Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

PIPES: A NETWORKED RAPID DEVELOPMENT PROTOCOL FOR SOUND
APPLICATIONS

Paolo Marrone

Orastron Srl, Sessa Cilento, Italy
University of Udine, Udine, Italy
paolo.marrone@orastron.com

ABSTRACT

The development of audio Digital Signal Processing (DSP) al-
gorithms typically requires iterative design, analysis, and testing,
possibly on different target platforms, furthermore often asking
for resets or restarts of execution environments between iterations.
Manually performing deployment, setup, and output data collec-
tion can quickly become intolerably time-consuming. Therefore,
we propose a new, experimental, open-ended, and automatable
protocol to separate the coding, building, and deployment tasks
onto different network nodes. The proposed protocol is mostly
based on widespread technology and designed to be easy to imple-
ment and integrate with existing software infrastructure. Its flexi-
bility has been validated through a proof-of-concept implementa-
tion. Despite being still in its infancy, it already shows potential in
allowing faster and more comfortable development workflows.

1. INTRODUCTION

A primary focus within the audio software industry is the develop-
ment of algorithms that create and manipulate digital audio streams.
These algorithms serve as fundamental building blocks of end-user
products like digital synthesizers and effect processors.

Audio DSP engineers typically rely on various prototyping
tools to iteratively design and analyse sound processing algorithms,
assessing their features through quantitative measures, graphical
plots, and auditory evaluations. These tools encompass a spec-
trum of programming languages and frameworks, ranging from
numerical simulation environments like MATLAB and Julia to
general-purpose languages such as Python and JavaScript, as well
as domain-specific tools like Csound' , Pure Dataz, Max/ gen3, Faust4,
SuperCollider’, and Ciaramella®. The latter ones often allow im-
mediate execution, based on interpretation or just-in-time compi-
lation.

Following the prototyping phase, DSP algorithms undergo im-
plementation and integration into final products. This is typically
carried out in high-performance compiled general-purpose
languages such as C and C++, although their underlying computa-
tional models are not particularly well-suited for DSP applications

'https://csound.com/
’https://puredata.info/
3https://docs.cycling74.com/max8/vignettes/gen_
topic
4https://faust.grame.fr/
Shttps://supercollider.github.io/
Shttps://ciaramella.dev/
Copyright: © 2024 Paolo Marrone et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

< 368

Stefano D’Angelo

Orastron Srl
Sessa Cilento, Italy
stefano.dangelo@orastron.com

Federico Fontana

University of Udine
Udine, Italy
federico.fontana@uniud.it

[1]. Indeed, the compilers of some domain-specific languages can
act as source-to-source translators that produce C/C++ code (e.g.,
Faust [2] and Ciaramella [3]), thus facilitating the implementation
process.

Further development effort goes into adapting software to dif-
ferent formats and platforms, such as audio plugins implement-
ing standardized Application Programming Interfaces (APIs) like
VST, Audio Unit®, LV2?, AAX', and CLAP'!, stand-alone audio
applications running on desktop and mobile platforms, or embed-
ded software to be executed on top of lightweight real-time oper-
ating systems or directly on bare metal.

Sometimes these algorithms are also executed in a network
context, as for example inside a host such as SuperCollider that
is based on a client-server architecture. In this model, the client
hosts the control and/or (part of) the audio source code, while the
server actually runs the audio processing algorithms. This setup
is particularly suitable for interactive programming [4, 5] and live
coding [6, 7], enabling runtime code changes without interrupting
the audio processing. Moreover, client-server architecture facili-
tates distributed execution across networked nodes.

1.1. Problem and proposal

Our objective is to develop an open protocol for rapid algorithm
development, testing, and deployment across multiple targets, po-
tentially simultaneously. This protocol must support various pro-
gramming languages and enable networking, empowering devel-
opers to utilize lightweight clients.

Since runtime performance is of utmost importance in audio
DSP algorithms, we are bound to the transmission and execution
of native binary code for each target platform. At the same time,
we do not want to hinder a comfortable development workflow.
For example, when testing a new project iteration, the developer
should not need to restart the execution environment, which could
be a full digital audio workstation (DAW) if developing a plugin,
when testing a new iteration of the algorithm. These two require-
ments appear to partially conflict, therefore a good part of the pro-
posed framework is dedicated to overcoming this specific issue.

Ours is not the first attempt at mitigating this very problem.
For example, CMajor provides a “JIT engine and hot-reloader”'?
and Faust researchers implemented FaustLive [8] which allows to

"https://steinbergmedia.github.io/vst3_dev_port
al/

8https://developer.apple.com/documentation/audi
ounit

https://lv2plug.in/

Ohttps://developer.avid.com/aax/

Uhttps://cleveraudio.org/

2https://cmajor.dev/

https://www.orastron.com/
https://www.uniud.it/
mailto:paolo.marrone@orastron.com
https://www.orastron.com/
mailto:stefano.dangelo@orastron.com
https://www.uniud.it/
mailto:federico.fontana@uniud.it
https://csound.com/
https://puredata.info/
https://docs.cycling74.com/max8/vignettes/gen_topic
https://docs.cycling74.com/max8/vignettes/gen_topic
https://faust.grame.fr/
https://supercollider.github.io/
https://ciaramella.dev/
http://creativecommons.org/licenses/by/4.0/
https://steinbergmedia.github.io/vst3_dev_portal/
https://steinbergmedia.github.io/vst3_dev_portal/
https://developer.apple.com/documentation/audiounit
https://developer.apple.com/documentation/audiounit
https://lv2plug.in/
https://developer.avid.com/aax/
https://cleveraudio.org/
https://cmajor.dev/

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

modify Faust code at runtime without interruption. However these
approaches are strictly tied to specific tools and miss to provide a
general solution and an open framework. Meanwhile, in the realm
of networking, there is currently no open standard for remote audio
software deployment. While tools like SuperCollider offer some
related features, likewise these also remain specific to their envi-
ronments.

In this work we propose a protocol, named PIPES, designed to
overcome these issues. Central in PIPES is the separation of con-
cerns w.r.t. coding, building, and deployment. The system com-
prises three distinct network node types, and a PIPES network is
defined as a set of such node instances, with at least one per type.
Every node is specialized in a specific and independent task, thus
resulting in Orchestrator, Compiler, and Player nodes. In essence,
Orchestrator nodes transmit source code to Compiler nodes, re-
ceiving back compiled binaries, and deploy such binaries to Player
nodes for execution. Communication between nodes is standard-
ized and based on the HTTP protocol.

This architecture brings significant benefits. Firstly, it enables
interactive programming at a DSP level with full native perfor-
mance through a relatively simple form of Dynamic Software Up-
dating (DSU) [9, 10]. Also, its simplicity and use of established
standards and infrastructure make it relatively simple to imple-
ment. Then, it also allows for Orchestrator nodes, which effec-
tively acts as the main interface for developers, to be lightweight,
hence relieving them from the burden of carrying compilation soft-
ware; indeed, in a hypothetical scenario, a developer could utilize
a graphical audio environment on a tablet device, compile on a re-
mote server, and deploy to a number of network-attached embed-
ded systems. Finally, it adds a modest amount of complexity to
development ecosystems as sole cost for faster development work-
flows.

For this to become possible, audio DSP algorithms must be
wrapped in modules that adhere to a unified API. We have de-
signed Yet Another Audio API (YAAAPI). Such an API is deliber-
ately simple, shielding developers from platform-specific intrica-
cies, and easy to interface with existing tools, thus also represent-
ing an easy output target for domain-specific language compilers.

As a proof of concept, we implemented PIPES targeting Linux
VSTS3 for x86-64 and arm64 architectures. Additionally, we took
the Zampogna compiler for the Ciaramella audio programming
language [3] and upgraded it to produce YAAAPI modules.

This paper is organized as follows. Section 2 delineates the
basics of PIPES, describing its architecture and components;. Sec-
tion 3 exposes the current proof-of-concept implementation and,
especially, the DSU technique used. Section 4 asses the current
state of the protocol, its strengths and weaknesses, and the poten-
tial future directions of development. Finally, Section 5 concludes
this work.

2. PIPES

PIPES is a distributed model for rapid audio application develop-
ment, compilation, and deployment. In PIPES, separation of roles
is fundamental: three different node types are defined and each one
is specialized for an independent task, as detailed in Section 2.1.
A combination of such nodes, with at least one node per typol-
ogy, constitutes a PIPES network, an example of which is shown
in Figure 1. The communication protocol and logic are discussed
in Section 2.2. Source code and binary modules which are ex-
changed among nodes must implement YAAAPI, as described in

369

Compilers

Windows x86-64 :
genericarm32 /|

Linuxx86-64
Android @
| ﬂ
@ D

Figure 1: PIPES network example. Compiler nodes, at the top, are
tailored to specific targets; Orchestrator nodes, in the middle, are
end-developer applications; finally, Player nodes, at the bottom,
can be stand-alone applications, plugins running inside host envi-
ronments, or firmware.

Orchestrators

desktopclient

mobile application

Players

Section 2.3.

2.1. Nodes

2.1.1. Orchestrator

The Orchestrator node works as the main interface for develop-
ers, and facilitates the coding of audio modules. It does not directly
compile or execute algorithms, conversely it sends user-supplied
source code to Compiler nodes, receives the resulting executable
binaries back, and then forwards them to Player nodes for execu-
tion.

It is the only node that initiates communication with other
nodes, therefore also the only one that needs to be actually aware
of the PIPES network configuration, i.e. it knows the IP addresses
and ports of the other nodes. Other than that, it is just required to
receive user input and exchange data over HTTP. Thus, Orchestra-
tor nodes can be really lightweight and simple to implement, po-
tentially ranging from simple command-line scripts to full-blown
Integrated Development Environments (IDEs), and could reason-
ably run on a variety of different devices or live in a web page.

No specific provision is made regarding the source code lan-
guage, as long as Compiler nodes are able to convert the supplied
code to YAAAPI modules. In effect, this means that any language,
including domain-specific ones, can be easily supported provided

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

that a Compiler node handles it. On the other hand, this arrange-
ment also accommodates the use of source-to-source transpilers in
the Orchestrator nodes if needed or wanted, which might better fit
the case of certain domain-specific languages.

2.1.2. Compiler

The Compiler node, a heavyweight computational unit, compiles
source code received from Orchestrators. It can be specialized for
a particular architecture, operating system, and programming lan-
guage, and produces binary modules that are meant to be loaded by
Player nodes. Consequently, the output must be in a shared library
format, such as ELF"®, Mach-O'* Windows PE", or WebAssem-
bly'®, and must expose a symbol table containing YAAAPI func-
tion and data symbols. This allows YAAAPI modules to be written
in any language that can be compiled to a shared library, besides
the API being specified in C language.

In practice, Compiler nodes typically run on local or remote
desktop or server machines, and are implemented by scripts or ap-
plications exposing an HTTP connection and calling into already
existing compiling/building software infrastructure.

2.1.3. Player

The Player node receives and executes YAAAPI modules, largely
abstracting the specifications of the execution environment. Upon
receiving a module, it is loaded into memory and used to process
audio. A Player processing element set to be permanently in exe-
cution: it is designed to run a single module at any given instant or
otherwise either act as a bypass, simply copying input to output,
or produce silent output, depending on the context.

Players must rapidly and correctly swap modules. The new
module must be properly setup before actual usage and the old
module must be replaced without interruption and finally removed.
This typically involves some form of concurrent programming and
requires related synchronization to be appropriately applied.

Players can take many forms: they can be standalone appli-
cations, embedded software, or act as plugin wrappers exposing,
e.g., a VST3 or Audio Unit interface, and thus running inside a
host application. They can also fulfil different purposes, e.g., they
could be real-time processors, offline sound generators, or analy-
sis/testing devices.

2.2. Workflow

Standardized interactions between Orchestrator, Player, and Com-
piler nodes are essential to enable seamless workflow. In PIPES,
all communication among nodes is based on the HTTP protocol,
ensuring reliability and simplicity in data transmission. This ap-
proach allows for straightforward integration with existing net-
work infrastructure and promotes ease of implementation across
various platforms. Furthermore, if encryption is needed, it is pos-
sible to simply switch to the HTTPS protocol, while authentication
can be provided by means of HTTP Authentication'”.

Bhttps://refspecs.linuxfoundation.org/elf/TISL.
1.pdf

Ynttps://en.wikipedia.org/wiki/Mach-0

Bhttps://en.wikipedia.org/wiki/Portable_Executa
ble

16https

l7https

://webassembly.org/
://datatracker.ietf.org/doc/html/rfc7235

370

[Orchestrator

Compilation
Node

| (o

Player
Node

request source
code compilation

send YAAAPI binary

'
return staEus and errors

Figure 2: Sequence diagram. Orchestrators delegate code com-
pilation to Compiler nodes and forward the received binaries to
Player nodes.

Figure 2 shows the typical sequence of operations in a PIPES
network. Developers program the audio application via the Or-
chestrator node. The source code is sent, via HTTP requests as
a set of files wrapped in a JSON object'®, to an arbitrary number
of Compiler nodes. These return, by means of HTTP responses,
compiled YAAAPI modules, each tailored to a specific target. The
Orchestrator, then, sends, through HTTP requests, the received
binary modules to Player nodes for execution, matching compi-
lation targets and Player environments. Upon module reception,
Players execute the new modules and, eventually, send back some
application-specific output response.

All PIPES nodes can reside on the same machine, encompass-
ing the traditional workflow with the developer working on a fully-
featured terminal.

2.3. YAAAPI

We defined a C API, named Yet Another Audio API (YAAAPI),
to interface with audio modules. It can be seen as a simplified anal-
ogy of current plugin APIs covering fundamental functions for au-
dio processing, state reset, and parameter updates. It also includes
basic handling of common event messages, such as note on/off, to
support the development of synthesizers. YAAAPI modules need
to implement these functions and set a number of global variables.

// YAAAPI Functions

void yaaapi_init ();

void yaaapi_fini ();

void yaaapi_set_sample_rate
void yaaapi_reset ();

(float fs);

void yaaapi_process (const floatxx x, floatx*x
y, int n_samples);

void yaaapi_set_parameter (int index, float
value) ;

float yaaapi_get_parameter (int index);

void yaaapi_note_on (char note, char vel);

void yaaapi_note_off (char note);

Bhttps://www.json.org/
>

https://refspecs.linuxfoundation.org/elf/TIS1.1.pdf
https://refspecs.linuxfoundation.org/elf/TIS1.1.pdf
https://en.wikipedia.org/wiki/Mach-O
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Portable_Executable
https://webassembly.org/
https://datatracker.ietf.org/doc/html/rfc7235
https://www.json.org/

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

Dynplug Player
Audio
process
Processing module loader | Web server
thread thread N process

Figure 3: dynplug player structure.

void yaaapi_pitch_bend (int value);
void yaaapi_mod_wheel (char value);

void yaaaeapa_get_parameter_info (int index,
char** name, char** shortName, charxx
units, charx out, charx bypass, intx steps
, floatx defaultValueUnmapped) ;

// YAAAPI Variables

int yaaapi_parameters_n;
int yaaapi_buses_in_n;

int yaaapi_buses_out_n;
int yaaapi_channels_in_n;
int yaaapi_channels_out_n;

Although not yet standardized, the current YAAAPI version
suggests a concrete possibility to adopt a single common API for
all targets.

3. IMPLEMENTATION

As a proof of concept, we implemented a minimal working PIPES
network and successfully tested it on a Local Area Network (LAN)
with each node running on a different machine. The following
subsections provide relevant implementation details.

3.1. Player node

Any Player necessarily implements two main components: one
dedicated to audio processing, i.e., module execution, and another
acting as a web server waiting for new YAAAPI audio modules
from the network.

We implemented dynplug, a Linux x86-64 and arm64 VST3
Player node. The source code of the audio processing part is
available at https://github.com/paoclomarrone/
dynplug, while the web server part can be found at https:
//github.com/paoclomarrone/dynplug_server. The
former is implemented in C and C++ and the latter in Go. Figure
3 represents the general structure of dynplug. The audio and web
server parts operate as independent processes. The audio process is
composed of two threads, one dedicated to current YAAAPI mod-
ule execution and another that communicates with the web server
process via a named pipe'® and loads new modules.

When a new module is received, the web server process writes
it into a new file and passes its path to the audio process’ module
loader thread. The audio process relies on the dlfcn library® to

Yhttps://en.wikipedia.org/wiki/Named_pipe
Onttps://pubs.opengroup.org/onlinepubs/7908799/
xsh/dlfcn.h.html

371

actually load it into memory, retrieve symbol addresses, and even-
tually unload it. The actual swapping operation is guarded by a
pthreads mutex*' to guarantee thread-safety. The swapping in it-
self simply consists of substituting function and data addresses of
the current module with the new one, thus resulting in a very fast
operation. In order to also preserve real-time safety, the audio pro-
cessing thread uses non-blocking pthread_mutex_trylock() calls to
acquire the mutex.

To the host application, dynplug appears as a regular VST3
plugin with a fixed number of buses and channels (1 input stereo
bus and 1 output stereo bus) and set of parameters (30 input pa-
rameters with continuous linear [0, 1] mapping). Unluckily, sup-
port for changes at runtime in this sense in most hosts is lacking,
therefore this was a forced choice.

We successfully tested dynplug inside the Reaper DAW?? on a
x86-64 Void Linux* system, as well as within a Sushi** instance
run;lSing on an arm64 Raspberry Pi board® with the ELK Audio
OoS~.

3.2. Compiler node

We wrote a minimal Compiler node in Go called
yaaapi_compilation_server, whose source code is available at
https://github.com/paoclomarrone/yaaaeapa_c
ompilation_server, which simply receives one or more C
files wrapped in a JSON object, invokes the GCC compiler® to
build the output binary, and finally responds with the result or con-
versely with an error.

It is meant to run on an x86-64 Linux machine and can ei-
ther natively compile for Linux x86-64 or cross-compile to Linux
arm64. The Orchestrator node that requests compilation must spec-
ify which architecture to compile for using the Target-Arch HTTP
request header.

3.3. Orchestrator node

We developed a tiny JavaScript library to build Orchestrators that
work in web browsers — albeit potentially requiring disabling cer-
tain browser security features in some network configurations —
or on Node.jszs, whose code can be found at https://gith
ub.com/paolomarrone/ciaramellaToDynplug. It
basically allows to send the C source code of YAAAPI modules
to yaaapi_compilation_server nodes, receive binary modules back,
and send them to dynplug nodes.

Furthermore, we added YAAAPI as a target to Zampogna, the
source-to-source transpiler for the Ciaramella programming lan-
guage, and very easily integrated it into the Orchestrator library.
Thus, it is possible to write Ciaramella code and have it transpiled
to C locally before being sent to Compiler nodes. As mentioned
before, an alternative solution would involve Zampogna running
on a Compiler node instead.

2lpttps://pubs.opengroup.org/onlinepubs/ 96999197
99/basedefs/pthread.h.html

2nttps://www.reaper.fm/
Bhttps://voidlinux.org/
Xnttps://github.com/elk-audio/sushi
Bpttps://www.raspberrypi.org/
nttps://os.elk.audio/

27https:
28https:

//gcc.gnu.org/
//nodejs.org/

https://github.com/paolomarrone/dynplug
https://github.com/paolomarrone/dynplug
https://github.com/paolomarrone/dynplug_server
https://github.com/paolomarrone/dynplug_server
https://en.wikipedia.org/wiki/Named_pipe
https://pubs.opengroup.org/onlinepubs/7908799/xsh/dlfcn.h.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/dlfcn.h.html
https://github.com/paolomarrone/yaaaeapa_compilation_server
https://github.com/paolomarrone/yaaaeapa_compilation_server
https://github.com/paolomarrone/ciaramellaToDynplug
https://github.com/paolomarrone/ciaramellaToDynplug
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
https://www.reaper.fm/
https://voidlinux.org/
https://github.com/elk-audio/sushi
https://www.raspberrypi.org/
https://os.elk.audio/
https://gcc.gnu.org/
https://nodejs.org/

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

A Node.js test script is also provided in which some Ciaramella
code goes through the entire process, with Compiler and Player
node addresses hardcoded.

4. CONSIDERATIONS

As it stands today, PIPES can be considered to be immature. How-
ever, somehow surprisingly it already has more features than sev-
eral existing current solutions. On the one hand the current pro-
tocol has not yet been rigorously defined, furthermore it does not
fit many potential use cases since the implementation is limited
to one platform, two programming languages, and two target ar-
chitectures; therefore, it can be considered essentially as a simple
proof-of-concept. On the other hand, to the best of our knowledge
no other tool is comparable in terms of ease of implementation,
modularity, integrability, and heterogeneity of potential applica-
tions.

In its current form, with only minor adjustments to the imple-
mentation, PIPES could already prove useful for testing and mea-
surement of potentially automated and/or remote DSP algorithms.
E.g., a developer could start with an already established DSP rou-
tine, then iteratively tweak it and measure its CPU usage, memory
footprint, and/or output quality, by compiling and running it on
several remote machines through PIPES, hence without needing
to restart execution environments.

The outcome might be different when considering the develop-
ment of new algorithms and deployment to user-facing products.
In the former case, the lack of provisions for compiler control,
debugging, sandboxed execution, and remote control are severely
limiting. In the latter, major challenges to overcome are related to
the excessively simplistic nature of YAAAPI and the lack of sup-
port for dynamic I/O reconfiguration in common plugin APIs/hosts.

Nevertheless, it seems possible to overcome most of these
limitations either with straightforward additions or by leveraging
already-existing and widespread solutions. For example:

» compiler flags could just be included in the same JSON ob-
ject as the one the Orchestrator sends to Compiler nodes;

+ GDB’s remote debugging® and tracing®® capabilities should
be relatively easy to integrate in a Player node;

« remote control could be accomplished via OSC?';

* YAAAPI could be enhanced as needed, complemented with
metadata, or otherwise replaced with an already-existing
plugin API such as LV2 which couples a simple core API
with advanced extensibility and adaptability features by de-
sign.

Further additions might improve the usefulness of the system,
such as:

* aservice discovery mechanism that reduces manual config-
uration efforts required from users;

* more granular DSU to dynamically replace, add, or remove
only part of the currently running module without affect-
ing the state of the other parts — this would be particularly
useful for users of modular environments;

Pnttps://sourceware.org/gdb/current /onlinedocs/
gdb.html/Remote-Debugging.html

Ohttps://sourceware.org/gdb/current/onlinedocs/
gdb.html/Tracepoints.html

3lnttps://opensoundcontrol.stanford.edu/

372

¢ a mechanism for collaborative editing coupled with auto-
mated compilation and deployment;

the introduction of Translator nodes concerned with inter-
mediate building steps (e.g., source-to-source transpilers,
data processors, version control systems), which would al-
low for language-independent Orchestrator nodes and dis-
tributed/automated build chains;

an analogous and complementary framework for GUIs, per-
haps inspired to or even based on web technology.

In any case, as it happens with every protocol, API, or prod-
uct in general, it would not be obvious to determine an optimal
tradeoff between required and optional features, especially in such
potentially heterogeneous application contexts. Concentrating on
a varied but limited set of concrete use cases would probably be of
help in this sense.

5. CONCLUSIONS

In this paper we introduced PIPES, an experimental protocol de-
signed to streamline audio software development and deployment.
PIPES clearly defines separate roles w.r.t. coding, building, and
deployment, each implemented by a different network node. Com-
munication among nodes is standardized and a common audio pro-
cessing API is defined for the system to provide a seamless work-
flow without restricting to specific programming languages or ex-
ecution environments. A proof-of-concept implementation vali-
dates the overall architecture and shows that little effort is required
to setup such a system and to integrate it with already-existing
technology. Despite its current immaturity and limitations, the
PIPES approach shows significant potential to influence future au-
dio DSP development practices.

6. ACKNOWLEDGMENTS

We acknowledge Stefano Zambon at Elk Audio for providing sub-
stantial technical advice during this work.

7. REFERENCES

[1] Stefano D’Angelo, “Lightweight virtual analog modeling,”
in Proceedings of the 22" Colloquium on Music Informatics
(XXII CIM), Udine, Italy, November 2018, pp. 20-23.

[2] Yann Orlarey, Dominique Fober, and Stéphane Letz, “Faust:
an efficient functional approach to DSP programming,” New
Computational Paradigms for Computer Music, pp. 65-96,

2009.
(3]

Paolo Marrone, Stefano D’Angelo, Federico Fontana, Gen-
naro Costagliola, and Gabriele Puppis, “Ciaramella: a syn-
chronous data flow programming language for audio DSP,”
in Proceedings of the 19" Sound and Music Computing Con-

ference (SMC 2022), Saint—Etienne, France, June 2022.

[4] Lynn Andrea Stein, “Interactive programming: Revolution-
izing introductory computer science,” ACM Computing Sur-

veys (CSUR), vol. 28, no. 4es, pp. 103—es, 1996.

Erik Sandewall, “Programming in an interactive environ-
ment: the “LISP” experience,” ACM Computing Surveys
(CSUR), vol. 10, no. 1, pp. 35-71, 1978.

(5]

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Remote-Debugging.html
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Remote-Debugging.html
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Tracepoints.html
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Tracepoints.html
https://opensoundcontrol.stanford.edu/

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24) Guildford, Surrey, UK, September 3-7, 2024

[6] Nick Collins, Alex McLean, Julian Rohrhuber, and Adrian
Ward, “Live coding in laptop performance,” Organised
Sound, vol. 8, no. 3, pp. 321-330, 2003.

[7] Ge Wang and Perry R Cook, “On-the-fly programming: Us-
ing code as an expressive musical instrument,” in Proceed-
ings of the 2004 International Conference on New Interfaces
for Musical Expression (NIMEO4), Hamamatsu, Japan, June
2004, vol. 4, pp. 138-143.

[8] Sarah Denoux, Stéphane Letz, Yann Orlarey, and Dominique
Fober, “FAUSTLIVE, Just-In-Time Faust compiler... and
much more,” in Proceedings of the Linux Audio Conference
2014 (LAC 2014), Karlsruhe, Germany, May 2014, pp. 143—
150.

[9] Michael Hicks, Jonathan T. Moore, and Scott Nettles, “Dy-
namic software updating,” in Proceedings of the ACM SIG-
PLAN 2001 Conference on Programming Language Design
and Implementation (PLDI ’01), Snowbird, Utah, USA, June
2001, pp. 13-23.

[10] Emili Miedes and Francesc D. Mufoz-Escoi, “A survey
about dynamic software updating,” Instituto Universitario
Mixto Tecnologico de Informdtica, Universitat Politécnica de
Valencia, 2012.

< 373

	1 Introduction
	1.1 Problem and proposal

	2 PIPES
	2.1 Nodes
	2.1.1 Orchestrator
	2.1.2 Compiler
	2.1.3 Player

	2.2 Workflow
	2.3 YAAAPI

	3 IMPLEMENTATION
	3.1 Player node
	3.2 Compiler node
	3.3 Orchestrator node

	4 Considerations
	5 Conclusions
	6 Acknowledgments
	7 References

@inproceedings{DAFx24_paper_35,
 author = "Marrone, Paolo and D'Angelo, Stefano and Fontana, Federico",
 title = "{PIPES: A Networked Rapid Development Protocol for Sound Applications}",
 booktitle = "Proceedings of the 27-th Int. Conf. on Digital Audio Effects (DAFx24)",
 editor = "De Sena, E. and Mannall, J.",
 location = "Guildford, Surrey, UK",
 eventdate = "2024-09-03/2024-09-07",
 year = "2024",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 doi = "",
 pages = "368--373"
}

