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Inferring Markov Chains to Describe Convergent
Tumor Evolution With CIMICE

Nicolò Rossi; , Nicola Gigante , Nicola Vitacolonna , and Carla Piazza

Abstract—The field of tumor phylogenetics focuses on studying
the differences within cancer cell populations. Many efforts are
done within the scientific community to build cancer progression
models trying to understand the heterogeneity of such diseases.
These models are highly dependent on the kind of data used for their
construction, therefore, as the experimental technologies evolve,
it is of major importance to exploit their peculiarities. In this
work we describe a cancer progression model based on Single Cell
DNA Sequencing data. When constructing the model, we focus on
tailoring the formalism on the specificity of the data. We operate
by defining a minimal set of assumptions needed to reconstruct a
flexible DAG structured model, capable of identifying progression
beyond the limitation of the infinite site assumption. Our proposal
is conservative in the sense that we aim to neither discard nor
infer knowledge which is not represented in the data. We provide
simulations and analytical results to show the features of our model,
test it on real data, show how it can be integrated with other
approaches to cope with input noise. Moreover, our framework can
be exploited to produce simulated data that follows our theoretical
assumptions. Finally, we provide an open source R implementation
of our approach, called CIMICE, that is publicly available on
BioConductor.

Index Terms—Cancer progression, Markov processes, modeling,
theory and models.

I. INTRODUCTION

CANCER, one of the primary causes of death in developed
countries, is a genetic disease where mutations change

the behavior of some body cells inducing an out-of-control
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proliferation, with effects on the host comparable to those of
a parasite. In addition, tumors are a complex class of diseases
varying both at the macroscopic level (e.g., tumor location and
size) and at the microscopic level (e.g., genetic asset and gene
expression). Understanding the mechanisms behind the devel-
opment of such diseases is an interdisciplinary challenge far
from being solved. Current models represent such genetic drift
as an evolutionary process [1], albeit with its own peculiarities.
According to such a view, a tumor originates from a single cell
and progresses by acquiring genetic variability, and therefore
giving rise to several genetically distinct and relatively unsta-
ble cell populations called clones, competing (or cooperating)
for the limited resources in their micro-environment. Several
tumor evolution models have been proposed to explain such
intra-tumor heterogeneity [2], and they aim to become powerful
tools for understanding cancer progression and helping design
effective treatments. Having mathematical descriptions of tumor
evolution would provide a solid basis for the development of
cancer research and bringing this to a single patient level would
be a breakthrough for personalized medicine.

Exploiting this evolutionary perspective, several tumor phy-
logenetic techniques and methods have been developed over
the years. These operate either by adapting computational ap-
proaches used in biology to reconstruct species evolution or by
creating newer models, specifically crafted for this context [3],
[4]. Independently of the chosen strategy, it is possible to define
three main categories of cancer data [3]:! cross-sectional methods, that combine samples from dif-

ferent tumors of different patients;! regional bulk methods, where samples from different tumor
sites of a single patient are collected; and! more recently, single-cell methods, which analyze genomic
data sequenced from single cells originating from a single
tumor site [5].

Cross-sectional methods have shown how tumors tend to be
quite diverse when considering primary site classification (see,
e.g., [3] for an overview). To investigate this heterogeneity,
Single-Cell Sequencing (SCS) samples are potentially the most
useful as they allow the direct observation of instances of clonal
subpopulations, but they are also the hardest to collect, and the
scarcest among the currently available datasets. Nevertheless, as
genomic sequencing becomes cheaper and more accurate, SCS
datasets will become easier to produce and collect, and suitable
computational methods are needed for their exploitation. In addi-
tion DNA data, with respect to RNA and protein one, is expected
to have a more stable behavior and is directly inherited from
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subsequent cell generations. These are very favorable properties
for computational models.

In this paper, we describe a method to extract proba-
bilistic models, which we call Cancer Progression Markov
Chains (CPMC), from DNA SCS datasets, which describe the
mutational history of the cells of a sampled tissue. In such models
all the possible evolutionary paths witnessed by the data are
represented. So, our approach is “conservative” with respect to
other proposals which exploit statistical method to extract only
the most likely paths. In this direction, we allow in our models
convergent evolutions, which are also attracting the attention in
the literature as possible cancer progression mechanisms (see,
e.g., [6], [7]).

Moreover, being our method based on a minimal set of as-
sumptions it has the advantage of highlighting the critical aspects
in the use of mutational matrices extracted from DNA SCS
data. In particular, we formally proved that the expressiveness of
such data can be insufficient, independently from the inference
method, to properly disentangle convergent trajectories.

CPMC are a particular kind of Discrete Time Markov Chains
(DTMC) tailored to our use case, embedding useful mathemat-
ical properties. We first show that the kind of SCS datasets
currently available can be modeled by CPMCs Then, we prove
that a unique CPMC can be inferred from data, when there are
no convergent evolutions. An algorithmic method to find such a
solution is described. When the uniqueness is not guaranteed, we
define a heuristic for inferring one of the possible models. Lastly,
we propose a new tool, called CIMICE, which implements the
described methods, and we evaluate its results on both synthetic
and real datasets. CIMICE has been published as R package on
Bioconductor [8].

A. Related Work

One of the earliest computational models of oncogenesis [9]
represents the accumulation of mutations as an oncogenetic tree
of causal dependencies among alterations.In this formalism, the
root denotes the wild-type, and each path in the tree describes
a sequence of causally related events. As in our approach, the
nodes in an oncogenetic tree correspond only to observed genetic
alterations, with no inferred genotypes. Despite some similar-
ities with our approach, there are two fundamental differences
between CPMC and oncogenetic trees: first, CPMC are Directed
Acyclic Graphs (DAGs), a more general graph topology allowing
for path convergence, thus having trees just as a special case;
second, and more importantly, the interpretaion of the edges’
probabilities are different: in oncogenetic trees, the probability
assigned to an edge is the probability of the event “this edge
exists”. In a CPMC, they instead represent the probabilities of
transitioning from one state to the next.

One of the first computational methods to infer an evolu-
tionary mutation tree from SCS data was proposed in [10].
Rather than inferring a phylogenetic tree, their method directly
describes temporal ordering relationships among mutations sites
by also taking into account sequencing errors. The idea is to
compute a “pairwise order relation”, which is a partial temporal
ordering on the observed genotypes, represented by a genealogi-
cal tree, whose leaves are labeled by the observed genotypes and

whose internal nodes correspond to putative common ancestors
of the lineages of the samples. Then, mutations are superimposed
on the branches of the tree, so that either a mutation temporally
precedes another, or two mutations are considered independent.
In other words, the ordering is determined by set inclusion: when
a genotype has a subset of mutations of another, then the former
must temporally precede the latter. For instance, if 00 encodes
the wild-type, and 01, 11 are two other observed genotypes (with
one and two mutations at the considered sites, respectively) then
the inferred temporal ordering is 00 → 01 → 11. To deal with
situations that are inconsistent with the above rule, e.g., a triple
01, 10, and 11 of observed genotypes encoding a branching
evolution from the wild-type, a Bayesian approach is incorpo-
rated into the method. A CPMC provides information similar
to the genealogical tree of [10], but since CPMCs are DAGs,
branching lineages of evolution can be trivially modeled in the
graph structure. The previous “inconsistent” example would be
modeled as a CPMC with four edges and a diamond topology:
00 → 01, 00 → 10, 01 → 11, 10 → 11.

OncoNEM [11] is an automated method based on a nested
effects model for reconstructing clonal lineage trees from noisy
somatic SNV data of single cells. OncoNEM works by clustering
together cells with similar profiles; then, it infers their geno-
types and unobserved ancestral genotypes; finally, it outputs
the inferred tumor subclonal compositions, an evolutionary tree
describing the history of such subpopulations, and posterior
probabilities of the occurrence of mutations. OncoNEM’s al-
gorithm works by assigning a probabilistic score to sets of
mutations and by searching for high-scoring models in the space
of possible trees.

SCITE [12] is also a max-likelihood search algorithm that
infers the evolutionary history of a tumor from noisy and incom-
plete SNV data, but, unlike OncoNEM, it focuses on mutation
trees. SCITE makes the infinite sites assumption, hence it as-
sumes that the input matrix describes a perfect phylogeny. Such
a tree cannot have two nodes labelled with the same genotype.
This condition together with the absence of convergent paths
(intrinsic in the definition of tree) excludes convergent evolution.
The infinite sites assumption justifies this choice by stating that
there are so many possible mutation sites, that the probability of
picking a specific site twice at random is negligible. However,
contradictions of this hypothesis can be found in SNV databases
for cancer, such as COSMIC [13].

An important limitation of both OncoNEM and SCITE is
that they work under the infinite sites assumption, i.e., under
the hypothesis that each mutation may only occur once in the
evolutionary tree. Evidence has been brought forward to show
that real SCS data violates that assumption, and that finite-site
models taking into account chromosomal deletions, loss of
heterozygosity and convergent evolution lead to more accurate
inference of tumor phylogenies [14], [15], [16], [17]. Although
our approach assumes that mutations are never lost, we do allow
for convergent evolution.

Classic phylogenetic approaches, such as UPGMA and
neighbor-joining [18], [19], [20], and other kinds of clustering
methods [21], have also been applied to SCS data. Building
correct phylogenies with such methods can be done efficiently
under the infinite sites assumption if the data contains no errors
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and mutations persist generation after generation [22]; under less
restrictive hypotheses, however, they tend to be outperformed by
the more focused approaches described above.

To improve the accuracy of variants detection, single-cell
specific variant callers should be used. Monovar [23] and SC-
caller [24] were the first two callers developed specifically for
SCS data; SCIΦ [25] and SCAN-SNV [26] are two more recent
approaches to solve the same problem.

One limitation of our proposal is that it assumes that sub-
clonal reconstruction has already been performed, and clonal
genotypes have been resolved. Rather than including a specific
inference method into our model, we rely on tools such as
SiCloneFit [16], Single Cell Genotyper [27] or BEAM [28] to
provide the required input.

Although the technology is continually improving, the num-
ber and size of published SCS data sets are still limited. A few
tools exist that permit generating simulated SCS data sets, and
in some cases also inferring their phylogenies [29], [30].

Another way to tackle the lack of high-quality high-
throughput SCS data is to develop statistical models that com-
bine such data with traditional bulk sequencing data [31], [32],
[33], [34], [35]. In this paper, however, we consider only SCS
data.

Finally, the literature on SCS and computational analysis is
too large to be summarized exhaustively. Several surveys on
various methods and tools for inferring tumor histories from
single-cell genomic data have been published to date, includ-
ing [2], [3], [4], [22], [36], [37], [38], [39], [40], [41], [42], [43],
[44].

II. RESULTS AND DISCUSSION

In this work, we consider a DAG model suggested by the
following general intuition. Phylogenetic trees put each existent
taxon (e.g., a cell from an SCS experiment) in a leaf, and the
internal nodes are their inferred extinct ancestors. However, in a
tumor more complex evolutionary progression are possible and
DAG models allow to better represent such trajectories espe-
cially in the case of convergent evolution. In fact, our method
does not assume that a perfect phylogeny exists for a set of cells,
i.e., a cell having a given mutation m1 and a cell having another
mutation m2 may both generate cells having mutations m1 and
m2.

We identify instead a minimal set of assumptions on tumor
evolution, ensuring that DTMCs having DAGs as support cor-
rectly model the disease progression. Intuitively, DTMCs are
probabilistic models in which the next state of a system only
depends on the current one. In our context, the state of the system
is the genotype of a tumor cell. The tumor cell will generate new
cells whose genotypes will represent the next state.

We assume that:
(∅) the evolution starts from “normal” cells, i.e., cells which

exhibit the same genotype as the healthy cells of the same
patient;

(∪) mutations can only be acquired along the progression of
the disease;

(MC) the probability that a cell will generate cells with new
mutations only depend on the genotype of the cell itself;

( ) a minimal number of mutations is acquired in each new
generation of cells.

DNA SCS data support hypothesis (∅) and (∪) since the
DNA sequence is not influenced by the cell’s life cycle and all
mutations can be detected independently of the gene expression
levels.

We are not pretending that these assumptions completely
describe the high level of complexity of tumor evolution. Instead,
we are trying to reason on the smallest possible set of hypotheses
that allows us to rely on DTMCs as modeling formalism and
to infer the underlying chain from a dataset. While hypothesis
(MC) allows the use of DTMCs, the other hypotheses guarantee
that the model has a simple topology, i.e.:! it is acyclic1 thanks to (∪);! it has a single source thanks to (∅);! it has no “forward” edges allowing to jump intermediate

states thanks to ( ).
Agreeing on the above assumptions, we propose the use of

such DTMCs, later called CPMCs, as models for the mutational
evolution of a tumor as inferred from a dataset of genotypes col-
lected from cancer cells. These models can be used as generators
for SCS mutational matrices that we can exploit as synthetic data.
In addition, we define also the jump version of a CPMC, another
DTMC in which at each step we force a mutational event to
occur, hence eliminating any self-loop. Then, we consider the
problem of inferring this latter model from data. In particular,
we propose a method that takes in input a Mutational Array
containing the genotypes of a set of cells taken from the tumor
at a single time and outputs the jump version of a CPMC that
could explain the data. The dataset has to be representative of all
the genotypes present in the tumor, i.e., it has to reflect the actual
genotype distribution (see Section Sample Size Evaluation in
the supplementary material, for some statistical considerations).
When the dataset does not support two or more possible expla-
nations for a genotype (no convergences) we formally prove
that the CPMC that we output is the only model that satisfy our
hypothesis. When there are convergences, we output one of the
possible CPMCs that explains the data.

We do not aim at correcting errors in the input data within our
method. For this task we rely instead on other tools capable of
clustering and cleaning mutational matrices based on known
or predicted false positive, false negative and missing value
rates. As an example of such an approach, the CIMICE package
provides an easy-to-use interface to SiCloneFIT’s preprocessing
algorithm.

To further reduce the dependency of the results from random
noise in the data, we implemented a bootstrap-based approach
that consists in the random resampling of the input mutational
matrix’s rows. Bootstrapping allows us to evaluate how much
support there is in the data for both the nodes and the transitions
that we intend to reconstruct. This allows CIMICE to produce
multiple CPMC models that are finally merged, helping the user
to identify nodes and edges that might be generated only because

1A part from the possible presence of self-loops.
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Fig. 1. CPMC used to generate the example datasets. Random paths of fixed
length are simulated from the clonal node to generate the genotype of a single
cell.

of the noisy nature of SCS data. The merging operation is done
naturally by averaging the weighted adjacency matrices of the
CPMCs produced by running CIMICE on the different sampled
datasets.

In order to assess the performance of CIMICE, we test it on
both artificial datasets generated accordingly to our model with
different levels of noise and two real world case studies.

As for the simulation, the datasets were generated from the
graph in Fig. 1, setting the length of the generated path k to 5 and
simulating 100 cells. The length of the generated path represents
how far in the cancer progression the dataset has been sampled,
while the number of simulated cells is the number of samples
in the SCS dataset. In order to include in our generated data
errors that are typical of real SCS experiments, we considered
different false positive FP and false negative FN rates. The
FP rate is the probability of detecting a mutation in a cell when
it is not present. Similarly, the FN rate is the probability of not
detecting a mutation that is present. We repeated the simulation
4 times for the following FP and FN rates:! FP = 0.01 and FN = 0.05! FP = 0.01 and FN = 0.10! FP = 0.01 and FN = 0.15

In Figs. 2 and 3, we test and compare results between CIMICE
and CIMICE coupled with SiCloneFit’s preprocessing algo-
rithm. To produce each result, we resampled 100 cells from
the generated dataset 1000 times. The sample size selected
here was decided to adhere with most of the publicly available
real datasets and to display the performance of the method in
a challenging scenario. As the reader can notice, SiCloneFit
allows us to improve the genotype/node selection in presence
of high noise data. This results in more compact graphs which
exclude most of the spurious transitions. However, also the
models produced by our method alone are consistent with the
generator, if considering only the solid nodes/edges that have
passed the bootstrapping test. This means that such nodes have
been represented in a fraction of at least 1− p of the models
produced through the bootstrapping procedure. Note that p is a
hyperparameter to be chosen between 0 and 1 which balances the

Fig. 2. Examples without SiCloneFit preprocessing. Dashed components have
a bootstrap probability less than 95%. Red arrows were present in the original
topology.

sensitivity-specificity tradeoff. In the examples itsp = 0.05. Fig.
4 shows the sensitivity and the false negative rates obtained in
recollecting the edges in the mentioned examples. Note that even
if SiCloneFit helps in reducing the size of the final model, it may
be too restrictive and limit the correctness of the reconstructed
topology.

The supplementary material provides other simulations based
on the generator of Fig. 1. For each dataset the models recon-
structed by CIMICE and by CIMICE coupled with SiCloneFit
are compared with those obtained by SCITE’s, highlighting the
impact of its assumptions (Supplementary Figs. 2–13).

As anticipated in the introduction, the solution to the inference
problem may be not unique. We show in the Methods Section that
the uniqueness is guaranteed when there are no convergences in
the evolutionary trajectories. This does not hold in the general
case and we rely on a heuristic that assumes uniform propor-
tional distribution of the possible sources for a given sample. In
Section Validation of the supplementary material, we consider
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Fig. 3. Examples with SiCloneFit preprocessing. Red arrows were present in
the original topology.

Fig. 4. Performance metrics in the shown examples. The Bootrstrap-p value
indicates that edges with support less than 1− p in the bootstrap test were
excluded from the final model. We remind again that these examples show a
highly challenging scenario with strong lack of data.

two possible CPMCs for generating synthetic data and we use
them for evaluating the performances of our inference method.
While the first CPMC is designed to agree with our heuristic,
the second one is explicitly studied to represent a “worst case”
scenario in this regard. In both cases the topology is correctly
reconstructed, while as expected the weights of the edges are
more sensitive.

Finally, we test our approach on real datasets, specifically in
two settings. In the first we considered a dataset on clear cell renal
cell carcinoma from [20], and in the latter metastatic colorectal
cancer data from [45] (CRC1). In Figs. 10 and 11 we show the
results of our method coupled with SiCloneFit preprocessing,
using the False positive, negative and missing rates reported
in [20] and [45], respectively. We set the bootstrapping method
to resample 100 datasets with the same size of the original ones.

We consider the results from our tool on the dataset of [20]
as it is a common benchmark for tumor phylogenetics. In the
reconstructed model depicted in Fig. 10 we label the nodes with
the sample identifiers that correspond to the genotype identifiers
in our context. The amount of considered cells is extremely low
(17 samples), far from the requirements needed to successfully
recapitulate the evolutionary history (see the supplementary
material, section Sample Size Evaluation). However, our method
distinguishes two clusters of cells: the early-stage ones are repre-
sented in the first layer of the generated chain and the remaining
ones in the second layer (10). A possible interpretation of our
reconstruction, is to consider the first group as the set of possible
transient states, that evolve to eventually converge to a single
final state. Notice that the phylogenetic tree reported in [20] is
built without applying any technique for error correction. As
a consequence, some samples are considered different in the
phylogenetic tree, while they exihibit the same genotype in our
model due to the SiCloneFit preprocessing step. Despite these
differences we can notice some similarities, for instance RC-6
and RC-7 are far from the normal cell in both cases.

As far as a comparison between the results reported in [45]
and ours (Fig. 11), we notice a consistency between the re-
constructed models. In particular, the mutations associated with
the metastatic phase almost coincide and appear in the deeper
nodes in both models. We notice a difference on the positioning
of GATA1. In [45] it is reported as a metastatic mutation,
while in our model it is introduced in early stages. Evidence
supporting our reconstruction can be found in the literature (see,
e.g., [46], [47]), where GATA1 is suggested as a driver gene,
aggressiveness predictor, and potential therapeutic target.

III. CONCLUSION

In this manuscript we have presented CIMICE, a framework
for inferring tumor evolution as a Discrete Time Markov Chain
from single cell DNA sequencing (scDNASeq) data. Compared
to other methods, our tool is based on a limited set of assumptions
and is capable to incorporate convergent evolutionary trajecto-
ries.

The proposed approach embeds a heuristic to reconstruct
the probabilities of the tumor taking different paths through its
progression. This simplification assumes that the paths that have
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originated a given genotype have equal proportional probabili-
ties. If more information about the history of certain cell classes
is available, e.g., through expert knowledge, our approach can
be straightforwardly extended to include it in the inference.

The fulfillment of our assumptions and a sufficient quantity of
data are necessary for obtaining statistically significant results.
However, we have shown that some information can still be ex-
tracted when data is scarce. The development of new sequencing
methods, like the Tapestri platform [48], will help in generating
larger and more reliable datasets for our method, approaching
the sample sizes required by our analyses.

The final outcome of the proposed method is a Discrete Time
Markov Chain and, as such, it can be analyzed with model
checkers such as PRISM [49]. Such an approach would allow
to find and evaluate temporal properties about the system and,
therefore, of the modelled tumor. In addition, this representation
can be naturally exploited to consider the interplay of drug ef-
fects, possibly relying also on more sophisticated hybrid models
(see, e.g., [50]). Unfortunately, this direction requires mapping
such effects to logical models based solely on the genotypes of
the cells, which could be both very challenging and limiting in
certain circumstances.

Another direction for improvements would be to include
additional information that is not available from the genotypes
alone, such as the RNA expression levels, epigenetic markers
and histological/spatial data. Such data can help in providing
a deeper characterization of the tumor, allowing for the refine-
ment of the proposed subclones. Even if coping with this less
stable data is, from the modelling point of view, much more
complex, it could be exploited to resolve part of the ambiguity
on convergences present in mutational matrices.

In conclusion, our method is a step forward in describing
mutation accumulation in scDNASeq data. It develops over a
limited set of clearly stated assumptions and it is flexible enough
to cope with noisy data if paired with a proper preprocessor. In
addition, it is reasonable to foresee that, with the progress in
sequencing technologies, data limitations will be overcome in
the near future, bringing our method to its full potential.

IV. METHODS

A. Setting the Biological and Experimental Context

We represent the state of a cell as the set of mutations present
in it. A normal cell is considered to harbor no mutations. Such
absence of variants can be defined by exploiting either an ex-
ternal reference or the the healthy cells of the patient. The first
method requires attention in mutation selection, while the latter
may hide genetic predisposition to tumor development. A cell
in any other state than the normal one is possibly dangerous.

Formally, let G = {g1, . . . , gn} be a set of gene mutations. A
set S ⊆ G denotes the genotype over G for a cell in which the
mutations of S are present, while the mutations in G\S are not.
In particular, ∅ is the genotype of a normal cell. The set of all
possible genotypes over G is P(G), the power set of G.

We are interested in the reconstruction of a probabilistic
model representing the mutational history of a cell, i.e., the
temporal sequence of the genotypes of the cell’s ancestors.

To this aim, some assumptions on the mechanisms underlying
the mutational events are needed. We formulate the following
Model’s Hypotheses:

(∅) The normal cell ∅ is an ancestor of every cell.
(∪) Mutations can only be acquired, and multiple mutations

may be acquired from one cell generation to the next.
(MC) The probability of a mutational event in a cell only

depends on its current genotype—that is, it does not
depend on how the cell reached a certain state.

( ) An evolutionary history is anti-transitive and minimal,
in the sense that it does not contain another evolutionary
history that can explain the same observed genotypes,
subject to the requirement that it must account for every
plausible trajectory—that is, if X ⊂ Y are two geno-
types then there must be a path from X to Y .

The empty set hypothesis (∅) states that each mutational
history always starts from a normal cell. This hypothesis can be
relaxed without significantly affecting the results in this paper.
For instance, if there are some mutations that are present in all the
cells of the system under analysis, the ∅ genotype can be replaced
by a given genotype containing the mutations acquired at birth by
the patient. The union hypothesis (∪) specifies that mutations
are never lost, i.e., the genotype of an ancestor of the current
genotype is a subset of the current genotype. The homogeneous
Markov chain hypothesis (MC) states that the acquisition of
mutations is probabilistic and can be modeled through Markov
chains, since each genotype uniquely determines the probability
of transitioning to any other genotype. The anti-transitivity
hypothesis ( ) asserts that whenever it is possible to observe
a sequence of transitions from a genotype to another, it is not
possible to observe any of its subsequences. This is a sort of
parsimony assumption, because it implies that each new mutated
generation only acquires a minimal number of mutations.

Example 1 from the Additional examples section of the sup-
plementary material shows the impact of these hypothesis in a
simplified setting.

B. Details and Limitations of the Used Data

We focus on SCS data and in particular on DNAseq data, as the
DNA molecule offers the chemical stability properties needed
for our hypothesis that the RNA cannot provide. Moreover, the
DNA sequence is not influenced by the cell’s life cycle and all
mutations can be detected independently of the gene expression
levels.

Aware of the limitations and errors of the current SCS tech-
nologies, in this work we consider an ideal setting in which all
the relevant mutations are correctly detected and numerous cells
from a tumor region are analyzed. As the technology improves, it
is reasonable to assume that larger datasets will become available
and that the rate of errors will decrease. Currently, to approxi-
mate this ideal setting, the data may be preprocessed with tools
that impute missing values and resolve clonal genotypes [16],
[27], [28]. A possibility to derive relatively large datasets is to
preprocess data from bulk sequencing experiments and extract
plausible single cell explanations [51].
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As we will see, working on SCS data has the following
advantages with respect to bulk sequencing data:

– we can drastically simplify the model inference engine,
since the set of genotypes present in the tumor are repre-
sented in the data and do not need to be inferred;

– we can formally prove that when each cell has a unique
possible set of ancestors, the produced model is correct,
i.e., no other information is needed;

– we propose models that can be used to generate artificial
data.

An SCS experiment consists in the sequencing of a set of cells
taken from either in vivo or in vitro samples. Hence, the genotype
of each analyzed cell is known. Usually, the results of such
experiments are represented through Boolean matrices, called
Mutational Arrays [3], in which each row represents a cell and
each column represents a mutation. The value in position (i, j) of
a mutational array is 1 if and only if the j-th mutation is present
in the i-th cell. Mutational arrays have a broad usage among
many tools in the field of tumor phylogenetics (see, e.g., [52],
[53]).

As for the underlying models, we need some assumptions on
the data as well. In particular, our Data Hypotheses are:

(ONE) All the analyzed cells are taken at the same time from a
single site, i.e., they represent one snapshot of a cancer
tissue.

(POP) The analyzed cells reflect the genotype distribution of
the population of all the cells in a given site.

Under these assumptions, given a mutational array, it makes
sense to define a frequency distribution over the genotypes.

Definition 1 (Dataset Distribution): Let G be a set of gene
mutations. A dataset distribution D over G is a frequency dis-
tribution over the genotypes of G, i.e., a function D : P(G) −→
[0, 1], with

∑
S∈P(G) D(S) = 1.

In what follows, we will omit the underlying mutational
arrays and refer to the corresponding dataset distributions, called
simply datasets hereafter. A dataset is typically defined by its
support: although the size of P(G) is exponential with respect
to the size of G, usually only a limited number of genotypes is
observed, so the support usually has a small size. Summarizing,
P(G) is essentially the observed frequency of the genotype G
in the dataset D (see Example 2 from the Additional examples
section of the supplementary material).

Our goal is to find a plausible probabilistic model of the
mutational histories of the cells in a given dataset, within a
certain class of Markov models, based on the previously stated
assumptions. In general, such a problem does not have a unique
solution, even in an ideal generalized setting in which an infinite
sequence of datasets corresponding to temporal snapshots of a
sequenced tissue is available (see Example 5). In order to over-
come such difficulty, we will (a) identify a few additional con-
ditions guaranteeing the uniqueness of the model reconstructed
from a dataset, and when uniqueness cannot be achieved, ex-
plicitly describe what missing information prevents that; and
(b) when such additional information is not available, propose
a reasonable criterion for the reconstruction of an admissible
model.

C. Basics of Discrete Time Markov Chains

Given our model’s hypotheses, it is reasonable to consider
DTMCs as the underlying mechanism generating the data. The
nodes of such chains correspond to the possible genotypes of
a cell, while the edges model the probability of a genotype to
mutate, i.e., to acquire new mutations. In the supplementary
material, section Introduction to Discrete Time Markov Chains,
we briefly report some ground definitions, such as the con-
cept of jump chain, and notations used in this manuscript. We
refer the reader to [54], [55] for a complete presentation on
the topic.

D. Cancer Progression Markov Chains

In our context, we refer to a subset of DTMCs that we call
Cancer Progression Markov Chains (CPMCs). CPMCs have
additional properties which make them admissible as models of
cancer progression. Intuitively, the vertexes of a CPMC represent
the genotypes involved in the cancer progression under analysis.
The empty genotype is the normal one that is at the origin of
every mutational history. Every other vertex is reachable from
the empty genotype. Since, under our hypotheses, mutations
cannot be removed, a vertex representing a genotype cannot
reach another vertex representing a genotype with fewer muta-
tions. As a consequence, CPMCs are always acyclic. Moreover,
since we are assuming that the evolutionary history is always
the one involving fewer mutations, whenever there is a path of
length at least 2 from one vertex to another, there cannot be an
edge connecting the two vertices. This implies that CPMCs are
anti-transitive. The above observations lead to the formulation
of the following definition of CPMCs.

Definition 2 (Cancer Progression Markov Chain (CPMC)):
Consider a set of genes G = {g1, . . . , gn} and let S =
{S1, . . . , Sm} be a set of genotypes over G, with S1 = ∅. A
Cancer Progression Markov Chain C = (S, p) over S is a
DTMC such that:

1) S1 = ∅ reaches any other genotype of the chain;
2) for every i, j ∈ [1,m], p(Si, Sj) > 0 if and only if Si ⊆

Sj and there is no k (= i, j such that Si ⊆ Sk ⊆ Sj .

The first condition of our definition of CPMC states that the
normal genotype ∅ is always present, and it is the initial state
of any mutational evolution. In other terms, in CPMCs we are
always implicitly considering the initial distribution that at time
0 gives probability 1 to ∅ and 0 to all the other states.

In the second condition of the above definition, we have been
more restrictive than stated in our hypotheses. In particular, we
have imposed that whenever a genotype Si is one of the minimal
explanations for a genotype Sj , the probability of going from
Si to Sj is greater than 0. This restriction is not too demanding,
since such probability can be arbitrarily small. It allows us to
uniquely define the topology (i.e., the set of edges) of the chain
for a given set of genotypes. However, it is possible to drop such
restriction when further information on the topology is available.

Example 1: Let us consider the set of genes
G = {A,B,C} and the set of genotypes S =
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Fig. 5. CPMCs over {∅, {A}, {B}, {C}, {A,B}, {B,C}}.

Fig. 6. Jump chains. The jump chains associated with the CPMCs depicted
in 5.

{∅, {A}, {B}, {C}, {A,B}, {B,C}}. In Fig. 5 we represent
two possible CPMCs over S .

Since a CPMC is a DTMC, given a CPMC C, we can build
the jump DTMC J(C) associated to C. The properties of C
ensure that also J(C) is acyclic, with a single source vertex, and
anti-transitive. In particular, J(C) is still a CPMC.

Lemma 1: Let C be a CPMC. Then C is acyclic, anti-
transitive, and J(C) is a CPMC.

Example 2: Let us consider the two CPMCs depicted in Fig. 5.
Fig. 6 represents their associated jump chains.

E. Cancer Progression Markov Chains and Datasets

Let us assume that we know that the evolution of a type
of cancer is regulated by a given CPMC C. We can use C to
generate simulations of the evolution of the cancer. Moreover,
we can useC to determine the probability that a cell with a given
genotype will degenerate into another one.

Notice that in CPMCs time evolves, i.e., edges are crossed,
when a cell cycle is completed. However, it makes no difference
in our context to replace single cell cycles with their multiples,
e.g., consider the new state after 100 cell cycles, or even with
periodic observations of the system. On the other hand, we could
have referred to Continuous Time Markov models in which
time can be expressed in days, months, years (depending on the
desired granularity). In that case, probabilities would have been
replaced by transition rates. However, without more specific
knowledge on proliferation/death rates of different genotypes,
continuous time models would give us an equivalent view.

Interestingly, CPMCs can be used as data generators to vali-
date other inference methods, provided that such methods agree
on our four Model Hypothesis. In particular, we can randomly
generate a CPMC C, use it to generate a dataset Dk, where
Dk(S) is the probability that C is in state S at time k, i.e.,
Dk(S) = P [X(k) = S], apply the inference method on Dk and
check whether the inferred knowledge is correct with respect to
the underlying chainC. This process can be repeated until we are

Fig. 7. Two CPMCs that generate the same datasets at different time instants.

able to either accept or reject the inference method. The CPMCs
can also be artificially engineered in order to test the behavior
of the method on limit cases. Section II of the supplementary
material presents in more details this idea and exploits it for
validating our proposal.

We recall that, since C = (S, p) is a Markov Chain and we
assume that at time 0 the process starts from the normal genotype
∅, we have:

D0(T ) = P [X(0) = T ] = 0 if T (= ∅

D0(∅) = P [X(0) = ∅] = 1

and

Dk(T ) = P [X(k) = T ] =
∑

S∈S
P [X(k − 1) = S]× p(S, T )

for each k > 0
Example 3: Let us consider again the CPMC C depicted

in Fig. 5 on the left. The dataset D0 generated by C at time
0 is D0(∅) = 1. The dataset D1 generated by C at time 1
is D1({A}) = 0.2, D1({B}) = 0.3, and D1({C}) = 0.5. The
dataset D2 generated by C at time 2 is D2({A}) = 0.22,
D2({B}) = 0.3× 0.2, D2({C}) = 0.5× 0.3, D2({A,B}) =
0.2× 0.8 + 0.3× 0.6, and D2({B,C}) = 0.3× 0.2 + 0.5×
0.7. The dataset D3 generated by C at time 3 is D3({A}) =
0.008, D3({B}) = 0.012, D3({C}) = 0.045, D3({A,B}) =
0.408, and D3({B,C}) = 0.527.

F. Ambiguous Origin of Mutational Matrix

A given dataset may be generated by different CPMCs at
different times (Example 4). Besides, different CPMCs can even
generate the same (infinite) sequence of datasets (Example 5).

Example 4: Let us consider the two CPMCs depicted in Fig.
7. Let C1 be the chain on the left and C2 be the one on the right.
It is immediate to observe that the dataset D1

2 generated by C1

at time 2 is D1
2(∅) = 0.01 and D1

2({A}) = 0.99. Such dataset
coincides with the dataset D2

1 generated by C2 at time 1.
We will come back to this example in the next section. The

problem here lies in the inference of the probability of the self-
loop on∅. As a matter of fact, bothC1 andC2 have the same jump
chain, and we will prove that such jump chain can be inferred
exactly.

When inferring a CPMC from a single dataset D, it may not
be possible to accurately estimate the time at which the snapshot
was taken. The example above shows that, in general, D may be
supported by different CPMCs, which generate D at different
times.

Unfortunately, in the worst case, two different CPMCs can
generate the same datasets at each time instant (Example 5).
This is not a problem when CPMCs are used as data generators
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Fig. 8. Two CPMCs that generate the same datasets at each time instant.

because the CPMC is known, it for inference it means that in
general uniqueness of the model cannot be guaranteed. In the
next section we will prove that this can happen only in presence
of convergences, i.e., when genotypes have many possible an-
cestors. In that case, we will provide a heuristic which allows us
to infer one of the possible underlying jump chains.

Example 5: Let us consider the two CPMCs depicted in Fig.
8. They generate the same datasets at each time instants. As
a matter of fact, the first 3 levels of the chains are equal with
equiprobable branching, while at the last level for each node the
sum of the probabilities of the incoming edges is the same in
the two chains. The dataset D3 at time 3 for both chains is
D3({A,B,D}) = 0.3 ∗ 0.7, D3({A,C,D}) = 0.3 ∗ 1.1, and
D3({B,C,D}) = 0.3 ∗ 1.2.

G. Properties of Cancer Progression Markov Chains

Let fi(S) be the event X(i) = S ∧X(i− 1) (= S ∧ · · · ∧
X(0) (= S, i.e., the chain is in state S at time i and has never
been in S before. Hence, P [fi(S)] is the probability of fi(S),
i.e., the probability of reaching for the first time the vertex S
after i steps. This is also known as the first passage probability.
The probability of being in state T ∈ Adj[S]− for the first time
after at most k steps, passing through the edge from S to T , can
be expressed as

k∑

i=1

P [fi(T )]× P [X(i− 1) = S | fi(T )]

Since C is acyclic this is equivalent to

k∑

i=1

P [X(i− 1) = S ∧X(i) = T ]

and can be computed on CPMCs as stated by the following
lemma.

Lemma 2: Let C = (S, p) be a CPMC and let S, T ∈ S be
such that S (= T and p(S, T ) > 0. Then:

k∑

i=1

P [fi(T )]× P [X(i− 1) = S | fi(T )]

= p(S, T )×
k−1∑

j=0

P [X(j) = S] (1)

Proof: See the Proofs section in the supplementary
material. !

As a consequence, we get an alternative method to compute
the probabilities on the jump chain J(C). Let height(C) be
the length of the longest path in C, without crossing self-loops.
Since C is acyclic and the normal genotype ∅ reaches any other
genotype, height(C) is the length of the longest path which
does not uses self-loops from ∅ to a leaf in C.

Theorem 1: Let C = (S, p) be a CPMC and k ≥ height(C).
Let J(C) = (S, jp) be the jump DTMC associated to C. Let
S, T ∈ S with S (= T and p(S, T ) > 0.

jp(S, T ) =
∑k

i=1 P [fi(T )]× P [X(i− 1) = S | fi(T )]∑
W∈Adj−[S]

∑k
i=1 P [fi(W )]×P [X(i−1)=S | fi(W )]

(2)

Proof: See the Proofs section in the supplementary
material. !

Notice that in (2) the denominator is just a normalization
factor which ensures that the sum of the probabilities of the
edges from S is 1.

H. The Inference Method

Let Dk be a dataset satisfying our data hypotheses, represent-
ing a snapshot of a tumor after k evolution steps. As discussed
before, the number of steps in our context models the time
elapsed from normality to the observed snapshot. We will see
that in our method we do not assume to know the value of k.
Assuming that Dk has been generated by a CPMC (i.e., by
a model satisfying our model hypotheses) one may wonder
whether it is possible to infer such a CPMC, i.e., a CPMC
such that Dk(S) = P [X(k) = S] for each genotype S, where
k is not known a priori. To be more precise, since at this point
of the construction, we do not want to add information to the
dataset, we can say that we are interested in inferring the part
of C that is visible from the dataset, i.e., the genotypes of
C will be the normal genotype and the ones having positive
frequency in Dk. Formally, this means that C = (S, p), where
S = {∅} ∪ {S |Dk(S) > 0}. If during the evolution there had
been genotypes that have disappeared and are not represented
in the dataset our method will not infer such genotypes, since it
is our aim to reconstruct a model able to represent the current
situation without introducing unobserved knowledge.

Lemma 2 provides a way to compute p(S, T ), but only when∑k−1
j=0 P [X(j) = S] is known. Unfortunately, there is no way to

determine such a quantity from the dataset alone. On the other
hand, if we consider J(C) instead of C then Theorem 1 can
be used to compute the transition probabilities—in some cases
exactly, in general using some heuristics.

By definition, the topology of J(C) is uniquely determined
by the set of observed genotypes, as follows:

T ∈ Adj−[S]

if and only if

S ⊆ T ∧ ∀T ′ (= S, T ′ (= T. (S (⊆ T ′ ∨ T ′ (⊆ T )
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According to Theorem 1, in order to infer jp(S, T ) the following
probabilities must be estimated:

a. for each T ∈ S \ {∅} and for each i ∈ [1, k], the probabil-
ity P [fi(T )];

b. for each S ∈ S , for each T ∈ Adj−[S], and for each i ∈
[1, k], the probability P [X(i− 1) = S | fi(T )].

We say that there is a convergence in C whenever a genotype
T has two different predecessors, that is, when there is a geno-
type T such that |Pred−[T ]| > 1. We distinguish two cases:

1) C (or equivalently, J(C)) has no convergences;
2) C (or equivalently, J(C)) has at least a convergence.

I. No Convergences

If C has no convergences, then for each S ∈ S , for each T ∈
Adj−[S], and for each i ∈ [1, k] it holds that P [X(i− 1) = S |
fi(T )] = 1. This is trivial since S is the only predecessor of T .
Hence, by Theorem 1 we get

jp(S, T ) =

∑k
i=1 P [fi(T )]∑

W∈Adj−[S]

∑k
i=1 P [fi[W ]]

Since the denominator is just a normalization factor, we have to
find a way to compute the numerator from Dk.

We can proceed by induction from the leaves to the root of C:! if T is a “leaf” of C, i.e., Adj−[T ] = ∅, then:

k∑

i=1

P [fi(T )] = Dk(T );! otherwise:∑k
i=1 P [fi(T )] = Dk(T ) +

∑
V ∈Adj−[T ]

∑k
i=1 P [fi[V ]].

As a consequence, we have proved the following corollary.
Corollary 1: Let C = (S, p) be an unknown CPMC without

convergences and let Dk be a dataset generated from C at time
k. The chain J(C) can be uniquely inferred from Dk, provided
that all the genotypes of C are represented in Dk.

In other terms, the fact that all the genotypes have to be
represented in Dk means that the time instant at which the data
are taken is neither too early, so that some genotypes have not
yet been discovered, nor too late, so that some genotypes are no
more present. Notice that we do not assume to know the value
of k.

J. Convergences

From the above discussion, it emerges that in the case with
convergences we have to find a way to estimate P [X(i− 1) =
S | fi(T )], for each i ∈ [1, k]. This means that for any i ∈ [1, k]
we have to estimate the probability that since we are for the first
time in T at time i we were in S at time i− 1. As already stated
in the previous sections, Markov Chains are time homogeneous,
but this is not in true in the general case for their reverse. So it
is possible that P [X(i− 1) = S | fi(T )] (= P [X(j − 1) = S |
fj(T )], for some i, j ∈ [1, k]. However, without any additional
knowledge, the best one can do is approximate such values. In
the following, we will approximate all the values uniformly with
a single quantity denoted Split(S, T ). In this way, by Theorem

1 we get

jp(S, T ) ≈
Split(S, T )×

k∑

i=1

P [fi(T )]

∑

W∈Adj−[S]

Split(S,W )×
k∑

i=1

P [fi(W )]

(3)

Again, the denominator is a normalization factor, so we focus
on the numerator.! Split(S, T ) is an approximation that we attribute to all the

possible values of P [X(i− 1) = S | fi(T )] and has to be
computed by exploiting only Dk.! ∑k

i=1 P [fi(T )] has to be computed by induction from the
leaves to the root, but some more caution will be necessary
with respect to the case without convergences.

We have already showed that no unique solution may exist in
the presence of convergences, i.e., the function Split(S, T ) is
not uniquely determined in general (see Fig. 8 and Example 5).
Our heuristic for Split(S, T ) is based on the following simple
considerations.

1) Since Split(S, T ) represents the probability of reaching
T through S,

∑
X∈Pred−[T ] Split(X,T ) = 1.

2) For S, S ′ ∈ Pred−[T ], if S is more frequent than S ′ in
the dataset, then it is more likely that T is reached from S
than from S ′.

3) To be more precise, in the previous item not only the
frequencies of S and S ′ have to be taken into account,
but also those of their ancestors.

4) Also, the number of outgoing edges from S and S ′ must
be taken into account. If S has many outgoing edges, but
S ′ reaches only T , then, intuitively, even if S and S ′ have
the same frequency, the probability of reaching T from S
should be lower than the probability of reaching T from
S ′.

Based on the above, we elaborate the following iterative
definition for Split(S, T ), that will be then normalized to obtain
Split(S, T ):

Split(S, T ) =





Dk(∅)
|Adj−[∅]| if S = ∅

1

|Adj−[S]| × (Dk(S) +
∑

U∈Pred−[S] Split(U, S))

Intuitively, S is assigned a weight proportional to its frequency
in the dataset and, recursively, to the weight of its ancestors; then,
such weight is uniformly distributed over S’s outgoing edges. In
principle, such distribution should be proportional to jp(S, T ),
but since we are still in the process of evaluating it we apply a
uniform distribution.

Once all the Split(S, T ) have been computed, we can nor-
malize them, thus obtaining the values for Split(S, T ).

In order to compute the values
∑k

i=1 P [fi(T )], we proceed
iteratively from the leaves to the root. However, since a node
can have many parents, we cannot assign all its probability to
every parent. We use again the heuristic Split to distribute such
probability among all parents. In particular, we have:
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Fig. 9. Jump CPMC inferred from the dataset D3 of Example 5.

! if T is a “leaf” of C, i.e., Adj−[T ] = ∅, then:∑k
i=1 P [fi(T )] = Dk(T );! otherwise:∑k
i=1 P [fi(T )] = Dk(T ) +

∑
V ∈Adj−[T ] Split(T, V )×

∑k
i=1 P [fi[V ]].

Finally, we can exploit (3) to get the probabilities jp(S, T ).
If the above heuristic is applied to a topology with no con-

vergences, then all the Split(S, T ) are 1, hence the heuristic
computes the same jump probabilities that can be obtained by
applying the method described in the previous section for the
special case without convergences.

Example 6: By applying (3) to the dataset D3 of Example
5 we obtain the jump CPMC depicted in Fig. 9. This is the
approximation we compute for the jump chains of the models
in Fig. 8. We recall that both models in Fig. 8 are plausible
generators for the dataset. Notice that despite the high symmetry
of the dataset over the first 7 genotypes, the chain we extract is
not completely symmetric. However, we are not inferring the
self-loops. It is possible to define a CPMC with self-loop whose
jump chain is that presented in Fig. 9 and that generates the
dataset D3 by solving a system of equations whose unknowns
are the probabilities of the self-loops.

In the supplementary material we consider the effectiveness
of the heuristic on data generated by different underlying models
(Section Validation).

K. All Together

In order to prove the correctness of our method, we described
it assuming that the datasetDk has been generated from a CPMC
C. We demonstrated when and with which accuracy we are able
to infer J(C) from Dk. Summing up, as long as all present
genotypes are detected and the observations are exact, we proved
the following results.

1) When there are no convergences, we exactly infer J(C).
2) When there are convergences, if the probability of reach-

ing T from S is time homogenous and has been estimated,
e.g., using further data and expert knowledge, then we can
exactly infer J(C). Notice that such further information
is necessary only for the nodes with convergences.

3) When there are convergences and no further information is
available, we provided a heuristic for inferring a plausible
J(C).

Notice that the inference method is deterministic, i.e., on a
given dataset it always returns the same CPMC.

L. The Implementation: CIMICE

The R package CIMICE-R: (Markov) Chain Method to Infer
Cancer Evolution implements the above described methods. It
takes in input a dataset in the form of a mutational matrix, i.e.,
a Boolean matrix representing altered genes in a collection of
samples obtained with SCS DNA analysis.

CIMICE data processing and analysis can be divided in four
section: input management, preliminary analysis of the dataset,
graph topology reconstruction, chain weight computation, out-
put presentation.

The tool requires a Boolean dataframe as input in which
each column represents a gene, each row represents a sam-
ple (or a genotype), and each 0/1 represents whether a given
gene is mutated in a given sample. It is possible to load this
information from different file formats. The default one is the
“CAPRI/CAPRESE” TRONCO [56] format: the file is a tab or
space separated file; the first line starts with the string “s/g” (or
any other word) followed by the list of genes (or loci) to be
considered in the analysis. Each subsequent line begins with a
sample identifier string, followed by the bit set representing its
genotype. Another option is to directly define such data frame
in R. In the case of data composed by samples with associated
frequencies, it is possible to use an alternative format that we call
CAPRIpop, consisting of unique samples as rows and respective
frequencies reported in a special column named freq. Finally,
to extend CIMICE interoperability with different variant callers,
it is possible to compute mutational matrices directly from
Mutation Annotation Format (MAF) files. The definition of the
variant calling pipeline and the related error management is left
to the user and is out of the scope of this manuscript. In some
of the above presented examples we show how a preprocessing
tool such as SiCloneFit can be exploited to mitigate experimental
errors.

The tool includes simple functions to quickly analyze the dis-
tributions of mutations among genes and samples. Correlation
plots are also available. In case of huge dataset, it could be
necessary to focus only on a subset of the input samples or
genes. CIMICE provides an easy way to do so when the goal is
to use the most (or least) mutated samples and/or genes.

The subsequent stage’s goal is to obtain the topology for the
final Cancer Progression Markov Chain. Once the topology has
been computed, it can be plotted, e.g., using igraph. Finally, the
probabilities that label the edge of the jump chain are computed.
The tool first computes the Split(S, T )’s. These are called UP
weights in the implementation. Then, these are normalized to
obtain the Split(S, T )’s (called normalized UP weights). From
these, the probabilities can be derived (also called normalized
DOWN weights).

In order to show the results of the analysis exploiting different
libraries, three output methods are provided. These libraries
improve on the default igraph output visualization.
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Fig. 10. Our method’s results on the dataset from [20]. The False positive, False Negative and Missing Value Rates reported in the original manuscript for this
particular dataset are 2.67× 10−5, 0.1643, and 0.2117, respectively. Two different stages are clearly separated, even if the scarcity and noisiness of data does not
allow our method to establish a preferred progression.

Fig. 11. In this example, we consider the dataset CRC1 together with the False Positive (0.0152), False Negative (0.0789), and Missing Value (0.0671) rates
from [45]. In this case our method reconstructs several progression trajectories, that are mostly in agreement with the subdivision between genes present in metastatic
and non-metastatic gene assets given in the original paper.

The computational complexity of the tool resides in two
steps, the compression of the initial dataset to extract the fre-
quency of each genotype and the computation of the DAG’s
topology. These two steps have computational cost O(|C||G|)
andO(|S|2|G|) respectively, where |C| is the number of samples
present in the dataset (e.g., the sequenced cells), |G| is the
number of different possible mutations, and |S| is the number

of unique genotypes present in the dataset. These dependencies
allow this method to scale well even for large dataset if the
number of unique genotypes is limited. Clustering and filtering
of mutations can be taken into consideration to reduce the |G|
term if needed. All other steps have lower computational cost,
note that the bootstrapping approach requires to compute a
model for each resampling.
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An in depth analysis of the required number of samples
required for successfully running the method is detailed in
the supplementary material in Section Sample Size Evaluation.
A script is provided to compute such requirement under user
specified conditions. These allow to select the confidence of
estimating the genotypes’ probabilities (and therefore the DAG
structure) with an error below a given threshold. In addition, the
methods can also consider the effect of random disturbances in
the data with respect to the required sample size.

All other aspects required for usage, with running examples,
are included in the detailed user manual provided at [8].
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