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Abstract

The class of p2 models is suitable for modelling binary relation data in social

network analysis. A p2 model is essentially a regression model for bivariate binary

responses, featuring within-dyad dependence and correlated crossed random effects

to represent heterogeneity of actors. Despite some desirable properties, these models

are used less frequently in empirical applications than other models for network

data. A possible reason for this fact may lie in the computational difficulties existing

to estimate such models by means of the methods proposed in the literature, such

as joint maximization methods and Bayesian methods. The aim of this paper is

to investigate maximum likelihood estimation based on the Laplace approximation

approach, that can be refined by importance sampling. Practical implementation of

such methods can be performed in an efficient manner, and the paper provides details

on a software implementation using R. Numerical examples and simulation studies

illustrate the methodology.

Key words: Automatic Differentiation; Importance Sampling; Numerical Inte-

gration; Random Effects; Social Network Analysis.

Running title: Maximum likelihood estimation for p2 models.

∗Dipartimento di Scienze Economiche e Statistiche, Università di Udine, via Tomadini 30/A, 33100
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1 Introduction

The p1 model (Holland and Leinhardt, 1981) is a classical model for directed random

graphs. It has some interesting features, such as direct modelling of the within-dyad

dependence, the inclusion of sender and receiver effects and the possibility of inserting

covariates of various kinds, and it still attracts the attention of theoretical statisticians due

to the incidental-parameter problem that affect the mathematical properties of estimators

(e.g. Yan and Xu, 2013). At the same time, the p1 model has some remarkable limitations

for empirical applications, as it assumes independence between different dyads, including

those involving the same actors.

The basic p2 model was first introduced by Van Duijn (1995), used in Lazega and

Van Duijn (1997), and then studied more thoroughly in Van Duijn et al. (2004). It retains

all the desirable properties of the p1 model, but it includes correlated random effects for ties

sharing the same actors, resulting in more realistic assumptions. Recent surveys (Hunter

et al., 2012; Snijders, 2011) include such model among those models for network data

based on latent variables. Unlike other latent variable network models, such as latent

cluster random effects models (Krivitsky et al., 2009), stochastic dependence is explicitly

assumed for both the ties belonging to the same dyad given the random effects, as well as

the sender and receiver effect for the same actor.

The p2 model has been used much less in empirical studies of network data compared

to other models, notably those belonging to the class of exponential random graph models

(ERGMs) (Frank and Strauss, 1986), widely described in the aforementioned review papers;

see also Robins et al. (2007) and the two recent monographs by Kolaczyk (2009) and

Kolaczyk and Csárdi (2014). Nonetheless, p2 models represent a useful and flexible class,

that can be extended in various directions. Two features are probably worth mentioning.

First, it is very simple to simulate networks from a given p2 model, and this can be useful

for evaluating the model fit and comparing different fitted models. Indeed, goodness of fit

methods for network data models are typically based on simulation (Hunter et al., 2008).

Second, and perhaps more importantly, p2 models can be adapted to multilevel structures,

such as networks formed by students in the same class, with classes nested in schools. This

2



is the essence of the multilevel p2 model (Zijlstra et al., 2006), used for example in Vermeij

et al. (2009).

In the paper that first thoroughly analysed the p2 model, Van Duijn et al. (2004) es-

timated the model parameters by a Marginal Quasi Likelihood (MQL) approach (Breslow

and Clayton, 1993; Goldstein, 1991), also considered by Zijlstra et al. (2009). The litera-

ture on random effects clearly points out that joint maximization methods, such as MQL

and PQL, may perform poorly for nonlinear models and discrete data (Molenberghs and

Verbeke, 2005, Ch. 14), and this was clearly shown in the simulation studies reported in

Zijlstra et al. (2009). Indeed, the latter authors proposed a Bayesian approach, sampling

from the posterior distribution by Markov Chain Monte Carlo (MCMC) methods. In par-

ticular, they used a slightly informative prior for model parameters, and compared several

sampling algorithms. The results obtained with such approach were good, even when as-

sessed from a frequentist perspective. Nonetheless, a maximum likelihood approach may

appeal to many users. The maximum likelihood approach is straightforward to apply

and fast, and it may also have good scalability properties, with the possibility to readily

estimate models for large networks.

The aim of this paper is to demonstrate that the implementation of approximate max-

imum likelihood estimation of p2 models using open-source statistical software is a feasible

task. The resulting software is then used to study the properties of the proposed estimation

method, both by means of some numerical examples and with simulations studies. The

latter include a comparison with the numerical results of Zijlstra et al. (2009), and some

simulations with larger networks.

The plan of the paper is as follows. Section 2 gives some background details, and Section

3 illustrate approximated maximum likelihood estimation of the model parameters. Section

4 gives some details on the computational implementation, and in particular on the R (R

Core Team, 2019) package p2model that can be used to apply the methods proposed in

this paper. Section 5 illustrates some examples based on some well-known data sets, and

Section 6 reports the results of some simulation studies. Some concluding remarks are

provided in the final section.
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2 Background

A directed graph represents the ties between a certain set of nodes, that in social networks

represent different actors. A pair of actors, along with their realized ties, is a dyad. Here

the focus is on binary ties, represented by the variables yij, with 1 denoting the presence

of a tie from actor i to actor j, with i, j = 1, . . . , g.

The basic assumption of the p2 model is that for a given dyad

P (Yij = y1, Yji = y2|ai, bi, aj, bj)

=
exp {y1 (µij + αi + βj) + y2 (µij + αj + βi) + ρij y1y2}

1 + exp (µij + αi + βj) + exp (µji + αj + βi) + exp (µij + µji + αi + βj + αj + βi + ρij)
,

(1)

where y1 and y2 are binary values, αi is the sender parameter of actor i, βi is receiver

parameter of actor i, whereas µij and ρij are the density and the reciprocity parameters

for dyad (i, j). These parameters depend on some covariates and random effects in the

following way

αi = x>1i γ1 + ai , βi = x>2i γ2 + bi , µij = µ+ z>1ij δ1 , ρij = ρ+ z>2ij δ2 .

Here X1 and X2 are design matrices with g rows for covariates measured on actors, whereas

Z1 and Z2 contain dyad-specific covariates. More precisely, Z1 is a three-dimensional array

of size kd × g × g, obtained by stacking together kd matrices of size g × g. Similarly, Z2 is

a three-dimensional array of size kc × g × g, but notice that the kc matrices forming it are

always symmetric. The vectors ui = (ai, bi)
T are random effects, which are assumed to be

normally distributed independent random variables. Namely,

Ui ∼ N2(0,Σ) , Σ =

 σ2
A σAB

σAB σ2
B

 . (2)

The inclusion of random effects induces a correlation among all the ties sent or received

for a given actor. Moreover, the two random effects for the same actor, entering the linear

predictor for sender and receiver parameters respectively, are allowed to be correlated. All

the different parameters of this model are collected together in the vector θ

θ = (γT1 , γ
T
2 , µ, δ

T
1 , ρ, δ

T
2 , σ

2
A, σAB, σ

2
B)T .
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Van Duijn et al. (2004) and Zijlstra et al. (2009) noticed that the p2 model is con-

veniently formulated as a multinomial regression model with random effects. Although

this fact is important and it may be useful for some computer implementations, it will

not be exploited in what follows. Instead, note that from (1) we can readily obtain both

the distribution of a given component, say Yij, as well as the conditional distribution of

the other component (Yji) given the first one, keeping in either case the random effects as

fixed. Both these two results are simple since the two response variables are binary. The

resulting formulas are

P (Yij = 1|ai, bi, aj, bj) =
exp (ηij) + exp (ηij + ηji + ρij)

1 + exp (ηij) + exp (ηji) + exp (ηij + ηji + ρij)
(3)

P (Yji = 1|Yij = y1, ai, bi, aj, bj) =
exp {y1 ηij + ηji + y1 ρij}

exp {y1 ηij}+ exp {y1 ηij + ηji + y1 ρij }
, (4)

where

ηij = µij + αi + βj .

A remarkable consequence of (3)-(4) is that simulation of a network from a p2 model is

quite simple, i.e. after simulating the random effects, it just requires the simulation of two

binary variables for each dyad.

3 Maximum likelihood estimation

The likelihood function for the model defined by (1) and (2) is obtained by integrating out

the random effects. After setting

p(y|u; θ) =

g−1∏
i=1

g∏
j=i+1

p(yij, yji|ui, uj) ,

where p(yij, yji|ui, uj) corresponds to (1), it follows that

L(θ) =

∫
IR2 g

p(y|u; θ)

{
g∏
i=1

φ2(ui; 0,Σ)

}
du , (5)

being φ2(·) the bivariate normal density (2).
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3.1 Estimation based on the Laplace approximation

The high-dimensional integral in (5) can only be evaluated numerically, as the correlated

random effects ui have a crossed structure, therefore there is no possible reduction of the

dimension of integration. A doable approach to the numerical approximation to (5) is via

the Laplace’s method of integration, as proposed in Skaug (2002). Let h(u; θ, y) be defined

as

h(u; θ, y) = log p(y|u; θ) +

g∑
i=1

log φ2(ui; 0,Σ) ,

the first-order Laplace approximation to L(θ) is given by

L∗(θ) = exp{h(ûθ; θ, y)} |H(θ)|−1/2 , (6)

with ûθ = argmax
u

h(u; θ, y) and H(θ) given by minus the Hessian matrix of h(u; θ, y) at

the maximum

H(θ) = −∂
2h(u; θ, y)

∂u ∂uT

∣∣∣∣
u=ûθ

.

3.2 Estimation properties

There exists some encouraging published evidence about the good performances of the

estimator θ̂∗ of θ obtained from the maximization of L∗(θ) for mixed models with crossed

random effects structures (Noh and Lee, 2007; Skaug, 2002). Besides, the recent paper

by Ogden (2017) provides some theoretical support about the properties of θ̂∗. Using the

results of the latter paper, together with those in Shun and McCullagh (1995), it is possible

to verify that

i) θ̂∗ is consistent when g →∞, being the number of nodes the right asymptotic index for

network data (Krivitsky and Kolaczyk, 2015);

ii) θ̂∗ has the same limiting distribution as the exact MLE θ̂ which maximizes (5).

The implications of the above properties is that one can safely adopt θ̂∗ as the estimator

of choice for p2 models, and estimating its standard error using the observed information

matrix obtained from logL(θ). Further usages of the latter quantity include computation

6



of likelihood ratio tests and likelihood-based model selection criteria, that are also covered

by the results in Ogden (2017).

Some residual concerns about θ̂∗ may arise for small-sized networks, where it might

be sensible to compare it with another estimator which is theoretically superior. A possi-

ble route to this is to approximate L(θ) by importance sampling, following Skaug (2002)

and Brinch (2012). The latter author provided the apt denomination explicitly parameter

dependent Laplace importance sampling. The idea is to take as the importance sampling

distribution a normal distribution with mean vector ûθ and covariance matrix H(θ)−1. If

u(1), . . . , u(M) is random sample of size M from such a distribution, the resulting approxi-

mation is given by

L†(θ) =
1

M

M∑
j=1

exp{h(u(j); θ, y)}
φ2 g{u(j); ûθ, H(θ)−1}

. (7)

The random draws u(j) can be generated as

u(j) = ûθ + C(θ) v(j) ,

where C(θ) is the Cholesky factor of H(θ)−1 and v(j) is a vector of independent standard

normal draws, so that L†(θ) can be conveniently expressed in a form suitable for direct

computation

L†(θ) = |C(θ)| exp{h(ûθ; θ, y)} 1

M

M∑
j=1

exp
[
h{ûθ + C(θ) v(j); θ, y} − h(ûθ; θ, y) + 0.5 ‖v(j)‖2

]
.

(8)

Following Skaug (2002), in order to facilitate the maximization of L†(θ) it is advisable to

use the same set of random draws v(1), . . . , v(M) to generate u(1), . . . , u(M), for all values of

θ. The maximization of logL†(θ) can then be repeated for various choices of M , to check

whether the resulting estimates become stable for large values of M .

3.3 Penalized estimation

In our own experience, estimated p2 models will often have estimated covariance of sender

and receiver random effects σAB with negative sign. This is also found in several published

results, though there are also instances of positive estimated correlation, as will be seen in
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the second example of the following section. Occasionally, it is possible to encounter data

sets where the estimate of the correlation ρAB = σAB/(σA σB) is extreme, with estimated

random effects matrix close to singularity. The implications of this fact are twofold. First,

the fact that the estimated Σ is close to singular complicates the parameter estimation,

since it is typically associated to a profile likelihood function that is nearly flat for the

parameters that specify Σ. This can be overcome with some care in the implementation,

following for example Bates et al. (2015, Section 4), but it may lead to occasional failure of

fitting routines. Another consequence of (almost) singular estimated Σ is that the empirical

Bayes prediction of random effects would lie on a line, which is somewhat unattractive.

A possible resolution to these issues is suggested by Chung et al. (2015), that propose

to penalize the log-likelihood by a weakly informative prior. Namely, they suggest to

maximize the log-likelihood plus a penalty function for Σ,

logL(θ) + log p(Σ) , (9)

where for the case of two random effects a possible default choice for p(Σ) is

p(Σ) ∝ |Σ|1/2 = σA σB

√
1− ρ2AB .

Such a modification is of order O(1), thus it does not alter the asymptotic properties of

the MLE, and the estimator defined as the maximizer of (9) will be typically close to

the ordinary MLE; indeed, in all the experiments we made, the inclusion of the penalty

had a modest effect on the model estimates. At the same time, the penalty prevents the

maximizer of (9) to achieve a maximum at ρAB±1. Although Chung et al. (2015) consider

the case of linear mixed models, the same properties are valid more generally. We suggest

the recourse to the penalized estimator whenever the estimated Σ is nearly singular, and

the R software accompanying this article has options for this. Finally, note that Chung

et al. (2015) also illustrate how to employ more informative penalties for Σ to incorporate

additional prior information, moving closer towards Bayesian inference while remaining

within the frequentist realm.
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4 Software implementation

The methods of the previous sections have been implemented in the R package p2model.

The package, which is available at https://github.com/rugbel/p2model, makes use of

software for Automatic Differentiation, as endorsed by Cudeck (2005), and first used for

random effects models by Skaug (2002) and Skaug and Fournier (2006). The usage of such

software in p2model is totally transparent to the user, and this should make the usage of

the package appealing also to social scientists.

In particular, the R package Template Model Builder (TMB) (Kristensen et al., 2016)

has been employed for approximate maximum likelihood estimation based on the Laplace

approximation and Laplace importance sampling. This package, available at the CRAN

(see also https://github.com/kaskr/adcomp) operates by means of C++ templates im-

plementing the log-likelihood function, taking advantage of many available options which

greatly simplify the task with respect of full implementation in a low-level programming

language. TMB is well integrated with R, and it is particularly effective for large models.

At the time of writing, the Laplace importance sampler automatically provided by TMB is

not exactly the same one described in Section 3, and so our own implementation is made

available in the package and it has been employed for the examples that follow. The bulk

of the computation of (8), consisting in obtaining the estimated effects ûθ, the Cholesky

factor C(θ) and the function h(·) is based on functions supplied by TMB.

Automatic differentiation software has two distinct useful features for the implemen-

tation of the methods of interest in this article. First, estimation of θ based on L∗(θ) is

very fast and computationally efficient, taking advantage of numerical methods for sparse

linear systems implemented in the software. This ensures a good degree of scalability, and

actually the software provided can readily fit models to networks with about 1,000 nodes or

even larger, a task that would have been unfeasible for several other implementations. The

second important feature is the possibility to easily extend the basic model formulation,

to include for example multilevel p2 models (e.g. Vermeij et al., 2009; Zijlstra et al., 2006),

a point we will return on in the concluding section.

9



5 Data examples

5.1 High-tech managers data

As a first example, we consider the high-tech managers data (Krackhardt, 1987), already

used by several authors, including Wasserman and Faust (1994). The data are available

within the statnet project (Handcock et al., 2003), and they are about the friendship

relations among 21 managers of a firm. The data set includes four actor attributes, namely

age in years (Age), years spent in the organization (Tenure), level in the corporate hierarchy

(Level) and department of the employer (Department). The latter two are categorical

variables.

A plausible model for this data set has been fitted using the methods of Section 3, and

the results are reported in Table 1. The fitted model includes both sender and receiver

covariate effects, along with some density effects.

[Table 1 about here.]

In this example, approximate maximum likelihood estimates obtained from L†(θ) sta-

bilizes very quickly with the value of M , and actually very little variation is found in both

the estimates and the maximized likelihoods obtained with M in the range 1,000-50,000.

The results are very close to those based on L∗(θ), confirming the theoretical properties of

the latter method.

Figure 1 reports a plot of the network along with the estimated sender and receiver

effects, given by the empirical Bayes estimates of the random effects. The latter are

computed by replacing θ by θ̂∗ in the expression of ûθ. The plot was inspired by the

proposal in Thiemichen et al. (2016, Figure 2), who introduced an interesting model for

undirected networks combining together the exponential random graph specification with

nodal random effects.

[Figure 1 about here.]

Here the estimated correlation is ρ̂∗AB = −0.79 (0.20), which is substantial, though not so

much as to suggest the recourse to penalized estimation. The negative correlation between
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sender and receiver effects is apparent from the shading of the nodes in Figure 1. It should

be noted, however, that the estimated sender and receiver effects do not simply mirror the

out-degree and in-degree distribution of the network, respectively. This is demonstrated

by Figure 2, displaying two caterpillar plots of estimated random effects. The effects are

sorted by increasing size of the out- and in-degree respectively, showing that whereas the

estimated sender effects follow the out-degree distribution to a good extent, this is less the

case for the estimated receiver effects. One of the reasons for this is the inclusion of actor

covariates in the model.

[Figure 2 about here.]

We make use of this example to illustrate the important point of goodness-of-fit eval-

uation of a fitted p2 model. Goodness-of-fit procedures for network data are based on

the seminal work by Hunter et al. (2008), that developed a procedure for evaluating the

model goodness of fit by simulation. The output of the procedure consists in some plots,

which have been produced here using the estimates based on L∗(θ), as reported in Figure

3. The figure was obtained by adapting a portion of the statnet suite of R packages for

network analysis (Handcock et al., 2003), and in particular the gof.ergmm function of the

latentnet package (Krivitsky and Handcock, 2008; Krivitsky and Handcock, 2018). The

plots are obtained by simulating several networks from the fitted model and then estimating

the sample distribution of some network statistics. The observed value of these statistics

are displayed as solid lines, and they are then compared with the simulated distributions,

with the latter summarized by means of boxplots. The first two plots show that the in-

and out-degree distributions are adequately captured by the sender and receiver effects.

The other plots refer to other summary statistics, including some that are not directly

parameterized by the p2 model. Yet the goodness of fit seems acceptable, pointing to the

capability of the model to capture higher-order dependences, at least for the data at hand.

[Figure 3 about here.]
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5.2 Lazega friendship network

We consider here the Lazega’s associates friendship network (Lazega, 2001), fitting the

same three models reported in Van Duijn et al. (2004). In particular, Model 0 is an empty

model including the intercepts µ, ρ and the variance terms, while Model 1 and Model 2

contain also some terms for density and reciprocity effects. Moreover, the networks on

advice and collaboration are set as covariates for the density parameter in Model 2. More

details on the model specification can be found in Van Duijn et al. (2004).

The results obtained from the approximate maximum likelihood methodology proposed

in this paper are compared with those obtained with the StOCNET software (Boer et al.,

2006) for Windows. This software is capable of estimating a p2 model using both the

MQL approach and the Bayesian approach of Zijlstra et al. (2009). Among the methods

implemented by StOCNET, we report in Table 2 the results based on the IGLS-3 algorithm for

the MQL approach, and on the MCMC Random Walk sampler for the Bayesian approach.

The table includes also the estimates obtained with the Laplace methods, where M=10,000

was used for the importance sampling in L†(θ). Note that for Model 1 the density covariate

defined as the difference of sending and receiving actor seniority values has been dropped

due to collinearity problems (which are an issue for all the methods), retaining only the

absolute differences of the same quantities. Therefore, the comparison with the results of

Van Duijn et al. (2004) has to be taken with some care.

[Table 2 about here.]

We observe that regression coefficients estimated by MQL are generally attenuated with

respect to the other methods. The results for the remaining methods are instead in good

agreement. Plots on the model goodness of fit for all the three models are included in the

Supplementary Materials.

5.3 Dutch social behavior study

As a final example, we consider the data from the Dutch Social Behavior Study (Baerveldt

and Snijders, 1994), already analysed in Baerveldt et al. (2004) and Zijlstra et al. (2005).

The interest was on a social network of reported received emotional support among a
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group of high-school students. Zijlstra et al. (2005) employed a Bayesian approach based

on MCMC, taking the first network of 62 students as calibration sample used to obtain

prior distributions for the analysis sample, the second network of 39 students. In particular,

these authors first fitted a Bayesian model with diffuse priors for the calibration sample,

and then used the results to define moderately informative priors for the analysis sample.

Model selection was performed for the analysis sample using the Bayes factor, selecting a

model (‘Model 4’) among a set of five possible alternative models. Here we replicate their

analysis for what concerns model selection following the likelihood approach, using only

the analysis sample.

[Table 3 about here.]

It is found that importance sampling performs a modest adjustment to the standard

Laplace approximation, especially for the estimation of variance parameters. Maximum

likelihood estimates obtained from L†(θ) are similar for a broad set of values for M , and

actually little variation is found in both the estimates and the maximum log likelihood

values for M in the range 5,000-50,000. Table 3 reports the maximized log likelihood

values along with AIC and BIC values for the five models defined in Zijlstra et al. (2005),

with the BIC computed using the number of nodes as the sample size. A comforting finding

is that likelihood-based model selection points to the same model selected by the Bayesian

method used by Zijlstra et al. (2005), as Model 4 has the lowest AIC (and BIC) values

with either L∗(θ) or L†(θ). Plots on the model goodness of fit of Model 4 are included in

the Supplementary Materials.

6 Simulation studies

The examples of the previous sections suggest that the two approximate maximum likeli-

hood methods give very similar results, and tend to be close to the results obtained with the

Bayesian approach, while much larger differences exist with respect to the MQL method.

Further information on the properties of the proposed methodology can be gleaned from

some simulation studies.
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6.1 Simulation study for small-size networks

At first, we replicated the simulation study of Zijlstra et al. (2009). These authors con-

sidered three model settings for two network sizes (20 and 40 nodes). Following their

description, Model 1 is an empty model, with density and reciprocity parameters equal to

µ = −2 and ρ = 2 respectively, and independent standardized random effects. Model 2 is

similar to Model 1, but it also has a dyadic covariate for the density and a sender covariate.

The density covariate has regression coefficient 0.5, and it is a network (net1) generated

from Model 1. The sender covariate has a regression coefficient 0.05, and it equals the

actor’s rank number (1, . . . , g). Model 3 has a receiver covariate, two density covariates

and one reciprocity covariate. The receiver covariate has regression coefficient -0.1, and it

is a binary variable drawn from a coin flip. The first density covariate is the same used

in Model 2, (net1), and it has regression coefficient 0.5. The second density covariate (fc)

has regression coefficient 0.2, and it contains the absolute differences of an actor covariate

drawn from a multinomial distribution having as sample space the set {1, 2, 3, 4, 5} and five

equal probabilities. The latter variable is also used as reciprocity covariate, with regression

coefficient 0.05. The random effects in Model 3 are negatively correlated (σAB = −0.5),

with sender variance σ2
A = 1.5, and receiver variance σ2

B = 0.75.

The results for the simulation studies focus in particular on the approximate maximum

likelihood methods, taking for the sake of comparison the results from a MQL-type method

(RIGLS-3) and a Bayesian one (RW) from Zijlstra et al. (2009). The results for Model

3 are reported in Figure 4, that displays the relative bias of each estimator (that is, the

bias divided by the absolute value of the true parameter value), along with the root mean

squared error. The results for the other two models are not included here, since they are

very similar to those of Model 3.

From these results, it is apparent that the MQL approach produces estimates with very

large bias, that renders such method totally unappealing for practical use. This is not

surprising, and relevant with a vast body of literature on random effects modeling. Both

the Bayesian approach and our proposals seem instead to perform well, with no appreciable

differences between the Laplace and the Laplace Importance Sampling methods. At times

the two approximate maximum likelihood estimation methods appear to be slightly more
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efficient than the Bayesian method, but in general one can safely say that they are largely

comparable. As a general trend, the results improve considerably for larger networks, for

all the methods but MQL. The coefficient of the reciprocity covariate (fc) is the most

difficult to estimate, and here the Laplace and the Laplace Importance Sampling methods

have an edge over the Bayesian method.

[Figure 4 about here.]

Furthermore, using the simulation results it is also possible to estimate the accuracy of

standard errors computed using the observed information matrix for the two approximate

maximum likelihood estimation methods. To this end, the estimated standard errors seem

to be a reliable approximation to the standard deviation of parameter estimates, since

the average ratio between mean of estimated standard errors and standard deviation of

parameter estimates is equal to about 0.97 for either method with g = 20, and about 0.98

with g = 40.

6.2 Simulations for large networks

As a further study, we focus on moderately large networks, considering only the simple

method based on the first-order Laplace approximation. In particular, 1,000 networks of

size g = 200 and g = 400 were generated by the same setting of Model 3 of the previous

section, and the θ̂∗ estimator was obtained. The estimator based on L†(θ) has not been

considered, since for network large network sizes it is virtually indistinguishable from θ̂∗.

Figure 5 reports the empirical distribution for µ, ρ and for the three elements of Σ, along

with the parameter with the largest bias in the previous study, namely the coefficient of the

reciprocity covariate fc. It is apparent that the bias for the reciprocity coefficient observed

for g = 20, 40 disappears for g = 200 and g = 400; similar results were obtained for the

other coefficients. Likewise, the marked asymmetry in the finite-sample distribution of

the estimators of variance components visible for g = 20, 40 nearly disappears with larger

network size. The ratio between mean of estimated standard errors and standard deviation

of parameter estimates is very close to 1 for larger sizes, confirming that the standard errors

suggested by maximum likelihood estimation theory are rather accurate for θ̂∗.
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[Figure 5 about here.]

7 Concluding remarks

The results obtained with the approximate maximum likelihood estimation methods based

on the Laplace approximation for the class of p2 models are rather encouraging. Indeed,

the simple simulation-free approach given by the first-order Laplace approximation seems

to perform rather well, and it surely constitutes a fast and simple solution for fitting the

p2 model.

The real advantage of our proposal with respect to the Bayesian approach is mainly

simplicity of usage and computational efficiency. On the other hand, the Bayesian approach

facilitates the usage of prior information when this is available, and the use of weakly

informative priors may help in those cases when the estimated matrix of random effects

is close to singularity. We acknowledge that the usage of the Bayesian approach may be

appealing to some researchers, but others may find conceptually simpler a well-performing

frequentist method like maximum likelihood estimation. For practical implementation,

Bayesian methods can be implemented using some publicly-available software, such as the

BUGS engine (see Lunn et al., 2000); another possibility is the recent R package dyads

(Zijlstra, 2017). As further point, notice that the Bayesian approach may also be the

most natural resolution for extending the model in those cases where the assumption of

normality for random effects is deemed to be a limitation.

As illustrated in the p2model package that accompanies this paper, the methods pro-

posed here can be simply implemented using freely available and multi-platform software.

Both the Bayesian approach and the Laplace-based ones can be extended to more complex

data structures, such as the multilevel data set studied in Vermeij et al. (2009). Such task

would be feasible for the approach proposed here, starting from the TMB template which is

part of the p2model package. An interesting open research topic would be the comparison

of the multilevel p2 model with alternative approaches, such as the Hierarchical Network

Model introduced in Sweet et al. (2013), or other approaches for multilevel structures; see

Snijders (2016) for further details.
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This work was mainly focused on the small-size networks already proposed in the lit-

erature for p2 models. As stated in Section 4, fitting p2 models to networks with a few

hundreds of nodes, or even a few thousands ones, is not an issue using the implementa-

tion adopted here, and indeed this was demonstrated in the second simulation study. The

practical relevance of the p2 model for such large scale networks is open to discussion, yet

the scalability of the procedure surely instils some confidence for the extension to complex

settings, such as those where several covariates are available.

The p2 models have some important features, including simplicity of interpretation

and proximity with random effects models. Another useful feature is the possibility of

generating data in a very straightforward manner, which can be used for goodness-of-

fit procedures. Regarding the latter point, there will be instances where the p2 model

may provide a fit less good than competing models, such as ERGM models, as the latter

may include some terms that were explicitly developed to capture high-order dependences

and transitivity. Despite this fact, the higher simplicity of the p2 models makes them

appealing nonetheless, and the availability of reliable estimation methods may lead to a

more widespread usage of these models by practitioners.
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Figure 1: high-tech managers data: Network representation with nodes shaded according
to the size of estimated sender and receiver effects.
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Figure 2: high-tech managers data: Caterpillar plots of sender and receiver estimated
random effects, with segments extending to ± 1 estimated standard errors. The effects are
sorted by observed out- and in-degree sizes, respectively.
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Figure 3: high-tech managers data: goodness-of-fit plots based on 100 simulated net-
works. Solid lines show the observed value of some network statistics, and the boxplots
summarize their empirical distribution obtained from the simulated samples. The outer
gray lines highlight the range where 95% of the simulated values fall.
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Figure 4: Summary of simulation results for Model 3. Relative bias and root mean squared
error for each parameter, for various methods. Full circles are for g = 20 and empty circles
for g = 40. Based on 1,000 simulations, with the results for the MQL and Bayesian methods
taken from Zijlstra et al. (2009).
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Figure 5: Summary of simulation results for Model 3. Boxplots of the simulated distribu-
tion of θ̂∗ for g = 20, 40, 200, 400, for selected parameters; true parameter values are given
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Table 1: Results for high-tech managers data.
L∗(θ) L†(θ), M =5,000 L†(θ), M =10,000 L†(θ), M =20,000

Effect Covariate Est. (s.e) Est. (s.e.) Est. (s.e.) Est. (s.e.)
Sender Age -0.13 (0.06) -0.13 (0.06) -0.13 (0.06) -0.13 (0.06)

Tenure 0.14 (0.06) 0.14 (0.06) 0.14 (0.06) 0.14 (0.06)
Receiver Age -0.002 (0.04) -0.002 (0.04) -0.002 (0.04) -0.002 (0.04)

Tenure 0.045 (0.041) 0.046 (0.042) 0.046 (0.042) 0.046 (0.042)
Density µ 0.039 (1.74) 0.005 (1.76) 0.001 (1.76) 0.001 (1.76)

Departmenta 1.58 (0.35) 1.59 (0.35) 1.59 (0.35) 1.59 (0.35)
Levela 1.15 (0.41) 1.17 (0.41) 1.17 (0.41) 1.17 (0.41)
Ageb -0.055 (0.025) -0.055 (0.025) -0.055 (0.025) -0.055 (0.025)

Reciprocity ρ 2.12 (0.63) 2.08 (0.63) 2.08 (0.63) 2.08 (0.63)
Sender Var. σ2

A 2.05 (0.95) 2.08 (0.97) 2.11 (0.97) 2.11 (0.98)
Receiver Var. σ2

B 1.00 (0.56) 1.01 (0.57) 1.01 (0.57) 1.01 (0.57)
Covariance σAB -1.14 (0.64) -1.12 (0.64) -1.12 (0.64) -1.12 (0.64)

a dichotomized difference of sending and receiving actor covariate values
b absolute difference of sending and receiving actor covariate values
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Table 2: Results for Lazega friendship network.

MQL L∗(θ) L†(θ), M =10,000 Bayesian
Effect Covariate Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)
Model 0
Density µ -2.79 (0.23) -3.43 (0.30) -3.43 (0.31) -3.40 (0.28)
Reciprocity ρ 3.55 (0.30) 4.04 (0.46) 4.00 (0.45) 3.91 (0.45)
Sender Var. σ2

A 1.29 (0.28) 1.11 (0.41) 1.13 (0.42) 1.14 (0.44)
Receiver Var. σ2

B 0.85 (0.21) 0.70 (0.30) 0.70 (0.31) 0.70 (0.32)
Covariance σAB -0.52 (0.19) -0.15 (0.27) -0.12 (0.27) -0.056 (0.28)
Model 1
Density µ -1.02 (0.32) -1.09 (0.41) -1.07 (0.41) -1.05 (0.41)

Office -2.36 (0.46) -2.76 (0.50) -2.77 (0.50) -2.85 (0.51)
Seniority -0.44 (0.07) -0.62 (0.09) -0.62 (0.09) -0.62 (0.09)
Gender -0.49 (0.15) -0.70 (0.19) -0.70 (0.19) -0.69 (0.19)
Specialty -0.40 (0.15) -0.59 (0.19) -0.59 (0.19) -0.59 (0.18)

Reciprocity ρ 2.68 (0.32) 3.00 (0.48) 2.96 (0.48) 2.85 (0.45)
Office 2.15 (0.96) 1.67 (1.01) 1.69 (1.01) 1.76 (1.00)

Sender Var. σ2
A 1.40 (0.31) 1.47 (0.54) 1.47 (0.54) 1.47 (0.55)

Receiver Var. σ2
B 0.76 (0.20) 0.68 (0.32) 0.67 (0.32) 0.69 (0.32)

Covariance σAB -0.30 (0.18) 0.003 (0.31) 0.03 (0.31) 0.13 (0.31)
Model 2
Density µ -2.08 (0.36) -2.36 (0.44) -2.34 (0.44) -2.37 (0.45)

Location -1.42 (0.28) -1.84 (0.37) -1.85 (0.37) -1.94 (0.38)
Seniority -0.29 (0.08) -0.56 (0.10) -0.56 (0.10) -0.57 (0.11)
Gender -0.61 (0.17) -0.72 (0.21) -0.72 (0.21) -0.73 (0.22)
Advise 1.54 (0.25) 2.17 (0.32) 2.17 (0.32) 2.23 (0.33)
Cowork 0.37 (0.27) 0.75 (0.33) 0.75 (0.33) 0.76 (0.32)

Reciprocity ρ 3.19 (0.34) 2.91 (0.47) 2.89 (0.46) 2.78 (0.42)
Sender Var. σ2

A 1.75 (0.38) 1.79 (0.68) 1.80 (0.68) 1.88 (0.69)
Receiver Var. σ2

B 0.74 (0.21) 0.55 (0.31) 0.55 (0.31) 0.66 (0.33)
Covariance σAB -0.17 (0.21) 0.33 (0.34) 0.35 (0.34) 0.47 (0.35)
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Table 3: Dutch social behavior study data: Maximized log-likelihood values, AIC and
BIC for five models of interest.

Method Full model Model 2 Model 3 Model 4 Empty model
L∗(θ) -253.2 -254.3 -264.3 -254.8 -272.3
AIC 540.4 532.6 544.6 527.5 554.5
BIC 568.7 552.6 557.9 542.5 562.8

L†(θ), M =5,000 -254.0 -255.1 -265.0 -255.5 -273.1
AIC 542.0 534.1 546.1 529.0 556.3
BIC 570.2 554.1 559.4 544.0 564.6

L†(θ), M =20,000 -254.0 -255.0 -265.0 -255.5 -273.1
AIC 541.9 534.1 546.0 529.0 556.2
BIC 570.2 554.0 559.3 543.9 564.6
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