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We tackle the (classic) problem of minimizing (non)deterministic finite automata. The algorithm 
we put forward has the peculiarity of being incremental, i.e., the minimization proceeds by 
successive iterations, each producing a partially minimized automaton language-equivalent to 
the input one.

Our algorithm builds upon Almeida et al. from 2014, fixing a minor mistake and generalizing 
it to the nondeterministic case. It relies on a colouring procedure of a graph associated to the 
automaton, keeping track of partial information. After dealing with the deterministic case, we 
extend this idea to the bisimulation-minimization of nondeterministic automata.

The algorithms for both the deterministic and the nondeterministic cases run in time (𝑛𝑚) for 
an automaton with 𝑛 states and 𝑚 transitions. The complexity for the deterministic case matches 
the complexity claimed by Almeida et al.. The nondeterministic case improves the fastest known 
incremental algorithm for this problem.

We conclude introducing and using a notion of signature of a state, whose aim is to exploit 
pre-computed information potentially available, to speed-up the process. A signature is used to 
produce an initial partition of the automaton’s states and can be easily integrated in both the 
incremental and the non-incremental algorithm.

1. Introduction

Finite state automata are fundamental objects in Theoretical Computer Science and find their application in Text Processing, 
Compilers Design, Artificial Intelligence and many other areas. The minimization of an automaton is the process of constructing 
a new (language-equivalent) automaton which is minimal in the number of states. This problem can be traced back to the ‘50s 
by the work of Moore [1]. A fundamental result in Automata Theory is the Myhill-Nerode Theorem [2], establishing that, in the 
deterministic case, this minimal automaton is in fact the minimum (up to isomorphism). In the wider setting of nondeterministic 
automata there is no analog result and finding any state-minimal automaton is PSPACE-complete [3]. For this reason, a practical 
alternative is the minimization with respect to bisimulation. Bisimilarity is indeed a valid choice since in the deterministic case two 
states are bisimilar if and only if they are Myhill-Nerode equivalent.
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Thus, the problem of minimizing automata reduces to the problem of computing bisimilarity between states, which in turn is 
equivalent to determining the coarsest partition of a set stable with respect to some binary relation [4]. The two main paradigms to 
compute the aforementioned partition are top down and bottom up.

Top down algorithms (also known as partition refinement) start with the partition that separates states between final and non final 
and subsequently refine the partition until it is stable. By a careful choice of which block to split at each refining step, Paige and Tarjan 
[4] devised an algorithm that computes the maximum bisimulation equivalence in time (𝑚 log𝑛), where 𝑛 is the number of states 
and 𝑚 is the number of transitions of the automaton. The iconic Hopcroft’s Algorithm [5] (which Paige and Tarjan’s solution is based 
on) deals with the special case of deterministic automata. Furthermore, it has recently been proved in [6] that, when restricting the 
attention to top-down algorithms, bisimilarity computation requires Ω(𝑚 log𝑛) worst-case time. In this sense, the algorithm proposed 
in [4] is optimal.

In contrast to the previous approach, bottom up algorithms start with the finest partition—the one where each state constitutes 
a singleton—and proceed by subsequently merging two blocks found to be equivalent. For this reason, the technique is also known 
in the literature as partition-aggregation. The main advantage of this paradigm is that the algorithm is incremental, that is, it proceeds 
in subsequent stages where at the end of each merging step the resulting automaton is language-equivalent to the input one. In this 
way, the minimization process can be stopped at any time and can be resumed later.

The first algorithm of this kind is due to Watson [7]. After a series of improvements Watson and Daciuk [8] reduced the running 
time to (𝑛2|Σ|𝛼(𝑛)) for deterministic automata with 𝑛 states, alphabet Σ and where 𝛼(𝑛) is related to the inverse of Ackermann’s 
function [9], which can be treated as a constant for any reasonable value of 𝑛1. The main idea is to propagate the definition of 
bisimilarity: if states 𝑝 and 𝑞 are equivalent, then also their (unique) transitions by the same character must lead to equivalent states. 
This is done by a recursive function EQUIV which resembles an equivalence algorithm by Hopcroft and Karp [10]. A subsequent work 
by Almeida et al. [11] aimed at simplifying the algorithm by Watson and Daciuk maintaining its running time. Unfortunately, there 
is a small mistake in their version of EQUIV which leads to a Ω(𝑛3) algorithm in the worst case.

Above algorithms are focused on the minimization of deterministic automata. The nondeterministic case was tackled by Björklund 
and Cleophas [12] adapting ideas from Watson and Daciuk. They devised an incremental algorithm for computing bisimilarity in time 
(𝑛2𝑟2|Σ|), where 𝑟 is the degree of nondeterminism of the automaton, that is, the maximum number of equally-labelled transitions 
exiting from any state. Their solution associates a propositional formula to the automaton (capturing bisimilarity between pairs of 
states) and subsequently builds (incrementally) a maximal model that satisfies it. As a side-effect, since in the deterministic case 𝑟 = 1, 
the algorithm by Björklund and Cleophas solves the minimization of deterministic automata by partition aggregation in (𝑛2|Σ|)
time (as promised in [11]).

In this work, which is an extension of [13], we present our correction to the algorithm by Almeida et al. providing a simplified 
version of the one by Watson and Daciuk while maintaining the quadratic running time. The solution is based on the concept of 
associated graph whose purpose is twofold: 1) to distill the behaviour of the aforementioned algorithms by interpreting them as graph 
colourings, and 2) to design our own incremental procedure. Having established the connection between minimization and graph 
colouring, it is natural to generalize the algorithm for bisimilarity-minimization on nondeterministic automata. Furthermore, the 
proposed solution improves by a factor of 𝑟 the running time of Björklund and Cleophas [14].

We conclude introducing and using a notion of signature of a state, whose aim is to exploit pre-computed information potentially 
hidden in the automaton, to speed-up the process. A signature is used to induce an initial partition of the automaton’s states and can 
be easily integrated in both the incremental and the non-incremental algorithm as a preprocessing step.

The paper is organized as follows: in the next section we give some basic notions about partitions, relations, and automata. In 
Section 3 we briefly describe the algorithm by Almeida et al. and we point out the mistake. Our procedure for the deterministic case 
is introduced in Section 4. Continuing, in Section 5 we lift the algorithm to the nondeterministic case. Finally, the notion of signature 
of a state is presented and used in Section 6.

2. Preliminaries

2.1. Relations and partitions

A binary relation over a set 𝐴 is a subset 𝜌 ⊆ 𝐴 × 𝐴. Its size will be denoted by |𝜌|. We say that 𝑎, 𝑏 ∈ 𝐴 are in relation when 
(𝑎, 𝑏) ∈ 𝜌 and we denote this by writing 𝑎𝜌𝑏. The identity relation is 𝜄𝐴 = {(𝑎, 𝑎) ∶ 𝑎 ∈𝐴}. The relation 𝜌 over 𝐴 can be interpreted as 
a directed graph 𝐺𝐴,𝜌 = (𝐴, 𝜌).

An equivalence relation (or equivalence) is a relation which is reflexive, symmetric, and transitive. Given 𝑎 ∈ 𝐴, the equivalence 
class of 𝑎 is the set [𝑎] = {𝑏 ∶ 𝑎𝜌𝑏}. The quotient set 𝐴∕𝜌 = {[𝑎] ∶ 𝑎 ∈𝐴} forms a partition of 𝐴. Notice that if 𝜌 is an equivalence, the 
connected components of 𝐺𝐴,𝜌 are the equivalence classes.

Given a binary relation 𝜌 over 𝐴, we define its equivalence closure 𝜌𝑒 as the smallest equivalence relation (w.r.t. set inclusion) that 
contains 𝜌.
2

1 It holds 𝛼(𝑛) ≤ 5 for 𝑛 ≤ 2216 .



Theoretical Computer Science 1004 (2024) 114621C. Bianchini, A. Policriti, B. Riccardi et al.

2.2. Languages and automata

An alphabet is a finite and non-empty set Σ of symbols. A string is a finite sequence 𝑤 =𝑤1… 𝑤𝑛 of symbols. Σ∗ is the set of all 
finite length strings of symbols in Σ, and we call a subset 𝐿 ⊆ Σ∗ a language. The empty string is denoted by 𝜖 and has length |𝜖| = 0.

A nondeterministic finite state automaton (NFA) is a tuple  =
⟨
𝑄, Σ, 𝐼, 𝛿, 𝐹

⟩
where 𝑄 is a non-empty finite set of states, Σ is the 

alphabet, 𝐼 ⊆ 𝑄 is the set of initial states, 𝛿 ∶𝑄 × Σ → 2𝑄 is the transition function and 𝐹 ⊆ 𝑄 is the set of final states. The degree of 
nondeterminism is 𝑟 = max{|𝛿(𝑞, 𝑥)| ∶ 𝑞 ∈𝑄,𝑥 ∈ Σ}. We say that  is complete if |𝛿(𝑞, 𝑥)| ≥ 1 for every state and symbol. In what 
follows we will assume complete automata: this is not a loss of generality since it is always possible to complete an automaton 
by adding one state and at most |Σ|(𝑛 + 1) transitions. Furthermore, pseudocodes from sections 4 and 5 greatly benefit from this 
completeness assumption in terms of simplicity, but it is not difficult to adapt our ideas for non-complete automata. As usual, the 
transition function can be recursively extended to strings, i.e. 𝛿∗ ∶𝑄 × Σ∗ → 2𝑄, still denoted by 𝛿.

We say that state 𝑞 ∈𝑄 accepts a string 𝑤 ∈ Σ∗ if 𝛿(𝑞, 𝑤) ∩𝐹 ≠∅. The set of strings accepted by 𝑞 is denoted by 𝐿(𝑞). The language 
accepted by automaton  is 𝐿( ) =

⋃
𝑞∈𝐼 𝐿(𝑞). A minimal automaton accepting 𝐿 has the minimum number of states amongst all 

automata accepting 𝐿.

A deterministic finite state automaton (DFA) is a NFA  with the added conditions that 𝐼 is a singleton (whose unique element is 
denoted by 𝑞0), and for each state 𝑞 and each symbol 𝑥 it holds |𝛿(𝑞, 𝑥)| = 1. In this case we will treat 𝛿 as a function 𝑄 × Σ →𝑄.

Since we are interested in the language accepted by a given automaton, we would like to get rid of redundant states, that is, we 
want to equate states accepting the same language. Formally:

Definition 1. Let  = ⟨𝑄,Σ, 𝛿, 𝐼,𝐹 ⟩ be a NFA. We define relation ∼ ⊆𝑄 ×𝑄 as:

𝑝 ∼ 𝑞
def
⟺ 𝐿(𝑝) =𝐿(𝑞).

We say that 𝑝 and 𝑞 are equivalent (resp. distinguishable) whenever 𝑝 ∼ 𝑞 (resp. 𝑝 ≁ 𝑞). In the special case of 𝑝 ∈ 𝐹 and 𝑞 ∉ 𝐹 (or 
viceversa) we say that pair (𝑝, 𝑞) is trivially distinguishable. When the automaton is known by the context, we will write the relation 
symbol ∼ without subscript.

Observation 1. In case of a DFA , we may unroll the definition of ∼ in the following recursive way (which will be useful later):

𝑝 ∼ 𝑞 ⟺ (∀𝑤 ∈ Σ∗)(𝛿(𝑝,𝑤) ∈ 𝐹 ↔ 𝛿(𝑞,𝑤) ∈ 𝐹 )

⟺ (𝑝 ∈ 𝐹 ↔ 𝑞 ∈ 𝐹 ) ∧ (∀𝑥 ∈ Σ)(𝛿(𝑝,𝑥) ∼ 𝛿(𝑞, 𝑥)).

Given a NFA  = ⟨𝑄,Σ, 𝐼, 𝛿,𝐹 ⟩, and an equivalence 𝜌 over 𝑄, the quotient of  by 𝜌 is defined as ∕𝜌 =
⟨
𝑄∕𝜌,Σ, 𝐼𝜌, 𝛿𝜌,𝐹∕𝜌

⟩
, 

where 𝐼𝜌 = {[𝑞] | 𝑞 ∈ 𝐼}, and 𝛿𝜌([𝑞], 𝑥) =
{
[𝑞′] | 𝑞′ ∈ 𝛿(𝑞, 𝑥)}. The Myhill-Nerode Theorem [2] establishes that, for any DFA , the 

quotient automaton ∕ ∼ is well defined and is the unique (up to isomorphism) minimal automaton recognizing 𝐿(). In the case 
of NFAs there is no analog result and finding any such minimal automaton is PSPACE-complete [3].

2.3. Bisimulation and bisimilarity

Definition 2. Let  = ⟨𝑄,Σ, 𝛿, 𝐼,𝐹 ⟩ be a NFA. A bisimulation is a binary relation 𝐵 ⊆𝑄 ×𝑄 such that, for every pair (𝑝, 𝑞) ∈ 𝐵:

B1. 𝑝 ∈ 𝐹 ↔ 𝑞 ∈ 𝐹 ,

B2. (∀𝑥 ∈ Σ)(∀𝑝′ ∈ 𝛿(𝑝,𝑥))(∃𝑞′ ∈ 𝛿(𝑞, 𝑥))(⟨𝑝′, 𝑞′⟩ ∈𝐵),
B3. (∀𝑥 ∈ Σ)(∀𝑞′ ∈ 𝛿(𝑞, 𝑥))(∃𝑝′ ∈ 𝛿(𝑝,𝑥))(⟨𝑝′, 𝑞′⟩ ∈𝐵).
Two states 𝑝 and 𝑞 are said bisimilar if there exists a bisimulation which contains (𝑝, 𝑞). The set of all bisimulations over the states of 
 is denoted by 𝔅 .

If 𝐵1 and 𝐵2 are two bisimulations over some automaton  , it is not difficult to prove that also 𝐵1 ∪𝐵2 is a bisimulation over 
—essentially, the union does not invalidate the three conditions of Definition 2 which were previously verified by pairs of 𝐵1
and pairs of 𝐵2. Furthermore, notice that in case  is a DFA the relation of bisimilarity of Definition 2 is the same as the recursive 
reformulation of ∼ given in Observation 1. The aforementioned properties, whose proof can be found in the literature (cf. [15, 
Chapter 1], and [16, Proposition 3]), are summarized in Lemma 1.

Lemma 1. Let  be a NFA. Then, the following hold:

1. 𝔅 is closed under union, and admits a unique largest (with respect to set-union) bisimulation  ,

2.  is an equivalence relation that relates all and only bisimilar states, and
3

3.  ⊆ ∼ , and if  is deterministic, then  = ∼ .
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In particular, point (3) of Lemma 1 justifies the use of  as an approximation of ∼ for nondeterministic automata. As usual, 
we will omit the subscript when the automaton is known by the context.

2.4. Partition aggregation

Given an automaton  , our goal is to compute the bisimilarity relation  over its set of states, so that the resulting quotient 
∕ can be returned as the minimized version of  . The partition-aggregation strategy will compute an ascending chain 𝜄 ⊆ 𝐵1 ⊆
… ⊆ 𝐵𝑛 =  of bisimulation-equivalences.

A partition-aggregation algorithm proceeds by a sequence of merging steps where at each step 𝑖 the bisimulation 𝐵𝑖 is computed. 
Since each 𝐵𝑖 is a bisimulation, the minimization process can be stopped at any step obtaining a language-equivalent automa-

ton with no more states than the input one [7,8,11,14]; the minimization process can be resumed later from this intermediate 
automaton. In this sense, the algorithm is incremental. This property is not shared with top down algorithms that proceed by partition-

refinement—such as Hopcroft’s Algorithm and its many successors—where only the final result is a bisimulation.

3. The algorithm proposed by Almeida et al.

This section is devoted to a brief description of the algorithm proposed by Almeida et al. It uses the union-find [17,9] data structure 
to manage the partition of states, so that finding and merging classes with the FIND and UNION primitives can be done in (𝛼(𝑛)).

Algorithm 1 Aggregation-based minimization by Almeida et al.

1: function MINIMIZEALMEIDA(𝑄, Σ, 𝛿, 𝐹 )

2: for all 𝑞 ∈𝑄 do

3: MAKE(𝑞)

4: 𝐸← (𝐹 × 𝐹 c) ∪ (𝐹 c × 𝐹 )
5:

6: for all ⟨𝑝, 𝑞⟩ ∈𝑄 ×𝑄 do

7: 𝑓𝑝 ← FIND(𝑝)
8: 𝑓𝑞← FIND(𝑞)
9: if 𝑓𝑝 ≠ 𝑓𝑞 ∧ ⟨𝑝, 𝑞⟩ ∉𝐸 then

10: 𝐸←∅
11: 𝐻 ←∅
12: if EQUIV(𝑝, 𝑞) then

13: for all ⟨𝑝′, 𝑞′⟩ ∈𝐸 do

14: UNION(𝑝′, 𝑞′)
15: else

16: 𝐸←𝐸 ∪𝐻
17:

18: return {[𝑝] | 𝑝 ∈𝑄}
19: end function

20: function EQUIV(𝑝, 𝑞)
21: if ⟨𝑝, 𝑞⟩ ∈𝐸 then

22: return ⊥

23: if ⟨𝑝, 𝑞⟩ ∈𝐻 then

24: return ⊤

25:

26: 𝐻 ←𝐻 ∪ {⟨𝑝, 𝑞⟩ , ⟨𝑞, 𝑝⟩}
27: for all 𝑥 ∈ Σ do

28: ⟨𝑝′, 𝑞′⟩← ⟨FIND(𝛿(𝑝, 𝑥)), FIND(𝛿(𝑞, 𝑥))⟩
29: if 𝑝′ ≠ 𝑞′ ∧ ⟨𝑝′, 𝑞′⟩ ∉𝐸 then

30: 𝐸←𝐸 ∪ {⟨𝑝′, 𝑞′⟩ , ⟨𝑞′, 𝑝′⟩}
31: if ¬EQUIV(𝑝′, 𝑞′) then

32: return ⊥

33:

34: 𝐻 ←𝐻 ⧵ {⟨𝑝, 𝑞⟩ , ⟨𝑞, 𝑝⟩}
35: 𝐸←𝐸 ∪ {⟨𝑝, 𝑞⟩ , ⟨𝑞, 𝑝⟩}
36: return ⊤

37: end function

Pairs of states are recursively considered until their equivalence is estabilished. Intermediate results are cached, so that queries 
on pairs of states already found to be (non-)equivalent can be answered in constant time.

At lines 2–3, the identity relation is constructed and pairs of trivially distinguishable states are added to the memoization table 𝐸. 
In the main loop at lines 6–16, we iterate over all pairs of states to check for equivalence. If a pair is either on the same class—i.e. is a 
pair of states already found to be equivalent—or is in the memoization table—i.e. is a pair of distinguishable states—the minimization 
continues to the next iteration. Otherwise, two empty collections 𝐸 and 𝐻 are prepared, respectively the set of potentially equivalent

pairs of states and the history pairs. 𝐸 and 𝐻 are considered global variables and can be accessed from EQUIV. The recursive function

EQUIV is responsible for checking if states 𝑝, 𝑞 are equivalent and, if so, pairs in 𝐸 are merged. Otherwise, all visited pairs are set to 
be distinguishable and this information is used to update 𝐸. At the end the partition in equivalence classes is returned.

The underlying idea of EQUIV(𝑝, 𝑞) is to recursively check the transitions from 𝑝 and 𝑞 on all symbols (see Observation 1). If 
two states are found to be cached as distinguishable, the recursion stops returning ⊥. If they are found to be in visit, it is useless to 
continue the visit and nothing can be said (i.e. EQUIV returns ⊤ postponing the decision to the upper-level of the recursion). These 
preliminary checks are at lines 21–24. Next, each 𝑥-transition is checked recursively in the loop at 27–32, stopping when the states 
are found to be distinguishable. At the end, if 𝑝 and 𝑞 are not found to be distinguishable, the pair is removed from the history 𝐻 , 
added to 𝐸, and ⊤ is returned.

Detailed proof of the algorithm’s correctness can be found in [11].

On the complexity analysis, the authors claim that the algorithm terminates in time (𝑛2|Σ|𝛼(𝑛)). This comes from the assumption 
that each pair visited during the recursion of EQUIV will be skipped on the subsequent iterations of MINIMIZEALMEIDA (cf. [11, Lemma 
4.9]). This assumption is wrong and a family of counterexamples can be constructed such that MINIMIZEALMEIDA terminates in time 
4

Ω(𝑛3|Σ|𝛼(𝑛)).
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Fig. 1. An example of automaton 2 . In this case, 𝐺2 and 𝐺′
2 are 2-states linear components.

3.1. The counterexample

In this section we briefly describe an infinite family of automata to fool Algorithm 1 into running in cubic time. More precisely, 
we give a schema to build, for every integer 𝑛 ≥ 1, an automaton 𝑛 of size 6𝑛 + 1 for which there exist 𝑛2 pairs of states ⟨𝑝, 𝑞⟩ such 
that EQUIV(𝑝, 𝑞) runs in Ω(𝑛|Σ|) time.

Automaton 𝑛 results from the composition of five building blocks, which are DFAs over the alphabet Σ = {0, 1}:

– 𝐺𝑛, any automaton with 𝑛 states whose initial state is 𝑞0
𝐺𝑛

,

– 𝐺′
𝑛
, a copy of 𝐺𝑛 whose initial state is 𝑞0

𝐺′
𝑛

,

– 𝑊⊤, whose unique (and final) state is 𝑞⊤,

– 𝑊⊥, whose unique (and non-final) state 𝑞⊥,

– 𝑇𝑛, shaped as a complete binary tree of 4𝑛 − 1 states. The 2𝑛 leaves are partitioned into two sets of 𝑛 states each, respectively 𝐴𝑛
and 𝐵𝑛, which are either all final or all non-final.

Now, let 𝑛 = ⟨𝑄, Σ, 𝛿, 𝑞0
𝑇𝑛
, 𝐹 ⟩ be the DFA obtained combining all automata described above, where:

– 𝑄 is the union of all the sets of states,

– 𝐹 is the union of all the sets of final states,

– The initial state of 𝑇𝑛 becomes the initial state of 𝑛,
– 𝛿 is the union of all transition functions with the following adjustments:

∗ 𝛿(𝑞𝐴, 0) = 𝑞0𝐺𝑛 and 𝛿(𝑞𝐴, 1) = 𝑞⊤, for each 𝑞𝐴 ∈𝐴𝑛,
∗ 𝛿(𝑞𝐵, 0) = 𝑞0𝐺′

𝑛

and 𝛿(𝑞𝐵, 1) = 𝑞⊥, for each 𝑞𝐵 ∈𝐵𝑛.

Then, automaton 𝑛 is called a counterexample of size 𝑛 (in Fig. 1 is represented the case for 𝑛 = 2).

To show how such automaton fools Algorithm 1, consider the execution of EQUIV(𝑞𝐴, 𝑞𝐵) for 𝑞𝐴 ∈𝐴𝑛 and 𝑞𝐵 ∈ 𝐵𝑛. Since the states 
are not trivially distinguishable, the procedure will first take the 0-transition leading to a complete visit of both 𝐺𝑛 (from 𝑞𝐴) and 𝐺′

𝑛

(from 𝑞𝐵), where all visited pair of states will be found equivalent. After that, the procedure will traverse the 1-transition reaching 
pair ⟨𝑞⊤, 𝑞⊥⟩, which is trivially distinguishable, leading to the conclusion that also ⟨𝑞𝐴, 𝑞𝐵⟩ is distinguishable. The information about 
the equivalence between 𝐺𝑛 and 𝐺′

𝑛
(stored in 𝐸 by the algorithm) is lost and both sub-automata will be visited again when starting 

a visit from another pair.

Thus, the execution of EQUIV(𝑞𝐴, 𝑞𝐵) runs in Θ(𝑛|Σ|) steps and this will happen for each of the 𝑛2 pairs in 𝐴 × 𝐵, for a total of 
Θ(𝑛3|Σ|) steps.

4. Deterministic case

In this section we present our idea to correct the previously presented algorithm, discussing its correctness and complexity. The 
main point is to run the recursive check on a richer data structure, the associated graph introduced below, whereby the running time 
of the overall algorithm is going to be (𝑛2|Σ|).

As already mentioned in the Preliminaries, the completeness assumption for automata will ease the pseudocode and the explana-

tion of Algorithm 2. Nevertheless, our ideas can be easily adapted for the general case of non-complete automata while maintaining 
5

the promised complexity.
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4.1. The associated graph

The reason why Algorithm 1 is not quadratic on some automata is the fact that whenever a pair of distinguishable states is found 
the recursion stops and loses reusable information gathered on elements of 𝐸. A graph associated to the automaton clarifies how 
pairs of states evolve when they are found to either be equivalent or distinguishable.

Definition 3. Let 𝐷 = ⟨𝑄,Σ, 𝛿, 𝑞0, 𝐹 ⟩ be a DFA. We define its associated graph  = (𝑉 , 𝐴) as follows:

𝑉 =𝑄 ×𝑄,

𝐴 = {⟨𝑝, 𝑞⟩→ ⟨𝛿(𝑝,𝑥), 𝛿(𝑞, 𝑥)⟩ | 𝑝, 𝑞 ∈𝑄,𝑥 ∈ Σ} .

Vertex ⟨𝑝, 𝑞⟩ is said to be equivalent/distinguishable whenever 𝑝 and 𝑞 are. Furthermore, it is said to be trivially distinguishable in case 
exactly one of the two is final.

By colouring  with distinguishable vertices in black and equivalent vertices in white, the problem of computing ∼ can be seen 
as the problem of correctly colouring the associated graph.

The algorithm by Almeida et al. can be described as follows. It starts by colouring trivially distinguishable and equivalent vertices 
in black and white, respectively, and in grey the remaining vertices. At each iteration of the main loop, it considers a grey vertex ⟨𝑝, 𝑞⟩ and starts a visit of  from it. If the visit reaches a black vertex ⟨𝑝′, 𝑞′⟩, the recursion stops and all vertices in the path from ⟨𝑝, 𝑞⟩ to ⟨𝑝′, 𝑞′⟩ (saved in 𝐻) are coloured in black. Otherwise, if all paths lead either to white or grey vertices all visited vertices are 
coloured white. The main issue with Algorithm 1 is that when a black vertex is encountered all information of vertices in 𝐸 ⧵𝐻 gets 
lost.

4.2. The algorithm for deterministic automata

We present the minimization algorithm based on the observations above.

Algorithm 2 Proposed algorithm for deterministic automata.

1: function MINIMIZEDFA(𝑄, Σ, 𝛿, 𝐹 )

2: for all ⟨𝑝, 𝑞⟩ ∈𝑄 ×𝑄 do

3: if 𝑝, 𝑞 are triv. distinguishable then

4: COLOR(⟨𝑝, 𝑞⟩) ← BLACK

5: else if 𝑝 = 𝑞 then

6: COLOR(⟨𝑝, 𝑞⟩) ← WHITE

7: else

8: COLOR(⟨𝑝, 𝑞⟩) ← GREY

9: for all ⟨𝑝, 𝑞⟩ ∈𝑄 ×𝑄 do

10: if COLOR(⟨𝑝, 𝑞⟩) = GREY then

11:  ← EMPTYGRAPH

12: 𝑒𝑞← EQUIV(⟨𝑝, 𝑞⟩)
13: if ¬𝑒𝑞 then

14:  ← REVERSE()
15: VISIT(, ℎ)
16:  ← {⟨𝑝, 𝑞⟩ | COLOR(⟨𝑝, 𝑞⟩) = WHITE}
17: return 𝑄∕𝑒

18: end function

19: function EQUIV(⟨𝑝, 𝑞⟩) ⊳  and ℎ global

20: if ⟨𝑝, 𝑞⟩ ∈ then

21: return ⊤

22: else if COLOR(⟨𝑝, 𝑞⟩) = BLACK then

23: ℎ ← ⟨𝑝, 𝑞⟩
24: return ⊥

25: else if COLOR(⟨𝑝, 𝑞⟩) = WHITE then

26: return ⊤

27: else ⊳ here ⟨𝑝, 𝑞⟩ is GREY and fresh

28: COLOR(⟨𝑝, 𝑞⟩) ← WHITE

29:

30: for all 𝑥 ∈ Σ in lex. order do

31: ⟨𝑝𝑥, 𝑞𝑥⟩← ⟨𝛿(𝑝, 𝑥), 𝛿(𝑞, 𝑥)⟩
32: ADDARC(, ⟨𝑝, 𝑞⟩ , ⟨𝑝𝑥, 𝑞𝑥⟩)
33: 𝑒𝑞← EQUIV(⟨𝑝𝑥, 𝑞𝑥⟩)
34: if ¬𝑒𝑞 then return ⊥

35:

36: return ⊤

37: end function

We assume that primitive COLOR has access to a data-structure to get/set the colour of a vertex in constant time (e.g., an array or 
a succint bitvector). Furthermore, we assume that such primitive gets/sets symmetrically a pair, i.e., when COLOR(𝑝, 𝑞) is used both ⟨𝑝, 𝑞⟩ and ⟨𝑞, 𝑝⟩ are considered.

The general structure of MINIMIZEDFA is the same as MINIMIZEALMEIDA rewritten in terms of colourings. The only difference is 
that instead of maintaining two sets 𝐸 and 𝐻 we maintain the global variable  which represents the visited portion of . The 
idea is that when EQUIV(⟨𝑝, 𝑞⟩) returns to the main loop, after line 15, vertices in  will be correctly coloured, either in WHITE or

BLACK. In Algorithm 1 this information was lost while in Algorithm 2  is used to determine extra black vertices. Helper procedures

REVERSE and VISIT perform, respectively, arc-reverse of a graph and the BLACK-colouring of  starting from the source vertex ℎ. 
After the loop, we gather all WHITE pairs in  and we return the quotient 𝑄∕𝑒—remember that the equivalence classes can be 
computed as the connected components of 𝐺𝑄, (cf. Section 2.1).

Let us analyze the version of EQUIV(⟨𝑝, 𝑞⟩) in Algorithm 2. At lines 20–27 some base cases are checked. In particular, if ⟨𝑝, 𝑞⟩
is BLACK, then it is stored in the global variable ℎ and ⊥ is returned. Otherwise, if ⟨𝑝, 𝑞⟩ is WHITE we return ⊤ to continue the 
downstream inspection. Finally, in case ⟨𝑝, 𝑞⟩ is GREY, it is coloured WHITE and at lines 30–34 the for loop tries to continue 
the recursive visit by reading each symbol in lexicographic order. Before each recursive call  is updated by adding arc ⟨𝑝, 𝑞⟩ →⟨𝑝𝑥, 𝑞𝑥⟩—we assume vertex ⟨𝑝𝑥, 𝑞𝑥⟩ is added, if not already present.
6

Below we outline the main arguments for complexity and correctness.
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4.3. Complexity analysis

First, notice that || = |𝑉 | + |𝐴| = 𝑛2 + 𝑛𝑚. It is clear that, summing over all the iterations of the main loop, line 9, the associated 
graph is visited at most thrice: during the “forward” recursion pass and, optionally, during REVERSE and VISIT. In fact, every vertex 
starts GREY and becomes WHITE during the forward pass of an EQUIV-call. Possibly, if the call returns ⊥, some WHITE vertices become

BLACK.

Finally, the connected components of graph 𝐺𝑄, can be computed in time (𝑛2).
In total, we have the following:

Theorem 1. Given a complete DFA with 𝑛 states and 𝑚 = 𝑛|Σ| transitions, MINIMIZEDFA terminates in time (𝑛𝑚).

4.4. Correctness

To prove correctness we will show the following invariant at line 15: all vertices in  are correctly coloured either BLACK or

WHITE—Lemma 2 below.

We start by showing some properties of the colouring performed by EQUIV and VISIT. First of all, notice that, since we are in 
the deterministic case, for every 𝑢 = ⟨𝑝, 𝑞⟩ ∈ 𝑉 and 𝑤 ∈ Σ∗ there is a unique path in  starting from 𝑢 and spelling 𝑤: denote by 
𝛿(𝑢, 𝑤) = ⟨𝛿(𝑝,𝑤), 𝛿(𝑞,𝑤)⟩ the last vertex of this path. In the following, we recall that a path in a graph is said to be simple when it 
has no repeating vertices.

Definition 4. Let  be a DFA, and  = (𝑉 , 𝐴) its associated graph. Let 𝑢 ∈ 𝑉 , and 𝑤 ∈ Σ∗. We say that 𝑤 for 𝑢 is:

1. simple if the path 𝑢 ⇝ 𝛿(𝑢, 𝑤) in  is simple, and

2. avalanche if it is simple and vertex 𝛿(𝑢, 𝑤) is BLACK.

If there exists 𝑤 avalanche for 𝑢, denote by av(𝑢) the lexicographically smallest such 𝑤 and name 𝑢 ⇝ 𝛿(𝑢, av(𝑢)) the avalanche path 
of 𝑢.

If EQUIV(𝑢0) is called in the main loop, line 12, the visit checks all simple words for 𝑢0 in lexicographic order, either until all 
words are explored or—if it exists—until av(𝑢0) is found. Any vertex that can reach the avalanche path should be coloured in BLACK.

Proposition 1. Consider  upon return of EQUIV(𝑢0) at line 12. If there exists 𝑢 ∈ distinguishable, then:

1. av(𝑢0) exists, and

2. If all WHITE vertices in  ⧵ are equivalent, then:

(∀𝑢 ∈)
(
𝑢 distinguishable ⟹ 𝑢


⇝𝛿(𝑢0, av(𝑢0))

)
.

Proof. Suppose 𝑢 ∈ is distinguishable:

1. First of all, we prove that there exists 𝑤 ∈ Σ∗ such that 𝛿(𝑢0, 𝑤) is BLACK. Since 𝑢 ∈, there exists 𝑤0 such that 𝑢 = 𝛿(𝑢0, 𝑤0). 
Since 𝑢 is distinguishable, there exists 𝑤1 such that 𝛿(𝑢, 𝑤1) is trivially distinguishable (i.e. a final/non-final pair, which is BLACK

from the start). Thus, 𝑤 = 𝑤0𝑤1 and 𝛿(𝑢0, 𝑤0𝑤1) is BLACK. Since av(𝑢0) is the lexicographically smallest such 𝑤, we proved 
point (1).

2. We want to prove that, under suitable conditions, every distinguishable node 𝑢 ∈ can reach the avalanche path of 𝑢0 remaining 
inside .

Let ℎ = 𝛿(𝑢0, av(𝑢0)), 𝑢 ∈ distinguishable, and 𝜋 be the -path leading 𝑢 to some trivially distinguishable 𝑣. We claim 𝜋 must 
cross the avalanche path of 𝑢0 (call it 𝛼). Suppose not, for the sake of contradiction. Since ℎ is the unique BLACK vertex in , 
𝑣 ∉. Hence, 𝜋 must traverse some arc 𝑢′ → 𝑢′′ with 𝑢′ ∈ and 𝑢′′ ∉. By assumption on 𝜋 and construction of EQUIV it 
follows that 𝑢′ ∉ 𝛼 and 𝑢′′ is WHITE. Since 𝜋 leads 𝑢′′ to 𝑣 it follows that 𝑢′′ is distinguishable contradicting the hypothesis on

WHITE vertices in  ⧵. □

Now we prove that the colouring performed in the main loop is correct, i.e., if it colours a vertex in WHITE (resp. in BLACK) the 
corresponding states are equivalent (resp. distiguishable).

Lemma 2. The following hold at the end of each iteration of loop 9–15:

D1. {⟨𝑝, 𝑞⟩ | COLOR(⟨𝑝, 𝑞⟩) = BLACK} ∩ ∼ =∅,
7

D2. {⟨𝑝, 𝑞⟩ | COLOR(⟨𝑝, 𝑞⟩) = WHITE} ⊆ ∼.
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Proof. Before entering the loop both properties hold by initialization.

D1. Assume (D1) and (D2) hold before EQUIV(𝑢0). It is sufficient to prove that at the end of the iteration for every ⟨𝑝, 𝑞⟩ ∈ we 
have that ⟨𝑝, 𝑞⟩ is BLACK if and only if ⟨𝑝, 𝑞⟩ is distinguishable.

(→) If 𝑢 = ⟨𝑝, 𝑞⟩ ∈ is BLACK, then it must have been coloured by VISIT. Therefore, 𝑒𝑞 = ⊥ and before REVERSE there was 𝑢 ⇝ ℎ
in . Since ℎ was BLACK before the EQUIV-call, by (D1) it follows ℎ distinguishable. Thus, ⟨𝑝, 𝑞⟩ is distinguishable.

(←) If 𝑢 = ⟨𝑝, 𝑞⟩ ∈  is distinguishable, then by Proposition 1 it follows that after REVERSE and VISIT pair ⟨𝑝, 𝑞⟩ has been 
coloured in BLACK.

D2. It follows from (D1) and the fact that all vertices in  are either BLACK or WHITE. □

We summarize the results of this section as follows:

Theorem 2. Let  = ⟨𝑄,Σ, 𝛿, 𝑞0, 𝐹 ⟩ be a DFA, and  be the set of WHITE pairs after any iteration of loop 9–15 of MINIMIZEDFA(𝑄, Σ, 𝛿, 𝐹 ). 
Then, the following hold:

1. Incrementality: ∕𝑒 is a partially minimized automaton equivalent to , and

2. Correctness: if  is from the last iteration, then ∕𝑒 is the minimum automaton accepting 𝐿().

Proof. Incrementality follows from Lemma 2. Correctness follows from both Lemma 2 and the fact that, after all iterations, every 
vertex of  has been (correctly) coloured either in BLACK or WHITE. □

5. Nondeterministic case

Before diving into the algorithm, please remember (as for Section 4) that the completeness assumption for automata is just for 
ease of explanation.

Algorithm 2 is not directly applicable to the nondeterministic case, the reason being that reaching a pair of non-bisimilar states—

i.e. sufficient condition to colour in BLACK a node by Algorithm 2—is not a sufficient condition now to declare a pair of states 
distinguishable.

To tackle this issue we first turn the associated graph into a bipartite graph. In the definition below, for each state 𝑝 we introduce 
the shadow state 𝑝 as a distinct copy of the real 𝑝.

Definition 5. Let  be a complete NFA. The associated graph ( ) is a bipartite directed graph with vertices 𝑉0 ∪ 𝑉1 and arcs 
𝐴0 ∪𝐴1, defined as:

𝑉0 =𝑄 ×𝑄,

𝑉1 =
{⟨
𝑝, 𝑞, 𝑥

⟩
,
⟨
𝑝, 𝑞, 𝑥

⟩ | 𝑝, 𝑞 ∈𝑄, 𝑥 ∈ Σ
}
,

𝐴0 =
{⟨𝑝, 𝑞⟩→ ⟨

𝑝′, 𝑞, 𝑥
⟩
, ⟨𝑝, 𝑞⟩→ ⟨

𝑝, 𝑞′, 𝑥
⟩ | 𝑝′ ∈ 𝛿(𝑝,𝑥), 𝑞′ ∈ 𝛿(𝑞, 𝑥)} ,

𝐴1 =
{⟨
𝑝′, 𝑞, 𝑥

⟩
→

⟨
𝑝′, 𝑞′

⟩
,
⟨
𝑝, 𝑞′, 𝑥

⟩
→

⟨
𝑝′, 𝑞′

⟩ | 𝑝′ ∈ 𝛿(𝑝,𝑥), 𝑞′ ∈ 𝛿(𝑞, 𝑥)} .
Vertex ⟨𝑝, 𝑞⟩ in the “left” 𝑉0 is called equivalent (resp. distinguishable) whenever states 𝑝 and 𝑞 are bisimilar (resp. non-bisimilar). 
Furthermore, it is called trivially distinguishable when exactly one of the two is final.

The bisimilarity between 𝑝 and 𝑞 (Definition 2) can be checked in two steps: 0) choose 𝑥 ∈ Σ and 𝑝′ ∈ 𝛿(𝑝, 𝑥), and 1) respond with 
suitable 𝑞′ ∈ 𝛿(𝑞, 𝑥). The idea is to mimic step 0) traversing arcs of 𝐴0 and step 1) traversing arcs of 𝐴1. The triplet 

⟨
𝑝′, 𝑞, 𝑥

⟩
∈ 𝑉1

indicates that we have chosen symbol 𝑥, state 𝑝′ ∈ 𝛿(𝑝, 𝑥), and we are expecting to respond with some 𝑞′ ∈ 𝛿(𝑞, 𝑥) (𝑞 provides the 
information on the state that must respond). 𝐴1 arcs do something similar.

Then, we have to adjust the BLACK colouring of vertices in  to conform to nondeterminism. Observe that 𝑢 ∈ 𝑉0 needs only one

BLACK child to be coloured in BLACK, while it needs all children WHITE to be coloured in WHITE. Dually, 𝑢 ∈ 𝑉1 behaves the same but 
with reversed colours. A check will be performed using the variable DOUBTS(𝑢) which, roughly speaking, counts how many BLACK

neighbours we need to find to mark 𝑢 as BLACK.

5.1. The algorithm for nondeterministic automata

We present Algorithms 3 and 4 for the nondeterministic case, whose essential ingredients are those of Algorithm 2. Details are 
left to the reader.

First of all, notice that we are actually dealing with four colours: ⊥ (never been explored), GREY (in visit), BLACK (distinguishable) 
and WHITE (equivalent). The procedure MINIMIZENFA is structurally the same as MINIMIZEDFA, the difference being the usage and 
8

maintenance of .
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Algorithm 3 Proposed algorithm for nondeterministic automata, adapted from DFA case.

1: function MINIMIZENFA(𝑄, Σ, 𝛿, 𝐹 )

2: for all ⟨𝑝, 𝑞⟩ ∈𝑄 ×𝑄 do

3: if 𝑝, 𝑞 are triv. distinguishable then

4: COLOR(⟨𝑝, 𝑞⟩) ← BLACK

5: else if 𝑝 = 𝑞 then

6: COLOR(⟨𝑝, 𝑞⟩) ← WHITE

7: else

8: COLOR(⟨𝑝, 𝑞⟩) ← ⊥
9: for all 𝑢 ∈𝑄 ×𝑄 do

10:  ← EMPTYGRAPH

11: EQUIVLEFT(𝑢)
12: for all 𝑣 ∈ 𝑉0 ∩ do

13: if COLOR(𝑣) ≠ BLACK then

14: ⊳ 𝑣 is either GREY or WHITE

15: COLOR(𝑣) ← WHITE

16:  ←
{
𝑢 ∈ 𝑉0 | COLOR(𝑢) = WHITE

}
17: return 𝑄∕𝑒

18: end function

19: procedure RELAX(𝑣) ⊳ Used in Algorithm 4

20: for 𝑢 ∈ ADJ(, 𝑣) do ⊳  is global

21: DOUBTS(𝑢) ← DOUBTS(𝑢) − 1
22: if DOUBTS(𝑢) = 0 then

23: COLOR(𝑢) ← BLACK

24: RELAX(𝑢)
25: end procedure

Algorithm 4 Procedures to colour the associated graph

1: function EQUIVLEFT(𝑢) ⊳  is global

2: if COLOR(𝑢) ≠ ⊥ then

3: return COLOR(𝑢)
4:

5: COLOR(𝑢) ← GREY

6: DOUBTS(𝑢) ← 0
7:

8: for 𝑣 ∈ ADJ(, 𝑢) ∧ COLOR(𝑢) ≠ BLACK do

9: 𝑐𝑜𝑙← EQUIVRIGHT(𝑣)
10: if 𝑐𝑜𝑙 = BLACK then

11: COLOR(𝑢) ← BLACK

12: DOUBTS(𝑢) ← 0
13: else if 𝑐𝑜𝑙 = GREY then

14: ADDARC(, 𝑣, 𝑢)
15: DOUBTS(𝑢) ← 1
16:

17: if COLOR(𝑢) = GREY then

18: if DOUBTS(𝑢) = 0 then

19: COLOR(𝑢) ← WHITE

20:

21: if COLOR(𝑢) = BLACK then

22: RELAX(𝑢)
23: return COLOR(𝑢)
24: end function

25: function EQUIVRIGHT(𝑢) ⊳  is global

26: if COLOR(𝑢) ≠ ⊥ then

27: return COLOR(𝑢)
28:

29: COLOR(𝑢) ← GREY

30: DOUBTS(𝑢) ← 0
31:

32: for 𝑣 ∈ ADJ(, 𝑢) ∧ COLOR(𝑢) ≠ WHITE do

33: 𝑐𝑜𝑙← EQUIVLEFT(𝑣)
34: if 𝑐𝑜𝑙 = WHITE then

35: COLOR(𝑢) ← WHITE

36: DOUBTS(𝑢) ← 0
37: else if 𝑐𝑜𝑙 = GREY then

38: ADDARC(, 𝑣, 𝑢)
39: DOUBTS(𝑢) ← DOUBTS(𝑢) + 1
40:

41: if COLOR(𝑢) = GREY then

42: if DOUBTS(𝑢) = 0 then

43: COLOR(𝑢) ← BLACK

44:

45: if COLOR(𝑢) = BLACK then

46: RELAX(𝑢)
47: return COLOR(𝑢)
48: end function

Function EQUIV of Algorithm 2 is now split into two separate (and mutually recursive) functions, EQUIVLEFT and EQUIVRIGHT, 
which test the equivalence of pairs of states respectively in 𝑉0 and 𝑉1.

Function EQUIVLEFT takes as input the current vertex 𝑢 ∈ 𝑉0. If 𝑢 has already been encountered we return its colour. Otherwise, 
it is coloured in GREY with zero DOUBTS. At lines 8–15 each successor 𝑣 of 𝑢 is recursively visited. Since 𝑢 ∈ 𝑉0, if 𝑣 is recursively 
found BLACK, then 𝑢 can be safely marked BLACK. Otherwise, there is not enough information to safely assign a BLACK/WHITE colour

to 𝑢. In particular, if 𝑣 is GREY we add arc 𝑣 → 𝑢 to  (notice that it is reversed w.r.t. the transition) and we set DOUBTS(𝑢) to 
1—BLACKness of 𝑢 depends on the (possible) future BLACKness of one of its neighbours 𝑣.

After the loop, at lines 17– 19, if 𝑢 is still GREY we consider two cases: if DOUBTS(𝑢) = 0, then each of its successors has the same 
colour (in this case WHITE) which can be safely assigned to 𝑢.

In case 𝑢 was coloured BLACK (lines 21–23) this information is propagated (RELAXed) to its neighbours in . Notice that in this 
case we explicitly define the procedure RELAX (pseudocode of Algorithm 3): in Algorithm 2 the corresponding procedure VISIT’s 
purpose, was to colour in BLACK all vertices reachable from some distinguishable vertex. In Algorithm 3 we must consider the doubts 
of each vertex 𝑣 by colouring in BLACK only non-doubtful vertices.

EQUIVRIGHT is similar to EQUIVLEFT, the key difference being the update of DOUBTS(𝑢) (line 39): vertices from 𝑉1 need only one

WHITE neighbour to prove their WHITEness, while each of their neighbours must be BLACK to prove their BLACKness.

As an extra (implementation) detail, notice that EQUIVLEFT and EQUIVRIGHT can be combined into a single EQUIV(𝑢, 𝑠) function 
whose second parameter, 𝑠 ∈ {0, 1}, manages the side of  we are visiting (either left or right).

5.2. Complexity analysis
9

First, we bound the size of the associated graph.
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Lemma 3. Given a complete NFA with 𝑛 states and 𝑚 ≥ 𝑛|Σ| transitions, its associated graph has size || ≤ 7𝑛𝑚.

Proof. The associated graph has size || = |𝑉0| + |𝑉1| + |𝐴0| + |𝐴1|. Clearly, |𝑉0| = 𝑛2 and |𝑉1| = 2𝑛2|Σ|. Arcs are more delicate:

|𝐴0| = ∑
𝑝∈𝑄

∑
𝑞∈𝑄

∑
𝑥∈Σ

(|𝛿(𝑝,𝑥)|+ |𝛿(𝑞, 𝑥)|)
= 𝑛

∑
𝑝∈𝑄

∑
𝑥∈Σ

|𝛿(𝑝,𝑥)|+ 𝑛∑
𝑞∈𝑄

∑
𝑥∈Σ

|𝛿(𝑞, 𝑥)|
= 2𝑛𝑚

It is not difficult to see that |𝐴1| = |𝐴0|. The claim follows since 𝑛|Σ| ≤𝑚 (the automaton is complete). □

It is evident that EQUIVLEFT and EQUIVRIGHT combined perform the equivalent of a visit of , and RELAX visits every arc of 
at most once. Hence, their cost over all the execution of Algorithm 3 is bounded by the size of .

Finally, the computation of 𝑄∕𝑒 has time complexity (𝑛2) as in the deterministic case.

Theorem 3. Given a complete NFA with 𝑛 states and 𝑚 ≥ 𝑛|Σ| transitions, MINIMIZENFA terminates in time (𝑛𝑚) ⊆(𝑛2|Σ|𝑟).
5.3. Correctness

First, we prove that from a WHITE vertex on the left we reach in two hops, again, a WHITE vertex.

Proposition 2. Let 𝑝 ≠ 𝑞, and 𝑢 = ⟨𝑝, 𝑞⟩ ∈ 𝑉0 be WHITE. Then, for every arc 𝑢 → 𝑣 ∈𝐴0, vertex 𝑣 ∈ 𝑉1 is either GREY or WHITE.

Proof. Since 𝑝 ≠ 𝑞, there are only two places at which 𝑢 = ⟨𝑝, 𝑞⟩ changed from GREY to WHITE:

Line 15 of Algorithm 3.

In this case, upon termination of EQUIVLEFT(𝑢), 𝑢 is GREY and DOUBTS(𝑢) > 0 (line 17 of Algorithm 4). Inside the loop 
of its EQUIVLEFT-call every neighbour was recursively found to be either GREY or WHITE—or 𝑢 would have been coloured

in BLACK. Finally, it cannot be the case that some GREY neighbour 𝑣 became BLACK afterward, since RELAX(𝑣) would have 
coloured 𝑢 in BLACK by setting DOUBTS(𝑢) = 0.

Line 19 of Algorithm 4.

In this case, inside the loop of EQUIVLEFT(𝑢) none of 𝑢’s neighbours were found to be either BLACK or GREY. Thus, they 
must all be WHITE.

Therefore, every neighbour of 𝑢 is either GREY or WHITE. □

Proposition 3. At line 15 of Algorithm 3 (end of the main loop), for every 𝑣 ∈ 𝑉1, if 𝑣 is either GREY or WHITE, then there exists 
𝑣 → 𝑢′ ∈𝐴1 such that 𝑢′ ∈ 𝑉0 is WHITE.

Proof. If 𝑣 is WHITE, then it must have been coloured at line 35 of Algorithm 4 after finding a WHITE neighbour. If 𝑣 is GREY, upon 
termination of EQUIVLEFT at line 11 (Algorithm 4) some of its neighbours must have been found to be GREY. Since every GREY left 
node is coloured in WHITE before the end of the iteration, it follows again that 𝑣 has some WHITE neighbour. □

As in the DFA case, the colouring performed by loop 9–15 is correct.

Lemma 4. The following hold at the end of each iteration of loop 9–15 of Algorithm 3:

N1. 𝑊 = {⟨𝑝, 𝑞⟩ | COLOR(⟨𝑝, 𝑞⟩) = WHITE} ⊆,

N2. 𝐵 = {⟨𝑝, 𝑞⟩ | COLOR(⟨𝑝, 𝑞⟩) = BLACK} ∩ =∅.

Proof.

N1. By Lemma 1 it is sufficient to prove that 𝑊 is a bisimulation.

First, notice that pairs violating (B1) are coloured in BLACK from the start. Consider ⟨𝑝, 𝑞⟩ ∈ 𝑊 . If 𝑝 = 𝑞, (B2) and (B3) 
trivially hold. Otherwise, let 𝑥 ∈ Σ and 𝑝′ ∈ 𝛿(𝑝, 𝑥). From Proposition 2 it follows that 𝑣 =

⟨
𝑝′, 𝑞, 𝑥

⟩
is either GREY or WHITE. 

From Proposition 3 it follows that some neighbour 𝑢′ of 𝑣 is in 𝑊 . By Definition 5 we have 𝑢′ = ⟨𝑝′, 𝑞′⟩ for some 𝑞′ ∈ 𝛿(𝑞, 𝑥). 
Thus, (B2) holds for ⟨𝑝, 𝑞⟩. The very same argument can be used to prove that (B3) holds for ⟨𝑝, 𝑞⟩. Hence, 𝑊 is a bisimulation.
10

N2. The result follows from (N1) and the fact that vertices in 𝑉0 ∩ are either BLACK or WHITE. □
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At the exit of the loop, all vertices have been coloured. As for the deterministic case, we link the behaviour of MINIMIZENFA to 
the correctness of 𝑊 :

Theorem 4. Let  = ⟨𝑄,Σ, 𝛿, 𝐼,𝐹 ⟩ be a NFA,  = (𝑉0 ∪ 𝑉1, 𝐴0 ∪ 𝐴1) be its associated graph, and 𝑊 ⊆ 𝑉0 be the set of WHITE pairs 
after any iteration of loop 9–15 of MINIMIZENFA(𝑄, Σ, 𝛿, 𝐹 ). Then, the following hold:

1. Incrementality: ∕𝑒
𝑊

is a partially minimized automaton equivalent to  , and

2. Correctness: if 𝑊 is from the last iteration, then ∕𝑒
𝑊

is the bisimulation-minimum automaton accepting 𝐿( )—equivalently, 
𝑊 =.

Proof. Let 𝐵 (resp. 𝑊 ) be the set of pairs from 𝑉0 which have been coloured in BLACK (resp. WHITE). Incrementality follows 
from (N1) of Lemma 4 (𝑊 ⊆ is a bisimulation).

Correctness follows from both Lemma 4 and the fact that, upon termination, 𝐵, 𝑊 is a partition of 𝑉0. Therefore:

 = 𝑉0 ∩

= (𝐵 ∪𝑊 ) ∩

= (𝐵 ∩) ∪ (𝑊 ∩)

= ∅ ∪ (𝑊 ∩)

⊆𝑊 ,

and we conclude 𝑊 =. □

6. Signatures of states

In this section we introduce the signature of a state with the idea of reducing the number of pairs to be checked by the minimization 
algorithm.

Definition 6. Let  = ⟨𝑄,Σ, 𝛿, 𝐼,𝐹 ⟩ be a NFA,  be a (possibly infinite) set of labels, 𝐵 ⊆ 𝑄 ×𝑄 be any bisimulation equivalence, 
and 𝜎 ∶𝑄 →. We say that 𝜎 is a signature if:

(∀𝑝, 𝑞 ∈𝑄)(𝑝𝐵𝑞→ 𝜎(𝑝) = 𝜎(𝑞)).

Furthermore, we call 𝜎(𝑝) the signature of 𝑝.

Ideally, we would like a signature with the property that two states are equivalent if and only if they have identical signatures. 
Since this would be too much to ask—at that point we would have —we are happy with less informative signatures. More precisely, 
we assume to be able to spend a reasonable amount of time (e.g. linear in the size of the automaton) to pre-compute a signature 
𝜎 and consider as BLACK (see Algorithms 2 and 3) all pairs of states with different signatures: this will not change the asymptotic 
complexity of the algorithm in the worst case, but could considerably improve the complexity for many automata.

The next lemma, whose proof can be easily derived from Definition 6, formalizes the above observation.

Lemma 5. Let 𝜎 be a signature and consider the relation =𝜎 defined as:

𝑝 =𝜎 𝑞
def
⟺ 𝜎(𝑝) = 𝜎(𝑞)

Then, =𝜎 is an equivalence relation and  ⊆ =𝜎 .

Thus, instead of blindly call EQUIV on every pair of states, the function will be called on states equivalent by signature. All other 
pairs will be considered BLACK by default.

6.1. A simple signature

We now focus our attention on defining a simple signature computable in linear time.

Definition 7. Let 𝑝 ∈ 𝑄 be a state. We define 𝑙∗(𝑝) as the minimum length of a string accepted by 𝑝 and 𝐿∗(𝑝) as the set of such 
minimum-length strings:

𝑙∗(𝑝) = min{|𝑤| |𝑤 ∈𝐿(𝑝)}
∗ { ∗ }
11

𝐿 (𝑝) = 𝑤 ∈𝐿(𝑝) | |𝑤| = 𝑙 (𝑝)
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We put 𝑙∗(𝑝) =∞ and 𝐿∗(𝑝) =∅ in case 𝐿(𝑝) =∅. Moreover, we define the application 𝜎𝑙 ∶𝑄 → (Σ∗ ∪ {∞}) as:

𝜎𝑙(𝑝) =

{
∞ if 𝐿(𝑝) = ∅,
min≺ 𝐿∗(𝑝) otherwise

Lemma 6. The application 𝜎𝑙 of Definition 7 is well defined and it is a signature.

Proof. Well-definedness follows from the fact that a non-empty set of strings admits a unique lexicographically minimum element. 
Consider now two bisimilar states 𝑝 and 𝑞. Then, 𝐿(𝑝) =𝐿(𝑞) and it follows 𝜎𝑙(𝑝) = 𝜎𝑙(𝑞). □

Minimum-length strings accepted by 𝑝 can be expressed in terms of minimum-length strings accepted by states reachable from 𝑝.

Lemma 7. Let 𝑝 ∈𝑄 be a state. Then, exactly one of the following is true:

1. 𝑙∗(𝑝) = 0 and 𝐿∗(𝑝) = {𝜖}, or

2. 𝑙∗(𝑝) =∞ and 𝐿∗(𝑝) =∅, or

3. 0 < 𝑙∗(𝑝) <∞ and

𝐿∗(𝑝) =
{
𝑥 ⋅𝑤 | 𝑥 ∈ Σ, 𝑝′ ∈ 𝛿(𝑝,𝑥), 𝑙∗(𝑝) = 𝑙∗(𝑝′) + 1, 𝑤 ∈𝐿∗(𝑝′)

}
.

Proof. Cases 1 and 2 are obvious. Consider 𝑝 ∈𝑄 with 0 < 𝑙∗(𝑝) <∞.

First, notice that the (⊇)-inclusion is obvious. We prove the other inclusion. By Definition 7, 𝐿∗(𝑝) is non-empty and all its strings 
are of length 𝑙∗(𝑝) ≥ 1. Consider any such string 𝑥 ⋅𝑤 ∈ 𝐿∗(𝑝). Since 𝑥𝑤 is accepted by 𝑝, there has to be a path in the automaton 
that starts in 𝑝, spells 𝑥𝑤 and reaches a final state. Consider any such path and let 𝑝′ ∈ 𝛿(𝑝, 𝑥) be the state next to 𝑝 in that path. 
Obviously, 𝑤 is accepted by 𝑝′ and so it has to be 𝑙∗(𝑝′) ≤ |𝑤|. Furthermore, there cannot exists any shorter string 𝑤′ accepted by 𝑝′, 
or a shorter string (𝑥 ⋅𝑤′) would also be accepted by 𝑝. Thus, 𝑙∗(𝑝′) = |𝑤| = 𝑙∗(𝑝) − 1. □

Corollary 1. Let 𝑝 ∈𝑄 be a non-final state with 𝐿∗(𝑝) ≠∅. Then, there exist 𝑥 ∈ Σ and 𝑝′ ∈ 𝛿(𝑝, 𝑥) such that 𝜎𝑙(𝑝) = 𝑥 ⋅ 𝜎𝑙(𝑝′).

Proof. State 𝑝 must be of type 3 of Lemma 7, thus 𝜎𝑙(𝑝) = 𝑥 ⋅𝑤 for some 𝑤 ∈ 𝐿∗(𝑝′) and 𝑝′ ∈ 𝛿(𝑝, 𝑥). Since 𝑥𝑤 is lexicographically 
minimum for 𝑝, 𝑤 must be lexicographically minimum for 𝑝′. Therefore, 𝜎𝑙(𝑝′) =𝑤. □

Corollary 1 constitutes a recursive rewriting of signature 𝜎𝑙 .

6.2. The algorithm for the simple signature

We devise Algorithm 5 to compute 𝑄∕ =𝜎𝑙 in time proportional to the size of the automaton . For clarity of exposition, we will 
consider the case of a deterministic automaton with a single final state: the algorithm can be easily generalized for the case of a NFA 
with multiple final states.

Function COMPUTESIGMALPARTITION is constituted by four main operations. First, the automaton is REVERSEd, i.e. transitions 
𝛿(𝑝, 𝑥) = 𝑞 are transformed into transitions 𝜏(𝑞, 𝑥) = 𝑝. Afterwards, at line 7, this visit computes an array 𝑑𝑖𝑠𝑡 which contains the 
values of 𝑙∗. Next, at line 8, COMPUTESUCCESSORS returns the array 𝑠𝑢𝑐𝑐 that contains, for each state 𝑝, the first symbol of 𝜎𝑙(𝑝)
(with the special case for 𝜎𝑙(𝑓 ) = 𝜖). Finally, COMPUTEBUCKETS partitions the states into the 𝜎𝑙-classes.

Let us move on COMPUTESUCCESSORS. In virtue of Corollary 1, it is sufficient to find the lexicographically minimum 𝑥 ∈ Σ that 
leads 𝑝 of distance 𝑑𝑖𝑠𝑡[𝑝] ≠∞ to some 𝑝′ of smaller distance. The final state 𝑓 is covered by initialization of 𝑠𝑢𝑐𝑐 (lines 34–35). The 
for-loop 37–44 takes care of non-final states at finite distance.

The function SIG(𝑝) returns a pair ⟨𝑥, 𝑖⟩ that encodes 𝜎𝑙(𝑝) in the following sense: 𝑥 is the first symbol of 𝜎𝑙(𝑝) and 𝑖 is the index 
of the bucket associated with 𝜎𝑙(𝛿(𝑝, 𝑥)).

Let us describe COMPUTEBUCKETS, which is responsible of returning the 𝜎𝑙-partition. The partition is maintained in the list 
𝐵𝑢𝑐𝑘𝑒𝑡𝑠 initially containing the class of the final state 𝑓 . The array 𝐵 stores the indices of the bucket of each state. The index of 
the new bucket to be constructed is stored in variable 𝑛𝑒𝑥𝑡. The variable 𝑑 stores next distance to be inspected. If two states 𝑝 and 
𝑞 have distance 𝑑𝑖𝑠𝑡[𝑝] ≠ 𝑑𝑖𝑠𝑡[𝑞], then they must belong to different buckets. For this reason, states are first sorted by distance (line 
17) and intervals of states at the same distance 𝑑 are further inspected. Lines 20–21 are responsible of finding the interval 𝑄[𝑖 … 𝑗]
to inspect. 𝑄[𝑖 … 𝑗] is then sorted (according to SIG-value) at line 22 and is given as input to SPLITINTERVAL. After the loop, the 
bucket of the remaining states—those with infinite distance—is added to the partition, which is then returned.

The function SPLITINTERVAL takes as input a sorted interval of states and partitions them according to their SIG-value. First, a 
fresh bucket 𝑏 is created. 𝑏 will contain all states with SIG-value 𝑠𝑖𝑔—notice that states with the same value are stored consecutively 
in the array. Then, each state 𝑄𝑘 in the interval is considered one at a time and its SIG-value is stored in 𝑐𝑢𝑟𝑟. If 𝑐𝑢𝑟𝑟 = 𝑠𝑖𝑔, then 𝑄𝑘
is added to bucket 𝑏. Otherwise, the new 𝑠𝑖𝑔 is saved and 𝑄𝑘 constitutes the start of a new bucket. The old 𝑏 is added to the list of 
buckets, it is re-initialized with the singleton {𝑄𝑘} and, since a new bucket is being created, 𝑛𝑒𝑥𝑡 is incremented. In any case, the 
bucket-index of 𝑄𝑘 is updated at line 60. At the exit of loop 51–60, the last bucket is added and the value of 𝑛𝑒𝑥𝑡 for the subsequent 
12

iterations is returned.
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Algorithm 5 Given a DFA  with states 𝑄, alphabet Σ, transitions 𝛿 and single final state 𝑓 , returns 𝑄∕ =𝜎𝑙 .

1: 𝑄, Σ, 𝛿, 𝑓, 𝑑𝑖𝑠𝑡, 𝑠𝑢𝑐𝑐, 𝐵𝑢𝑐𝑘𝑒𝑡𝑠, 𝐵
2: ⊳ Global variables

3:

4: function COMPUTESIGMALPARTITION()

5: 𝑄, Σ, 𝛿, 𝑓 ←
6: 𝜏 ← REVERSE(𝛿)
7: 𝑑𝑖𝑠𝑡 ← BFS(𝑄, 𝜏, 𝑓 )
8: 𝑠𝑢𝑐𝑐← COMPUTESUCCESSORS()
9: return COMPUTEBUCKETS()

10: end function

11:

12: function COMPUTEBUCKETS()

13: 𝐵𝑢𝑐𝑘𝑒𝑡𝑠 ← { {𝑓} }
14: 𝐵← ARRAY(|𝑄|)
15: 𝐵[𝑓 ] ← 1
16: 𝑖, 𝑛𝑒𝑥𝑡, 𝑑← (2, 2, 1)
17: 𝑄 ← LINEARSORTBYDISTANCE(𝑄)
18: while 𝑖 ≤ |𝑄| ∧ 𝑑 <∞ do

19: 𝑗← 𝑖
20: while 𝑗 + 1 ≤ |𝑄| ∧ 𝑑𝑖𝑠𝑡[𝑄𝑗+1] = 𝑑 do

21: 𝑗← 𝑗 + 1
22: 𝑄[𝑖 … 𝑗] ← LINEARSORTBYSIG(𝑄, 𝑖, 𝑗)
23: 𝑛𝑒𝑥𝑡 ← SPLITINTERVAL(𝑛𝑒𝑥𝑡, 𝑖, 𝑗)
24: 𝑖, 𝑑← (𝑗 + 1, 𝑑 + 1)
25: 𝐵𝑢𝑐𝑘𝑒𝑡𝑠 ←𝐵𝑢𝑐𝑘𝑒𝑡𝑠 ∪ {𝑞 ∈𝑄 | 𝑑𝑖𝑠𝑡[𝑞] =∞}
26: return 𝐵𝑢𝑐𝑘𝑒𝑡𝑠

27: end function

28:

29: function SIG(𝑝)

30: 𝑝′ ← 𝛿(𝑝, 𝑠𝑢𝑐𝑐[𝑝])
31: return ⟨𝑠𝑢𝑐𝑐[𝑝],𝐵[𝑝′]⟩
32: end function

33: function COMPUTESUCCESSORS()

34: 𝑠𝑢𝑐𝑐← ARRAY(|𝑄|, ∞)
35: 𝑠𝑢𝑐𝑐[𝑓 ] ← 𝜖
36: 𝑄′ ←𝑄 ⧵ ({𝑓} ∪ {𝑞 ∈𝑄 | 𝑑𝑖𝑠𝑡[𝑞] =∞})
37: for all 𝑝 ∈𝑄′ do

38: 𝑑← 𝑑𝑖𝑠𝑡[𝑝]
39: 𝑓𝑜𝑢𝑛𝑑← ⊥
40: for all 𝑥 ∈ Σ in lex order ∧ ¬𝑓𝑜𝑢𝑛𝑑 do

41: 𝑝′ ← 𝛿(𝑝, 𝑥)
42: if 𝑑𝑖𝑠𝑡[𝑝′] + 1 = 𝑑 then

43: 𝑠𝑢𝑐𝑐[𝑝] ← 𝑥
44: 𝑓𝑜𝑢𝑛𝑑← ⊤

45: return 𝑠𝑢𝑐𝑐

46: end function

47:

48: function SPLITINTERVAL(𝑛𝑒𝑥𝑡, 𝑖, 𝑗)
49: 𝑏 ←∅
50: 𝑠𝑖𝑔← SIG(𝑄𝑖)
51: for 𝑘 = 𝑖 to 𝑗 do

52: 𝑐𝑢𝑟𝑟 ← SIG(𝑄𝑘)
53: if 𝑐𝑢𝑟𝑟 = 𝑠𝑖𝑔 then

54: 𝑏 ← 𝑏 ∪ {𝑄𝑘}
55: else

56: 𝑠𝑖𝑔← 𝑐𝑢𝑟𝑟
57: 𝐵𝑢𝑐𝑘𝑒𝑡𝑠 ←𝐵𝑢𝑐𝑘𝑒𝑡𝑠 ∪ {𝑏}
58: 𝑏 ← {𝑄𝑘}
59: 𝑛𝑒𝑥𝑡 ← 𝑛𝑒𝑥𝑡 + 1
60: 𝐵[𝑄𝑘] ← 𝑛𝑒𝑥𝑡
61: 𝐵𝑢𝑐𝑘𝑒𝑡𝑠 ←𝐵𝑢𝑐𝑘𝑒𝑡𝑠 ∪ {𝑏}
62: return 𝑛𝑒𝑥𝑡 + 1
63: end function

6.3. Complexity analysis

Remember that we are dealing with a complete deterministic automaton with 𝑛 states and 𝑚 = 𝑛|Σ| transitions.

The time complexity of COMPUTESIGMALPARTITION is the sum of the time complexities of REVERSE, BFS, COMPUTESUCCESSORS

and COMPUTEBUCKETS.

REVERSE and BFS are standard algorithms that run in time (𝑛 +𝑚).
COMPUTESUCCESSORS takes time (𝑛 +𝑚). The initialization of 𝑠𝑢𝑐𝑐 and 𝑄′ has cost (𝑛). Afterwards, the cost of each iteration 

of loop 37–44 is bounded by the size of the alphabet. Summing over all iterations, the running time is bounded by (𝑚).
SPLITINTERVAL has time complexity linear in the size 𝑗 − 𝑖 + 1 of the interval is called on: 𝑏 and 𝐵𝑢𝑐𝑘𝑒𝑡𝑠 can be implemented as 

linked-lists, thus, each insertion can be done in constant time. Therefore, each iteration of loop 51–60 has cost (1).
COMPUTEBUCKETS takes time (𝑛). The sort at line 17—which can be implemented as a radix-sort—runs in time 𝑂(𝑛). Afterwards, 

the loop 20–21 acts on disjoint intervals, thus its cost is the sum of the costs of each interval. Fix an interval 𝑄[𝑖 … 𝑗]. Sorting at line 
22—again, radix-sort—costs (𝑗 − 𝑖 + 1), the same as SPLITINTERVAL(𝑛𝑒𝑥𝑡, 𝑖, 𝑗). Thus, summing over all intervals we obtain (𝑛).

Concluding, we have the following:

Theorem 5. COMPUTESIGMALPARTITION terminates in time Θ(𝑛|Σ|).
6.4. Correctness

REVERSE, BFS, LINEARSORTBYDISTANCE and LINEARSORTBYSIG may be assumed to be correct because they are minor variations 
of well-known algorithms.

For what concerns COMPUTESUCCESSORS, loop 37–44 operates over non-final states 𝑝 with 𝐿∗(𝑝) ≠∅. Thus, Corollary 1 ensures 
that the inner 𝐢𝐟 -guard is satisfied for the correct 𝑥.

In what follows, we say that array 𝐵 is correct up to 𝑑, for 𝑑 ≥ 1 if:

(∀𝑞1, 𝑞2 ∈ {𝑞 ∈𝑄 | 𝑑𝑖𝑠𝑡[𝑞] < 𝑑})(𝐵[𝑞1] =𝐵[𝑞2]↔ 𝑞1 =𝜎𝑙 𝑞2).
Now we prove that function SIG(𝑝) correctly encodes the signature 𝜎𝑙(𝑝). This is the essence of the correctness of both SPLITIN-

TERVAL and COMPUTEBUCKETS.

Lemma 8. Let 𝑝 ∈𝑄 such that 1 ≤ 𝑑𝑖𝑠𝑡[𝑝] <∞. If array 𝐵 is correct up to 𝑑𝑖𝑠𝑡[𝑝], then:⟨ ⟩
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SIG(𝑝) = 𝑥,𝐵[𝑝′] ⟺ 𝜎𝑙(𝑝) = 𝑥 ⋅ 𝜎𝑙(𝑝′).
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Proof. By definition of SIG(𝑝), it holds 𝑝′ = 𝛿(𝑝, 𝑠𝑢𝑐𝑐[𝑝])—which exists by hypothesis about 𝑑𝑖𝑠𝑡[𝑝]. The statement follows from 𝑠𝑢𝑐𝑐
correctness and from Corollary 1. □

Corollary 2. Let 𝑝, 𝑞 ∈𝑄 with 𝑑𝑖𝑠𝑡[𝑝] = 𝑑𝑖𝑠𝑡[𝑞] and suppose 𝑝, 𝑞 and 𝐵 satisfy the hypotheses of Lemma 8. Then:

SIG(𝑝) = SIG(𝑞) ⟺ 𝑝 =𝜎𝑙 𝑞.

Proof. Let SIG(𝑝) = ⟨𝑥,𝐵[𝑝′]⟩, and SIG(𝑞) = ⟨𝑦,𝐵[𝑞′]⟩. Then:

SIG(𝑝) = SIG(𝑞) ⟺ 𝑥 = 𝑦 ∧𝐵[𝑝′] =𝐵[𝑞′] (Equality of pairs)

⟺ 𝑥 = 𝑦 ∧ 𝜎𝑙(𝑝′) = 𝜎𝑙(𝑞′) (𝐵 is correct)

⟺ 𝑥 ⋅ 𝜎𝑙(𝑝′) = 𝑦 ⋅ 𝜎𝑙(𝑞′)

⟺ 𝜎𝑙(𝑝) = 𝜎𝑙(𝑞). (Lemma 8) □

Having proved the correctness of function SIG, the correctness of SPLITINTERVAL follows immediately. Assume 𝐵 to be cor-

rect up to 1 ≤ 𝑑 < ∞ and let 𝑖, 𝑗 such that interval 𝑄[𝑖 … 𝑗] contains all and only states at distance 𝑑 ordered by SIG-value. 
SPLITINTERVAL(𝑛𝑒𝑥𝑡, 𝑖, 𝑗) puts in the same bucket states that agree on SIG-value: the correctness follows from Corollary 2. More-

over, after loop 51–60, 𝐵 is clearly correct up to 𝑑 + 1.

Finally, we consider COMPUTEBUCKETS. The core is the correctness of loop 18–24.

Lemma 9. After each iteration of loop 18–24, 𝐵 is correct up to 𝑑.

Proof. We prove the statement by induction on 𝑑 ≥ 1.

Base: Before entering the loop, line 15 ensures that 𝐵 is correct up to 1 = 𝑑.

Step: Consider 𝑑 > 1 and assume 𝐵 correct up to 𝑑 from the previous iteration. After loop 20–21, 𝑄[𝑖 … 𝑗] clearly contains all and 
only states at distance 𝑑 (they are sorted at line 17). Line 22 correctly sorts the interval w.r.t. SIG-value. By the argument above,

SPLITINTERVAL sets 𝐵 correct up to 𝑑 + 1. Finally, the assignment at line 24 increments 𝑑. Thus, 𝐵 is now correct up to 𝑑. □

Lemma 9 ensures that states at distance 𝑑 <∞ are correctly put into buckets. Finally, line 25 adds the bucket of infinite-distance 
states which are all 𝜎𝑙-equivalent (see Definition 7).

Therefore, we have the following:

Theorem 6. COMPUTESIGMALPARTITION is correct.

7. Conclusions

Bisimilarity is a fundamental (equivalence) relation among the states of finite automata, finding applications and variants in a 
number of different areas. Algorithms for computing bisimilarity are a classic and can be subdivided in two categories: top-down and 
a bottom-up. The former (partition refinement) approach starts with a coarse partition and refines it until the result is produced, 
while the latter (partition aggregation) starts from a singleton-classes equivalence relation and merges classes until possible.

Although algorithms belonging to the bottom-up category are, to the best of our knowledge, still currently asymptotically slower 
than their alternative ones, aggregation based techniques enjoy the property of being incremental: automata resulting at intermediate 
stages of the computation are partially minimized yet language-equivalent to the input one.

Moreover, partition aggregation algorithms, even though less celebrated than partition refinement ones, introduced by Hopcroft 
and generalized by Paige and Tarjan, are interesting (at least) for two reasons. The first is theoretical: if two methods compute 
the same relation (just one from “above” and the other from “below”), why is there a complexity gap? Is there some (hidden) cost

involved in maintaining incrementality? The second is practical: some applicative contexts can greatly benefit from having a partially 
minimized equivalent automaton, especially when, as alternative, long sequences of refinement steps are involved.

In this work, while fixing a minor mistake in the algorithm by Almeida et al., we reduced bisimilarity computation to a colouring

problem on an associated graph. We then extended the algorithm to nondeterministic case, obtaining a complexity improvement on 
the best known bound for this case. Furthermore, we introduced the notion of signature of a state with the aim of improving both 
top-down and bottom-up algorithms.

As future works, we would like to experimentally study the proposed algorithms and to investigate on different signatures in 
both refinement-based and aggregation-based techniques. As a further line of research, it will be interesting to study the effect of 
applying the technique introduced here to the colour refinement algorithm (a.k.a. Weisfeiler-Leman-1 algorithm, see [18]), currently 
14

implemented using an algorithm by Cardon and Crochemore (see [19]) belonging to the top-down/partition-refinement category.
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