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Abstract: The European cattle milk sector has rapidly intensified in recent decades. This trend has
received widespread disapproval from the public, which highlights the many problems linked to
intensification. To address these concerns, agricultural policies commonly impose an agroecological
transition. In order to evaluate and monitor the degree of sustainability of dairy cattle farms over
time, many sets of indicators have been proposed in recent years. However, these indicators have
often referred only to specific aspects of sustainability or have been generically proposed for the
entire agricultural sector, and therefore, they are not capable of capturing the peculiarities and the
complexity of the dairy cattle sector. A systematic review of the scientific literature was carried out to
obtain a complete picture of the indicators proposed for the European context. A total of 325 out of
over 6700 papers were selected, and three pillars—environmental, economic, and social pillars—were
explored. A total of 70 indicators were identified, which could help build a complete and less sectoral
picture of sustainability than that proposed so far. A total of 22 indicators were associated with the
environmental pillar, 18 indicators were associated with the economic pillar, and 17 indicators were
associated with the social pillar, while 12 indicators were associated with two different pillars. With
reference to the measurement methods, considerable variability was highlighted, which did not allow
us to identify or propose unique methods for measuring each indicator.

Keywords: European Union countries; dairy cattle farms; multi-criteria assessment; sustainable
production

1. Introduction

The European milk sector plays an important role in the world’s milk production;
in fact, Europe accounts for more than 20% of the world cattle milk supply, reaching
155 million tons in 2021. Milk production in Europe has steadily increased in recent
decades, in parallel with the reduction in the number of dairy farms and the increase in
the number of dairy cows per farm [1]. In fact, from 2010 to 2020, the average size of dairy
cattle farms increased from 38 to 58 cows per farm, and in 2020, about 80% of all European
milk was produced on intensive farms, mainly located in lowland areas [1]. Intensive
farming is the subject of criticism from public opinion, and among the main reasons for this
are ecological, environmental, and animal welfare issues [2,3]. Even mountain areas, which
account for 15% of the European agriculturally utilized area and which comprise the area
where the dairy system is the most important sector, are undergoing a structural change
in the agricultural sector with the intensification of production; productive specialization
for tourism according to a “food neocolonialism” pattern [4,5]; or the abandonment of
the activity [6,7]. Traditional small-scale mountain farms provide multiple ecosystem
services from a sustainability perspective, such as the conservation of animal genetic
resources, pollination, recreation, and a stand-in opposition to some aspects of intensive
livestock farming, such as landscape degradation, biodiversity loss, and the loss of wildlife
habitat [8].
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The need to provide ecosystem services, to maintain production while making it more
socially acceptable, and to reduce environmental impacts has led to the need to promote
extensive farming at the community level as well [9], and to encourage a transition from the
current production models to more sustainable ones, such as precision farming, multifunc-
tional agriculture, and agroecology [10–13]. However, this transition is slow [12], partly
because of the difficulty of having approaches and methods that comprehensively identify
dairy farm sustainability whose holistic assessment should be the basis for strategies aimed
at this new transition [14].

There are currently many sustainability certification standards. However, these stan-
dards are heterogeneous due to the differences in the interpretation of sustainability in-
dicators [15]. In the past, many protocols with different approaches have been applied
to assess the sustainability of dairy farms. Nguyen et al. [16] and Hassani et al. [17] as-
sessed sustainability by considering mainly environmental aspects. De Otálora et al. [18]
assessed the sustainability of dairy cattle and sheep farms broadly and multidimensionally
by considering 37 indicators that were derived from only three published papers. Rios
et al. [19] proposed a sustainability indicator for Colombian specialized dairy based on
13 papers from their bibliography. Recently, Zira et al. [20] pointed out that more studies
are needed that consider the joint assessment of three pillars/dimensions of sustainability:
environmental, economic, and social. In fact, the choice of indicators is often inadequate
due to the absence and lack of consideration of certain indicators that are essential when
discussing the sustainability of dairy cattle farms, such as animal welfare [21].

At the European Union level, comprehensive protocols have been established to
assess the sustainability of the agriculture, aquaculture, and fisheries sectors. In 2014, the
Food and Agriculture Organization (FAO) developed a list of useful indicators to assess
the sustainability of food and agriculture systems (SAFA) [22]. Similarly, in 2019, the
Global Sustainability Standard Board (GSSB) approved the Global Reporting Initiative
(GRI) standard project to develop protocols with the aim of identifying and describing the
most significant environmental, economic, and social impacts of several productive sectors.
In particular, GRI 13, which contains the agriculture, aquaculture, and fisheries sectors, was
approved in 2022 [23].

These standards were developed and created to be applied generically in all areas
of the agricultural sector; therefore, they are poorly suited to fully describing the dairy
sector and its peculiarities. At the same time, in 2022, the “DEXi-Dairy indicator hand-
book” was published [24]. This work proposes both the indicators necessary to assess the
sustainability of dairy farms and the identification of the measures necessary to calculate
the indicators themselves. However, this handbook refers only to specialized dairy farms,
despite considering all three pillars, and the rating scales of the individual indicators are
mainly based on expert opinions. To our knowledge and based on the current available
literature, there are no studies that fully consider both the three pillars of sustainability and
the characteristics of dairy farms in different production systems.

The aim of this study was thus to conduct a systematic review of the sustainability
indicators for dairy farms at the level of the European Union, which is a useful contribution
to a broad assessment of sustainability that considers both specialized and small-scale
multifunctional dairy farms. The literature review process is detailed, along with the
identification and aggregation of different indicators into three pillars of sustainability.
Subsequently, the indicators are discussed, with particular emphasis on those associated
with multiple pillars.
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2. Materials and Methods
2.1. Review Process

Following the updated guidelines published by Page et al. [25], the scientific literature
available in the Scopus database was reviewed. Scientific material published between 2014
and 2022 was considered. The search was conducted by considering the combinations of
the following terms: (dairy OR milk) AND (cow* OR farm* OR system* OR cattle) AND
(biodiversity OR welfare OR “ecosystem services” OR lca OR “life cycle” OR sustainab* OR
Agroecology OR gwp OR “greenhouse gas” OR ghg) AND (evaluat* OR value OR emission*
OR approach OR mitigation OR indicator* OR assess* OR impact* OR (multi* W/2 (criteria
OR indicator* OR functional*)) OR (environment* OR economic* OR social)). A first analysis
was conducted to compare the results of a generic string with a more specific one that was
only linked to the dairy cattle sector. While the generic string, which did not include the
terms “(dairy OR milk) AND (cow* OR farm* OR system* OR cattle)”, led to 124,533 pieces
of scientific material, the dairy string led to a total of 6751 international peer-reviewed
studies. According to Arvidsson Segerkvist et al. [26], animal welfare is a multifaceted
concept that, in some cases, falls within one or more dimensions of sustainability, while in
other cases, it is not considered as such. Knowing this issue, we decided to include the term
“welfare” within the initial string. The boundary search was narrowed to the affiliation
countries that joined the European Union before Brexit.

A flowchart of the systematic literature review process is reported in Figure 1 (Sup-
plementary Materials). From the initial 6751 records concerning the topic, 3262 records
were removed, as they were carried out outside the European Union. A first screening
by article title was conducted. During this first process, 3489 records were screened, and
among these, 2515 were excluded because no useful indicators for assessing sustainability
were identified. In the following second and third screenings, 45 records were excluded as
reviews and 183 were excluded because of the following reasons:

- English was not the primary language (n = 33);
- The record was not a journal or an article (gray literature: dissertations, conference

proceedings and reports, etc.; n = 140);
- The study was conducted in the United Kingdom after 2020 (n = 10).

After the fourth screening (abstract reading), a further 270 articles were excluded
due to the fact that they were outside the scope of this study. Therefore, 476 papers were
finally selected, downloaded, and analyzed after a full-text reading. Among these, a further
151 papers were excluded because they were unrelated to this study. After a full-text
reading of the final 325 articles, we discerned the countries included in each study.

2.2. Indicator Selection and Aggregation

Within the selected studies, the main indicators used to assess the sustainability of
dairy farms were considered. Given the need to fulfill the scientific gap regarding the
nomenclature [26], we created a hierarchical tree structure for each pillar of sustainability
and a hierarchical scale of the considered attributes. In this structure, the lower level was
represented by the indicators that were subsequently aggregated into criteria and principles.
Finally, through a process based on the guidance provided in the reference articles, the
branches represented by the sustainability pillar (i.e., environmental, economic, and social)
represented the highest hierarchical level of the tree.
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3. Results

In Figure 2, the results for the countries included in this review are shown. Among
these, Italy, with 66 papers, made up almost 19% of the overall studies, followed by Ireland,
with 42 records (12% of the overall studies), and Germany, with 33 records (9% of the
overall studies). No studies were reported for Cyprus or Malta.
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Figure 2. Countries included in the review and range of number of studies published in each country.

From the articles included in this study, 53% dealt with environmental sustainability,
6% with the economic dimension, and only 5% with the social dimension of sustainability.
Among the 325 eligible manuscripts, 207 (64%) referred to a single pillar of sustainabil-
ity, 51 (16%) considered two pillars, and only 17 (5%) included all three dimensions of
sustainability. However, 15% of the scientific papers (50 records) included all three of the
dimensions of sustainability previously discussed, since they dealt with the “animal health
and welfare” topic.

Figure 3 shows the number of studies per country in which the three dimensions of
sustainability were considered. The countries with a percentage of scientific publications
higher than 0.6% of the overall considered studies included multiple pillars of sustain-
ability. Conversely, countries with a percentage of scientific publications lower than 0.6%
considered only one dimension of sustainability. The only exceptions were Bulgaria, which
dealt with all three pillars in one publication (0.3%), and Portugal, which dealt with a single
pillar (i.e., environmental sustainability) over five publications (1.54%).

Through the analysis, 70 indicators were identified, and these were divided into
26 criteria. The latter were grouped into ten principles that belonged to the three different
pillars of sustainability: environmental, economic, and social (Table 1).

Different numbers of criteria were assigned to each dimension: seven criteria (26.9%)
were assigned to both the environmental and economic dimensions, while six criteria
(23%) were assigned to the social dimension (Figure 4). Only one criterion (3.8%) was
shared between two dimensions (i.e., social and economic), while three criteria (11.5%)
were shared by all three pillars of sustainability (Figure 4). These criteria were dependence
on other productive sectors, ecosystem services, and biodiversity (including both animal and
plant biodiversity).
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Table 1. Indicators of sustainability divided into criteria, principles, and pillars of sustainability.

Pillar Principle Criteria Indicator References

Environmental

Best management
practices

Feed efficiency
Nitrogen efficiency [27–29]

Feed intake [27,30–36]
Energy utilization [30,35]

Dependence on other
productive sectors

Feed management [37]
Feed composition [27,30,36,38–54]

Feed self-sufficiency [18,43,55–60]

Herd management Animal health and welfare [3,37,55,56,61–78]

Resource use

Energy self-sufficiency [12,18,27,37–
39,43,46,47,49,55,56,64,71,79–130]

Water management [18,37,55,77,80,82,104,105,119,120,
124–126,129,131–135]

Waste management use [37,85]

Environmental quality

Water quality
Eutrophication potential [80,82,83,111,136–140]
Acidification potential [82,83,92,111,137,138]

Water footprint [132,134,141]

Contribution to climate
change Global warming potential

[12,18,27,29,31,33,35,38–40,43,45–
48,50,51,53–

55,59,64,66,67,70,71,74,79–82,84–
87,89,92,94,97–99,101,104,105,107–

111,114–118,121–
126,129,130,136,138,140–220]

Air quality
Eutrophication potential [46,82,86,124,138,148,149,190,207,

209,217,221]

Acidification potential [32,80–82,86,87,124,138,148,149,190,
205,207,217,221]

Soil quality

Nutrient use efficiency [12,38,127,222]

Soil organic carbon [33,71,88,92,106,144,149,177,202,223–
226]

Soil erosion [18,71]

Eutrophication potential [43,81,82,84,92,106–
108,111,114,140,187,221,227]

Acidification potential [43,47,81,82,92,106,107,111,114,136,
173,187,221]

Land management practices

[18,30,31,33,38,39,43,46,47,49–
51,55,61,68,80–82,84–86,88,91–

93,96,99,105–108,124,126,136,139,143,
146,148,155,158,168,173,175,186,187,

191,202,207,211,216,225,227–233]

Biodiversity

Animal biodiversity

Species richness [124,156,211,225,229,234]
Soil fauna [234]

Presence of endangered
species [156]

Plant biodiversity

Species richness [124,156,211,225,229,234,235]
Floral intensity [93]

Dominant plant species [113]
Presence of endangered

species [156]

Ecosystem services

Habitat sustainability [82,156,157,236]
Participation in

agri-environmental scheme [237]

Grassland management [43,235]
Preserving ecological area [56,103,159,234]
Biodiversity conservation [157,235,238]
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Table 1. Cont.

Pillar Principle Criteria Indicator References

Economic

Profitability

Farm income
Total costs [12,14,18,52,55,59,61,87,91,124,143,

150,151,166,212,239–244]
Farm economic size [245]

Farm income diversification [245]

Profit Profit per workforce and
unit of land [14,86,150,153,154,163,246]

Economic return Farm gross margin [14,63,85,109,151,154,241]

Dairy product sales

Product value [18,185,210,241,247]
Product price [59,240,242]
Value added [41,85,91,152,235,245–247]

Product quality [128,141,242,248]

Resilience

Dependence on other
productive sectors

Feed self-sufficiency [18,43,55–60]
Economic self-sufficiency [18]

Energy self-sufficiency [12,18,27,37–
39,43,46,47,49,55,56,64,71,79–130]

CAP independency [55,57,58,157,169,228,233,237,238,
246,247,249]

Market orientation [86,153,154,250]

Farmer attitude
Farmer age [12,86,245,246]

Farmer gender [12,245,246]
Farmer goal [155,251]

Business resilience

Economic viability [59,153,154,199]
Innovation [56,64,86,154,252]

Farm cooperation [88]
Investment capacity [30,86]

Agricultural system
diversity

Farm business
diversification [18,66,245,247,253]

CAP payments [64]
Participation in

agri-environmental scheme [237]

Efficiency Productivity

Dairy production [52,55,141,216,236,242,244,254,255]
Animal health and welfare [3,37,55,56,61–78]

Total costs [55,59,150,166,239,243,244]
Eco-efficiency [41]

Environmental
pressure

Biodiversity Herbage nutritive value [93,225]
Biodiversity conservation [235,238]

Ecosystem services Pasture maintenance

[21,27,32,33,51,55,59,70,71,76,82,92,
93,98,113,119,120,141,144,146,148,

163,171,177,187–
192,199,223,228,236,238,244,256–262]

Preserving ecological area [56,103,159,234]

Social Farmer sustainability

Quality of life

Work–life balance [12,18,55,59,86,87,153,263]
Labour input [151]

Labour efficiency [18]
Labour conditions [61,263]

Farmer attitude

Innovation [56,64,86,154,252]
Awareness [264]

Motivation [3,18,41,42,44,62,63,69,72,75,251,264–
266]

Farm cooperation [88]
Animal health and welfare [3,37,55,56,61–78]
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Table 1. Cont.

Pillar Principle Criteria Indicator References

Social

Social sustainability

Sustainability of farm
life

Farmer age [12,86,245,246]
Farmer gender [12,245,246]

Farmer education [12,153,267]
Equal opportunities [61,263,268]

Salaries [131,237,268]
Access to health services

and medical care [131,200,263]

Social learning Community engagement [61,151,263,265,269–271]
Social responsibility [61,271]

Food quality
Food safety [68,268]

Food security [66,268]
Product quality [128,141,242,248]

Ecosystem services

Preserving ecological area [56,103,159,234]
Aesthetic landscapes [18,66,236,247]

Pasture maintenance

[21,27,32,33,51,55,59,70,71,76,82,92,
93,98,113,119,120,141,144,146,148,

163,171,177,187–
192,199,223,228,236,238,244,256–262]

Biodiversity
Preserving ecological area [56,103,159,234]

Aesthetic landscapes [18,66,236,247]
Biodiversity conservation [238]

Economic
sustainability

Dependence on other
productive sectors

CAP independency [55,57,58,157,169,228,233,237,238,
246,247,249]

Feed self-sufficiency [18,43,55–60]

Energy self-sufficiency [12,18,27,37–
39,43,46,47,49,55,56,64,71,79–130]

Eco-efficiency Eco-efficiency [41]

Economic security and
farm succession

Economic security and farm
succession [151,268]Sustainability 2024, 16, x FOR PEER REVIEW 6 of 27 
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Figure 4. Criteria divided into three pillars of sustainability. Abbreviations: AQ = air quality;
ASD = agricultural system diversity; BIO = biodiversity; BR = business resilience; CCC = contribution
to climate change; DOPS = dependence on other productive sectors; DPS = dairy product sales;
ECO = eco-efficiency; ER = economic return; ES = ecosystem services; ESFS = economic security and
farm succession; FA = farmer attitude; FE = feed efficiency; FI = farm income; FQ = food quality;
HM = herd management; P = profit; PROD = productivity; QL = quality of life; RU = resource use;
SFL = sustainability of farm life; SL = social learning; SQ = soil quality; WQ = water quality.

Sustainability Indicators

The 70 indicators found through the literature search were divided into the various
dimensions of sustainability. In particular, 31.4% of the indicators were associated with
the environmental pillar, 25.7% with the economic pillar, and 24.3% with the social pillar
(Figure 5). In addition, some criteria were shared between/among pillars: 1.4% between the
economic and environmental pillars, 10% between the economic and social pillars, and 5%
among all the pillars (Figure 5). Among the 22 indicators exclusively associated with envi-
ronmental sustainability, some were more studied than others: the global warming potential
(GWP), the acidification potential, water management, and land management practices.

The findings obtained from our study revealed that 18 indicators described economic
sustainability aspects. Among these, the seven most common indicators in the reviewed
literature were as follows: the total costs, the value and price of the product, the added
value, farm business diversification, the market orientation, farmer goals, and economic
viability.

Social sustainability was represented by 17 indicators that identified how dairy farms
have both a positive and negative impact on farmers and society [18]. Considering that all
the indicators were closely linked to each other, those that best represented the principles
of the social pillar of sustainability were as follows: work–life balance, motivation, community
engagement, and aesthetic landscapes.
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4. Discussion

An analysis of the scientific literature revealed a plethora of indicators, with each
receiving varying degrees of attention across the reviewed studies (Table 1). The extensive
bibliography dedicated to sustainability revealed the keen interest in this field. However,
few scientific works provided detailed information about the aggregation method or the
weighting assigned to the sustainability pillar indicators (e.g., [247]). Equally, defining
threshold values for these indicators proved unattainable. These two aspects highlight
the main limits of this study, which should be considered in future research to provide
detailed insights. Attention should also be paid to the way in which the indicators are
linked each other. In fact, this relationship could be a limiting factor for the compensation
of sustainability indicators [272].

4.1. Environmental Indicators

The global warming potential (GWP) is an important indicator that allows for an esti-
mation of which greenhouse gas (GHG) emissions are related to the dairy production sys-
tem, thus contributing to an assessment of the impact in terms of climate change [142–144].
The most widely used method for estimating the environmental impact is the life cycle
assessment (LCA). This method relies on the equations published by the IPCC (Intergov-
ernmental Panel on Climate Change), which allows the CO2-equivalent emissions for the
different greenhouse gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O),
to be estimated The unit used as a reference in most studies (e.g., [145,146,228,239]) was
the amount of milk, corrected for the fat and protein content (FPCM).

Ammonia (NH3) is often discussed in contemporary research, as seen in various stud-
ies (e.g., [79,147,228]). While ammonia is not a greenhouse gas, it plays a crucial role in
evaluating air quality [147,228]. Specifically, it is associated with the acidification poten-
tial, an indicator that measures the potential of substances to contribute to environmental
acidification [80,148]. This potential can be assessed using the life cycle assessment (LCA)
method and depends on factors such as the organic matter content and the levels of phos-
phorus and nitrogen. Additionally, some researchers (e.g., [145,147,228]) have examined
air acidification by considering other pollutants, such as nitrous oxide (N2O) and nitrogen
oxides (NOx). The acidification potential is a multifaceted indicator, and is crucial for
assessing both the air and soil quality [81,82,221]. Another important indicator is water
management, which is used to estimate the environmental costs of managing and using
water resources [131]. Beyond water management, and linked to it, there are other indica-
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tors that can be used to estimate the environmental costs of using water. Among these, the
eutrophication potential (also calculated with the LCA method) aims to assess the impact
on water due to an excess of nitrogen and phosphorus from activities such as livestock
farming (e.g., [80,83,136]). However, despite the research on water management by several
authors (e.g., [37,131,132]), the water quality and water footprint are still poorly treated
topics, thus highlighting the need for further research to provide detailed insights.

As far as the soil quality is concerned, land management practices was the second
most cited indicator in the literature (e.g., [18,38,84]). Specifically, it associates various soil
management techniques (e.g., different cultivation practices) with an environmental impact
using the LCA method (e.g., [61,143]).

Lastly, the composition of the diet was another widely studied topic because it is
linked to several other indicators (e.g., [39,40]). In fact, it is useful for partially explaining
and measuring other indicators, such as the global warming potential [147,239], whose
measure is influenced by the percentage of fiber in the diet of cattle, which affects the
amount of greenhouse gases (especially methane) produced by the animals [79].

4.2. Economic Indicators

The total costs indicator was one of the most widely used indicators for describing the
economic sustainability [55,239]. This, in conjunction with the “farm economic size” and
“farm income diversification”, constituted part of the “farm income” criterion. The latter
results from the sum of the farm’s fixed costs, the variable costs related to animal and crop
production, and the costs for external services (i.e., veterinary care expenses) [18]. Along
with the production, the total cost of a farm is a good indicator that provides information
about the farm’s production efficiency (low costs and a high production are indicators of a
high production efficiency) (e.g., [150,151,240]).

The value and price of the product are indicators that lay the foundation for calculating
a farm’s economic productivity. They represent the economic value (in EUR) of the goods
and services produced by a farm [247]. Along with the concept of the product value, the
added value of a product describes the farm’s financial benefit [85,245,246]. Essentially,
the added value refers to the increase in the value generated by a production process,
calculated from the average value of the product prior to taxes [152,247]. An example of
added value applied to the milk production system is the milk composition (proteins, fats,
and somatic cell count) or the method of production, measured in EUR per unit of milk
processed [85,246,247].

The farm business diversification indicator represents a farm’s capacity to generate
various externalities through both its agricultural and non-agricultural activities [18,247].
This indicator is an integral part of the multifunctionality concept. The greater the range
of goods and services a company provides beyond its primary production, the more it
is considered to be multifunctional. The market orientation of dairy farms identifies the
percentage of the farm income derived from production, without considering the income
obtained from agricultural subsidies [153,250]. High percentage values of this indicator
are associated with a low dependence on payments or agricultural subsidies and, in turn,
on other productive sectors [154]. This indicator is closely related to “farm business
diversification”, as it allows the farm income to be implemented, hence reducing the need
for agricultural subsidies.

The farmer goal is the indicator that quantifies a farmer’s attitude towards business
strategies or goals, in turn allowing their financial income to be increased [251]. This
indicator, which is analogous to farm business diversification and market orientation, is
also linked to economic resilience, i.e., the ability to adapt and prevent the risk of income
losses [155].

The economic viability of a farm is defined as the farm’s capacity to fully remunerate
its family labor based on the average agricultural wage [154]. This indicator, although
poorly treated in the current literature, is very interesting because it describes the farm’s
business resilience.
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4.3. Social Indicators

The work–life balance indicator represents the average number of hours of work
per week carried out by a farmer [86]. Along with wages, it is considered one of the
fundamental aspects of social sustainability [18,87]. The lower the value of the work–life
balance, the more positive its social impact [153].

The motivation, also known as “farmer attitude”, is an indicator that describes the per-
ceptions and approaches of a farmer regarding various aspects, i.e., animal welfare [3,62,63],
environmental sustainability [41], sustainable farming practices [264], and taking risks [42].
Although the studies on this indicator are empirical, it has been shown that the farmer’s
attitude (influenced by age, sex, and education) can significantly affect the socio-economic
efficiency of the farm [41].

Community engagement is another important indicator that needs to be considered
in the field of social sustainability. Despite having been poorly treated in the literature,
this indicator is notably important, since it is used to describe the perception of society
(represented by residents and tourists) regarding ecosystem services, animal husbandry
systems, animal welfare, and different agricultural practices [263]. In fact, the level of soci-
etal acceptance not only drives the scientific and farmers’ interests towards certain issues,
but also greatly influences the farmers’ attitude, motivation, and job satisfaction. Another
factor that usually positively influences the opinion of the community is the presence of aes-
thetic landscapes. This indicator, which is relevant in terms of both ecosystem services and
biodiversity preservation, reflects the dedication of farms to activities aimed at preserving
landscapes, thereby supporting both plant and animal communities [18,236,247].

4.4. Sustainability Indicators
4.4.1. Two-Pillar Indicators

The indicators that are associated with two pillars of sustainability are participation in
agri-environmental schemes, innovation, age of farmers, independence from subsidies of common
agricultural policies, and farm cooperation.

Participation in agri-environmental schemes is an indicator of environmental and
economic sustainability. It combines the need to increase the environmental sustainability
of agricultural activities with the possibility of developing the farm’s economy. In fact, the
so-called “more sustainable” activities also exert a negative impact on the farm’s economy.
For this reason, subsidies may be granted to farms that engage in these activities [237].

The innovation indicator is becoming increasingly important from both an economic
and a social sustainability point of view. A farm must achieve a high level of innovation
to observe tangible effects on its business economy [252]. Nevertheless, several stud-
ies [56,64,154] have reported that the innovation of farms provides long-term information
about a farm’s sustainability and resilience [86]. As a two-dimensional indicator, it also
exerts effects on the social dimension and, particularly, on farmers. In fact, innovation can
facilitate barn work (e.g., milking robots, automatic feeders, etc.), also influencing other
indicators of the social dimension of sustainability in turn, such as the “work–life balance”
and “farmers’ motivation”.

The age of farmers indicator is used to ascertain a business’s sustainability, and is
closely related to the economic performance of the farm [86]. In fact, some authors [12,246]
have reported that companies with a younger age profile tend to exhibit a higher level
of innovation, increased business cooperation, and a greater investment capacity, which
are all indicators related to corporate economic security [245]. In the social dimension of
sustainability, the age of farmers is intricately tied to their motivation to adopt practices
geared towards sustainability and enhance community engagement [265].

Independence from subsidies of common agricultural policies (CAP) is a very impor-
tant indicator, linked to both the economic and social dimensions of sustainability. This
indicator provides an overview of the farm’s economic stability. Indeed, CAP subsidies can
have a positive impact by supporting the economy. However, they can also be perceived
negatively in certain contexts [246]. The criterion that describes this indicator is the depen-
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dence on other production sectors, which includes both the economic and social dimensions
of sustainability. The farm’s reliance on CAP subsidies is often inversely correlated with
its economic stability. This means that a higher level of subsidy dependency tends to
correspond to a lower economic stability [57]. Consequently, in these cases, the farmer’s
motivation and attitude will likely be lower [237].

The farm cooperation, which is measured through an LCA method, allows both
the environmental and economic performances to be increased [88], and is linked to the
eco-efficiency indicator, defined as “the efficiency with which the ecological resources are
used to fulfill human needs” [41]. A direct proportional relationship exists between the
environmental performance and business cooperation. In fact, increasing the cooperation
tends to reduce the environmental impacts of a farm, thereby enhancing its environmen-
tal performance. Similarly, heightened cooperation leads to decreased company costs,
specifically those associated with production activities, resulting in an improved economic
performance [88].

4.4.2. Three-Pillar Indicators

The indicators that are associated with all three pillars of sustainability are “feed self-
sufficiency”, “animal health and welfare”, “energy self-sufficiency”, and “biodiversity conservation”.

Feed self-sufficiency refers to a farm’s ability to be independent from the purchase of
animal feed, by promoting corporate economic circularity [89]. From an environmental
point of view, the use of homegrown feedstuffs allows the purchase of food products to
be reduced and, consequently, the economic autonomy of the farm to be increased [58].
Conversely, employing homegrown feedstuffs helps reduce a farm’s nitrogen balance and
minimize the environmental impacts associated with transporting off-farm feedstuffs [59].
Moreover, companies show a high interest towards farms that feed their livestock with
local food, rather than food imported from foreign countries [18].

The indicator animal health and welfare can be assessed using the Welfare Quality
Assessment Protocol® method, which incorporates 33 measures collected from each farm,
grouped into 12 criteria that are, in turn, divided into four principles: good feeding, good
housing, good health, and appropriate behavior. However, due to the difficulties in the
application of this protocol, a simplified new version called the welfare monitor [62] has
started to be used. This new protocol allows the above four principles to be analyzed
using 13 measures. In this way, it is possible to properly assess an animal’s health in a
short time. In spite of these considerations, the animal health and welfare indicator is
not always associated with corporate sustainability, despite falling under all three pillars
of sustainability [26]. Environmentally, maintaining good animal health enhances the
production efficiency and reduces the need for medications, resulting in a decreased
environmental impact and a more sustainable business economy [37,65,156]. Animal health
and welfare is usually associated with the social dimension. In fact, this indicator is the
one that mostly influences the societal acceptance of agricultural and livestock farming
practices [61,62,65].

The energy self-sufficiency indicator, which is expressed as a percentage, is calculated
as the ratio between the energy produced by a farm and the overall energy consumed [18,90].
From an environmental perspective, this indicator is used to assess how the use of resources
exerts an impact on the environment. The LCA is the method most widely used to assess
the magnitude of the environmental impact and involves measuring the differences in
terms of CO2 emissions, comparing renewable and non-renewable energies [91]. The use
of renewable energies, beyond having a lower environmental impact, increases the level of
acceptance of societies towards farming practices. This indicator is also strictly linked to
the economic dimension. In fact, the independence from purchasing energy leads to lower
costs and encourages the better utilization or reuse of farm resources, thereby promoting a
circular economy within the farm [12,18].

The biodiversity conservation indicator describes two different classification criteria:
ecosystem services and biodiversity. This indicator has implications for all the dimensions
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of sustainability. In fact, from an environmental perspective, it allows for a measurement of
the attention given by farmers towards maintaining natural habitats and, consequently, a
high level of biodiversity [157]. As far as the economic aspects are concerned, maintaining
biodiversity (in conjunction with other issues) is recognized as a “provisioning” ecosystem
service for farmers. Stakeholders, who represent members of society, acknowledge the
“ecosystem service” attribute linked to this indicator. They perceive the preservation of
biodiversity as pivotal in maintaining traditional cultural landscapes [238].

5. Conclusions

Given the growing relevance of sustainability reporting by agri-food sector companies,
many organizations have developed sets of indicators that can be used for the definition,
assessment, and reporting of sustainability. For instance, the Food and Agriculture Organi-
zation (FAO) and the Global Reporting Initiative (GRI) have developed indicators that are
useful for calculating the sustainability of the agriculture, aquaculture, and fishing sectors
at the level of the European Union. Despite belonging to the agricultural sector, not all
indicators are suitable for describing the reality of dairy farms.

Our study identified 70 sustainability indicators divided into three pillars of sustain-
ability (i.e., environmental, economic, and social). From the analysis, it is clear that some
indicators are not only shared between two or more dimensions of sustainability (e.g.,
animal welfare, energy self-sufficiency, food self-sufficiency, and biodiversity conservation),
but they are also closely linked to each other (e.g., farmers’ ages and innovation, farmers’
goals and motivation, GWP, and land management practices). This calls into question the
possible compensation among indicators in a sustainability assessment.

Although a large number of indicators were identified in this research, it was not
possible to identify univocal and shared measures to calculate them.

The adoption of indicators can enhance the completeness of understanding and the
awareness of sustainability issues among all stakeholders, starting with the farmer. An
increased awareness among farmers would allow for the identification of critical points
and actions aimed at improving farm management levels. In this way, farms can not only
enhance their efficiency but also improve the public opinion of dairy cattle farms, thereby
gaining greater support from society. Furthermore, the identification and quantification of
sustainability in agricultural farms could lead to rewards in terms of public funding. Indeed,
one of the primary challenges of community policies is to clearly and distinctly identify
the farming systems/farms that are most capable of achieving community objectives
concerning the agroecological transition. Within this context, a fourth pillar of sustainability,
governance, could also be considered. This pillar already began to be recognized in the
2000s, and it includes rules for creating sustainability reports for agricultural farms that
consider the effects of political–institutional decisions in general. However, future studies
are certainly needed to develop a clear definition of the concrete goals that must be achieved
for dairy cattle farms to be considered sustainable.
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