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A state–space integer–order approximation of commensurate–order systems is obtained using a 
data–driven interpolation approach based on Loewner matrices. Precisely, given the values of the 
original fractional–order transfer function at a number of generalised frequencies, a descriptor–

form state–space model matching these frequency response values is constructed from a suitable 
Loewner matrix pencil, as already suggested for the reduction of high–dimensional integer–order 
systems. Even if the stability of the resulting integer–order system cannot be guaranteed, such 
an approach is particularly suitable for approximating (infinite–dimensional) fractional–order 
systems because: (i) the order of the approximation is bounded by half the number of interpolation 
points, (ii) the procedure is more robust and simple than alternative approximation methods, and 
(iii) the procedure is fairly flexible and often leads to satisfactory results, as shown by some 
examples discussed at the end of the article. Clearly, the approximation depends on the location, 
spacing and number of the generalised interpolation frequencies but there is no particular reason 
to choose the interpolation frequencies on the imaginary axis, which is a natural choice in integer–

order model reduction, since this axis does not correspond to the stability boundary of the original 
fractional–order system.

1. Introduction

The first idea of fractional calculus is credited [1], [2] to Leibniz who in a letter to de L’Hôpital in 1695 raised the question 
whether the meaning of derivatives with integer order could be extended to derivatives with noninteger order. Since then, the notion 
of fractional–order differential operators was confined to a purely theoretical context until the last decades during which there have 
been an increasing attention of the engineering community to this subject (see [3–5] and references therein) mainly because models 
including fractional–order derivatives prove to be very effective in many applications (see, just to mention a few recent applications, 
[6] for the model of a multi–robot system, [7] for the model of the flexible link of a manipulator arm, and [8] for the model of a 
heat exchanger).
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Many real world systems are characterized by a large number of states, inputs and outputs, so that their dynamic behaviour is well 
approximated by MIMO fractional-order systems. However, since fractional-order systems are infinite-dimensional with irrational 
transfer function, their analysis, simulation and control require specific methods that are often computationally hard. A reasonable 
way to overcome the dimensionality problem is to approximate these systems, according to well–defined criteria and over appropriate 
stability ranges, by means of integer–order models [9–14].

In a recent publication [15], a theoretical result concerning the integer-order approximation of SISO fractional-order systems – 
based on the interpolation of the fractional transfer function at prescribed points – has been shown to yield interesting results. Herein, 
these results are extended to the case of MIMO fractional system. More precisely, starting from a chosen set of frequency-domain 
input-output data pairs, an integer-order state-space model in descriptor form is obtained using a data-driven approach based on 
Loewner matrices. Such an approach which has been extensively used with considerable success by Antoulas and co–workers to 
find reduced–order models of large–scale integer–order systems (even, piecewise invariant or switched) [16–19], is particularly 
suited to the approximation of fractional–order systems since (i) the order of the approximating model is bounded by the number 
of interpolation conditions, (ii) the interpolation points can be chosen depending on the frequency range of interest, which makes 
the procedure fairly flexible, (iii) the numerical algorithm is fairly robust compared with other available techniques. Note that in 
the case of MIMO systems the state-space representation is also preferable to the transfer function description which would imply to 
consider a matrix of transfer functions (one for each input/output pair).

It is worth noting that in the literature, several works are available concerning the analysis and control of fractional-order MIMO 
systems (see, for instance, [20–22] and the survey paper [23]) and some of them are dedicated to the study and the application 
of approximating techniques for high dimensional systems. In [24], for instance, authors exploit iterative moment matching to find 
the optimal integer low-order approximation. The work [25] is dedicated to systems having an “S”-shaped step response. In [26] a 
genetic algorithm is used while in [27] a global heuristic method approach is followed. To the best of our knowledge, this is the first 
time that an approach based on Loewner matrix is followed.

The remainder of this paper is organised as follows. Section 2 briefly presents the descriptor form of noninteger–order linear 
time–invariant systems, suggests a broad classification of the methods for their approximation, and states the specific problem. The 
adopted approximation procedure is illustrated in Section 3 in the general context of MIMO systems. Section 4 applies this technique 
to three numerical examples, while advantages and disadvantages of the considered approach are pointed out in the final Section 5.

2. Preliminaries and problem statement

Fractional–order calculus is a generalization of integer–order differentiation and integration. Many definitions of fractional–order 
differentiation and integration operators have been proposed over time. Especially successful have been those of Grünwald–Letnikov, 
Riemann–Liouville and Caputo [1]. In particular, Caputo’s definition has been often used in engineering applications despite some 
problems related to the initial conditions [28].

In analogy with the Laplace transform of an integer-order derivative of a function 𝑓 , which can be computed as

ℒ{𝑓 (𝑘)} = 𝑠𝑘ℒ{𝑓} −
𝑘−1∑
𝑖=0

𝑠𝑘−𝑖−1𝑓 (𝑖)(0) , (1)

the Laplace transform of the (fractional) Caputo derivative of order 𝛼 > 0 of a function 𝑥 ∶ 𝑡 ↦ 𝑥(𝑡) ∈ℝ, denoted by 𝐷𝛼𝑥, is

ℒ{𝐷𝛼𝑥} = 𝑠𝛼ℒ{𝑥} −
[𝛼]−1∑
𝑖=0

𝑠𝛼−𝑖−1 𝑑
𝑖𝑥

𝑑𝑡𝑖
(0) , (2)

where [𝛼] denotes the integer part of 𝛼. Note that the index 𝑖 in (2) assumes only integer values so that ℒ{𝐷𝛼𝑥} is well defined.

To simplify the exposition, consider a scalar LTI fractional–order system described by the input–output differential equation

𝑦(𝑡) +
𝑛∑

𝑖=1
𝑎𝑖𝐷

𝛼𝑖𝑦(𝑡) =
𝑚∑
𝑖=0

𝑏𝑖𝐷
𝛽𝑖𝑢(𝑡) , (3)

where 𝑎𝑖, 𝑏𝑖 ∈ℝ, 𝛼𝑖, 𝛽𝑖 ∈ℝ+.

By taking (2) into account and assuming zero initial conditions, the system transfer function turns out to be

𝐺(𝑠) = ℒ{𝑦}(𝑠)
ℒ{𝑢}(𝑠)

=
∑𝑚

𝑖=0 𝑏𝑖𝑠
𝛽𝑖

1 +
∑𝑛

𝑖=1 𝑎𝑖𝑠
𝛼𝑖

≜
𝑏(𝑠)
𝑎(𝑠)

. (4)

If all powers in (4) are multiples of the same real number 𝛼 ∈ (0, 1), which qualifies (4) as a commensurate–order system, the previous 
transfer function can be written as

𝐺(𝑠) =
∑𝑚

𝑖=0 𝑏𝑖(𝑠
𝛼)𝑖

1 +
∑𝑛

𝑖=1 𝑎𝑖(𝑠𝛼)𝑖
(5)
113

which is a rational function of 𝑧 ∶= 𝑠𝛼 and, therefore, is sometimes called pseudo-rational transfer function [29].
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The state–space model corresponding to (4) is (see, e.g., [1])

𝐷(𝛼)(x)(𝑡) = 𝐹x(𝑡) +𝐵𝑢(𝑡), (6)

𝑦(𝑡) = 𝐶x(𝑡) + 𝑑 𝑢(𝑡), (7)

where

𝐷(𝛼)(x) =
[
𝐷𝛼1𝑥1,𝐷

𝛼2𝑥2,⋯ ,𝐷𝛼𝑛𝑥𝑛

]⊤

,

𝐹 ∈ℝ𝑛×𝑛, 𝐵 ∈ℝ𝑛×1, 𝐶 ∈ℝ1×𝑛 and 𝑑 ∈ℝ.

As already said, the analysis of noninteger–order models is made difficult by the irrational nature of their transfer function and 
by the infinite dimensionality of their state–space representations. Many methods have been proposed to simplify such models. They 
can be grouped into two categories:

1. the methods leading to a simpler model that is still described by an irrational transfer function or an infinite–dimensional 
state–space representation,

2. the methods that approximate the noninteger–order model by means of a finite–dimensional one.

The first group of methods is particularly suited to commensurate–order systems like (5): see, for example, [30–32]. However, a 
serious drawback is that the approximating model may not be truly simpler than the original one in terms of number of parameters. 
The methods of the second group are usually based on the rational approximation of the operator 𝑠𝛼 [33]; they often lead to high–

dimensional integer–order models whose transfer function tends to be ill–conditioned since its coefficients might differ for several 
order of magnitude. In general, even when considering a stable fractional–order system, neither of the approaches guarantees the 
stability of the approximating model. Herein, an interpolation approach, leading to low–order approximating models in a numerically 
robust way, is adopted. The associated problem can be stated as follows.

Consider a MIMO version of system (6)-(7) i.e.

𝐷(𝛼)(x)(𝑡) = 𝐹x(𝑡) +𝐺u(𝑡), (8)

y(𝑡) =𝐻x(𝑡) +𝐾u(𝑡), (9)

where y(𝑡) ∈ℝ𝑝×1, u(𝑡) ∈ℝ𝑚×1, 𝐺 ∈ℝ𝑛×𝑚, 𝐻 ∈ℝ𝑝×𝑛 and 𝐾 ∈ℝ𝑝×𝑚, and let 𝑆 denote the matrix of the transfer functions.

Problem 2.1. Given a set of 𝑁 complex frequency response input–output pairs (𝑠𝑖, 𝑆𝑖), where 𝑆𝑖 = 𝑆(𝑠𝑖), for 𝑖 = 1, 2, … , 𝑁 , find a 
linear model in the descriptor form:

𝐸�̇�(𝑡) = 𝐴𝐱(𝑡) +𝐵𝐮(𝑡) ,
𝐲(𝑡) = 𝐶𝐱(𝑡) ,

}
(10)

where 𝐱(𝑡) ∈ℝ𝑟, 𝐮(𝑡) ∈ℝ𝑚, 𝐲(𝑡) ∈ℝ𝑝, in such a way that:

𝐶(𝑠𝑖𝐸 −𝐴)−1𝐵 = 𝑆𝑖 , (11)

for all 𝑖 = 1, … , 𝑁 .

To solve this problem, resort is made to the Loewner framework illustrated in Section 3.

3. Approximation in the Loewner framework

The Loewner framework applied to fractional–order systems is a data–driven approach that derives a linear integer–order model 
from a given set of data which, in the specific case, are obtained from the original frequency response (4).

Essentially, this approximation technique consists of two steps:

• collect a number of frequency–response data in an appropriate range of frequencies, and

• construct an integer–order model matching these data.

Concerning the first step, the required data can be obtained either experimentally or, when the original model is known, nu-

merically. Concerning the second step, the approach entails the use of a suitable matrix pencil formed from two matrices called 
Loewner matrices. Details on this approach can be found, e.g., in the works by Mayo and Antoulas [17,34]. Herein, only the elements 
necessary to understand how the adopted approximation technique operates are provided. To simplify the exposition, assume that 
the input–output pairs are collected in two sets consisting of 𝑚𝜈 and 𝑝𝜈 pairs, respectively:
114

𝑀 = {(𝜇𝑗 , 𝑉𝑗 ), 𝑗 = 1,2,… ,𝑚𝜈} ∈ℂ(1+𝑝×𝑚)𝑚𝜈 , (12)



Applied Numerical Mathematics 198 (2024) 112–121H.M.A. Abdalla, D. Casagrande, W. Krajewski et al.

Λ = {(𝜆𝑖,𝑊𝑖), 𝑖 = 1,2,… , 𝑝𝜈} ∈ℂ(1+𝑝×𝑚)𝑝𝜈 , (13)

and form the two matrices 𝑉 and 𝑊 defined by

𝑉 =
⎡⎢⎢⎢⎣

𝑉1
𝑉2
⋮

𝑉𝑚𝜈

⎤⎥⎥⎥⎦
∈ℂ𝑝𝑚𝜈×𝑚 , 𝑊 =

[
𝑊1 𝑊2 ⋯ 𝑊𝑝𝜈

]
∈ℂ𝑝×𝑚𝑝𝜈 .

The aforementioned Loewner pencil combines the Loewner matrix

𝕃 =
⎡⎢⎢⎢⎣

𝑉1−𝑊1
𝜇1−𝜆1

⋯
𝑉1−𝑊𝑝𝜈

𝜇1−𝜆𝑝𝜈

⋮ ⋱ ⋮
𝑉𝑚𝜈−𝑊1
𝜇𝑚𝜈−𝜆1

⋯
𝑉𝑚𝜈−𝑊𝑝𝜈

𝜇𝑚𝜈−𝜆𝑝𝜈

⎤⎥⎥⎥⎦
∈ℂ𝑝𝑚𝜈×𝑝𝑚𝜈 (14)

and the shifted Loewner matrix

𝕃𝑠 =
⎡⎢⎢⎢⎣

𝜇1 𝑉1−𝜆1 𝑊1
𝜇1−𝜆1

⋯
𝜇1 𝑉1−𝜆𝑝𝜈 𝑊𝑝𝜈

𝜇1−𝜆𝑝𝜈

⋮ ⋱ ⋮
𝜇𝑚𝜈 𝑉𝑚𝜈−𝜆1 𝑊1

𝜇𝑚𝜈−𝜆1
⋯

𝜇𝑚𝜈 𝑉𝑚𝜈−𝜆𝑝𝜈 𝑊𝑝𝜈

𝜇𝑚𝜈−𝜆𝑝𝜈

⎤⎥⎥⎥⎦
∈ℂ𝑝𝑚𝜈×𝑝𝑚𝜈 (15)

to form the matrix 𝑠 𝕃 − 𝕃𝑠.

The following important theorem, whose proof can be found in [17,19], holds.

Theorem 3.1. If det(𝑠 𝕃 − 𝕃𝑠) ≠ 0 for all 𝑠 ∈ {𝜆1, … , 𝜆𝜈, 𝜇1, … , 𝜇𝜈}, then the transfer function of model (10) with

𝐸 = −𝕃, 𝐴 = −𝕃𝑠, 𝐵 = 𝑉 , 𝐶 =𝑊 (16)

satisfies the interpolation conditions (11). ■

However, due to redundant data, the Loewner pencil might be singular. In this case, an additional condition must be satisfied for 
the existence of an approximating system with the desired properties.

Precisely, by referring again to SISO systems, a necessary and sufficient condition for the existence of an approximating model 
interpolating the given data is the following [17]:

rank(𝑠𝕃− 𝕃𝑠) = rank
[
𝕃 𝕃𝑠

]
= rank

[
𝕃
𝕃𝑠

]
= 𝑘 (17)

for 𝑘 ≤ 𝜈 and 𝑠 ∈ {𝜆1, … , 𝜆𝜈, 𝜇1, … , 𝜇𝜈}.

If this condition is satisfied, the determination of the approximating model requires the preliminary computation of the singular–

value decompositions:

[
𝕃 𝕃𝑠

]
= 𝑌 Σ𝓁𝑋 ,

[
𝕃
𝕃𝑠

]
= 𝑌 Σ𝑟𝑋 (18)

where rank(Σ𝓁) = rank(Σ𝑟) = size(Σ𝓁) = size(Σ𝑟) = 𝑘, 𝑌 ∈ℂ𝑝𝑚𝜈×𝑘 and 𝑋 ∈ℂ𝑘×𝑝𝑚𝜈 .

The computation of the desired approximating model in the case of redundant data is based on the following theorem.

Theorem 3.2 ([17,19]). If the condition (17) is satisfied then the approximating model (10) with

𝐸 = −𝑌 𝑇 𝕃𝑋𝑇 ,

𝐴 = −𝑌 𝑇 𝕃𝑠 𝑋
𝑇 ,

𝐵 = 𝑌 𝑇 𝑉 ,

𝐶 = 𝑊 𝑋𝑇

⎫⎪⎬⎪⎭
(19)

satisfies the interpolation conditions (11). ■

Remark 3.1. Expressions (16) and (19) clearly show that the order of the approximating model is either equal to or less than 𝑚𝑝𝜈.

Remark 3.2. The case of redundant data occurs more often in the rational approximation of fractional–order systems because a 
large number of interpolation points is likely to lead to a better fit while the dimension of the resulting model will be finite anyway. 
However, the number of independent interpolation conditions cannot exceed the overall number of parameters of the original (pseudo–

rational) transfer function in (irreducible) commensurate–order form (5), i.e., 𝑛 +𝑚 +1, as the classic Padé–like rational identification 
115

method due to Zobel and Levy [35,36] clearly indicates.
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Remark 3.3. For simplicity of exposition and implementation, here all the interpolation points are chosen distinct, i.e., using the 
terminology in [37], only the 0–moment is matched at every interpolation point (intersection number equal to 1). For the same 
purposes, the interpolation points are taken real. Let us observe, in this regard, that choosing the interpolation points imaginary, 
as is commonly done in the model reduction of integer–order systems, is not particularly meaningful in the case of fractional–order 
systems whose stability boundary does not correspond to the imaginary axis [2,14].

Remark 3.4. The choice of the interpolating points clearly affects the result of the approximation method. In particular, good 
approximations of the transient response may be obtained by choosing the interpolating points at the low frequencies, while the 
steady-state behaviour is better replicated by choosing the interpolating points at the high frequencies.

The Loewner–based interpolation method is applied in Section 4 to three fractional–order systems.

4. Examples

The examples considered in this section have been suggested by [38,32,24,39] and have been used to test different approximation 
methods. The purpose of this section is twofold: (i) to illustrate how the proposed approach operates and (ii) to show that it may 
lead to satisfactory results in a fairly simple way. In order to render the effectiveness of the method more clear, as a first illustrative 
example a SISO system is considered. The method is applied to the descriptor form of the system. The second and the third examples, 
instead, are proper MIMO systems described by transfer functions. It is shown that, provided that the interpolating points are suitably 
chosen, the method is efficient.

4.1. Example 1

Consider the fractional order system described by the transfer function

𝐺(𝑠) = 1
0.8 𝑠2.2 + 0.5 𝑠0.9 + 1

, (20)

and let the interpolation frequencies be 𝜆1 = 0.1, 𝜆2 = 0.2, 𝜆3 = 0.3, 𝜆4 = 1, 𝜆5 = 10, 𝜆6 = 100 and 𝜇1 = 0.01, 𝜇2 = 0.21, 𝜇3 = 0.41, 
𝜇4 = 0.61, 𝜇5 = 0.81, 𝜇6 = 0.91. The resulting Loewner matrix is full rank and the resulting 6-th order system is characterized, in the 
descriptor form, by the matrices

𝐸 ≃

⎡⎢⎢⎢⎢⎢⎢⎣

0.62 0.61 0.61 0.56 0.099 0.0099
0.60 0.60 0.61 0.55 0.089 0.0087
0.61 0.61 0.62 0.53 0.077 0.0075
0.60 0.60 0.60 0.50 0.066 0.0063
0.58 0.58 0.58 0.46 0.056 0.0053
0.57 0.57 0.56 0.44 0.051 0.0048

⎤⎥⎥⎥⎥⎥⎥⎦

𝐴 ≃

⎡⎢⎢⎢⎢⎢⎢⎣

−0.93−0.87−0.81 −0.43 −0.0066 0
−0.81−0.75−0.69 −0.32 0.011 0.0018
−0.69−0.63−0.56 −0.22 0.024 0.003
−0.57−0.51−0.45 −0.13 0.033 0.0038
−0.46−0.41−0.35−0.064 0.038 0.0042
−0.42−0.36−0.31−0.038 0.039 0.0043

⎤⎥⎥⎥⎥⎥⎥⎦
,

𝐵 ≃ [0.9921 0.8707 0.7481 0.6289 0.5217 0.4741]⊤

and

𝐶 ≃ [0.9363 0.8767 0.8158 0.4348 0.0076 0] .

Bode diagrams and step responses are reported in Figs. 1 and 2, respectively. It can be noted that both the Bode diagrams and the 
step responses of the integer order model overlap with those of the original fractional order model.

4.2. Example 2

Consider the following MIMO system (a slight modification of the MIMO system considered by [24])

𝐺(𝑠) =
[
𝐺11(𝑠) 𝐺12(𝑠)
𝐺21(𝑠) 𝐺22(𝑠)

]
, (21)

where

5𝑠1.56 + 20
116

𝐺11(𝑠) =
𝑠3.8 + 10𝑠2.93 + 20𝑠1.65 + 4

, (22)
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Fig. 1. Bode diagrams of the original transfer function (20) (solid blue line) and of its approximation obtained with the Loewner framework (dashed red line). (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Step responses of the original transfer function (20) (solid blue line) and of its approximation obtained with the Loewner framework (dashed red line).

𝐺12(𝑠) =
10𝑠2.93 + 5𝑠1.65 + 5

𝑠3.8 + 10𝑠2.93 + 20𝑠1.65 + 4
, (23)

𝐺21(𝑠) =
0.8𝑠2.15 + 3𝑠1.65 + 8𝑠1.28 + 27.2

𝑠3.8 + 10𝑠2.93 + 20𝑠1.65 + 4
, (24)

𝐺22(𝑠) =
𝑁22(𝑠)

𝑠3.8 + 10𝑠2.93 + 20𝑠1.65 + 4
, (25)

with

𝑁22(𝑠) = 0.5𝑠3.8 + 11𝑠2.93 + 0.2𝑠2.15 + 13𝑠1.65 + 0.4𝑠1.28 + 8.2 ,

and let the interpolating frequencies be 𝜆1 = 1, 𝜆2 = 3, 𝜆3 = 10, 𝜆4 = 100, 𝜆5 = 1000, 𝜆6 = 10000 and 𝜇1 = 0.2, 𝜇2 = 0.4, 𝜇3 = 0.6, 
𝜇4 = 0.8, 𝜇5 = 0.9, 𝜇6 = 0.999. The Loewner pencil is full rank and formulas (16) can be applied leading to a 6𝑡ℎ–order model.

The Bode diagrams and the step responses of the original fractional order system and of the reduced order model have been 
reported in Figs. 3 and 4, respectively. It can be noted that the reduced order model provides a good approximation of the original 
system. Fig. 5 report the relative error of the step responses. It shows, as well as the Bode diagrams do, that the selected interpo-

lating points do not perform very well at high-frequencies. A different choice of the interpolating sets could possibly lead to better 
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results.
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Fig. 3. Bode diagrams of the original system (21) (solid blue line) and of the reduced-order system (dashed red line).
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Fig. 4. Step responses of the original system (21) (solid blue line) and of the reduced-order system (dashed red line).
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Fig. 5. Errors (normalized to 1) between the step response of the original system and that of the approximated one.

Fig. 6. Bode diagrams of the original system (26) (solid blue line) and of the reduced-order system (dashed red line).

4.3. Example 3

Consider the following MIMO system [40]

𝐺(𝑠) =

⎡⎢⎢⎢⎢⎣

1
1.35𝑠1.2 + 2.3𝑠0.9 + 1

2
4.13𝑠0.7 + 1

1
0.52𝑠1.5 + 2.03𝑠0.7 + 1

− 1
3.8𝑠0.8 + 1

⎤⎥⎥⎥⎥⎦
. (26)

In this case the interpolating frequencies have been chosen as 𝜆1 = 0.1, 𝜆2 = 0.2, 𝜆3 = 0.3, 𝜆4 = 0.4, 𝜆5 = 0.5, 𝜆6 = 6 and 𝜇1 = 1.1, 
𝜇2 = 2.2, 𝜇3 = 3.3, 𝜇4 = 4.4, 𝜇5 = 5.5 and 𝜇6 = 6.6. The Loewner pencil is full rank and formulas (16) can be applied leading to a 
6𝑡ℎ–order model.

The Bode diagrams and the step responses of the original fractional order system and of the reduced order model have been 
reported in Figs. 6 and 7, respectively. Also in this case the reduced order model provides a good approximation of the original 
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system.
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Fig. 7. Step responses of the original system (26) (solid blue line) and of the reduced-order system (dashed red line).

5. Concluding remarks

It has been shown that the approximation of (infinite–dimensional) fractional–order systems in the Loewner framework leads to 
low–order models whose time and frequency responses match the original responses quite accurately. Another remarkable advan-

tage of this approach over alternative rational approximations is represented by its numerical efficiency. Note, in this regard, that 
alternative methods based on the Oustaloup approximation of fractional–order operators, as is done in the first step of the procedure 
suggested by [41], usually lead to high–order transfer functions whose computation is ill–conditioned because the magnitude of their 
coefficients may be extremely different: for example, the ratio between the largest and the smallest coefficient of the denominator 
of the intermediate transfer function derived by [41] is larger than 1080. The Loewner procedure described herein could possibly 
be successfully applied to the description of variable-order and distributed order MIMO fractional operators [42] since a low order 
model, in general, is associated with a lower computational load. Future directions of investigation may concern the extension of the 
results to these kind of systems.
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