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A B S T R A C T

Antibiotic resistance crisis dictates the need for resistance monitoring and the search for new antibiotics. The
development of monitoring protocols is hindered by the great diversity of resistance factors, while the “street-
light effect” denies the possibility of discovering novel drugs based on existing databases. In this study, we
address these challenges using high-throughput environmental screening viewed from a trait-based ecological
perspective. Through an in-depth analysis of the metagenomes of 658 topsoil samples spanning Europe, we
explored the distribution of 241 prokaryotic and fungal genes responsible for producing metabolites with anti-
biotic properties and 485 antibiotic resistance genes. We analyzed the diversity of these gene collections at
different levels and modeled the distribution of each gene across environmental gradients. Our analyses revealed
several nonparallel distribution patterns of the genes encoding sequential steps of enzymatic pathways synthe-
sizing large antibiotic groups, pointing to gaps in existing databases and suggesting potential for discovering new
analogues of known antibiotics. We show that agricultural activity caused a continental-scale homogenization of
microbial antibiotic-related machinery, emphasizing the importance of maintaining indigenous ecosystems
within the landscape mosaic. Based on the relationships between the proportion of the genes in the metagenomes
with the main predictors (soil pH, land cover type, climate temperature and humidity), we illustrate how the
properties of chemical structures dictate the distribution of the genes responsible for their synthesis across en-
vironments. With this understanding, we propose general principles to facilitate the discovery of antibiotics,
including principally new ones, establish abundance baselines for antibiotic resistance genes, and predict their
dissemination.

1. Introduction

Secondary metabolites with antibiotic activities serve as mediators of
antagonistic interactions within biotic communities, and the perpetual
evolution of antibiotic synthesis and resistance stands as a pictorial

example of an arms race in nature (Allen et al., 2010; Larsson and Flach,
2022; Nesme and Simonet, 2015; Waglechner et al., 2021; Wright,
2007). Humans consciously joined this race in the 1940th when anti-
biotic resistance was discovered soon after the massive production of
penicillin. The ubiquitous utilization of antimicrobials in medicine,
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veterinary, and agriculture (Kümmerer, 2009) made antibiotic resis-
tance one of the greatest global challenges to humanity (Murray et al.,
2022) necessitating searching for new antimicrobials (Melander and
Melander, 2017; Peek et al., 2018) and monitoring and predicting
sources of resistance and routes of its dissemination (Access to Medi-
cines Foundation, 2020; Bengtsson-Palme et al., 2023, 2017; Environ-
ment, 2017; Larsson and Flach, 2022; Velazquez-Meza et al., 2022).
Meanwhile, the “streetlight effect” denies the possibility of discovering
new antibiotics and biosynthetic pathways based on existing databases,
necessitating rational optimization in determining where to “install the
new light pole” and commence the search for principally novel drugs
(Lewis, 2020). Creating the protocols for antibiotic resistance also
highlights the necessity of cost-effective approaches, and understanding
the baseline resistance levels in natural settings (Abramova et al., 2023;
Bengtsson-Palme et al., 2023; Morar and Wright, 2010).

Tools and knowledge from various fields, including epidemiology
and microbial ecology (e.g., Bengtsson-Palme et al., 2023; Larsson and
Flach, 2022), − omics approaches (Zhuang et al., 2021), and research on
horizontal gene transfer (Meng et al., 2022), have been proposed for the
development of resistance monitoring. We propose that certain chal-
lenges can also be addressed through the lens of trait-based thinking,
commonly used in ecological forecasting (Garnier et al., 2015; Green
et al., 2022; McGill et al., 2006). In accordance with the central concept
in trait ecology the capacities of microorganisms to synthesize and
neutralize antibiotics are functional traits that are not only interrelated
but also undergo concurrent pressure from multiple environmental
factors such as sorption of an antibiotic to mineral particles, medium pH,
concentration of interfering compounds (soil complexity at the nano-
scale is explicitly illustrated in a review of Nesme and Simonet (2015)).
For example, an extensive research of peptidases distribution across
prokaryotes (Nguyen et al., 2019) provides evidence for the connection
between the pH optimum of the metabolites and the pH preferences of
taxa excreting them.

While multifactorial experiments on antibiotic resistance (e.g.,
(Schaffner et al., 2021)) are rare, numerous small-scale screenings of the
environmental resistome (the collection of resistance genes, cf. (Wright,
2007)) vary too widely to derive consistent patterns in environ-
ment–resistance relationships, as demonstrated in the extensive meta-
analysis (Abramova et al., 2023). A few existing large-scale studies
targeting genes encoding antibiotic synthesis and resistance in natural
microbial communities suggest that the potentials (i.e., proportions of
the genes in a metagenome) for both functions are not only interrelated
but also distributed across habitats and environmental gradients in a
distinctive manner (Bahram et al., 2018; Delgado-Baquerizo et al., 2022;
Kerfahi et al., 2023; Nesme et al., 2014). These results suggest that ac-
counting for environmental properties may, at the very least, secure
against the infeasible task of ’monitoring everything and everywhere’ or
may be crucial for determining baseline levels of resistance and pre-
dicting routes of its dissemination (Bengtsson-Palme et al., 2023). In
other words, understanding the mechanisms driving the ability to syn-
thesize antibiotics and resist them in natural microbial communities
may streamline efforts for monitoring resistance and discovering new
antimicrobials.

Here we sought to find large-scale environmental regulators of soil
microbial community genetic machinery that are responsible for anti-
biotic synthesis and resistance. We focus on soil microbiome since it is a
major contributor to indoor microbiomes (Banerjee and van der Heij-
den, 2023; Miletto and Lindow, 2015), holds the majority of known
antibiotic synthesizers (Santos-Aberturas and Vior, 2022) and partici-
pates in the emergence and spread of antibiotic resistance (Forsberg
et al., 2012). The work is based on the European Commission’s LUCAS
Soil survey presenting more than 650 soil samples collected across the
European Union by a single protocol and accompanied by comprehen-
sive metadata including land cover, edaphic, and climatic variables
(Orgiazzi et al., 2022). We aim to answer the following questions: 1)
How does agricultural activity (as the most geographically extensive

human activity) impact the diversity and composition of soil ABG and
ARG? 2) To what extent are the compositions of antibiotic biosynthesis
and resistance genes (ABG and ARG, respectively) interrelated and
linked with community taxonomic composition? 3) What are the pri-
mary drivers behind the distributions of various ABGs and ARGs, and
which ones are the most common? Based on the answers we conceptu-
alize the patterns of gene distribution across environments in the frame
of trait ecology and propose principles that may ease ABG and ARG
monitoring.

2. Materials and methods

2.1. Soil sampling

The LUCAS soil samples were collected from April to December 2018
across 26 European countries. Sampling covered all major vegetation
formations (boreal, mesophytic, Pannonian, thermophilic, and Medi-
terranean forests) and land cover types (coniferous and deciduous for-
ests, grasslands and croplands) (fig. S1). In each sampling site, five 20-
cm-deep soil cores within a circular plot (with 4 m diam.) were collected
and bulked. A subsample destined for molecular-genetic analyses was
frozen within a few hours, transported to the University of Tartu and
kept frozen until DNA extraction, with no evidence of melting during the
logistics and storage. Variables describing physico-chemical soil prop-
erties were obtained with analyses previously described (Orgiazzi et al.,
2018), climatic data with spatial resolution 30 sec (~1 km2) were taken
from WorldClim database v2 (Fick and Hijmans, 2017). Environmental
variables which entered statistical analyses ranged 3.76–9.62 for pH,
2.17–225 mS/m for electrical conductivity (denoted as EC in the fig-
ures), 0–795 g/kg for carbonate content (CaCO3), 0–157.7 mg/kg for
extractable phosphorus content (PE), 2.3–536.9 g/kg for organic carbon
content (CORG), 2.88–69.38 for C:N ratio, 0–66% for clay content (Clay),
0–2.86 for water volumetric content (MCv), 341–2193 mm for mean
annual precipitation (MAP), and − 0.88–19.63 ◦C for mean annual
temperature (MAT).

2.2. Molecular analysis

DNA was extracted from 2.0 g of frozen soil using the PowerMax Soil
DNA Isolation kit (MoBio, Carlsbad, CA, USA), following the manufac-
turer’s protocol, and further purified using the FavorPrepTM Genomic
DNA Clean-Up Kit (Favorgen, Vienna, Austria). For metagenomic anal-
ysis, DNA samples were processed following the protocol of Bahram et
al. (Bahram et al., 2018). Briefly, we utilized the Nextera XT DNA Li-
brary Prep Kit (Illumina Inc., San Diego, CA, USA) to create meta-
genomic libraries following the manufacturer’s guidelines. We used the
Nextera Index set to index samples in the library and employed 5 µl of
DNA template with a concentration of 0.2 ng/µl. To measure DNA
concentration, we used the Qubit 1X dsDNA High Sensitivity kit (Invi-
trogen, Thermo Fisher Scientific, Waltham, Massachusetts, USA).
Sequencing was performed on an Illumina NovaSeq platform in 2x150
paired-end mode.

2.3. Bioinformatics processing

In total, metagenomics libraries comprised 15.7 billion paired-end
reads. Sequences were quality-checked using MultiQC v.1.10 (Ewels
et al., 2016). We used fastp v.0.20.1 (Chen et al., 2018) to perform
quality filtering of reads, removal of the sequencing adapters and poly-G
tails (length > 4 bp), and the correction of reads based on the overlap of
paired ends (options ‘–overlap_len_require 40 –overlap_diff_limit 5 –over-
lap_diff_percent_limit 15’). Since Illumina NovaSeq uses binned quality
scores, we excluded reads with more than 20 % of unqualified bases
during quality filtering. Furthermore, we identified and removed low-
quality reads with three or more expected errors (Edgar and Flyvbjerg,
2015) and three or more ambiguous nucleotides.
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For the removal of reads belonging to PhiX sequencing control and
decontamination, we followed the DOE JGI Metagenome Workflow
(Clum et al., 2021). The BBMap program from the BBTools software
suite v.38.87 (Bushnell, 2024) was used to map reads to masked human,
cat, dog, and mouse reference genomes at the 94 % identity threshold,
and matching reads were excluded from further analysis. For correction
of sequencing errors, we used clumpify (‘ecc passes=4’) and tadpole
(‘mode=correct ecc k=60’) functions of the BBTools. After quality
filtering, 14.8 billion reads, averaging 22.5 ± 17.8 (9.1–177.8) million
per sample were included in subsequent analyses.

For the analysis of taxonomic composition of the communities, we
employed Metaxa2 v.2.2.3 (Bengtsson-Palme et al., 2015) for taxonomic
identification of the rRNA small (SSU) and large (LSU) subunit genes
present in metagenomic data.

Six hundred seventy antibiotic biosynthesis genes (ABG, functional
orthologs responsible for the biosynthesis of secondary metabolites with
antibiotic activity, excluding terpenoids) of interest were selected based
on KEGG (Kanehisa et al., 2023) and relevant literature sources (table
S1). To search for them in the metagenomes, we performed functional
annotation of reads using eggNOG-mapper v.2.1.2 (Cantalapiedra et al.,
2021) based on eggNOG orthology data v.5.0.2 (Huerta-Cepas et al.,
2019). For a high-throughput sequence search we followed (Bahram
et al., 2018) and used DIAMOND v.2.0.10 (Buchfink et al., 2021) in
blastx mode with ‘–evalue 1e-4 –sensitive’ options. To select the best
matches, we further filtered the aligned reads to keep only the matches
with alignment percentage identity > 50 % and E-value < 1e-8. We
determined the best match for a read pair by considering the highest bit
score, longest alignment length, and highest percentage identity to the
target sequence, for both the forward and reverse reads. In cases where a
read pair had no target sequences in common, we assigned functional
annotation independently to each read. For a higher-level taxonomic
assignment of ABGs, we relied on the information about the taxonomy of
a seed ortholog from the eggNOG database.

To identify antibiotic resistance genes (ARG, genes that if expressed
provide antibiotic resistance to its host) in the metagenomes, we
employed the short-sequence model of DeepARG v.1.0.2 (Arango-
Argoty et al., 2018) with the following parameters: a minimum identity
of 80 % for ARG alignments, a minimum probability of 0.8 for consid-
ering a read as ARG-like, and a minimum E-value of 1e-10 for ARG
alignments. These stringent parameters were employed to address the
considerable sequence similarity observed between certain ARGs and
their non-resistant counterparts. It is important to note that in certain
instances, the similarity between these genes can reach approximately
90 %, as exemplified by the ARG rpoB2 and its non-resistant counterpart
rpoB (Bengtsson-Palme et al., 2017). However, imposing even more
stringent parameters carries the risk of excluding actual antimicrobial
resistance genes from the results. In light of this finding, we acknowl-
edge the potential challenges associated with distinguishing between
specific ARGs based solely on sequence similarity. To overcome this
challenge, future studies could incorporate the sequence of the non-
resistant version into the database and implement a strategy to
exclude reads that align better with the non-resistant version compared
to the resistant version.

For each detected ARG, we determined the gene family, antibiotic
class, and mechanism of resistance (table S4). Genes with the potential
for mobility included those with the proportion of findings on mobile
genetic elements > 0.3 (data on gene occurrences in chromosomes and
mobile genetic elements was taken from CARD (Alcock et al., 2023) and
literature).

The bioinformatics workflowwas managed with Snakemake (Mölder
et al., 2021).

2.4. Statistical analysis

All statistical analyses were performed using R v.4.2.2 (R Core Team,
2023). As a proxy relative abundance of each gene, with sequencing

depth taken into account, we calculated the residuals of logarithmically-
transformed gene read counts by performing robust linear regression
against the logarithm of sequencing depth. To reduce the influence of
potential outliers on the model fit, we used the MM-estimator; the
analysis was performed with the rlm function of the MASS package
v.7.3-58.3 (Venables and Ripley, 2002). We analyzed the distribution of
individual genes across different land cover types and the influence of
environmental predictors on them, focusing only on genes with a rela-
tive abundance cardinality (number of unique values) > 25. This
threshold was set because models failed to converge or yielded unreli-
able estimates for genes with a lower frequency and variability. Mean-
while, genes with low abundance and frequency were included in the
analyses of the relative abundance of gene groups (e.g., ABG involved in
the same biosynthetic pathway, ARG belonging to the same gene family,
conferring a similar resistance mechanism or resistance to similar anti-
biotics tables S3, S4).

For the assessment of the effects of land cover on gene abundances
and composition, we considered four land cover types (coniferous for-
ests, deciduous forests, grasslands, and croplands). Most sampled
coniferous forests are used for wood production (Köninger et al., 2023),
whereas one third of deciduous (broadleaved) woodlands, represent
agricultural stripes, gardens, recreational or abandoned areas. We,
therefore, considered deciduous forests as more intensely managed than
coniferous ones. We also assumed management in forests to be less
disturbing compared to agricultural lands, while management in
grasslands less disturbing compared to croplands. The distribution of
samples across land cover types was uneven (fig. S1) reflecting the
distribution of corresponding land use practices (Kuemmerle et al.,
2016) across climatic gradients, necessitating accounting for spatial ef-
fects when analyzing gene distribution. Also, there are land cover-
related trends in soil physico-chemical properties (fig. S1, S2), with
soil pH, carbonate and clay content increasing, while organic carbon, C:
N ratio, and water content decreasing from coniferous to deciduous
forests, to grasslands, and finally croplands. Notably, gravimetric water
content was less strongly linked with weather conditions for the 31 days
prior to sampling (Spearman correlation coefficient, r = –0.40 and r =
0.32 for air temperature and precipitation, respectively, n = 658) than
with soil density (r = –0.68) and organic carbon content (r = 0.82). Due
to the significant increase in soil density from forests to croplands,
gravimetric water content is a biased characteristic of free water avail-
ability. To partly avoid this bias, we transformed gravimetric water
content to volumetric one using soil density.

We utilized a generalized additive model (GAM) to analyze the
relationship between the abundance of genes and environmental vari-
ables. To account for spatial autocorrelation, we included two-
dimensional thin plate splines of the spatial locations in a GAM model
(Miller and Wood, 2014), while to prevent overfitting and improve the
predictive performance of a model, we used penalization (options ‘select
= TRUE, gamma = 1‘) as implemented in the mgcv package v.1.8–42
(Wood, 2011). To identify the most important predictors, we estimated
the ε2 (Epsilon-squared) metric using the effectsize package v.0.8.3
(Ben-Shachar et al., 2020). The effect strength (slope) of environmental
variables on gene abundances was estimated with partial derivatives of
the regression equation with respect to a regressor of interest using the
marginaleffects package v.0.11.0 (Arel-Bundock V., 2023); comparison
of model predictions between land cover types were performed with
‘comparisons’ function. To account for differences in sequencing depth in
the analysis, we incorporated the logarithm of the number of reads that
passed functional annotation as an offset in GAM models.

To estimate the richness and diversity of ABG and ARG genes, we
constructed diversity profiles based on Hill numbers using the package
hilldiv v.1.5.1 (Alberdi and Gilbert, 2019). These metrics incorporate a
continuous parameter (q) which controls the diversity index’s sensitivity
to gene relative abundances: q = 0 equates to gene richness, where each
gene contributes equally regardless of its relative abundance; q = 1
corresponds to the exponent of the Shannon diversity index, weighting
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genes proportionally to their relative abundance; and q > 1 emphasizes
abundant genes while penalizing rare ones. At q = 2, the measure re-
flects the inverse of Simpson’s index and can be interpreted as the
effective number of dominant genes in the assemblage. We used the
same GAM for this analysis as were used for examining gene abundance
differences across various land cover types.

To assess the similarity of samples in gene composition, we used
principal coordinates analysis (PCoA), with Euclidean distance calcu-
lated based on the gene residuals. To determine the significance of dif-
ferences in gene composition between land cover types, we used non-
parametric permutational multivariate analysis of variance (PERMA-
NOVA, 10,000 iterations (Anderson, 2001)) and distance-based tests for
homogeneity of multivariate dispersions (PERMDISP (Anderson, 2006)),
with false discovery rate (FDR) correction to adjust P-values for multiple
testing. For multivariate analysis of gene distribution across environ-
mental gradients, we used distance-based redundancy analysis (db-RDA
(Legendre and Anderson, 1999)). Significance testing of the effect of
environmental variables was conducted using a permutation test (5000
iterations) for each marginal term in the model. The analysis was per-
formed using the vegan package v.2.6–4 (Oksanen et al., 2023). To
evaluate the similarity between ABG, ARG, and taxonomic profiles, we
used Procrustes analysis and determined its statistical significance using

a permutation test with 10,000 iterations.
We used structural equation modeling (SEM) to depict and quantify

the association between composition of ABG and ARG, and environ-
mental properties. The land cover type variable was incorporated as an
ordinal predictor, ordered based on management intensity: coniferous
forest < deciduous forest < grasslands < croplands. Within the SEM
framework, the primary two PCoA axes derived from the ordination of
ABG and ARG profiles served as latent variables, representing the
composition of antibiotic synthesis and resistance genes within micro-
bial communities. The SEM analysis was conducted using JMP v.17.1.0
(SAS Institute Inc., Cary, USA). We used the Wald Z-statistic for stan-
dardized parameter estimates. Since the sign (positive or negative) of
this criterion is not relevant for ARG and ABG profile dissimilarities, we
considered the absolute value of the Wald Z-statistic as a measure of
effect size.

3. Results

3.1. Community taxonomic profiles

According to taxonomic profiling of 658 European soil metagenomes
based on SSU and LSU rRNA genes, Actinobacteria generally dominated

Fig. 1. Taxonomic profiling of soil biotic communities. The results of taxonomic profiling of soil metagenomes based on SSU rRNA gene. (A) Percentages of the
gene reads belonging to different taxa in coniferous and deciduous forests, grasslands, and croplands. For the group “Other” see table S1. (B) Distance-based
redundancy analysis (db-RDA) of taxa distribution in the gradients of environmental variables. The angle between an environmental vector and gene position re-
flects their correlation. BF, MF, PF, TF, and MtF denote boreal, mesophytic, Pannonian, thermophilic, and Mediterranean forests, respectively. (C) Taxonomic
compositional dissimilarity of soil communities from different land cover types visualized with principal coordinates analysis. Cloud centroids and 90% confidence
ellipses are shown for each land cover type. (D) Fungi-to-bacteria ratio of the gene read counts in different land cover types. Different letters denote significantly
different mean values at the 5% level of statistical significance assessed with the Student’s t-test.
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soil microbial communities (26.8 % of reads, Fig. 1A; table S1) followed
by Proteobacteria (24.5 %), with prevailing Alphaproteobacteria (10.5 %),
and Acidobacteria (5.9 %). The proportions of archaeal and eukaryotic
rRNA gene reads equaled 0.9 %, and 4.1 %, respectively, with fungi
accounting for 1.6 % of reads, and animals for 0.3 %. Approximately 2.0
% of reads were not taxonomically annotated. The relative abundance of
most taxa was significantly related to environmental parameters
(Fig. 1B; fig. S3, S4), with soil pH, mean annual precipitation, soil

moisture content, land cover type, and clay content being the most
influential for community composition (table S2). Correspondingly,
samples from the four land cover types significantly differentiated in
community composition and compositional variability (Fig. 1C; FPER-
MANOVA(3; 653) = 46.2, P<0.001 and FBETADISP(3; 653) = 20.5, P<0.001
for SSU region data), with the most homogeneous communities in
croplands (table S2). The fungi-to-bacteria (F/B) ratio based on SSU and
LSU rRNA gene read counts was significantly higher in forests than

Fig. 2. Effect strength of land cover and environmental variables on gene distribution. (A) Distribution of ABG across biotic taxa (based on table S3). Line
width is proportional to the relative abundance of a gene or gene group encoding a subpathway (denoted with the same color). Schematic examples of how genes
encoding biosynthesis of (B) enediynes, (C) macrolides, and (D) ansamitocins differentiate in the distribution across land cover types. Mean value (point) and
standard error (whiskers) of genes relative abundances (standardized for sequencing depth) predicted with the account for weather and space effects. Relative
abundance of genes in coniferous forests is used as a reference value. Rectangles denote genes encoding the pathway; hexagons are the pathway products. (E)
Importance and strength of the effect of environmental variables on the ABG and ARG relative abundances, as inferred with generalized additive models (for details,
see tables S7–S10).
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herbaceous communities (Fig. 1D; Text S1).

3.2. Community functional profiles

3.2.1. Antibiotic biosynthesis
Of 670 searched antibiotic biosynthesis genes (ABG), we revealed

241 genes (table S3), with omnipresent and the most relatively abun-
dant K01710 (responsible for synthesizing the 6-deoxyhexose – a basic
unit of most of the secondary metabolites) and those encoding enediyne,
rifamycin, and vancomycin synthases, as well as enzymes involved in
the biosynthesis of polyketide sugar units, phenazines, rebeccamycin,
pyrrolnitrin, and aurachins. Ninety-nine percent of the ABG read counts
belonged to Prokaryota (including 1.7 % of archaeal reads), with Acti-
nobacteria accounting for 48.7 % of read counts, Gamma-, Beta-, and
Deltaproteobacteria for 3.4–4.7 %, Chloroflexi, Acidobacteria, Firmicutes,
Cyanobacteria, and Bacteroidetes for 2.5–3.2 %. Genes encoding enzymes
involved in the biosynthesis of polyketide sugar units, enediynes, beta-
lactams (except clavams), phenazines, rebeccamycin, pyrrolnitrin, and
aurachins belonged to multiple taxa. Genes responsible for the synthesis
of aminoglycosides and a large group of polyketides were assigned
exclusively to Actinobacteria (Fig. 2A; Table S3), while genes encoding
the production of certain peptides were restricted to Firmicutes (mostly
Bacilli). Fungi possessed 0.14 % of all reads, accounting for 1–21 % of the
abundance of three genes responsible for synthesizing enediynes and
isopenicillin N, and for the total abundance of the genes encoding
fumitremorgin, aflatoxin, meleagrin, and neoxaline production. Of the
identified ABG, 166 reached the cardinality threshold for the analysis of
their individual distribution.

3.2.2. Antibiotic resistance
In total, 485 antibiotic resistance genes (ARG) were identified (table

S4). Most of the ARG, including those conferring resistance to fusidic
acid, fosfomycin, free fatty acids, nucleosides, sulfonamides, and thio-
strepton, were rare or present in low abundance. Among the 179 iden-
tified genes responsible for drug efflux, 54 genes, participating in
generation of 50 (mainly multidrug) efflux systems, had enough fre-
quency for analyzing their individual distribution drivers. Of the rest
306 genes conferring other mechanisms of resistance, 27 were frequent.
Infrequent genes, whose individual distribution could not be analyzed,
were included in the analysis of the distribution of gene groups (e.g.,
gene families).

ARG with the potential for mobility were on average shorter than
chromosomal ones (F(1; 449)= 57.8; P ≪ 0.001), while considering this
difference were similar in average relative abundance (F(1; 449)= 21.9;
P ≪ 0.001 for the factor “gene length” and F(1; 449) = 0.07; P=0.79 for
“mobility potential” table S4).

In total, ca. 93 % of ARG sequences were taxonomically annotated
with Kraken2, with 47 % of reads belonging to Actinobacteria, 39 % – to
Proteobacteria (with Alpha-, Beta-, and Gammaproteobacteria accounting
for 16 %, 9.5 % and 9.7 % of reads). Acidobacteria and Firmicutes each
represented ca. 1.5 % of ARG reads (table S4).

3.3. Gene distribution across land cover types and environmental
gradients

By accounting for spatial effects and weather conditions prior sam-
pling, a significant impact of land cover type on gene distribution was
revealed for 125 of 166 analyzed ABG (table S5, S6). Genes encoding
alternative or consecutive branches of large biosynthetic pathways
showed distinct distributions across different land cover types. For
instance, genes encoding production of a 9-membered enediyne core
were the most relatively abundant in forests, while those responsible for
assembling a 10-membered enediyne core – in croplands and grasslands
(Fig. 2B). Also, genes destined for generating proansamitocin prevailed
in coniferous forests, while genes providing its finalizing to ansamitocin
P-3 – in croplands (Fig. 2C). Similarly, ABG responsible for the synthesis

of macrolide sugar units were more abundant in croplands, while ABG
encodingmacrolide synthetases – in forests (Fig. 2D). The partitioning of
the other genes among land cover types is shown in figs. S5-S9.

Of 81 analyzed ARG, 76 ARG significantly differed in relative
abundance between land cover types. Members of the same gene fam-
ilies or encoding same type efflux systems were relatively similarly
distributed across land cover types (fig. S10; tables S7, S8). A detailed
description of the other ABG and ARG distributions across land cover
types is in Text S2.

Of all explored environmental predictors, soil pH significantly
affected the distribution of the largest portion of genes (66 % of ABG and
81% of ARG), and it was the best predictor for 63% of the affected genes
(Fig. 2E). With some exceptions (Text S3), the majority of genes which
had significantly higher relative abundance in forests and grasslands
compared to croplands (see above) were negatively related to pH and
vice versa (tables S9, S10). Soil water volumetric content negatively
influenced the abundance of most affected ARG and ABG, while clay and
phosphorus contents positively. C:N ratio was influential (mostly
negatively) on the distribution of many ABG, while soil organic carbon
content, on ARG. Of the 69 ABG and 36 ARG, whose relative abundance
was significantly related to geographical location, mean annual pre-
cipitation and temperature, the abundance of 60 ABG and 17 ARG
increased towards arid and warm regions, while 7 ABG and 17 ARGwere
more abundant in wetter and colder humid regions. Distribution of ABG
and ARG in relation to environmental variables is depicted in Fig. 3 and
Fig. 4.

3.4. Differentiation of land cover types in antibiotic synthesis and
resistance potential

In the summary results of the analyses of individual gene distribu-
tions, 34–38 % of ABG and 30–43 % of ARG showed higher relative
abundance in croplands compared to the other land cover types and in
grasslands compared to coniferous forests (Fig. 5A, B). Comparable
fractions of ARG, while only 10–20 % of ABG, increased in abundance
towards forests. Accordingly, the Hill number (D) values at q = 0 (which
corresponds to richness) calculated for ARG and ABG increased from
forests to croplands (Fig. 5C, D). Meanwhile, with increasing q (that is
with decreasing contribution of unabundant genes or gene group into D)
the difference between forests and agricultural lands decreases. At q≥ 1,
D calculated for ARG and ARG families is significantly smaller in agri-
cultural lands compared to forests. Notably, the pattern is especially
pronounced for chromosomal ARG (fig. S11A).

3.5. Congruence between community functional and taxonomic profiles

Land cover types significantly differentiated in the ABG and ARG
composition (PERMANOVA: F(3; 654) = 17.7P ≪ 0.001; R2 = 0.08 for
ABG and F(3; 654) = 23.15; P ≪ 0.001; R2 = 0.10 for ARG; Fig. 5A), and
compositional variability (PERMDISP: F(3; 654) = 14.6P ≪ 0.001 for
ABG and F(3; 654) = 5.3; P ≪ 0.001 for ARG). The most different gene
compositions were between croplands and coniferous forests, while
croplands also varied in the gene compositions significantly less than the
other types of land cover (table S11). SEM analysis identifies soil
properties, and particularly soil pH, as the primary drivers of ABG and
ARG composition followed by climate variables (Fig. 6B). Soil properties
also act as intermediaries in the influence of climate and land cover.

According to the results of Procrustes analysis, taxonomic, ABG, and
ARG compositions were significantly correlated, with the best congru-
ence of ABG composition with ARG (Procrustes congruence coefficient
0.60) and with taxonomic composition (0.60) (tables S12 − Fig. 6C).
The least congruence with community taxonomic and ABG structures
was found for mobile ARG (0.44 and 0.46, respectively). The degree of
congruence was positively affected by pH and clay content, while
negatively by organic C content and annual mean temperature (table
S12). Comparison of land cover types showed that with management
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load, the congruence between the communities’ taxonomic, ARG, and
ABG compositions increases (Fig. 6C). Only the level of congruence
between the composition of mobile ARG with chromosomal ARG and
taxonomic composition did not differ between land cover types.

4. Discussion

Based on rRNA data and our previous metabarcoding-based research
(Labouyrie et al., 2023), Actinobacteria constitute a significant fraction
of soil microbial communities, particularly in croplands. Meanwhile, the
fraction of ABGs and ARGs harbored by Actinobacteria in the meta-
genomes was disproportionately high compared to Proteobacteria and
Acidobacteria, which are also dominant in soil microbiomes. This sug-
gests that ABGs and ARGs associated with these and potentially other
minor bacterial phyla may be underrepresented in our study and others
focusing on soil antibiotic-related genetic machinery, possibly due to the
overrepresentation of Actinobacteria in reference databases (Santos-
Aberturas and Vior, 2022). Exploring whether this discrepancy is
attributable to inherent competitive abilities of Actinobacteria or arti-
ficial biases in reference databases is a subject for future investigation.

4.1. Human-driven homogenization of soil biota

The continental-scale analysis of topsoil metagenomes reveals that
land cover type is among the primary drivers of composition and di-
versity of antibiotic biosynthesis and resistance genes. Generally, the
number of ABG and potentially synthesized antimicrobials (within the
studied spectrum), and correspondingly the number of ARG, increases
with agricultural land use intensity (see Fig. 5C, D). The analysis of
diversity profiles suggests that the increase in gene richness in agricul-
tural lands results from an increased number of rare and unabundant
genes while a certain set of highly abundant genes primarily chromo-
somal (e.g. conferring rifamycin and vancomycin resistance or encoding
RND type efflux pumps, fig. S11B) dominate in all samples.

The trends of increasing microbial alpha diversity and in particular
the diversity of soil chemoheterotrophic bacteria, pathogenic fungi, and
invertebrates in agricultural lands has been numerously shown
(Köninger et al., 2023; Labouyrie et al., 2023; Trivedi et al., 2016).
These results illustrate how a short-period high resources availability
(during fertilization, irrigation, and crop yielding) alternating with
microhabitat destruction (tillage) (Moon et al., 2019; Szoboszlay et al.,
2017), together with soil homogenization, creates conditions favorable
for species-rich communities of copiotrophic r-strategists, for whom

Fig. 3. ABG distributions in environmental gradients. Distance-based redundancy analysis (db-RDA) results showing the distributions of genes encoding synthesis
of (A) nonribosomal peptides, (B and C) polyketides and aminoglycosides, (D) other antimicrobials in the gradients of environmental variables. The angle between
an environmental vector and gene position reflects their correlation. Vegetation formations (green arrows) are denoted as in Fig. 1. Solid markers denote antibacterial
or nondiscriminatory toxins, empty markers denote antifungal toxins; circles depict bacterial metabolites, mushroom-shaped markers depict mycotoxins. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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competitive ability is a vital characteristic. Instead, in extensive grass-
lands and forests, the horizontal heterogeneity of the organic horizon is
maintained by the compositional variability of diverse plant roots and
litter. More importantly, the succession of litter decomposition results in
vertical fine-scale stratification of the undisturbed topsoil (Vorobeichik
and Korkina, 2023). These horizontal and vertical components provide
numerous niches for microorganisms, mitigating resource competition
(Lindahl et al., 2007; Mikryukov, Dulya, 2018).

When analyzing taxonomic and functional beta-diversity, we regis-
tered a significantly lower diversity among cropland sites compared to
what was found among other land cover types across Europe. The
findings are in concordance with the results of recent metabarcoding-
based studies of LUCAS samples, showing lower variability of crop-
lands in the composition of eukaryotic communities compared to less
intensively managed ecosystems (Köninger et al., 2023; Banerjee et al.,
2024). In addition, we revealed that management intensification in-
creases the coherence between community genetic machineries
responsible for antibiotic synthesis and resistance as well as their
congruence with taxonomic composition. Together these results imply
that cropland soil microbiota, while taxonomically and functionally
richer, is taxonomically and functionally uniformly structured, homo-
geneous and is more predictable thanmicrobiota of forests and extensive
grasslands.

Reasonably, agricultural regularization is the main cause of such
large-scale homogenization: croplands are primarily oligo- and mono-
cultures with a limited spectrum of crops (Raggi et al., 2022) and
standardized edaphic characteristics (exemplified here by a greater
edaphic homogeneity than forest samples; fig. S1). The observed
continental-scale tendency for the homogenization of soil biota in
agricultural lands emphasizes the importance of maintaining indigenous
ecosystems within the landscape mosaic. Retaining regional biota
specificity, in turn, facilitates the provision of essential ecosystem ser-
vices (in this specific case, providing with new antibiotics and barriering
against resistance proliferation and dissemination).

4.2. Shapers of community antibiotic biosynthetic machinery

With an in-depth analysis of community genetic machinery for
antibiotic biosynthesis, we revealed that soil metagenomes contain
higher proportions of genes involved in common steps (generating basic
units or core structures destined for assembling the members from the
same large groups of metabolites) compared to specific steps (matura-
tion of particular compounds) of the same biosynthetic pathway. This is
consistent with phylogenetic studies, showing that taxa sharing common
biosynthetic steps show divergence in specific ones (e.g., Liu et al.,
2018).

More intriguingly, genes responsible for different biosynthetic steps
exhibited divergence in their distributions across land cover types and
environmental gradients (fig. S5-S9, Text S2). Consequently, the ratio
of gene abundances responsible for different steps in the biosynthesis of
specific metabolite groups varies among habitats. In some habitats, this
results in an overproportional abundance of genes responsible for the
initial synthetic steps and, correspondingly, a “lack” of the genes known
for encoding later steps (i.e., finalizing certain known metabolites). This
phenomenon can be exemplified by the genes responsible for assembling
ansamitocins (see Fig. 2D) and macrolides (see Fig. 2C) and points to the
potential synthesis of as-yet-undiscovered members of the metabolite
group in the given habitat (e.g., ansamitocins in forests and macrolides
in croplands). The potential can be further explored in a targeted search,
exemplified by the survey identifying new genes encoding enzymes
tailoring rifamycin congeners active against common rifamycin-
resistant strains (Peek et al., 2018). Such findings might not overcome
the “streetlight effect” but point to the gaps in the extant databases
highlighting omitted analogues of clinically used antimicrobials in the
soil microbiome.

The search for new antibiotics can also be optimized by the

Fig. 4. ARG distributions in environmental gradients. Distance-based
redundancy analysis (db-RDA) results showing ARG distributions in the gradi-
ents of environmental variables. (A and B) Genes conferring resistance to
certain antibiotics; empty markers denote genes providing resistance with
efflux, solid markers denote other mechanisms. (C) Genes encoding multidrug
efflux pumps. The angle between an environmental vector and gene position
reflects their correlation. Vegetation formations (green arrows) are denoted as
in Fig. 1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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knowledge about the factors driving the potential for their biosynthesis.
Given a recently validated link between antibiotic structure and speci-
ficity (Wong et al., 2024), particular tight links revealed in this work
between habitat characteristics and abundance of genes responsible for
the biosynthesis of certain metabolites illustrate that the potential for
producing an antimicrobial in a community can be driven by the pres-
ence (or abundance) of organisms targeted by the antimicrobial. For
instance, gene families intrinsic to various bacterial phyla, but providing
the production of primarily antifungal kanosamine and pyrrolnitrin
(table S1) (Masschelein et al., 2017), peak in relative abundance in
forest and/or acidic soils, where fungi prevail (Bahram et al., 2018;
Hagh-Doust et al., 2023; He et al., 2020; Labouyrie et al., 2023; Siles
et al., 2023; Smith et al., 2021; Szoboszlay et al., 2017). Basing the
search on the presence of a targeted taxon is especially useful when
looking for narrow-spectrum antimicrobials that are particularly valu-
able during the antibiotic resistance crisis (Chou et al., 2022; Melander
and Melander, 2017).

Considering the great structural diversity of antimicrobials, the po-
tential for their production in a community should be regulated by other
factors besides target group abundance. The effect of other factors can
be illustrated with the genes encoding biosynthesis of toxins with
nondiscriminatory activity, like extraordinary cytotoxic enediynes with
high potency for DNA scission (promising candidates for anticancer
agents). Possessing an unexpectedly high relative abundance and di-
versity of carriers (Table S3), genes involved in the biosynthesis of 9-
and 10-membered enediynes differentiated in distribution patterns (see
Fig. 2B). The revealed prevalence of 9-membered enediynes in forest (i.

e., acidic) soils is likely at least partly caused by the importance of
strongly acidic conditions for their structural stability and stable asso-
ciation with its protein (Baker et al., 2007; Edo et al., 1988; Kandasw-
amy et al., 2008; Zein et al., 1995) by contrast with 10-membered
enediynes.

Therefore, through the lens of a trait-based approach (Garnier et al.,
2015; Green et al., 2022; McGill et al., 2006), the revealed large-scale
patterns in the distribution of soil microbiome potential for synthesiz-
ing different metabolites across environmental gradients illustrate the
well-known principle of “environment selects”. We posit that guided by
the principle it is possible to narrow down the search for new antimi-
crobials to habitats with a higher probability harboring microbiota that
synthesizes a metabolite with desired properties.

4.3. Shapers of soil resistome

We show that the soil resistome is linked with community taxonomic
composition and genetic machinery providing antibiotic biosynthesis
and is also determined by the environment, corroborating the tight re-
lationships between enzymes activity optima and ecological preferences
of their carriers shown for secreted peptidases (Nguyen et al., 2019).
Observed here, close relationships between the distribution of hori-
zontally transferred ARG and habitat characteristics indicate relatively
straightforward mechanisms for how the environment regulates a mi-
crobial community’s potential for antibiotic resistance. This suggests
that by considering the properties of resistance factors, one can antici-
pate the environmental conditions that would promote or impede their

Fig. 5. ARG and ABG diversity across land cover types. Percentages of (A) ABG and (B) ARG with significantly different relative abundance between pairs of land
cover types; lines connect the pairs of compared land cover types; arrows point to a land cover type with a higher abundance of genes. Hill numbers (D) calculated for
antibiotic biosynthesis (C) and resistance (D) machineries in soil metagenomes. D was calculated at different levels of gene grouping (grouping principles are in
tables S2, S3). Average and standard deviation are shown for each land cover, different letters denote significant differences between land cover types. Notably, Y
axes are logarithmic.
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presence, thus improving the accuracy of predicting their natural levels
and dissemination routes.

Specifically, the revealed increase of total abundance of genes
encoding beta-lactamases towards acidic soils, corroborates global
trends (Bahram et al., 2018). In a detailed view, this trend is due to
metallo-beta-lactamase genes (class B, constituting the largest portion of
found beta-lactam ARG in the soil, table S4), while the abundance of
serine-beta-lactamase (specifically, class A) genes tends to increase to-
wards neutral soils (table S11). Such divergence could be addressed
from the perspective of taxonomic affiliation of the main gene carriers
(Berglund et al., 2021; Philippon et al., 2016), though the trans-phylum
gene transfers have already been documented (Galán, 2002). Mean-
while, as a functional trait, the ability to excrete an enzyme is apparently
subject to environmental selection for the enzyme properties. Corre-
spondingly, the revealed divergence in the distribution of genes
encoding the two beta-lactamase classes between acidic and neutral
soils reflects the difference in the optimum pH for their activity (higher
for serine- than for metallo-beta-lactamases (Bounaga et al., 1998;
Brannigan et al., 1991; Jacob et al., 1991; Rasia and Vila, 2002; Tsang
et al., 2005; Waley, 1975). Similarly, the prevalence of aac(2′) in acidic
soils, while genes encoding the other categories of aminoglycoside
inactivating enzymes in neutral and alkaline soils, mirrors the dissimi-
larity of pH optima between encoded enzymes and the effect of external
pH on their gene expression (Bistué et al., 2007; Franklin and Clarke,
2001; Jeong et al., 2020; Rather et al., 1997; Vetting et al., 2008).
Considering the dependence of metallo-beta-lactamases functioning on
Zn availability (Bounaga et al., 1998; Rasia and Vila, 2002; Tsang et al.,
2005), factors influencing Zn mobility (and thus, bioavailability) such as
soil pH, organic matter, and clay content, should be considered along-
side Zn concentrations for a better prediction of the distribution of
metallo-beta-lactamase-encoding ARGs.

Especially tight links with the environment were revealed for chro-
mosomal ARG, among which are those encoding efflux pumps providing
antimicrobial efflux, osmoregulation, pH homeostasis, etc. (Li et al.,
2015). While a single genome may encode a wide variety of efflux sys-
tems, they are evolutionarily conserved (Górecki and McEvoy, 2020)

and their production and functioning is context-dependent (Alav et al.,
2021; Li et al., 2015; Masi et al., 2007; Teelucksingh et al., 2020)
illustrating a strong multifactorial environmental pressure on them.
Studies based on experimental phenotypic regulation of MdtEF, AcrAB
(Schaffner et al., 2021), EmrB, MdtB, and TolC (Deininger et al., 2011)
well explain the mechanisms driving the distribution of corresponding
genes across a soil pH gradient revealed in our work (see Fig. 4C, table
S10). Thus, depending on the availability of information, either the
ecological niche of the gene carriers or the encoded structural properties
can serve as guidelines for chromosomally encoded ARGs.

5. Conclusion

Metagenomic analysis of geographically and environmentally
extensive soil samples reveals consistent links between environmental
characteristics and microbial community potential for synthesizing and
resisting diverse antibiotics. The links illustrate that antibiotic synthesis
and resistance can be viewed as functional traits subject to environ-
mental selection. This concept offers specific guidelines for environ-
mental monitoring, establishing baseline levels of resistance factors and
predicting the dissemination of antibiotic resistance in response to the
urgent need for measures to control it (Access to Medicines Foundation,
2020; Bengtsson-Palme et al., 2023; Environment, 2017; Larsson and
Flach, 2022).

Here, following the central concept of trait-based ecology we pro-
pose general principles (reasonably simplified relative to the immense
complexity of ecological relationships within natural microbial com-
munities (Nesme and Simonet, 2015)) that may ease ABG and ARG
monitoring.

1. Antibiotic biosynthesis is environmentally restricted. Consideration
of environmental characteristics (such as abiotic properties and
target organisms’ abundance) aids in predicting the potential for
antibiotic biosynthesis in specific environments, increasing the
chance to find an antibiotic with desired properties.

Fig. 6. Predicting ABG and ARG composition in soil metagenomes. (A) Differentiation of land cover types in the composition of ABG and ARG in the samples.
Variance explained by the principal coordinates is shown in round brackets. Cloud centroids (crosses) and 90% confidence ellipses are shown. (B) Structural equation
model of the relationships between ABG and ARG composition, and environmental properties. Numbers indicate the effect sizes for model parameters (Wald sta-
tistic); arrow width is proportional to the effect size; green denotes a positive effect, purple indicates a negative effect, and gray signifies the inapplicability of the
effect sign. Land cover type is an ordinal variable reflecting the increase of management load with the least load in coniferous forests and the largest in croplands (see
methods). (C) Mean predicted Procrustes distance between samples in the compositional ordinations based on SSU rRNA gene region, ABG, and mobile and
chromosomal ARG (mARG, cARG, respectively) across land cover types (weather and spatial effects are taken into account). Procrustes congruence coefficients are
shown in brackets. Different letters denote significantly different mean Procrustes distance. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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2. Antibiotic resistance is linked to antibiotic biosynthesis. Predicting
the abundance of ARGs can be guided by the microbial community’s
potential for the biosynthesis of corresponding antibiotics, which is
especially important in setting the baseline levels of resistance.

3. The properties of structures encoded by ARGs (such as optimum
conditions for stability, expression, and activity, fitness cost) influ-
ence the distribution of ARGs across different environments.

4. The distribution of taxonomically specific ARGs can be predicted
based on the ecological niche of the carrier taxon (its geographical
range or distribution across environmental gradients).

Importantly, among the various wildlife components, we highlight
the role of the soil microbiome as a vast, continuous reservoir and
proliferator of ARGs and ABGs, with which humans are in constant
contact. It is likely that a trait-based ecological framework could also be
applicable to other wildlife components, particularly animals, important
vectors for pathogens and ARGs transmission (Larsson and Flach, 2022).
The main limitation of the work includes scarcity and fragmentation of
information regarding antibiotic and resistance factor properties. It
means that collaborative efforts from specialists in biochemistry, phys-
iology, microbial ecology, and evolution are required to develop the
principles further and apply them in policymaking. In this regard, deep-
learning approaches linking a drug molecule’s structure with its prop-
erties are promising (Wong et al., 2024).
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Bistué, A.J.C.S., Ha, H., Sarno, R., Don, M., Zorreguieta, A., Tolmasky, M.E., 2007.
External guide sequences targeting the aac(6′)-Ib mRNA induce inhibition of
amikacin resistance. Antimicrob. Agents Chemother. 51, 1918–1925. https://doi.
org/10.1128/AAC.01500-06.

Bounaga, S., Laws, A.P., Galleni, M., Page, M.I., 1998. The mechanism of catalysis and
the inhibition of the Bacillus cereus zinc-dependent beta-lactamase. Biochem. J. 331,
703–711.

Brannigan, J., Matagne, A., Jacob, F., Damblon, C., Joris, B., Klein, D., Spratt, B.G.,
Frère, J.M., 1991. The mutation Lys234His yields a class A beta-lactamase with a
novel pH-dependence. Biochem. J. 278, 673–678.

Buchfink, B., Reuter, K., Drost, H.-G., 2021. Sensitive protein alignments at tree-of-life
scale using DIAMOND. Nat. Methods 18, 366–368. https://doi.org/10.1038/s41592-
021-01101-x.

Bushnell, B., 2024. BBMap short read aligner, and other bioinformatic tools. URL:
https://sourceforge.net/projects/bbmap/.

Cantalapiedra, C.P., Hernández-Plaza, A., Letunic, I., Bork, P., Huerta-Cepas, J., 2021.
eggNOG-mapper v2: Functional annotation, orthology assignments, and domain
prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829. https://doi.
org/10.1093/molbev/msab293.

Chen, S., Zhou, Y., Chen, Y., Gu, J., 2018. fastp: An ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34, i884–i890. https://doi.org/10.1093/
bioinformatics/bty560.

Chou, S., Zhang, S., Guo, H., Chang, Y., Zhao, W., Mou, X., 2022. Targeted antimicrobial
agents as potential tools for modulating the gut microbiome. Front. Microbiol. 13,
879207 https://doi.org/10.3389/fmicb.2022.879207.

Clum, A., Huntemann, M., Bushnell, B., Foster, B., Foster, B., Roux, S., Hajek, P.P.,
Varghese, N., Mukherjee, S., Reddy, T.B.K., Daum, C., Yoshinaga, Y., O’Malley, R.,
Seshadri, R., Kyrpides, N.C., Eloe-Fadrosh, E.A., Chen, I.-M.-A., Copeland, A.,
Ivanova, N.N., 2021. DOE JGI metagenome workflow. Msystems 6, e00804–e00820.
https://doi.org/10.1128/mSystems.00804-20.

Deininger, K.N.W., Horikawa, A., Kitko, R.D., Tatsumi, R., Rosner, J.L., Wachi, M.,
Slonczewski, J.L., 2011. A requirement of TolC and MDR efflux pumps for acid
adaptation and GadAB induction in Escherichia coli. PLoS One 6, e18960. https://
doi.org/10.1371/journal.pone.0018960.

Delgado-Baquerizo, M., Hu, H.-W., Maestre, F.T., Guerra, C.A., Eisenhauer, N.,
Eldridge, D.J., Zhu, Y.-G., Chen, Q.-L., Trivedi, P., Du, S., Makhalanyane, T.P.,
Verma, J.P., Gozalo, B., Ochoa, V., Asensio, S., Wang, L., Zaady, E., Illán, J.G.,
Siebe, C., Grebenc, T., Zhou, X., Liu, Y.-R., Bamigboye, A.R., Blanco-Pastor, J.L.,
Duran, J., Rodríguez, A., Mamet, S., Alfaro, F., Abades, S., Teixido, A.L., Peñaloza-
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Tedersoo, L., Yuan, F., Yuan, F., Lipson, D.A., Xu, X., 2020. Global biogeography of
fungal and bacterial biomass carbon in topsoil. Soil Biol. Biochem. 151, 108024
https://doi.org/10.1016/j.soilbio.2020.108024.

Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S.K.,
Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., von Mering, C., Bork, P.,
2019. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated
orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res.
47, D309–D314. https://doi.org/10.1093/nar/gky1085.

Jacob, F., Joris, B., Frère, J.M., 1991. Active-site serine mutants of the Streptomyces
albus G beta-lactamase. Biochem. J. 277, 647–652.

Jeong, C.-S., Hwang, J., Do, H., Cha, S.-S., Oh, T.-J., Kim, H.J., Park, H.H., Lee, J.H.,
2020. Structural and biochemical analyses of an aminoglycoside 2′-N-
acetyltransferase from Mycolicibacterium smegmatis. Sci. Rep. 10, 21503. https://
doi.org/10.1038/s41598-020-78699-z.

Kandaswamy, J., Hariharan, P., Kumar, T.K.S., Yu, C., Lu, T.-J., Chin, D.-H., 2008. Is
association of labile enediyne chromophore a mutually assured protection for carrier
protein? Anal. Biochem. 381, 18–26. https://doi.org/10.1016/j.ab.2008.06.017.

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., Ishiguro-Watanabe, M., 2023.
KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51,
D587–D592. https://doi.org/10.1093/nar/gkac963.

Kerfahi, D., Harvey, B.P., Kim, H., Yang, Y., Adams, J.M., Hall-Spencer, J.M., 2023.
Whole community and functional gene changes of biofilms on marine plastic debris
in response to ocean acidification. Microb. Ecol. 85, 1202–1214. https://doi.org/
10.1007/s00248-022-01987-w.
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Bukosia, J., Carvalheiro, C., Castañeda-Orjuela, C., Chansamouth, V., Chaurasia, S.,
Chiurchiù, S., Chowdhury, F., Clotaire Donatien, R., Cook, A.J., Cooper, B.,
Cressey, T.R., Criollo-Mora, E., Cunningham, M., Darboe, S., Day, N.P.J., De
Luca, M., Dokova, K., Dramowski, A., Dunachie, S.J., Duong Bich, T., Eckmanns, T.,
Eibach, D., Emami, A., Feasey, N., Fisher-Pearson, N., Forrest, K., Garcia, C.,
Garrett, D., Gastmeier, P., Giref, A.Z., Greer, R.C., Gupta, V., Haller, S.,
Haselbeck, A., Hay, S.I., Holm, M., Hopkins, S., Hsia, Y., Iregbu, K.C., Jacobs, J.,
Jarovsky, D., Javanmardi, F., Jenney, A.W.J., Khorana, M., Khusuwan, S.,
Kissoon, N., Kobeissi, E., Kostyanev, T., Krapp, F., Krumkamp, R., Kumar, A., Kyu, H.
H., Lim, C., Lim, K., Limmathurotsakul, D., Loftus, M.J., Lunn, M., Ma, J.,
Manoharan, A., Marks, F., May, J., Mayxay, M., Mturi, N., Munera-Huertas, T.,
Musicha, P., Musila, L.A., Mussi-Pinhata, M.M., Naidu, R.N., Nakamura, T.,
Nanavati, R., Nangia, S., Newton, P., Ngoun, C., Novotney, A., Nwakanma, D.,
Obiero, C.W., Ochoa, T.J., Olivas-Martinez, A., Olliaro, P., Ooko, E., Ortiz-
Brizuela, E., Ounchanum, P., Pak, G.D., Paredes, J.L., Peleg, A.Y., Perrone, C.,
Phe, T., Phommasone, K., Plakkal, N., Ponce-de-Leon, A., Raad, M., Ramdin, T.,
Rattanavong, S., Riddell, A., Roberts, T., Robotham, J.V., Roca, A., Rosenthal, V.D.,
Rudd, K.E., Russell, N., Sader, H.S., Saengchan, W., Schnall, J., Scott, J.A.G.,
Seekaew, S., Sharland, M., Shivamallappa, M., Sifuentes-Osornio, J., Simpson, A.J.,
Steenkeste, N., Stewardson, A.J., Stoeva, T., Tasak, N., Thaiprakong, A.,
Thwaites, G., Tigoi, C., Turner, C., Turner, P., van Doorn, H.R., Velaphi, S.,
Vongpradith, A., Vongsouvath, M., Vu, H., Walsh, T., Walson, J.L., Waner, S.,
Wangrangsimakul, T., Wannapinij, P., Wozniak, T., Young Sharma, T.E.M.W., Yu, K.
C., Zheng, P., Sartorius, B., Lopez, A.D., Stergachis, A., Moore, C., Dolecek, C.,
Naghavi, M., 2022. Global burden of bacterial antimicrobial resistance in 2019: A
systematic analysis. Lancet 399, 629–655. https://doi.org/10.1016/S0140-6736(21)
02724-0.

Nesme, J., Cécillon, S., Delmont, T.O., Monier, J.-M., Vogel, T.M., Simonet, P., 2014.
Large-scale metagenomic-based study of antibiotic resistance in the environment.
Curr. Biol. 24, 1096–1100. https://doi.org/10.1016/j.cub.2014.03.036.

Nesme, J., Simonet, P., 2015. The soil resistome: a critical review on antibiotic resistance
origins, ecology and dissemination potential in telluric bacteria. Environ. Microbiol.
17, 913–930. https://doi.org/10.1111/1462-2920.12631.

Nguyen, T.T.H., Myrold, D.D., Mueller, R.S., 2019. Distributions of extracellular
peptidases across prokaryotic genomes reflect phylogeny and habitat. Front.
Microbiol. 10.

Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R.,
O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M.,
Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., Caceres, M.D.,
Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan,
G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.-H., Cunha, E.R., Smith, T., Stier,
A., Braak, C.J.F.T., Weedon, J., 2023. vegan: Community Ecology Package.

Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., Fernández-Ugalde, O., 2018. LUCAS
soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 69,
140–153. https://doi.org/10.1111/ejss.12499.

Orgiazzi, A., Panagos, P., Fernández-Ugalde, O., Wojda, P., Labouyrie, M., Ballabio, C.,
Franco, A., Pistocchi, A., Montanarella, L., Jones, A., 2022. LUCAS Soil Biodiversity
and LUCAS Soil Pesticides, new tools for research and policy development. Eur. J.
Soil Sci. 73, e13299.

Peek, J., Lilic, M., Montiel, D., Milshteyn, A., Woodworth, I., Biggins, J.B., Ternei, M.A.,
Calle, P.Y., Danziger, M., Warrier, T., Saito, K., Braffman, N., Fay, A., Glickman, M.
S., Darst, S.A., Campbell, E.A., Brady, S.F., 2018. Rifamycin congeners kanglemycins
are active against rifampicin-resistant bacteria via a distinct mechanism. Nat.
Commun. 9, 4147. https://doi.org/10.1038/s41467-018-06587-2.
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