary condition. In the experiments described in
[30], [12] and [7], the authors grew an actin network between an AFM cantilever and a fixed
surface where the growth was resisted by the elasticity of the cantilever. Likewise, when
an actin network grows inside a cell during cell locomotion, the growth is resisted by the
compliant cell wall. Motivated by these examples, suppose that the growing body here is
surrounded by a compliant medium that applies a pressure on the boundary S(t) as it moves
outwards. The increment of pressure is assumed to be linearly related to the increment of
normal displacement of the boundary, and so, in the absence of surface tension, we would
take the boundary condition on S(t) to be

Tn = −pn where ṗ = κV · n.

Here T is the Cauchy stress tensor and the constant parameter κ > 0 is the stiffness of the
surrounding medium. In order to account for surface tension, let T+n and T−n denote the
limiting values of Cauchy traction on either side of S(t), with plus denoting the outside of
the growing body. Then

T+n − T−n = −σκ n − ∂σ

∂s
t, (6)

where σ > 0 denotes the surface tension on the boundary, t is the unit tangent vector in the
direction of increasing arc length s, and κ is the curvature of S(t); see for example [9]. In
the setting we have in mind here, T+n = −pn on the outside and T− = T is the limiting
stress from within the solid body. Combining this with the two preceding equations yields
the following mechanical boundary condition:

Tn = −pn + σκn + ∂σ

∂s
t where ṗ = κV · n. (7)

The surface tension is assumed to obey the constitutive relation

σ = W ′(λ), (8)

where λ = 1/|F−1t| is the stretch along the boundary and W(λ) is the surface energy per
unit reference area (per unit reference length in plane strain). We remark that even though
σ and W do not appear explicitly in (3), the model does account for surface tension; see
Appendix B.

Finally, the Piola and Cauchy stress tensors satisfy the equilibrium equations,

divξ S = o, divyT = o, (9)
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having neglected body forces. They also obey the constitutive relations

S = ∂W

∂F
− q F−T , T = ∂W

∂F
FT − q I, (10)

for an incompressible elastic solid. Here q is the reactive pressure and incompressibility
requires

det F = 1. (11)

Given the strain energy function W(F), the surface energy function W(λ), the kinetic
response function V(f ), the stiffness κ and suitable initial conditions, the problem at hand
requires us to determine the region RR(t), the motion y(ξ , t) and the stress T(y, t) conform-
ing to the field equations (2), (9), (10), (11), and boundary conditions (4), (7).

In the rest of this paper we will limit attention to an incompressible neo-Hookean solid.
In this case the strain energy function is

W(F) = G

2

(|F|2 − 2
)
, (12)

where the constant parameter G > 0 is the infinitesimal shear modulus, and the constitutive
relations (10) for the Piola and Cauchy stresses specialize to

S = GF − q F−T , T = GFFT − q I. (13)

Moreover, we limit attention to the case of constant surface tension σ where W(λ) = σλ.

3 Spatially Homogeneous Time-Dependent Growth Process

We now specialize the problem described in Sect. 2 to the case where the body is semi-
infinite, the material neo-Hookean, the boundary SR(t) a straight line, and the deformation
spatially homogeneous and time-independent.

It is worth pointing out at the outset that, even though the deformation is time-
independent, the body undergoes an unsteady time-dependent process in general. This is
because, as mentioned earlier, when for example the driving force for growth is positive at
the initial instant, the body starts to grow through accretion on the boundary. As it grows,
S(t) moves outwards and so the pressure applied on it by the surrounding medium increases.
As the pressure increases, the driving force decreases, and so does the rate of growth. Even-
tually, as t → ∞, the driving force vanishes, growth stalls, and the body reaches equilibrium.
Note that the stress is time-dependent during this process through the reactive pressure q(t)

though the deformation is not. For simplicity, we will refer to this spatially homogeneous
growth process as the “homogeneous solution”.

In order to distinguish between the various quantities in this section and their inhomoge-
neous counterparts in Sect. 4, mathematical precision requires that we use different symbols
for them. However, in order to avoid a vast amount of notation, we will avoid doing this
as much as possible, and hope that the context makes clear as to what we are referring to.
There will be a handful of exceptions: in the homogeneous solution in this section, we shall
append a zero to the reactive pressure q0, the pressure p0 applied on the boundary by the
surrounding medium, and the driving force f0.
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Fig. 2 Homogeneous solution: (a) The region RR(t) associated with the reference configuration at time t ,
and (b) the corresponding region R(t) associated with the current configuration. Note that the corresponding
boundaries SR(t) and S(t) have propagation velocities Że2 and Ẋe2 respectively

All components of vectors and tensors will be taken with respect to a fixed orthonormal
basis {e1, e2} so that in particular, (ξ1, ξ2) are the coordinates of a generic particle in the
reference configuration. The region occupied by the body in the reference configuration at
time t is the half-plane

RR(t) = {(ξ1, ξ2) : ξ2 < Z(t), −∞ < ξ1 < ∞}, (14)

so that its boundary SR(t) is the horizontal straight line ξ2 = Z(t) as shown in Fig. 2(a). The
unit outward normal vector is e2 and the propagation speed of a point on SR(t) is Ż e2. Note
that Z(t) is one of the unknowns to be determined.

The body undergoes a homogeneous deformation that maps2 (ξ1, ξ2) → (x1, x2):

x1 = λ1ξ1, x2 = λ2ξ2, (15)

the stretches λ1 and λ2 being positive and constant. We consider λ1 to be given. Therefore
by (20) below, λ2 is also known and constant. In the current configuration, the body occupies
the half-plane

R(t) = {(x1, x2) : x2 < X(t), −∞ < x1 < ∞}, (16)

where

X(t) = λ2Z(t). (17)

The boundary S(t) of the current configuration is the straight line x2 = X(t) as shown in
Fig. 2(b). The unit outward normal is e2 and the propagation velocity of S(t) is Ẋ e2. At the
initial instant, we assume

X(0) = Z(0) = 0. (18)

The deformation gradient tensor associated with (15) has components

[F ] =
(

λ1 0

0 λ2

)

, (19)

2As stated previously, in general we use (y1, y2) to denote the coordinates of a particle in the current config-
uration. It is convenient however to use (x1, x2) in the special case of the homogeneous deformation.
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and incompressibility, det F = 1, requires

λ1λ2 = 1. (20)

The components of the Piola and Cauchy stress tensors are found using (13) and (19) to be

[S] =
⎛

⎝
Gλ1 − q0(t)λ

−1
1 0

0 Gλ2 − q0(t)λ
−1
2

⎞

⎠ ,

[T ] =
(

Gλ2
1 − q0(t) 0

0 Gλ2
2 − q0(t)

)

, (21)

where, as mentioned above, q0(t) is the reactive pressure.
The boundary condition (7)2 in the present context reads ṗ0(t) = κẊ(t). Integrating this

with respect to t , using the initial condition X(0) = 0, and assuming the boundary to be
traction-free at the initial instant, leads to

p0(t) = κX(t) (22)

as expected. The boundary condition (7)1 with (21)2 gives

q0(t) = Gλ2
2 + p0(t)

(22)= Gλ2
2 + κX(t)

(17)= Gλ2
2 + κλ2Z(t), (23)

where the surface tension plays no role since the curvature of the straight boundary is zero
and we are limiting attention to the case where σ is constant. Keep in mind that q0 is the
reactive pressure entering through the constitutive relation while p0 is the pressure on the
boundary of the body.

From (3), (12), (19), (21)1 and (23) we find the driving force to be

f0(t) = �μ − G

2

(
λ1 − λ2

)2 − κλ2Z(t), (24)

and in view of the initial condition (18),

f0(0) = �μ − (G/2)
(
λ1 − λ2

)2
. (25)

Note from (24) that as the boundary moves outwards, i.e., as Z increases, the driving force
decreases and vice versa.

The kinetic relation (4) can be written using VR = Ż and (24) as the first order ordinary
differential equation

ḟ0 = −κλ2V(f0). (26)

Figure 3 shows the f0, ḟ0-phase plane for (26). The trajectory passes through the origin and
has the monotonicity shown in the figure because of the properties (5) of the kinetic response
function V. It is seen from the phase plane that in the case f0(0) > 0 (resp. f0(0) < 0) the
driving force decreases (resp. increases) monotonically from its initial value to the value 0.
Since V(0) = 0, growth stalls when f0(t) → 0. The phase plane shows that all motions are
attracted to the equilibrium point (0,0), and so, within the context of the present section, are
stable.
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Fig. 3 Schematic phase plane for
the first-order ordinary
differential equation (26). The
monotonicity of the curve shown
follows from the properties of V
in (5); the curvature may be
different to what is shown but
that has no effect on the results

In fact, one can integrate (26) to obtain3

κt/λ1 =
∫ f0(0)

f0(t)

1

V(f )
df. (27)

This, together with (24) and (25), provides an algebraic equation that gives t as a function
of Z. It can be readily verified that the right-hand side of (27) is a monotonically increasing
function of Z and so this algebraic relation is uniquely invertible to give Z(t). Moreover, if

V(f ) = O(f m) as f → 0 where m ≥ 1,

the integral in (27) tends to infinity as the lower limit tends to zero, implying that it takes
infinite time for f0(t) to approach zero. For example in the special case of linear kinetics,
V(f ) = f/b where b > 0 is a constant parameter, (27) leads to the explicit expressions

f0(t) = f0(0) e−κt/(bλ1), Z(t) = �μ − (G/2)
(
λ1 − λ−1

1

)2

κ/λ1

[
1 − e−κt/(bλ1)

]
,

where we used (24) and (25) in getting to the second equation. Thus, as t → ∞, we see that
Ż → 0 and so, eventually, the boundary stops moving and growth stalls.

In summary, once Z(t) is determined from (27), the region RR(t) in the reference config-
uration is known from (14). Moreover, X(t) is then given by (17), p0(t) by (22) and q0(t) by
(23). All other quantities can then be calculated, both their time evolution and their limiting
values as t → ∞. The limiting solution is in equilibrium.

4 Perturbed Configuration. Linearized Problem

In order to investigate the stability of the time-dependent spatially homogeneous growth pro-
cess, i.e., the homogeneous solution, found in Sect. 3, we now consider a perturbation of that
solution. This involves perturbing both the deformation and the reference configuration. We
start by linearizing the various equations about the homogeneous solution. The linearized
field equations will therefore hold on the region x2 < X(t), −∞ < x1 < ∞, see (16), and
the boundary conditions will be enforced on the straight line x2 = X(t). We will use the
symbol

.= in an equation to imply that quadratic and smaller terms have been neglected. The
solution of the linearized problem will be examined in Sect. 5.

3We will frequently, without even a comment, use the incompressibility equation (20) to eliminate λ2 in favor
of λ−1

1 (or vice versa) as we have done here.



On the Stability of Surface Growth. . .

Fig. 4 Left: The perturbed reference configuration at time t is associated with the region RR(t):
ξ2 < Z(t)+ ζ̂ (ξ1, t), −∞ < ξ1 < ∞ whose boundary is SR(t). Right: The perturbed reference configuration
mapped by (ξ1, ξ2) 	→ (x1, x2) = (λ1ξ1, λ2ξ2)

Suppose that in the perturbed reference configuration, the body occupies the region

RR(t) = {(ξ1, ξ2) : ξ2 < Z(t) + ζ̂ (ξ1, t), −∞ < ξ1 < ∞}
at time t , as depicted in the left-hand figure in Fig. 4. Its boundary is the curve

SR(t) = {(ξ1, ξ2) : ξ2 = Z(t) + ζ̂ (ξ1, t), −∞ < ξ1 < ∞}. (28)

The perturbation ζ̂ of the boundary is assumed to be small. If we introduce the function
g(ξ1, ξ2, t) := Z(t) + ζ̂ (ξ1, t) − ξ2, then the boundary is the zero level set of g and therefore
the unit outward normal vector to SR(t) is

nR = − gradξg

|gradξg|
.= − ∂ζ̂

∂ξ1
e1 + e2 = e2 − λ1

∂ζ

∂x1
e1, (29)

where in the last step we have introduced

ζ(x1, t) := ζ̂ (ξ1, t) with x1 = λ1ξ1. (30)

The propagation speed VR = VR · nR of SR(t) is

VR = − ġ

|gradξg|
.= Ż + ζ̇ where ζ̇ = ∂ζ

∂t
(x1, t) = ∂ζ̂

∂t
(ξ1, t). (31)

We now perturb the deformation studied in Sect. 3 so that at each instant t , (ξ1, ξ2) →
(y1, y2) according to

y1 = x1 + u1(x1, x2, t), y2 = x2 + u2(x1, x2, t), (32)

where x1 = λ1ξ1, x2 = λ2ξ2. The displacement components u1, u2 and their derivatives are
assumed to be small.

The boundary S(t) of the body in the current configuration can be determined by set-
ting x2 = X(t) + λ2ζ(x1, t) in (32) and linearizing. This leads to the following parametric
characterization of S(t):

y1 = y1(x1, t)
.= x1 + u1(x1,X(t), t),

y2 = y2(x1, t)
.= X(t) + λ2ζ(x1, t) + u2(x1,X(t), t),

}

(33)



R. Abeyaratne et al.

where x1 ∈ (−∞,∞) is the parameter and X(t) = λ2Z(t). The unit outward normal vector
on S(t) is

n = −y2,1e1 + y1,1e2√
(y1,1)

2 + (y2,1)
2

.= e2 − (λ2ζ,1 + u2,1)e1, (34)

where here, and henceforth, we use the notation

h,i := ∂h

∂xi

, i = 1,2,

for any function h(x1, x2, t). We also need to calculate the curvature, κ, of the curve S(t)

for which we use the formula4

κ = y1,1y2,11 − y2,1y1,11
[(

y1,1

)2 + (
y2,1

)2
]3/2 . (35)

Substituting (33) into (35) and linearizing leads to

κ

.= λ2ζ,11 + u2,11. (36)

4.1 Field Equations

The deformation gradient tensor F = gradξ y associated with the perturbed deformation (32)
has components

[F ] =
(

λ1 + λ1u1,1 λ2u1,2

λ1u2,1 λ2 + λ2u2,2

)

. (37)

Incompressibility, det[F ] = 1, requires λ1λ2 = 1 and

u1,1 + u2,2 = 0. (38)

Since

[F ]−1 .=
(

λ2 + λ2u2,2 −λ2u1,2

−λ1u2,1 λ1 + λ1u1,1

)

, (39)

the Piola stress S = GF − qF−T can be written as

[S] .=
( [Gλ1−q0λ2]+Gλ1u1,1−q0λ2u2,2−λ2q̃ Gλ2u1,2+q0λ1u2,1

Gλ1u2,1+q0λ2u1,2 [Gλ2−q0λ1]+Gλ2u2,2−q0λ1u1,1−λ1 q̃

)
, (40)

where we have expressed the reactive pressure as

q = q0 + q̃.

4See equation (A.10) in Appendix A.
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The perturbation q̃ is assumed to be small. The Cauchy stress T = SFT is

[T ] .=
( [Gλ2

1 − q0] + 2Gλ2
1u1,1 − q̃ G(λ2

1u2,1 + λ2
2u1,2)

G(λ2
1u2,1 + λ2

2u1,2) [Gλ2
2 − q0] + 2Gλ2

2u2,2 − q̃

)

. (41)

The equilibrium equation (9)2 can be approximated as T11,1 +T12,2
.= 0 and T21,1 +T22,2

.= 0.
Substituting (41) into this yields

q̃,1 = G(λ2
1 u1,11 + λ2

2 u1,22), q̃,2 = G(λ2
1 u2,11 + λ2

2 u2,22). (42)

We will frequently use the incompressibility equation (38), often without explicitly saying
so, to replace u2,2 by −u1,1 (or vice versa) as we have done here.

4.2 Boundary Conditions

Kinetic relation: Now consider the driving force (3) associated with growth. On substituting
the expressions (12), (29), (37) and (40) for W , nR, F and S into f = �μ + SnR · FnR −
W(F) and linearizing, one obtains

f
.= f0 − G(λ2

1 + λ2
2)u1,1 − q̃, (43)

where f0 is the driving force in the unperturbed problem given in (24). When the expressions
(31) and (43), for the propagation speed VR and the driving force f are used in the kinetic
relation VR = V(f ), linearization leads to Ż = V(f0) and

bζ̇ = −G(λ2
1 + λ2

2)u1,1 − q̃, (44)

where we have set

b := 1/V′(f0) > 0. (45)

Note that f0 = f0(t) during the evolution of the homogeneous solution and so b = b(t) is
also a function of time.

Mechanical boundary condition: An expression for the unit normal vector n was deter-
mined previously in (34). Therefore on using (41) and p = p0 + p̃, the boundary condition5

Tn = −pn + σκ n approximates to

u1,2 + u2,1 = λ1(λ
2
1 − λ2

2)ζ,1, 2Gλ2
2u1,1 + q̃ = p̃ − σκ; (46)

where, from (36), the curvature is κ = λ2ζ,11 + u2,11.
The second part of the mechanical boundary condition, (7)2, requires that we enforce

ṗ = κV ·n. Recalling from (1) that V = FVR +v, we can now use the previously determined
expressions for nR, VR, n and F from (29), (31), (34) and (37) to calculate

V · n = FVR · n + v · n .= Ẋ + λ2ζ̇ + Ẋu2,2 + u̇2,

5Recall that the third term on the right-hand side of (7)1 is absent since we are concerned with the case where
σ is constant.
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having also used v = u̇1e1 + u̇2e2. Therefore ṗ = κV · n gives ṗ0 = κẊ and

˙̃p = κ
(
λ2ζ̇ + Ẋu2,2 + u̇2

)
= κ

(
λ2ζ̇ + d

dt
u2(x1,X(t), t)

)
.

Integrating this with respect to time gives

p̃ = κ(λ2ζ + u2), (47)

where we have taken the perturbation of the pressure to vanish when the boundary and
displacement perturbations vanish, i.e., p̃ = 0 when ζ = 0, u2 = 0. The term in parenthesis
on the right-hand side of (47) is precisely the vertical displacement increment y2(x1, t) −
X(t) of the boundary S(t) as one might expect; see (33).

4.3 Summary

The perturbed fields u1(x1, x2, t), u2(x1, x2, t) and q̃(x1, x2, t) obey the field equations (38)
and (42)1,2. They hold on x2 < X(t), −∞ < x1 < ∞. The associated boundary conditions
are (44), (46)1,2 and (47), and they involve the additional fields p̃(x1, t), ζ(x1, t) as well.
The boundary conditions hold on x2 = X(t), −∞ < x1 < ∞.

It is convenient to eliminate q̃ and p̃ from the problem. First, q̃ can be eliminated from
the field equations by differentiating (42)1 with respect to x2, (42)2 with respect to x1 and
equating the results. Turning to the boundary conditions, we use (47) to eliminate p̃ from
(46)2, then differentiate the result with respect to x1 and use (42)1 to eliminate q̃,1. Finally,
we eliminate q̃ from (44) by using (46)2 and (47).

This leads6 to the following mathematical problem for the displacement and boundary
perturbation fields, u1(x1, x2, t), u2(x1, x2, t) and ζ(x1, t):

u1,1 + u2,2 = 0,

−λ2
1u2,111 + (λ2

1 + λ2
2)u1,112 + λ2

2u1,222 = 0,

}

for x2 < X(t), −∞ < x1 < ∞,

(48)

u1,2 + u2,1 = λ1(λ
2
1 − λ2

2)ζ,1,

κλ2ζ,1 − σλ2ζ,111 = G(λ2
1 + 2λ2

2)u1,11 + Gλ2
2u1,22 − κu2,1 + σu2,111,

bζ̇ + κλ2ζ − σλ2ζ,11 = −G(λ2
1 − λ2

2)u1,1 − κu2 + σu2,11,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

on x2 = X(t). (49)

5 Solution of the Linearized Problem

The general solution of (48)1 is

u1 = ψ,2 , u2 = −ψ,1 , (50)

6In these calculations, and elsewhere, we shall often simplify algebraic expressions using the incompressibil-
ity conditions λ1λ2 = 1 and u2,2 = −u1,1 when convenient.
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for any function ψ(x1, x2, t). The remaining field equation (48)2 can now be written as

λ2
1ψ,1111 + (λ2

1 + λ2
2)ψ,1122 + λ2

2ψ,2222 = 0 for − ∞ < x1 < ∞, x2 < X(t). (51)

On substituting (50) into the boundary conditions (49) we get

ψ,22 − ψ,11 = λ1(λ
2
1 − λ2

2)ζ,1,

κλ2ζ,1 − σλ2ζ,111 = G(λ2
1 + 2λ2

2)ψ,112 + Gλ2
2ψ,222 + κψ,11 − σψ,1111,

b(t)ζ̇ + κλ2ζ − σλ2ζ,11 = −G(λ2
1 − λ2

2)ψ,12 + κψ,1 − σψ,111,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

on x2 = X. (52)

The problem has now been reduced to finding ψ(x1, x2, t) and ζ(x1, t).
Keeping in mind that the coefficient b(t) in (52)3 is time-dependent, we seek a solution

in the separable form

ψ(x1, x2, t) = eikx1h(y)C(t), ζ(x1, t) = eikx1Q(t), (53)

where

y := k(x2 − X(t)). (54)

Substituting (53)1 into (51) yields the ordinary differential equation

h′′′′(y) − (λ4
1 + 1)h′′(y) + λ4

1h(y) = 0, y < 0, (55)

whose solution that is bounded for y → −∞ is

h(y) = α ey + β eλ2
1y; (56)

here, α and β are constants to be determined, and with no loss of generality we have assumed
k > 0.

Substituting (53) into the boundary conditions (52) leads to

ik[h′′(0) + h(0)]C(t) = −λ1(λ
2
1 − λ2

2)Q(t), (57)

i(κ + σk2)λ2Q(t) =
[
k2G

[
λ2

2h
′′′(0) − (λ2

1 + 2λ2
2)h

′(0)
] − (κ + σk2)kh(0)

]
C(t), (58)

b(t)Q̇(t) + (κ + σk2)λ2Q(t) = ik
[
− kG(λ2

1 − λ2
2)h

′(0) + (κ + σk2)h(0)
]
C(t). (59)

Equations (57) and (58) both imply that C(t)/Q(t) is time-independent. Thus, let

Q(t) = ikγC(t), (60)

where γ is a constant to be determined. Substituting (60) into (57)-(59) gives

h′′(0) + h(0) + γ λ1(λ
2
1 − λ2

2) = 0, (61)

Gkλ2
2h

′′′(0) − Gk(λ2
1 + 2λ2

2)h
′(0) − (κ + σk2)h(0) + (κ + σk2)λ2γ = 0, (62)
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γ b(t)Ċ(t) +
[
Gk(λ2

1 − λ2
2)h

′(0) − (κ + σk2)h(0) + (κ + σk2)λ2γ
]
C(t) = 0. (63)

In writing (63) (and (59) above) we have explicitly reminded ourselves that in general, b

is time-dependent: b = b(t) = 1/V′(f0(t)); see (45) and (26). Equation (63) tells us that
b(t)Ċ(t)/C(t) is time-independent, and so we can write

b(t)Ċ(t)/C(t) = ν, (64)

where the constant ν is to be determined. Substituting (64) into (63) yields

Gk(λ2
1 − λ2

2)h
′(0) − (κ + σk2)h(0) + [(κ + σk2)λ2 + ν]γ = 0. (65)

The 4 unknown parameters α, β , γ and ν are to be determined from (56), (61), (62) and
(65).

The time evolution of the perturbation is governed by (64). In the special case where the
homogeneous solution is in equilibrium, the associated driving force vanishes, i.e., f0(t) = 0
for all time, and so b(t) is constant. Then (64) yields

C(t) = eνt/b (66)

(to within a multiplicative constant). Therefore perturbations decay with time provided ν <

0. When the homogeneous solution is not in equilibrium, equation (64) leads to

1

C

dC

dt
= ν

b(t)

(45)= νV′(f0) = ν

ḟ0

d

dt
V(f0)

(26)= −νλ1

κ

1

V(f0)

d

dt
V(f0)

and therefore, (again to within a multiplicative constant),

C(t) =
[

1

|V(f0(t))|
]νλ1/κ

.

Recall from the discussion surrounding the phase plane in Figure (3) that V(f0(t)) ap-
proaches zero as t → ∞, and so again, C(t) (and therefore perturbations) decay when ν < 0.

Our goal is to study the sign of ν where stability demands ν < 0 for all perturbations.
In principle, ν can be a function of, at most, λ1, G, κ , σ and k. However, observe that the
stiffness κ and the surface tension σ do not appear in (61), and they enter as a pair, κ +σk2,
in (62) and (65). Thus ν can in fact be expressed as a function of λ1, Gk and κ + σk2. The
Pi theorem of dimensional analysis can now be used to infer that

N = ν̂ (λ1,K) where N := ν

Gk
, K := κ + σk2

Gk
. (67)

Once the expression (56) for h(y) is substituted into (61), (62) and (65), we have a system
of 3 homogeneous linear algebraic equations for α, β and γ that we can write as:

⎛

⎜⎜
⎜
⎝

2 λ4
1 + 1 λ1(λ

2
1 − λ2

2)

(1 + λ4
1) + λ2

1K (2 + K)λ2
1 −λ1K

(λ2
1 − λ2

2) − K (λ4
1 − 1) − K λ2K + N

⎞

⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

α

β

γ

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

0

0

0

⎞

⎟⎟
⎟
⎠

.
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Fig. 5 Perturbations decay at
points in the shaded region
K > K(λ1)

Necessary and sufficient for this system to have a nontrivial solution {α,β, γ } is that the
determinant of the coefficient matrix vanish. This leads to an algebraic equation that is linear
in N . Solving for N gives

N = ν

Gk
= (λ2

1 + 1)(1 − λ4
1)

2 − λ2
1(1 + λ2

1 + 3λ4
1 − λ6

1)K

λ1[(λ6
1 + λ4

1 + 3λ2
1 − 1) + λ2

1(λ
2
1 + 1)K] . (68)

We now examine the sign of ν on the λ1, K-plane where, because our interest is in
compression, we restrict attention to 0 < λ1 ≤ 1. (In Appendix C we extend the results to
the case of extensional stretches.) First, observe that the numerator of (68) vanishes on the
curve

K = K(λ1), 0 < λ1 ≤ 1, (69)

where

K(λ) := (λ2 + 1)(1 − λ4)2

λ2(1 + λ2 + 3λ4 − λ6)
, 0 < λ ≤ 1. (70)

This corresponds to the thick solid curve in Fig. 5 which is monotonic, with K(λ1) → ∞ as
λ1 → 0+. Second, one finds that ν given by (68) is negative in the shaded region above this
curve:

ν < 0 for K > K(λ1), 0 < λ1 ≤ 1. (71)

There is another region of this plane on which ν < 0 corresponding to the left-hand side of
the dashed curve in Fig. 5. The dashed curve corresponds to the vanishing of the denominator
of (68) and so ν is unbounded on it. This region involves compression that is more severe
than that associated with the gray region. Thus we shall not consider it from here on.

Accordingly, consider points (λ1,K) in the interior of the gray region of the λ1, K-plane
shown in Fig. 5. Since ν < 0 in this region, perturbations associated with this region decay
with time. In general, the homogeneous solution corresponding to some value of λ1 ∈ (0,1),
is stable for sufficiently large values of K , specifically for K > K(λ1). Observe from the
figure that the particular steady solution corresponding to λ1 = 1 is stable for all K > 0.

It is important to emphasize that K defined in (67)3 is not a simple scaling of the wave
number. It is illuminating to write K as

K = κ

Gk
+ σk

G
, (72)
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Fig. 6 The homogeneous
solution corresponding to a value
of λ1 ∈ (λcr,1) is stable for all
wave numbers k. The critical
value of the stretch λcr at
instability is given by (75) where
� = σκ/G2

in which one term involves the wave number k nondimensionalized with the length-scale
σ/G, and the other term involves the reciprocal of the wave number nondimensionalized
with the length-scale G/κ . Consider the special case where the compliant ambient medium
is absent: κ = 0. Then K ∝ k and so we conclude from the previous paragraph that the
homogeneous solution is stable for sufficiently large wave numbers k. On the other hand,
in the special case without surface tension, σ = 0, we have K ∝ 1/k. Thus in this case we
conclude that the homogeneous solution is stable for sufficiently small wave numbers k.
Thus we see that κ and σ work in complementary ways.

In order to study the sign of ν for various wave numbers k, observe that K is strictly
positive and that its smallest value (as a function of k) is

Kmin = 2
(
�
)1/2

, (73)

where the non-dimensional parameter

� := σκ

G2
(74)

is the ratio of the two length-scales G/κ and σ/G. The wave number at which K takes
its minimum value is k = kcr := √

κ/σ . Figure 6 shows Fig. 5 again but now with the line
K = Kmin added to it. Let λcr be the value of stretch at which the bold solid curve K = K(λ1)

intersects the horizontal line K = Kmin. This critical value of stretch is given by the unique
root in (0,1) of the equation

2
(
�
)1/2 = K(λcr). (75)

Collecting the preceding results, we know from (71)2 and (72) that the homogeneous
solution associated with a stretch λ1 is stable against a perturbation with wave number k if
κ/(Gk) + σk/G > K(λ1). Therefore it is stable against perturbations of all wave numbers
provided the smallest value of κ/(Gk) + σk/G over all k > 0 exceeds K(λ1), i.e., provided
Kmin > K(λ1). From (73) and (75) this requires K(λcr) > K(λ1) which, by the monotonicity
of K(λ), is equivalent to λcr < λ1 ≤ 1; see Fig. 6. We thus conclude that ν < 0 for all wave
numbers k provided λcr < λ1 ≤ 1 and therefore that the threshold for instability is λ1 = λcr.
The corresponding critical wave number is kcr = √

κ/σ introduced below (74).
Observe that as � = σκ/G2 increases, (73) tells us that Kmin increases, and so from

Fig. 6 we conclude that λcr decreases. In fact, λcr → 1 as � → 0 and λcr → 0+ as � → ∞.
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Stated differently, suppose the ambient environment offers no resistance to growth. Then,
the stiffness κ → 0 and so � → 0 according to (74)2 and Kmin → 0 by (73). Then we see
from Fig. 6 that λcr → 1. Thus the only homogeneous solution that is stable against all
perturbation is the one with λ1 = 1. On the other hand if the ambient environment is rigid,
then κ → ∞, � → ∞ and Kmin → ∞ and so λcr → 0+. Thus all homogeneous solutions are
stable in this case. The results of these two special cases coincide with what was found in
[4].

Finally, we remark that λcr need not exceed λBiot. By substituting λcr = λBiot into (75)1

we find that λcr = λBiot when � ≈ 1.4196. For � greater than this value λcr < λBiot and vice
versa.

Appendix A: Some Results Concerning an Evolving Curve in the Plane

For a more general treatment of the material in this appendix, see Gurtin [21].
Let S(t) be a curve in the y1, y2-plane, described parametrically by

y(p, t) = y1(p, t)e1 + y2(p, t)e2, p1 ≤ p ≤ p2, (A.1)

p being the parameter, t time and {e1, e2} a fixed orthonormal basis. For any function h(p, t)

we let a prime and dot denote

h′ = ∂h

∂p
(p, t), ḣ = ∂h

∂t
(p, t), (A.2)

respectively. Let

λ =
√(

y ′
1

)2 + (
y ′

2

)2
(A.3)

denote the stretch along S . The arc length s(p, t) is found by integrating

s ′ = λ (A.4)

with respect to p. The unit tangent vector on S (in the direction of increasing arc length) is

t = cos θ e1 + sin θ e2, (A.5)

where the angle θ(p, t) that the tangent makes with the y1-axis is given by

cos θ = y ′
1/λ, sin θ = y ′

2/λ. (A.6)

The unit normal vector, obtained by counter clockwise rotation of t, is

n = − sin θ e1 + cos θ e2. (A.7)

The curvature of S , by definition, is

κ := ∂θ

∂s
= θ ′/λ, (A.8)

having used (A.4). It follows from (A.5), (A.7) and (A.8) that

n′ = −κλt, t′ = κλn. (A.9)
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Differentiating each equation in (A.6) with respect to p leads to the respective equations

− sin θ θ ′ = y ′′
1 /λ − cos θλ′/λ, cos θ θ ′ = y ′′

2 /λ − sin θλ′/λ.

Multiplying the first of these by sin θ , the second by cos θ and then subtracting the first from
the second gives

θ ′ = cos θ y ′′
2 /λ − sin θ y ′′

1 /λ
(A.6)= (y ′

1 y ′′
2 − y ′

2 y ′′
1 )/λ2.

On combining this with (A.3) and (A.8), we obtain the following formula for the curvature:

κ = y ′
1y

′′
2 − y ′

2y
′′
1[

(y ′
1)

2 + (y ′
2)

2
]3/2 . (A.10)

This was written down previously in (35).
The velocity of the point p of the evolving curve S(t) is

V = ẏ = ẏ1e1 + ẏ2e2. (A.11)

Next, differentiating (A.3) with respect to t and using (A.5), (A.6) and (A.11) gives

λ̇ = (y ′
1ẏ

′
1 + y ′

2ẏ
′
2)/λ = t · V′. (A.12)

Let V and U be the normal and tangential components of V:

V = V n + U t. (A.13)

Then

λ̇
(A.12)= t · V′ (A.13)= t · (V ′ n + V n′ + U ′ t + U t′)

(A.9)= t · (−κλV t + U ′ t)
(A.4)= −κλV + λ

∂U

∂s
. (A.14)

Finally, let w(λ) be a function defined for λ > 0. Then, the rate of change of the integral of
w(λ(s, t)) over S(t) is

d

dt

∫

S(t)

w ds
(A.4)= d

dt

∫ p2

p1

wλdp =
∫ p2

p1

(ẇλ + wλ̇)dp =
∫ p2

p1

(
dw

dλ
λ + w

)
λ̇ dp =

(A.4)=
∫

S(t)

(
dw

dλ
λ + w

)
λ̇λ−1 ds

(A.14)= −
∫

S(t)

(
dw

dλ
λ + w

)(
κV − ∂U

∂s

)
ds. (A.15)

This will be used in Appendix B.
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Appendix B: The Driving Force

The material in this appendix generalizes the calculation of Tomassetti et al. [35] to include
both the pressure loading and surface tension. Even though we have taken the surface tension
σ to be constant in Sects. 3 – 5 of the present paper, the analysis in this appendix is not
limited to that case. For a more general treatment of surface energy, see Wu [36], Freund
[17] and Fried and Gurtin [18].

The dissipation rate, D, associated with the growing body is defined to be the difference
between (i) the rate of mechanical working plus the rate of influx of chemical energy and
(ii) the rate of increase of bulk and surface energy. Thus

D :=
∫

S(t)

T+n · VdA +
∫

SR(t)

�μVR dAR − d

dt

∫

RR(t)

W dVR − d

dt

∫

S(t)

w dA, (B.1)

where, since S(t) is a closed curve, the surface tension is an internal force and so does
not contribute to the rate of working. Here, in the notation above equation (7), T+n is the
mechanical traction on the boundary S(t) of the body in the current configuration, and V is
its propagation velocity; �μ is the difference in chemical energy per unit reference volume
between material units unattached and attached to the body, and7 VR = VR · nR is the normal
propagation speed of the referential boundary; W(F) is the bulk elastic energy per unit
reference volume; and w is the surface energy per unit current area. For simplicity, we
speak here of volumes and areas despite our setting being two dimensional (where one can
imagine the body to have unit depth into the page). Finally, we take the surface energy to be
w = w(λ) where λ is the stretch along the boundary.

The rate of mechanical working term in (B.1) can be written, using the boundary condi-
tion (6) with T− = T, as

∫

S(t)

T+n · VdA =
∫

S(t)

Tn · VdA −
∫

S(t)

(
σκV + ∂σ

∂s
U

)
dA

=
∫

S(t)

Tn · VdA −
∫

S(t)

σ

(
κV − ∂U

∂s

)
dA, (B.2)

where κ is the curvature of the boundary in the current configuration, V = V · n, U = V · t
and in getting to the last equality we have integrated ∂σ

∂s
U by parts over the closed curve S .

The first term on the right-hand side of (B.2) can be dealt with in a standard manner using
S = TFT , the kinematic equation (1), the divergence theorem, the constitutive relation and
the equilibrium equation. This leads to

∫

S(t)

Tn · VdA =
∫

RR(t)

∂

∂t
W(F) dVR +

∫

SR(t)

SnR · FnR VR dAR. (B.3)

The term representing the rate of change of the stored elastic energy in (B.1) can be written
as

d

dt

∫

RR(t)

W(F) dVR =
∫

RR(t)

∂

∂t
W(F) dVR +

∫

SR(t)

W(F)VR dAR. (B.4)

7In order to distinguish the symbol VR used for the speed from that used for a referential volume element,
we have used the symbol dVR for the latter.
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Finally, from (A.15), the rate of increase of the surface energy can be written as

d

dt

∫

S(t)

w(λ)dA = −
∫

S(t)

(w + λw′)
(
κV − ∂U

∂s

)
dA, (B.5)

where the prime (in Appendix B) denotes differentiation with respect to λ. On substituting
(B.2)-(B.5) into (B.1) we are led to

D =
∫

SR

[
�μ+ SnR · FnR −W(F)

]
VRdA+

∫

S(t)

(w +λw′ −σ)

(
κV − ∂U

∂s

)
dA. (B.6)

In our two-dimensional setting, the surface energy per unit reference area, W(λ), is
related to the surface energy per unit current area, w(λ), by W = λw. Therefore the term
between the first pair of parentheses in the second integral can be written as W ′(λ) − σ .
In view of the constitutive equation σ = W ′(λ) for the surface tension, see (8), the second
integral in (B.6) drops out and we can write the dissipation rate as

D=
∫

SR

[
�μ + SnR · FnR − W(F)

]
VR dA. (B.7)

The speed VR with which the referential boundary propagates is the volumetric flux of new
material being added to the body. The factor multiplying it, i.e.,

f := �μ + SnR · FnR − W(F), (B.8)

is therefore the conjugate driving force. Observe that the explicit effect of the surface tension
has dropped out, but it still does affect the driving force implicitly through the stress, see
(40) and (46).

Appendix C: Generalization to the Case Where the Stretch λ1 is
Permitted to be Extensional

The analysis in this paper can be readily extended to include stretches that are extensional.
In this case the growth exponent ν is again given by (68). The curve of interest on the λ1,
K-plane on which ν = 0 is now given by8

K = K(λ1), 0 < λ1 < 1/λBiot, (C.1)

where

K(λ) := (λ2 + 1)(1 − λ4)2

λ2(1 + λ2 + 3λ4 − λ6)
, 0 < λ < 1/λBiot. (C.2)

This curve corresponds to the thick solid curve in Fig. 7. It declines monotonically on (0,1),
rises monotonically on (1,1/λBiot) and K(λ) → ∞ for both λ → 0+ and λ → 1/λBiot. More-
over, one finds that ν < 0 on the shaded region above this curve which is therefore the re-
gion of stability of interest. Again, there is another region of this plane on which ν < 0.
This involves stretches that are more severe than those in the shaded region, and moreover is
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Fig. 7 The homogeneous
solution corresponding to a value
of λ1 ∈ (λ−

cr, λ
+
cr) is stable for all

wave numbers k. The critical
values of the stretch λ±

cr at
instability are given by (C.3)
where � = σκ/G2

separated from the shaded region by a region of instability; see the corresponding discussion
pertaining to Fig. 5.

The minimum value of K is again given by (73) and the horizontal straight line K =
Kmin on the λ1, K-plane intersects the bold curve at two points as shown in Fig. 7. The
corresponding values of stretch λ±

cr are given by

Kmin = 2
(
�
)1/2 = K(λ±

cr), 0 < λ−
cr < 1 < λ+

cr < 1/λBiot, (C.3)

where � was defined in (74). The discussion below (75) goes through again and we conclude
that the homogeneous solution is stable against perturbations of all wave lengths provided
λ−

cr < λ1 < λ+
cr. The critical wave number, kcr = √

κ/σ , is the same for both stretches λ−
cr and

λ+
cr.

Observe that when the stiffness κ → 0 we have � → 0 and so Kmin → 0 whence λ−
cr → 1

and λ+
cr → 1; see Fig. 7. This agrees with the result in [4] concerning the case of a traction-

free boundary. At the other extreme when κ → ∞ one has � → ∞ and thus Kmin → ∞ and
therefore λ−

cr → 0− and λ+
cr → 1/λBiot. This agrees with the result in [4] pertaining to the

case of growth on a smooth rigid surface.
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