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Simple Summary: The efficacy of conventional and organic insecticides on nymphs and adults of
Scaphoideus titanus, the main vector of phytoplasmas associated with the grapevine yellow Flavescence
dorée, was evaluated. In trials carried out in the open field, etofenprox and deltamethrin proved
to be the best conventional insecticides, while pyrethrins were the most impactful among organic
insecticides. Insecticide residual effects were evaluated in semi-field and field conditions. Acrinathrin
showed the most significant residual effects, followed by other pyrethroids. Organic insecticides gave
poor results in terms of residual efficacy. In field trials there was a loss of residual activity coinciding
with higher temperatures. Implications for S. titanus control strategies are discussed.

Abstract: Scaphoideus titanus is the main vector of phytoplasmas associated with Flavescence dorée
(FD), one of the most serious threats to viticulture in many European countries. To minimize the
spread of this disease, mandatory control measures against S. titanus were decided in Europe. In the
1990s, the repeated application of insecticides (mainly organophosphates) proved to be an effective
measure to control the vector and the related disease in north-eastern Italy. These insecticides and
most of the neonicotinoids were recently banned from European viticulture. Serious FD issues
detected in the recent years in northern Italy could be related to the use of less effective insecticides.
Trials aimed at evaluating the efficacy of the most used conventional and organic insecticides in the
control of S. titanus have been performed in semi-field and field conditions to test this hypothesis.
In efficacy trials, carried out in four vineyards, etofenprox and deltamethrin proved to be the best
conventional insecticides, while pyrethrins were the most impactful among organic insecticides.
Insecticide residual activity was evaluated in semi-field and field conditions. Acrinathrin showed the
most significant residual effects in both conditions. In semi-field trials, most of the pyrethroids were
associated with good results in terms of residual activity. However, these effects declined in field
conditions, probably due to high temperatures. Organic insecticides showed poor results in terms
of residual efficacy. Implications of these results in the context of Integrated Pest Management in
conventional and organic viticulture are discussed.

Keywords: phytoplasma vector; leafhoppers; insecticides; residual effects; Integrated Pest Management;
Flavescence dorée

1. Introduction

The leafhopper Scaphoideus titanus Ball is the main vector of Grapevine flavescence
dorée phytoplasma (FDP) [1,2], belonging to the elm yellows group (16SrV) [3]. Flavescence
dorée (FD) is considered one of the most important diseases in European vineyards, and
is currently causing serious damage to grapevine yield and quality in many European
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regions [4–6]. Originating from North America, S. titanus was detected first in France [7]
then in Italy [8]. In the following years, S. titanus spread to many other European countries,
from Portugal to Romania [9]. More recently, it has been detected in the north Caucasus [10].
Monophagous on grapevines, S. titanus can acquire phytoplasmas as nymphs by feeding
on infected plants. The latency period is about 4–5 weeks, and the infectious adults can
transmit phytoplasmas to healthy plants for the rest of their life even across large areas [9,11].
Moreover, S. titanus can acquire the phytoplasma as an adult, becoming infectious within
1-2 weeks [12]. Scaphoideus titanus develops one generation per year and overwinters as
eggs. Egg hatching starts in May and lasts for about two months [13]. Females with mature
eggs can be found from July (when oviposition starts) until late October [8,14,15]. Adult
females live an average of 60 days, some of them 70–100 days, while adult male longevity is
shorter [15]. The short latency period combined with the long survival implies that adults
have a long inoculation period.

FDP is a quarantine pathogen, and its control is regulated by mandatory measures
including the rouging of infected grapevines and the chemical control of S. titanus [4]. An
area-wide and prompt monitoring of the vector is the pre-requisite to design a rational
control strategy. Moreover, the vector sampling is a key action for pest management as
it allows us to identify the best timing for insecticide applications. With a high density
of S. titanus, two insecticide applications are required: the first one against third instar
nymphs (before they become infectious) and the second one after two weeks, to suppress
newly hatched nymphs [16]. Chemical control must be integrated with cultural measures,
such as the removal of branches from winter pruning and suckers. The elimination of
pruning remains reduces the stock of eggs in the vineyard [17], while the removal of suckers
growing along the vertical trunk could contribute to decrease S. titanus population levels,
frequently higher on suckers than within the canopy [18,19]. The presence of abandoned
vineyards and American vines growing spontaneously in woodland can represent a source
of infectious vectors for neighboring vineyards [20–22], and should be removed before the
appearance of adults which can fly up to 300 m [23].

One of the most severe FD outbreaks in Europe took place in the Veneto region, north-
eastern Italy, in the 1990s [24]. Chemical control measures against S. titanus gave satisfactory
effects in controlling the spread of the disease [16,21,25]. Insecticides used for this purpose
(e.g., organophosphates, some chitin-inhibitors) were characterized by a long residual effect
often associated with contact activity. The most used active ingredients were fenitrothion,
chlorpyriphos-ethyl, chlorpyrifos-methyl, buprofezin and flufenoxuron [26]. More recently,
the neonicotinoid thiamethoxam was largely employed with satisfactory results [27–29].
In recent years, all these active ingredients have been removed from the European market
(in particular, chlorpyrifos-ethyl, chlorpyrifos-methyl and thiamethoxam were applied
until 2019) because of concerns for human health and the environmental impact. At the
same time, other insecticides such as the pyrethroids etofenprox and lambda-cyhalothrin
were classified as candidates for substitution by the European Commission (Regulation
(EC) No 1107/2009) [30], and their use in the IPM guidelines developed in many Italian
regions was restricted. In the last three years, the main active ingredients considered in
IPM guidelines in Italy for the control of S. titanus have been acetamiprid, flupyradifurone
and tau-fluvalinate. In this context, issues with FD increased in northern Italy, and changes
in the active ingredients used in vineyards were suspected to be involved in this event.

In Italian organic viticulture, few active ingredients are allowed for the control of
S. titanus. Pyrethrins are commonly used, but their low persistence makes the execution of
repeated applications necessary [16,31–33]. Their effects may be enhanced when used in
combination with adjuvants. The effectiveness of other products based on azadirachtin,
potassium salts of fatty acids or Beauveria bassiana is considered to be from moderate to
low [32,34]. It is not surprising that FD is a key problem for organic farms.

In this work, we evaluated the effectiveness of insecticides authorized in Italy for the
control of S. titanus in conventional and organic viticulture. Specific trials, both in semi-field
and field conditions, were performed to evaluate the efficacy and the residual activity of
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the insecticides on nymphs and adults. Investigations on the residual effects of insecticides
are important for nymph control due to the long egg-hatching period, and for adult control
because FD epidemics are sustained by infectious adults colonizing vineyards from the
surrounding areas [21,22]. The results of these trials could help to plan adequate control
strategies against S. titanus nymphs and adults, complying with the European Union’s
achievement of the sustainable use of pesticides (Directive 2009/128/EC).

2. Materials and Methods
2.1. Experimental Sites and Insecticides Used in Conventional Viticulture

The efficacy of insecticides used in conventional viticulture was evaluated in two vine-
yards located in the Veneto region (north-eastern Italy) in the 2022 growing season. The first
vineyard (SPF) was located at San Pietro di Feletto (45◦54′43′′ N, 12◦14′12′′ E, 214 m a.s.l.)
and the second (FM) at Fumane (45◦32′34′′ N, 10◦52′39′′ E, 289 m a.s.l.). SPF vineyard was
characterized by cultivar Glera, Sylvoz training system, 3.5 m × 1.65 m of planting space.
FM vineyard was characterized by cultivar Corvina, Pergola training system, 3.0 m × 0.8 m
of planting space. The same protocol and insecticide formulations were used in both
vineyards (Table 1). No insecticides other than the comparison ones were applied in the
experimental vineyards during the field trials. The experimental plan was a randomized
block design with four replicates per treatment represented by plots of about 600 m2 (SPF)
and about 850 m2 (FM). Insecticides were applied on June 10 in SPF and on June 15 in FM
vineyards, when the third instar nymphs of S. titanus were dominant. Insecticides were
sprayed using a farm’s atomizer with pressure 10 bar, driving speed of 6.0 km/h, Albuz
core disc nozzles in SPF vineyard, pressure 15 bar, driving speed of 6.5 km/h, MFT core
disc nozzles in FM vineyard. The application volume was 10 hL/ha, with the exception
of flupyradifurone (8 hL/ha). Samplings were carried out before and seven days after
insecticide application by examining 100 basal leaves per replicate (5 leaves per grapevine)
for a total of 400 leaves per treatment. In the FM vineyard, sampling occurred also on
suckers developed along the grapevine trunk, counting the S. titanus nymphs present on
50 suckers per replicate for a total of 200 suckers per treatment.

Table 1. Characteristics of insecticides investigated in the different experimental trials.

Management Formulation Active Ingredient Dose (mL or g/hL) Experimental Trial

Conventional Decis EVO Deltamethrin 50 FTE, SRAT *
Conventional Closer Sulfoxaflor 40 FTE, SRAT *
Conventional Epik SL Acetamiprid 150 FTE, SRAT *
Conventional Sivanto Prime Flupyradifurone 60 FTE, SRAT *
Conventional Mavrik Smart Tau-fluvalinate 30 FTE, SRAT *
Conventional Trebon UP Etofenprox 50 FTE, SRAT *
Conventional Rufast Acrinathrin 60 SRAT *
Conventional Karate Zeon Lambda-cyhalothrin 25 SRAT *
Organic Biopiren Plus Pyrethrins 160 FTE, SRAT *

Organic Biopiren Plus + Mago Pyrethrins + ethoxylated
sorbitan monooleate 160 + 150 FTE *

Organic Naturalis Beauveria bassiana 150 FTE, SRAT *
Organic Flipper Potassium salts of fatty acids 1500 FTE *
Organic Neemik TEN Azadirachtin 390 FTE, SRAT *
Organic Surround WP Kaolin 2500 FTE *

* FTE: Field efficacy trial; SRAT: Semi-field residual activity trial.

2.2. Experimental Sites and Insecticides Used in Organic Viticulture

The efficacy of insecticides used in organic viticulture was evaluated in two vineyards
located in the Veneto region (north-eastern Italy) in the 2022 growing season (Table 1). The
first vineyard (SAR) was located at Sarmede (45◦58′22′′ N, 12◦22′45′′ E, 103 m a.s.l.) and
was characterized by cultivar Glera, Sylvoz training system, 3.5 × 1.65 m of planting space.
The second vineyard (STA) was located at Stallavena (45◦32′15′′ N, 11◦00′07′′ E, 219 m a.s.l.)
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and was characterized by cultivar Corvina, Pergola training system, 4.0 × 1.0 m of planting
space. The protocol was similar to that previously described for conventional vineyards
but in this case, insecticides were applied twice, the first time on 6 June (SAR) or 9 June
(STA), when the second instar nymphs were dominant, and the second time on 13 June
(SAR) or 15 June (STA). The application volume was 10 hL/ha, using a farm’s atomizer,
pressure 8 bar, driving speed of 6.0 km/h, Albuz core disc nozzles in both vineyards.
According to producer instructions, the pH of solution was 6.5–6.8 for pyrethrins and
pyrethrins + ethoxylated sorbitan monooleate, and 5.5 for azadirachtin. For potassium
salts of fatty acids the water hardness was <20 French degrees (◦fH). The experimental
plan was a randomized block design with four replicates per treatment, represented by
plots of about 600 m2 (SAR) and about 1700 m2 (STA). In the trial performed in the SAR
vineyard, samplings before and after insecticide application were done on basal leaves
(100 per replicate), while in the STA vineyard, suckers (50 per replicate) were considered
for sampling.

2.3. Insecticide Residual Activity in Semi-Field Conditions

Semi-field trials to evaluate insecticide residual activity on S. titanus nymphs and
adults were carried out in the experimental farms of the University of Padova (Agripolis,
Legnaro) and the University of Verona (Villa Lebrecht, San Pietro in Cariano) in the 2022
growing season. These trials were carried out on irrigated one-year potted vines cultivar
Chardonnay kept under a shading net. Shoot thinning was performed to obtain at least
two grapevine shoots per vine. The effects of 11 products containing active ingredients
authorized in conventional or organic viticulture were evaluated (Table 1); a control treated
with tap water was included for comparison. In Verona trials, acrinathrin was not tested,
and azadirachtin and B. bassiana were evaluated only against nymphs. Treatments com-
prised, respectively, three (Verona) or four (Padova) replicates, each represented by a potted
vine. The trials were performed both on nymphs (second and third instars) and on adults
of S. titanus. Insecticides were applied in mid-June for nymph trials and in July for adult
trials. Potted vines were sprayed with a compression sprinkler (8 L volume), spacing them
from each other to avoid drift effects. A shoot of each potted vine was inserted three days
after treatment into a tulle sleeve (1.0 × 0.6 m) and 10 nymphs or adults per replicate were
released into the tulle sleeves, carefully closed around the stem of the shoot to avoid insects
escaping. Samplings were carried out three days after caging. At this purpose, grapevine
shoots inside the tulle sleeves were cut and carefully inspected, counting dead and alive
individuals. A second release of 10 S. titanus nymphs or adults was made seven days after
insecticide application, confining them on another shoot as above. After three days of
confining, dead and alive individuals were counted following the procedure previously
described. Leafhoppers used for these trials were collected from organic vineyards located
at San Pietro di Feletto (TV) and Stallavena (VR), respectively for trials at the University of
Padova and the University of Verona.

2.4. Insecticide Residual Activity in Field Conditions

The residual activity of several conventional insecticides was evaluated in a vineyard
located at San Pietro di Feletto (45◦52′19” N, 12◦15′40” E, 148 m a.s.l) during the 2021
and 2022 growing seasons (Table 1). This vineyard was characterized by cultivar Glera,
Sylvoz training system, 3.5 × 1.65 m of planting space. The occurrence of S. titanus was
negligible. Four insecticides (acetamiprid, acrinathrin, flupyradifurone and tau-fluvalinate)
were tested in both growing seasons, while deltamethrin, etofenprox and sulfoxaflor in
2022 only. An untreated control was included for comparison. Insecticides were applied
(using a farm’s atomizer) according to the maximum dose per hectare, as indicated for
leafhoppers in the product labels. Each treatment comprised of four replicates represented
by three rows 50-80 m long. In both seasons, two trials were carried out, the first devoted
to evaluating the insecticide residual activity against nymphs, the second against adults.
For nymphs, insecticide applications were performed on 21 June 2021, and on 10 June
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2022, while for adults on 2 August 2021, and on 13 July 2022. Three days from insecticide
applications, 10 nymphs or adults, collected from nearby vineyards, were confined on
a shoot with a tulle sleeve (1 × 0.60 m). A tulle sleeve was installed in a central row of
each replicate, for a total of 40 individuals per treatment. Three days after caging, dead
and alive individuals were counted, after cutting the shoots and pouring the tulle sleeve
contents into a basin for a careful check. The same procedure was performed seven days
after insecticide applications.

2.5. Data Analysis

Data obtained from each trial were analyzed using a generalized linear mixed model
with the GLIMMIX procedure of SAS® (ver. 9.4; SAS Institute Inc., Cary, NC, USA). In
field trials, the number of S. titanus per basal leaf or sucker after treatment was used as
the dependent variable, both in organic and conventional vineyards, while the type of
insecticide was considered as the factor of variation. In the conventional insecticide efficacy
trial, the sampling unit and experiment arrangement was identical, thus data from both
fields were used to run the model, and the vineyard was considered as a random effect term
in the model in order to contribute to the error calculation. In the organic insecticide trial,
data from the two fields were analyzed separately due to the different sampling units (i.e.,
basal leaves in SAR and suckers in STA). In trials aimed at evaluating insecticide residual
activity, the number of dead individuals was considered as a dependent variable. The
factor of variation (type of insecticide) was tested using an F-test (α = 0.05). Comparisons
of the mean numbers of S. titanus per leaf or sucker in open field trials and dead S. titanus
in residual activity trials in different treatments were performed using a t-test (α = 0.05) on
the least-square means. The degrees of freedom were estimated with the Kenward–Roger
method, which can calculate non-integer values for error terms. Before the analysis, and
data were checked for model assumptions. The model was run on data transformed to
log (n + 1), while untransformed data are shown in the figures. The effectiveness of the
insecticides was calculated according to the Henderson and Tilton formula [35] in field
trials and with the Abbott formula (1925) [36] for the residual activity trials.

3. Results
3.1. Efficacy of Conventional Insecticides against S. titanus Nymphs in Open Field (Basal Leaves)

No differences among treatments were detected prior to insecticide applications (F = 0.52;
d.f. = 6, 48; p = 0.788). After insecticide application, the differences among treatments
became significant (F = 21.76; d.f. = 6, 48; p < 0.0001). All insecticides differed from
the control, but deltamethrin and etofenprox were more effective than acetamiprid and
flupyradifurone; sulfoxaflor and tau-fluvalinate showed intermediate effects (Figure 1).

Henderson and Tilton efficacy agreed with statistical analysis showing the highest
efficacy values for deltamethrin and etofenprox (>90%), the lowest values for flupyradi-
furone and acetamiprid (<50%) and intermediate values for sulfoxaflor and tau-fluvalinate
(Figure 1).

3.2. Efficacy of Conventional Insecticides against S. titanus Nymphs in Open Field (Suckers)

Before insecticide application there were no differences among treatments (F = 0.58;
d.f. = 6, 21; p = 0.743), while insecticide application caused significant effects on S. titanus
nymphs (F = 14.41; d.f. = 6, 21; p < 0.0001). All insecticides differed from the control, and
among them, deltamethrin was more effective than acetamiprid (Figure 2). The remaining
insecticides caused intermediate effects.

Henderson and Tilton efficacy agreed with statistical analysis showing the highest
efficacy value for deltamethrin (around 90%), the lowest efficacy value for acetamiprid
(around 60%) and intermediate values for the other insecticides (Figure 2).
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Figure 1. Effects of six insecticides on S. titanus nymphs (mean ± SE) evaluated at seven days from
their application (SPF and FM vineyard). Different letters indicate significant differences at the t-test
(α = 0.05). For each insecticide the Henderson and Tilton efficacy (%) is also reported.
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Figure 2. Effects of six insecticides on S. titanus nymphs (mean ± SE) evaluated at seven days from
their application (FM vineyard). Different letters indicate significant differences at the t-test (α = 0.05).
For each insecticide the Henderson and Tilton efficacy (%) is also reported.

3.3. Efficacy of Organic Insecticides against S. titanus Nymphs in Open Field (Basal Leaves)

Before insecticide application, no differences among treatments were found (F = 0.03;
d.f. = 6, 21; p = 0.999). Later, insecticide application affected S. titanus nymph densities
(F = 4.65; d.f. = 6, 20.04; p = 0.004). Only pyrethrin-based insecticides and kaolin differed
significantly from the control without differing each other. Azadirachtin and B. bassiana
were significantly less effective than the two pyrethrin-based insecticides (Figure 3).

Henderson and Tilton efficacy agreed with statistical analysis showing the highest
efficacy values for pyrethrin-based insecticides (around 70%) and the lowest efficacy for
azadirachtin (<10%). The remaining products showed intermediate efficacy levels (Figure 3).

3.4. Efficacy of Organic Insecticides against S. titanus Nymphs in Open Field (Suckers)

When suckers were sampled prior to insecticide application, there were no differences
among treatments (F = 0.42; d.f. = 6, 21; p = 0.859). Later, insecticide application caused
significant effects on S. titanus nymphs (F = 6.61; d.f. = 6, 21; p = 0.0005). All products,
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except potassium salts of fatty acids, differed significantly from the control. The effects of
pyrethrins + adjuvant were more impactful than those of B. bassiana and kaolin (Figure 4).
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Figure 3. Effects of two applications of five insecticides or kaolin on S. titanus nymphs (mean ± SE)
evaluated at 14 days from the first application (SAR vineyard). Different letters indicate significant
differences at the t-test (α = 0.05). For each product the Henderson and Tilton efficacy (%) is also reported.
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Figure 4. Effects of two applications of five insecticides or kaolin on S. titanus nymphs (mean ± SE)
evaluated at 14 days from the first application (STA vineyard). Different letters indicate significant
differences at the t-test (α = 0.05). For each product the Henderson and Tilton efficacy (%) is also reported.

Henderson and Tilton efficacy agreed with statistical analysis showing the highest
efficacy values for pyrethrin-based insecticides (>80%) and azadirachtin (>70%), and a
moderate efficacy for kaolin and B. bassiana (>50%) (Figure 4).

3.5. Insecticide Residual Activity in Semi-Field Trials
3.5.1. Against S. titanus Nymphs

In the trial carried out at the University of Padova, S. titanus nymphs were significantly
affected by insecticides when confined on shoots of potted vines three and seven days
after their application (3 days: F = 22.03; d.f. = 11, 36; p < 0.0001; seven days: F = 15.41;
d.f. = 11, 36; p < 0.0001). At three days, only conventional insecticides determined higher
mortality rates compared to the control. Among them, acetamiprid was less effective
than acrinathrin, which caused the highest mortality level (>80%) (Figure 5). At seven
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days, all pyrethroids (acrinathrin, deltamethrin, etofenprox, lambda-cyhalothrin and tau-
fluvalinate), acetamiprid and sulfoxaflor differed significantly from the control, and among
them the most effective were acrinathrin and lambda-cyhalothrin.
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In the trial carried out at the University of Verona, S. titanus nymphs were sig-
nificantly affected by insecticides when confined on plants three and seven days after
their application (three days: F = 44.44; d.f. = 10, 22; p < 0.0001; seven days: F = 26.7;
d.f. = 10, 22; p < 0.0001). At three days, only conventional insecticides determined mortality
rates significantly higher than in the control. Etofenprox and flupyradifurone were less
effective than lambda-cyhalothrin (Figure 5). At seven days, only conventional insecticides
determined mortality rates significantly higher compared to the control and, among them,
no significant differences were observed.

Based on Abbott mortality, the two trials (Padova and Verona Universities) showed the
poor efficacy of organic insecticides (i.e., azadirachtin, B. bassiana and pyrethrins) (Table S1).
In contrast, they stress the efficacy of pyrethroids (i.e., acrinathrin, deltamethrin, etofenprox,
lambda-cyhalothrin and tau-fluvalinate) and sulfoxaflor. Acetamiprid and flupyradifurone
showed a good efficacy only in the University of Verona trial. Comparing Abbott values at
three and seven days, a reduction in efficacy from the first to second caging was observed
for deltamethrin and flupyradifurone in the University of Padova trial and for deltamethrin,
lambda-cyhalothrin, tau-fluvalinate and acetamiprid in the University of Verona trial.

3.5.2. Against S. titanus Adults

In the trial carried out at the University of Padova, S. titanus adults were significantly
affected by insecticides when confined on plants three and seven days after their application
(three days: F = 30.87; d.f. = 11, 36; p < 0.0001; seven days: F = 40.25; d.f. = 11, 36; p < 0.0001).
At three days, only conventional insecticides determined mortality rates significantly
higher than in the control. Among them, acetamiprid, flupyradifurone, tau-fluvalinate and
sulfoxaflor were less effective than acrinathrin, which caused a mortality of 100%, and the
first three were also less effective than etofenprox and lambda-cyhalothrin (Figure 5). At
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seven days, flupyradifurone and tau-fluvalinate did not differ anymore from the control;
among the other insecticides, acrinathrin and lambda-cyhalothrin were more effective than
acetamiprid, etofenprox and sulfoxaflor.

In the trial carried out at the University of Verona, S. titanus adults were significantly
affected by insecticides when confined on plants three and seven days after their application
(three days: F = 30.22; d.f. = 8, 18; p < 0.0001; seven days: F = 16.67; d.f. = 8, 18; p < 0.0001).
At three days, all insecticides except pyrethrins determined mortality rates significantly
higher than in the control without differences among them (Figure 5). At seven days, this
result was confirmed for all insecticides except etofenprox, which still differed from the
control but was less effective than deltamethrin.

Based on Abbott mortality, the two trials (Padova and Verona Universities) agreed with
the absence of efficacy of pyrethrins and the good efficacy of pyrethroids (i.e., deltamethrin,
etofenprox, lambda-cyhalothrin and tau-fluvalinate) and sulfoxaflor. Acrinathrin showed
an excellent residual activity in the trial in which it was used. Acetamiprid and flupyradi-
furone showed a good efficacy only in the University of Verona trial. Comparing Abbott
values at three and seven days, a reduction in efficacy from the first to the second release
was observed for etofenprox and flupyradifurone in both trials, and for tau-fluvalinate in
the University of Padova trial (Table S2).

3.6. Insecticide Residual Activity in Field Trials
3.6.1. Against S. titanus Nymphs

In the trial carried out in 2021, insecticides showed significant effects on S. titanus
nymphs confined on shoots three and seven days from their application (three days:
F = 72.89; d.f. = 4, 15; p < 0.0001; seven days: F = 12.47; d.f. = 4, 15; p < 0.0001). At three
days, only acrinathrin and tau-fluvalinate differed from the control, with the first active
ingredient significantly more effective than the second (Figure 6). At seven days, only
acrinathrin was still significantly different from the control.
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In the trial carried out in 2022, insecticides showed significant effects on S. titanus
nymphs confined on shoots three and seven days from their application (three days:
F =21.53; d.f. = 7, 24; p < 0.0001; seven days: F = 5.47; d.f. = 7, 24; p < 0.001). At three
days all insecticides differed significantly from the control, but the pyrethroids acrinathrin,
deltamethrin and etofenprox were more effective than the remaining active ingredients;
sulfoxaflor and tau-fluvalinate were more effective than acetamiprid (Figure 6). At seven
days, only acrinathrin was still significantly different from the control, as well as from all
other insecticides.

Based on Abbott’s mortality, only acrinathrin showed remarkable residual effects on
nymphs both at three (nearly 90%) and seven days (approximately 60%) from insecticide
application (Table S3). Deltamethrin and etofenprox had a good efficacy, but only at three
days (84% and 60%, respectively). The other active ingredients did not exceed the 30% of
efficacy at three days, and showed practically a lack of efficacy at seven days.

3.6.2. Against S. titanus Adults

In the trial carried out in 2021, insecticides showed significant effects on S. titanus
adults confined on shoots three and seven days from their application (three days:
F = 10.29; d.f. = 4, 15; p < 0.001; seven days: F = 8.09; d.f. = 4, 15; p < 0.001). At three days,
only acrinathrin and acetamiprid differed from the control without significant differences
between them, even if the mortality recorded for the first insecticide was almost double
(Figure 6). At seven days, only acrinathrin was still significantly different from the control.

In the trial carried out in 2022, insecticides did not show significant effects on S. titanus
adults confined on shoots three and seven days from their application (three days: F = 1.27;
d.f. = 7, 24; p = 0.304; seven days: F = 0.61; d.f. = 7, 24; p = 0.740).

Abbott’s mortality on adults was high only for acrinathrin in 2021 trial (around 75%
both at three and seven days) (Table S4). In the 2022 trial no insecticides caused a mortality
exceeding 20%.

4. Discussion

In this study, different approaches were used to evaluate the efficacy of insecticides
authorized in Italy for the control of S. titanus in conventional and organic vineyards.
We carried out field trials against nymphs using a procedure that reflected a winegrow-
ers’ realistic scenario. In these trials, leafhopper nymphs were potentially exposed to
insecticides through topical, residual and ingestion (particularly important for systemic
insecticides such as neonicotinoids, sulfoximines and butenolides) routes. Semi-field trials
were designed to evaluate the mortality of nymphs and adults exposed to aged residues in
controlled conditions, to disentangle the effect of residual exposure from the other routes
of exposure. Finally, field tests were planned to assess the impact of insecticide residual
activity in realistic conditions.

4.1. The Efficacy of Conventional Insecticides against Nymphs in Field Conditions

Among products authorized in conventional viticulture, the most effective insecticides,
when S. titanus was sampled on basal leaves, were the pyrethroids (IRAC Group 3A)
etofenprox (96.9%) and deltamethrin (92.2%). The third pyrethroid, i.e., tau-fluvalinate, was
less effective (72.5%) than sulfoxaflor (81.2%, IRAC group 4C). The efficacy of acetamiprid
(IRAC group 4A) and flupyradifurone (IRAC group 4D) was much lower (49.2% and 41.2%,
respectively). When S. titanus was sampled on suckers, a higher efficacy was observed for
flupyradifurone and acetamiprid (80.6% and 60.8%, respectively).

The mean efficacy levels of insecticides tested in our trials were compared with values
reported in the literature, calculated according to Henderson and Tilton formula. For
deltamethrin, our mean efficacy value (90.8%) was lower than those reported by Zidaric
et al. (2013) [29] (100% in a single trial) and Colleluori et al. (2020) [37] (98.5% as an
average of four trials). Data from the literature on the efficacy of etofenprox [38–40] report
values (87% as a mean of trials) similar than those found in the present paper (84.3%).
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The third pyrethroid in this comparison, tau-fluvalinate, was much less effective in the
present study (67.1% as a mean of trials) compared to data reported in the literature (Abbott
efficacy of 87.4% according to Colleluori et al. (2020) [37]). The most relevant discrepancies
between our results and data collected from the literature concerned deltamethrin and
tau-fluvalinate, and may be associated with different spraying machines used in trials:
backpack sprayers in the literature reports and farm’s atomizers in our trials. Among the
remaining insecticides, the most effective resulted sulfoxaflor (mean efficacy of 82.2%).
This value is higher than that reported in the literature (60.75% according to Forte et al.
(2018) [41]). Unfortunately, this active ingredient was associated with potential negative
effects on pollinators, and recently its use in open field conditions has been restricted. The
mean efficacy of flupyradifurone was lower (60.9%) than that reported in the literature
(77.1%) as a mean of some trials [39,42] where it was sprayed using a backpack sprayer.
Acetamiprid efficacy was slightly lower that that reported in the literature (55% vs. 61.7%
as a mean of trials carried out by Lavezzaro et al. (2019) [39]).

In the experimental vineyard where S. titanus was sampled also on suckers, the efficacy
of pyrethroids slightly decreased compared to that calculated on basal leaves (on average
−17%), while that of acetamiprid e flupyradifurone increased (on average +56%). The
decrease in efficacy of pyrethroids, acting mainly by contact, could be due to the dilution of
the insecticide residues as suckers are rapidly growing shoots (development of new leaves
and increase in size of those already present), whereas basal leaves at application timing
had already completed their growth. The increase in acetamiprid and flupyradifurone
efficacy could be explained by their activity through ingestion, as a consequence of a
better absorption of insecticides by younger leaves and a greater acropetal translocation
in rapidly growing shoots. This hypothesis should be supported by further experiments,
and if demonstrated, sucker management and spraying approaches against this pest could
be redefined.

The higher efficacy of sulfoxaflor compared to acetamiprid and flupyradifurone (all
belonging to IRAC Group 4) could be due to the large use of the latter insecticides and the
selection pressure exerted upon S. titanus populations. This hypothesis could be supported
by literature data that reported a higher efficacy of acetamiprid and flupyradifurone in
trials conducted some years ago, before the extensive use of these active ingredients. The
lower efficacy of these insecticides on basal leaves than on suckers suggests that the limited
coverage of basal leaves determines a low-dosage level that is known to be a factor favoring
the selection for resistant strains [43–45]. This hypothesis should be supported by further
experiments, but it is recommended to follow the alternance or rotation measures when
planning control strategies against S. titanus with these insecticides.

4.2. The Efficacy of Organic Insecticides against S. titanus Nymphs in Field Conditions

Among organic insecticides, only pyrethrins and kaolin significantly reduced S. titanus
population densities. The efficacy of pyrethrins (66.6% on basal leaves and 81% on suckers)
was higher than that of kaolin (45.5% on basal leaves and 62.9% on suckers). The efficacy
of pyrethrins confirms previous trends [32,39,40]. Results obtained using kaolin (54.2% of
efficacy) stress its potential as a complementary tool against several leafhoppers included
S. titanus [33,46]. Efficacy levels of pyrethrins increased when the adjuvant Mago was
added in the trial with sampling on basal leaves (from 66.6% to 70.8%) and, even if only
on average, in the trial with sampling on suckers (from 81.0% to 89.5%). Potassium salts
of fatty acids did not significantly reduce nymph populations in both trials (20.3% in that
sampling on basal leaves and 37.6% in that sampling on suckers), and efficacy values
were lower to those reported in the literature (48.1% as a mean of trials carried out by
Tacoli et al. (2017) [33] and Forte et al. (2018) [47]). Beauveria bassiana significantly reduced
nymph population densities in the trial in which suckers were sampled (55.0% of efficacy),
but not in the trial in which basal leaves were sampled (29.5%); efficacy values are lower
than those reported in the literature (60.3% as a mean of trials carried out by Mori et al.
(2014) [32] and Ladurner et al. (2020) [40]) using a backpack sprayer. Contrasting results
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were obtained with azadirachtin, characterized by a low efficacy (7.2%) in the trial in
which basal leaves were sampled and a good efficacy (72.6%) in the trial in which suckers
were sampled. The efficacy of azadirachtin against S. titanus reported in literature for
trials conducted under field conditions is moderate (33.4% as a mean of trials carried
out by Bottura et al. (2003) [48] and Mori et al. (2014) [32]). The high efficacy recorded
for azadirachtin when sampling was carried out on suckers, could be explained by a
greater activity for ingestion as a consequence of a better absorption acropetal translocation
in rapidly growing shoots. In fact, in a unique sampling carried out on basal leaves,
azadirachtin showed a Henderson and Tilton efficacy of 25.6% (data not reported) much
lower than that obtained by sampling suckers.

4.3. Residual Activity of Insecticides in Semi-Field Conditions

In the semi-field trials conducted at Padova University, pyrethroids and sulfoxaflor
showed a higher residual activity on both nymphs and adults than acetamiprid and
flupyradifurone. In contrast, in trials conducted at Verona University, all conventional
insecticides showed a good residual activity up to seven days from insecticide applications.
These differences can be attributed to the different origin of S. titanus individuals used in
the trials. The insects used in Padova trials came from an organically managed vineyard
surrounded by conventionally managed vineyards, whereas those used in Verona trials
came from an organic vineyard surrounded mainly by woody vegetation. It can be argued
that the organic vineyard used as a source of S. titanus for Padova trials had been colonized
by leafhopper populations subjected to repeated applications of flupyradifurone and
acetamiprid in the last years and thus potentially selected for resistance to these active
ingredients. Regarding pyrethroids, the best residual activity was recorded for acrinathrin
(>80% up seven days release) and lambda-cyhalothrin (on average of the two trials 86%
at three-day release and 65% at seven-day release). As expected, organic insecticides (i.e.,
pyrethrins, azadirachtin and B. bassiana) showed poor results in terms of residual activity.

4.4. Residual Activity of Insecticides in Field Conditions

Trials conducted in open field in 2021 and 2022 on nymphs showed only for acrinathrin,
a remarkable residual activity up to seven days from insecticide application. The efficacy of
deltamethrin and etofenprox at three days from insecticide application was good, whereas
tau-fluvalinate and the insecticides belonging to IRAC group 4 either showed no residual
activity or, as in the case of acetamiprid, it was negligible. Trials conducted on adults
confirmed the residual activity of acrinathrin only in the first year, whereas all other active
ingredients either showed no efficacy, or did not guarantee sufficient control of S. titanus
in both years. The lower residual activity of acrinathrin in 2022 compared to 2021 may be
due to higher temperatures occurring in 2022. The negative correlation between pyrethroid
toxicity against insects and high temperatures is well documented [49–54]. Riskallah et al.
(1984) [49] demonstrated that permethrin, fenvalerate, deltamethrin, cypermethrin and
flucythrinate were more toxic to Spodoptera littoralis (Boisd) at 20 ◦C than at 35 ◦C. Brown
(1987) [50] showed that fenvalerate, flucythrinate and permethrin applied against Heliothis
virescens (Fabricius) had a lower effectiveness when temperatures increased. Fabellar et al.
(1988) [51] demonstrated that cypermethrin and deltamethrin had lower LD50 values at
18 ◦C than at 33 ◦C against Nilaparvata lugens (Stål) and Nephotettix sp. Additionally, recent
literature [52–54] focused on the changes in the insecticide susceptibility to pyrethroids
by Culex spp. and Anopheles spp., highlighting a deep decrease of their effectiveness at
high temperatures (above 30 ◦C). In our trials, the daily temperatures measured with
the closest meteorological station (ARPAV data) to the experimental vineyard were very
different between the 2021 and 2022 trials, in particular when experiments were conducted
against adults. In the 2021 adult trial, the temperature in the seven days after insecticide
application ranged from 16.1 ◦C to 30.8 ◦C, with a mean temperature of 23.2 ◦C while
in 2022 the temperature ranged from 20.0 ◦C to 35.5 ◦C with a mean temperature of
27.9 ◦C. Regarding nymph trials, the temperatures in the two years were more similar,
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ranging from 18.1 ◦C to 34.4 ◦C with mean temperature of 26.6◦ C, and 16.7 ◦C and 32.3 ◦C
with a mean temperature of 25◦ C, respectively in 2021 and 2022. In accordance with
these considerations, the higher residual efficacies obtained in the semi-field than in field
conditions could be due not only to a better coverage by the insecticide solution, but also
by the lower temperatures experienced due to the shading net. In fact, leaves exposed to
sunlight can have a temperature even 5 degrees higher than shaded ones [55].

5. Conclusions

The recent outbreaks of Flavescence dorée are causing extreme concern among wine-
growers. They can no longer apply traditional insecticides that proved to be highly effective
against S. titanus in the past, because of the restrictions by EU authorities. The lower im-
pact of available insecticides has been claimed as a key factor in recent outbreaks of the
vector and the related transmitted phytoplasma disease. This situation suggested the
need to evaluate the effectiveness of available insecticides. Among conventional insecti-
cides, the most effective were acrinathrin, deltamethrin, lambda-cyhalothrin, etofenprox
and sulfoxaflor. However, their residual activity seems to be limited and altered by high
temperatures occurring in summer. Moreover, most of them belong to IRAC group 3A,
suggesting that resistance could be a problem in the future. Regarding natural products,
pyrethrins were the most effective especially when the adjuvant was added. Kaolin proved
to be a complementary tool for S. titanus management in organic vineyards. Concerning
the other organic products that showed a low efficacy on the investigated development
stages (L2-L3), further investigations are needed to be re-evaluated against newly hatched
individuals (L1), trying to delineate a strategy aimed at decreasing leafhopper densities by
integrating insecticides belonging to different IRAC groups.

The different efficacy showed on basal leaves and on shoots from insecticides acting
mainly by contact than those acting through ingestion, suggests canopy or sucker manage-
ment to concentrate the S. titanus individuals on the parts of the canopy most favorable
to the insecticide-plant interaction. For pyrethroids and organic insecticides necessary
suckering and green pruning should be at least three–four days before spraying, while for
neonicotinoids, the shoots may be present but must in any case be sprayed.

The multiple use of pyrethroids and other non-selective insecticides could create
issues related to secondary pests. Therefore, monitoring insecticide side-effects is crucial to
minimize these risks.

The results of the present study provide precise indications on the strategies to be
adopted for the containment of the vector of Flavescence dorée phytoplasma. The two
cornerstones of this strategy must be an accurate control of nymphs by using effective
insecticides, and the removal of external sources of infectious S. titanus adults. In fact,
many insecticides have a good knock-down effect against nymphs, and some of them also
have a certain level of residual activity. Considering the limited residual activity of most
insecticides against adults, the effectiveness of insecticides to control infectious individuals
colonizing vineyards from the surrounding areas appears negligible, and therefore attention
must be paid to the eradication of abandoned vineyards and American vines growing
spontaneously in woody vegetation.
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//www.mdpi.com/article/10.3390/insects14020101/s1,; Table S1: Results of semi-field trials: Abbott
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Table S2: Results of semi-field trials: Abbott efficacy on S. titanus adults confined on plants three
and seven days after insecticide application.; Table S3: Results of field trials: Abbott efficacy on
S. titanus nymphs confined on plants three and seven days after insecticide application.; Table S4:
Results of field trials: Abbott efficacy on S. titanus adults confined on plants three and seven days
after insecticide application.
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