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Abstract: Background and Objectives: Interest in defining the characteristics of the cer-
vicovaginal microbiota (CVM) in invasive cervical cancer (ICC) is growing, particularly
concerning Lactobacillus species, as evidence suggests that these may differ in affected
women and potentially interact with Human Papillomavirus (HPV) infection. Understand-
ing these features could have important implications for disease management. Thus, this
study aims to systematically review the main characteristics of available literature exploring
the relationship between CVM diversity, Lactobacillus profiles, and HPV in ICC; Methods: A
comprehensive bibliographic search was conducted across databases, including Medline,
Embase, Scopus, the Cochrane Database of Systematic Reviews, and ClinicalTrials.gov,
in accordance with the to the PRISMA guidelines. The review included studies that met
the following inclusion criteria: studies comparing CVM in women with ICC to controls,
focusing on Community State Types (CSTs), Lactobacillus profiles, and microbial diversity.
Exclusion criteria included commentaries, letters, reviews, and studies without control
groups. Variables were analyzed using the Kruskal–Wallis and Fisher’s exact tests, with
statistical significance level set at 0.05. Data analysis was conducted and reviewed in a
blinded manner. Results: A total of 28 studies published between 2015 and 2024 met the
inclusion criteria. A total of 2082 patients were included, with 323 (41.9%) of the 770 cases
testing positive for HPV and 327 (24.9%) of the 1312 controls testing positive for HPV. A
total of 18 studies specifically examined HPV genotypes. Cervical swabs were employed
in 19 out of 28 studies (67.9%), while vaginal swabs were used in 17 studies (60.7%). Ad-
ditionally, two studies included samples collected via cervical biopsy (7.1%), four studies
utilized cervicovaginal lavage (14.3%), and one study used a cervical brush for sample
collection (3.6%). Regarding microbiota profiling, 26 studies (92.9%) employed 16S rRNA
analysis, while one study (3.6%) utilized whole-genome sequencing (WGS), and another
(3.6%) used 16s rDNA. A total of 10 studies (35.7%) examined the distribution of CSTs. Five
studies (17.9%) reported on Lactobacillus profiles. Different levels of Lactobacillus crispatus
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and Lactobacillus iners were observed, along with variations between Lactobacillus-dominant
and Lactobacillus-depleted communities. A total of 22 studies (78.6%) assessed α-diversity,
and 17 studies (60.7%) examined β-diversity; Conclusions: This study emphasizes the
heterogeneous features of the studies exploring the association between alterations in the
CVM, HPV, and the development of ICC, suggesting the need for further research to better
understand this relationship. These findings could inform new strategies for prevention
and treatment.

Keywords: cervical cancer; microbiota; human papillomavirus; cancerogenesis;
gynecological cancer

1. Introduction
In recent years, the study of cervicovaginal microbiota (CVM) has gained significant

attention due to the growing body of evidence highlighting its crucial role in women’s
health [1]. Among women of reproductive age, it is predominantly dominated by Lac-
tobacillus species, with four primary species commonly identified: Lactobacillus crispatus,
Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii [2]. These Lactobacillus
species utilize carbohydrates from the host’s mucosal epithelial cells to produce lactic
acid, which inhibits the adhesion, colonization, and growth of pathogenic bacteria, thereby
ensuring the stability and resilience of the microbial ecosystem [3]. The importance of
a Lactobacillus-dominated environment as a hallmark of women’s health is underscored
by the classification system proposed by Ravel et al., which categorizes vaginal microbial
profiles into five distinct community state types (CSTs) based on hierarchical taxonomic
clustering. CSTs I, II, III, and V are characterized by the dominance of Lactobacillus crispatus,
Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii, respectively. However, in
some women, the microbiota is not Lactobacillus-dominant and is instead characterized by a
diverse mixture of anaerobic and microaerophilic bacteria, such as Gardnerella, Atopobium,
Prevotella, and Sneathia, which corresponds to CST IV [4]. This particular community
type is associated with a state of dysbiosis, which has significant implications for women’s
health [5]. Microbiota disorders compromise cervicovaginal barrier function, facilitating
the adhesion, invasion, and colonization of pathogenic flora [3]. This disruption also
alters the metabolic profile of the vaginal environment, leading to an increased risk of
inflammation [6]. Importantly, high genital inflammation has been linked to the persistence
of Human Papillomavirus (HPV), a known critical factor in the progression from infection
to cervical dysplasia and malignancy [7].

Laboratory techniques for profiling Lactobacillus and other cervicovaginal microflora
have been crucial in understanding these microbial ecosystems. The most widely used
method in recent studies is 16S rRNA gene sequencing, which allows for identifying and
quantifying bacterial species. This method amplifies conserved regions of the bacterial
ribosomal RNA gene, providing a comprehensive overview of the microbial diversity.
Whole-genome sequencing (WGS) has also been used in some studies to gain deeper in-
sights into the genetic and functional characteristics of both dominant and minor microbial
populations. In addition, quantitative polymerase chain reaction (qPCR) has been em-
ployed to specifically quantify certain bacterial species, including Lactobacillus and key
pathogens involved in dysbiosis.

In addition to the Lactobacillus profile, microbial diversity may play a significant role
in determining women’s health [8]. The concepts of CVM α-diversity (within a single
microbial community) and β-diversity (between different microbial communities) are
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critical in understanding the complexity of the genital ecosystem. Higher α-diversity
has been associated with dysbiosis and increased susceptibility to infections, including
HPV. In contrast, lower β-diversity, indicating less variation between different microbial
communities, may reflect a more stable and healthier microbiota.

Therefore, differences in the CVM compared to its physiological state may underlie the
pathogenic mechanisms of various genital disorders. Among these, invasive cervical cancer
(ICC) is one of the most prevalent and lethal gynecological malignancies worldwide. There
is increasing interest in defining the characteristics of the CVM in ICC, as evidence indicates
that these may differ in affected women and potentially interact with HPV infection, acting as
cofactors. Additionally, some studies suggest that ICC itself may disrupt the balance between
commensal and pathogenic microbes, further complicating the relationship between the
microbiota and disease progression [9]. Understanding these correlations is essential not only
for early detection and prevention but also for optimizing treatment strategies. However,
despite the growing interest in this field, the evidence regarding these characteristics of CVM
in ICC remains limited and often conflicting. Variability in study designs, populations, and
methods of microbial analysis—such as the type of sample collected, and the techniques used
for microbial profiling—contributes to these inconsistencies.

Given these considerations, we conducted a systematic review focusing on the main
characteristics of available studies exploring the association between CVM diversity, Lacto-
bacillus profiles, and HPV in ICC.

2. Materials and Methods
The systematic review was registered in the INPLASY database with registration

number INPLASY202530027 to ensure transparency and adherence to best methodological
practices. The research strategy was decided a priori, following the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) [10]. Since published de-
identified data were used, this study was exempt from institutional review board approval.

A literature search was systematically performed across the following databases:
Medline, Embase, Scopus, the Cochrane Database of Systematic Reviews, and Clin-
icalTrials.gov., evaluating the available articles from inception to August 2024. For
each database, we retrieved all articles using the following search strategy: ((micro-
biota[Title/Abstract] OR microbiome[Title/Abstract]) AND (cervical cancer[Title/Abstract]
OR cervical carcinoma[Title/Abstract])). The PRISMA flow diagram (Figure 1) summarizes
the search strategy.

All studies evaluating the CVM of patients affected by cervical cancer—in terms of
CSTs, Lactobacillus profiles, α-diversity, and β-diversity—compared with healthy patients
have been included in the final analysis.

2.1. Study Selection

Study selection was made independently by two authors (G.G.I. and S.C.). In case of
discrepancy, a third author (C.R.) decided on inclusion or exclusion. Inclusion criteria were:
(1) studies that included patients with full information about the profile of CVM and at
least one group with HPV infection; (2) studies with full information about methods of
profiling (3) peer-reviewed articles published originally. We excluded non-original studies,
preclinical trials, animal trials, abstract-only publications, and articles in a language other
than English. If possible, the authors of studies that were only published as congress
abstracts were tried to be contacted via email and asked to provide their data. We assessed
all included studies regarding potential conflicts of interest.
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Figure 1. PRISMA flow diagram.

2.2. Statistical Analysis

All the variables were previously graphical as histograms and examined for parametric
or non-parametric distribution. Continuous variables were expressed as median and
interquartile range and compared using the Kruskal–Wallis test due to the non-parametric
distribution. Dichotomous and Ordinal variables were expressed as absolute numbers and
percentages and compared using Fisher’s exact test. No subgroup analysis was performed.
The statistical significance level was set at 0.05, and all statistical investigations were
performed using R software and R Studio vers. 2023.12.1 + 402.

2.3. Risk of Bias

Data analysis was conducted first by C.R. and then by blinding by G.V., who was
unaware of the study’s objective. No missing data were present in the outcomes of interest.

3. Results
Figure 1 summarizes the process of literature identification and selection of the studies.

The systematic bibliographic research strategy identified 797 studies, from which 96 du-
plicates were removed. After a review of the titles and abstracts, 108 full-text records
were assessed for eligibility. Finally, 28 studies met the inclusion criteria [11–38], whose
characteristics are shown in Table 1.
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Table 1. Characteristics of the studies included in the systematic review.

Author,
Year Country Cases

(n)
Controls

(n)
HPV

Genotypes
Cases+
(n, %)

Controls+
(n, %)

Sample
Type

Microbial
Analysis

CSTs
Cases
(n, %)

CSTs
Controls

(n, %)

Lactobacillus
Profiles
Cases
(n, %)

Lactobacillus
Profiles
Controls

(n, %)

α-Diversity
(Index)

β-Diversity
(Index)

Audirac-
Chalifour,
2016 [11]

Mexico 8 ICC+ 10 NILM-,
10 NILM+ NR 8 (100) 10 (50)

cervical
(swab,

biopsy)

V3-V4
16S rRNA

IV: 2 (25), VI:
1 (12.5), VII:
2 (25), VIII: 3

(37.5)

NILM-: I: 4
(57), II: 1 (14),
V: 1 (14), VI: 1
(14); NILM+: I:
2 (20), II: 4 (40),
III: 3 (30), V: 1

(10)

NR NR

↔ cases 3.08 ± 1.28 vs.
NILM- 2.00 ± 0.63: p =
0.498, ↔ cases 3.08 ±

1.28 vs. NILM+ 2.49 ±
0.70: p = 1 (Shannon

index), ↑ cases 4.14 ±
1.49 vs. NILM- 1.55 ±

0.99: p = 0.036, ↔ cases
4.14 ± 1.49) vs. NILM+
2.49 ± 1.61): p = 0.318

(PD whole tree)

p < 0.00001 (cases
vs. NILM-)
(weighted
Unifrac)

Chen,
2020 [12] China 9 ICC+ 68 NILM-,

78 NILM+ NR 9 (100) 78 (53.4) vaginal
(swab)

V3-V4
16S rRNA

III: 1 (11.1),
IV: 8 (88.9)

NILM-: I: 14
(20.6), II: 2
(2.9), III: 32
(47.1), IV: 20

(29.4); NILM+:
I: 14 (17.9), II
(2.6), III: 28
(35.9), IV: 32

(41.0), V: 2 (2.6)

NR NR

↑ cases: 367.76 ± 208.63
vs. NILM-: 84.02 ± 73.88
(q ≤ 0.001) vs. NILM+:
272.26 ± 191.62 (Chao

index); cases: 2.47 ± 0.98
vs. NILM-: 0.94 ± 0.95
(q ≤ 0.001) vs. NILM+:
1.49 ± 1.01 (q < 0.05)

(Shannon index)

cases vs. NILM-:
R = 0.284,

p = 0.001; cases
vs. NILM+:
R = −0.0359,

p = 0.656
(Unweighted

Unifrac)

Fan,
2021 [13] China 65 ICC 54 NILM

16, 18, 31, 33,
52, 58, 35, 39,

45, 51, 56,
59, 68

63 (96.9) 47 (87) vaginal
(swab)

V3-V4
16S rRNA NR NR NR NR

↑ p < 0.0001 (Chao1,
Shannon, Simpson,

OTUs)
p < 0.05

Han,
2024 [14] China 84 ICC 180 NILM NR NR NR vaginal

(swab)
V3-V4

16S rRNA NR NR NR NR ↔ p > 0.05 (Chao,
Shannon, Simpson)

p = 0.001
(Bray–Curtis)

Ivanov,
2023 [15] Russia 17 ICC 77 NILM

16, 18, 31, 33,
35, 39, 45, 51,
52, 56, 58, 59,
26, 53, 66, 68,

73, 82

16 (94.1) 19 (24.7) cervical
(swab)

V3-V4 16S
rRNA NR NR NR NR

p ≤ 0.001 (Shannon,
OTUs), ↑ p = 0.000344

(Faith’s)
NR

Kang,
2021 [16] Korea 8 ICC 7 NILM

16, 18, 26, 31,
33, 35, 39, 45,
51, 52, 56, 58,
59, 66, 68, 69,
73, 82, 6, 11,
40, 42, 44, 53,

54, 70

8 (100) 0 (0) vaginal
(swab)

V3
16S rRNA NR NR NR NR

↑ p = 0.0012 (Richness
index), ↔ p > 0.05

(Shannon index), ↔ p >
0.05 (Simpson index)

p = 0.001
(Bray–Curtis)

Kwom,
2018 [17] Korea 12 ICC 18 NILM NR NR NR cervical

(swab)

Whole-
genome

sequencing
NR NR NR NR p = 0.1218 (Shannon), ↔

p = 0.0863 (Simpson)

p = 0.087
(Bray–Curtis),

p = 0.094
(Jaccard)
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Table 1. Cont.

Author,
Year Country Cases

(n)
Controls

(n)
HPV

Genotypes
Cases+
(n, %)

Controls+
(n, %)

Sample
Type

Microbial
Analysis

CSTs
Cases
(n, %)

CSTs
Controls

(n, %)

Lactobacillus
Profiles
Cases
(n, %)

Lactobacillus
Profiles
Controls

(n, %)

α-Diversity
(Index)

β-Diversity
(Index)

Łaniewski,
2018 [18] USA 10 ICC 51 NILM

16, 18, 31, 33,
35, 39, 45, 51,

52, 56, 58,
59, 68

9 (90) 31 (60.8)
cervical
(swab,
lavage)

V4
16S rRNA NR NR LDo: 2 (20),

LDe: 8 (80)

NILM-: LDo:
(60), LDe:

(40); NILM+:
LDo: (68),
LDe: (32)

NR NR

Li C,
2022 [19] China 6 ICC+ 25 NILM- NR 6 (100) 0 (0) cervical

(swab)
V3-V4

16S rRNA

I: (40.9),
II: (4.6),

III: (31.8),
IV: (18.2),
V: (4.5)

II: (50), IV: (50) NR NR NR
p = 0.044

(unweighted
Unifrac)

Li X,
2023 [20] China 79 ICC 79 NILM-,

80 NILM+

16, 18, 31, 33,
35, 39, 45, 51,
52, 56, 58, 59,
66, 68, and

13 LR

NR NR vaginal
(swab)

V3-V4
16S rRNA NR NR NR NR

↑ p < 0.01 (Chao,
Shannon, Simpson,

OTUs, Pielou)
NR

Li Y,
2023 [21] China 26 ICC 53 NILM

16, 18, 31, 33,
35, 39, 45, 51,
52, 56, 58, 68,
26, 53, 66, 73,
82, 6, 11, 81

NR NR vaginal
(swab)

V4
16S rRNA

III: 7 (26.9),
IV: 19 (73.1)

I: 15 (28.3),
III: 18 (34),
IV: 18 (34),
V: 1 (1.9)

LDo: 7 (26.9),
LDe: 19
(73.1)

LDo: 33
(62.3),

LDe: 19
(35.8)

↑ p < 0.05 (Chao), ↔
p = 0.065 (Shannon)

p = 0.002
(Bray–Curtis)

Liu,
2022 [22] China 41 ICC+ 34 NILM+

16, 18, 26, 31,
33, 35, 39, 45,
51, 52, 53, 56,
58, 59, 66, 68,

and 82

41 (100) 34 (100) cervical
(swab) 16S rRNA III: 4 (9.8),

IV: 37 (90.2)

I: 9 (26.5),
III: 14 (41.2),
IV: 11 (32.3)

LDo: 4 (9.8),
LDe: 37
(90.2)

LDo: 23
(67.7);

LDe: 11
(32.3)

↑ p < 0.05 (Chao index),
↑ p < 0.001 (Shannon

index)

R = 0.109,
p = 0.001

(Bray–Curtis)

Ma,
2023 [23] China 27 ICC 30 NILM-,

22 NILM+

16, 18, 31, 33,
35, 39, 45, 51,
52, 56, 58, 59,
68, 26, 53, 66,
73, 82, 6, 11,

and 81

21 (77.8) 22 (42.3) vaginal
(swab)

V4
16S rRNA

III: 7 (25.9),
IV: 20 (74.1)

HPV-: I: 9 (30),
III: 10 (33.3),
IV: 10 (33.3),

V: 1 (3.3);
HPV+: 6 (27.3),

III: 8 (36.4),
IV: 12 (26.7),

V: 2 (4.4)

LDo: 7 (25.9),
LDe: 20
(74.1)

NILM-: LDo:
19 (63.3),
LDe: 11
(36.7);

NILM+:
LDo: 14
(63.6), 8
(36.4)

↔ NILM- vs. NILM+
(p > 0.05) vs. ↑ cases
(p < 0.01) (Shannon
index); ↔ NILM- vs.

NILM+ (p > 0.05) vs. ↑
cases (p < 0.05) (Simpson

index); ↔ NILM- vs.
NILM+ (p > 0.05) vs. ↑
cases (p < 0.001) (Sobs)

NR

Mitra,
2015 [24] England 20 ICC 5 NILM

16, 18, 12, 31,
33, 35, 39, 45,
51, 52, 56, 58,

59, 66, 68

NR NR vaginal
(swab)

V1-V2
16S rRNA

I: 1 (20), II: 1
(20), IV: 2

(40), V: 1 (20)

I: 10 (50), III 8
(40), IV: 2 (10) NR NR NR NR
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Table 1. Cont.

Author,
Year Country Cases

(n)
Controls

(n)
HPV

Genotypes
Cases+
(n, %)

Controls+
(n, %)

Sample
Type

Microbial
Analysis

CSTs
Cases
(n, %)

CSTs
Controls

(n, %)

Lactobacillus
Profiles
Cases
(n, %)

Lactobacillus
Profiles
Controls

(n, %)

α-Diversity
(Index)

β-Diversity
(Index)

Musa,
2023 [25] Nigeria 30 ICC 19 NILM

16, 18, 26, 31,
33, 35, 39, 45,
51, 52, 53, 56,
58, 59, 66, 68,
69, 73, 82, 6,

11, 40, 42, 43,
44, 54, 61, 70

27 (90) 8 (42.1)
cervico-
vaginal
(lavage)

V3-V4
16S rRNA

I: 2 (0.7),
III: 3 (10),

IV: 25 (83.3)

I: 2 (10.5), III: 8
(42.1), IV: 9

(47.4)
NR NR NR NR

Ou,
2024 [26] China 25 ICC 10 NILM NR 9 (90) 22 (88)

vaginal
(swab),
cervico-
vaginal
(lavage)

V3-V4 or
V4-V5

16S rRNA
NR NR NR NR NR p < 0.001

(Bray–Curtis)

Sekaran,
2023 [27] India 65 ICC 54 NILM NR NR NR

vaginal
(swab),
cervico-
vaginal
(lavage)

16S rRNA NR NR NR NR NR p = 0.001
(Bray–Curtis)

Stoian,
2023 [28] Romania 9 ICC+ 20 NILM-,

9 NILM+

16, 18, 31, 33,
35, 39, 45, 51,

52, 56, 58,
59, 68

9 (100) 9 (31) cervical
(swab)

V3-V4
16S rRNA NR NR NR NR ↑ p = 0.0019 (Shannon) NR

Teka,
2023 [29] Ethiopia 60 ICC 35 NILM

16, 18, 26, 31,
33, 35, 39, 45,
51, 52, 53, 56,
58, 59, 66, 68,
69, 73, 82, 6,

11, 40, 42, 43,
44, 54, 61, 70

NR NR
cervical
(swab,
brush)

V4
16S rRNA NR NR NR NR

↑ p = 0.00000054
(Shannon), p = 0.000005

(Simpson)

p = 0.001
(weighted
UniFrac)

Wang,
2022 [30] China 26 ICC 40 NILM

16, 18, 11, 31,
33, 35, 39, 45,
51, 52, 56, 58,

59, 66, 68,

18 (69.2) 1 (2.5) vaginal
(swab)

V3-V4
16S rRNA NR NR NR NR ↑ p < 0.001 (Shannon), ↓

p < 0.001 (Simpson)

R = 0.464,
p = 0.001

(Bray–Curtis)

Wei,
2022 [31] China 11 ICC 10 NILM-,

13 NILM+

12, 16, 18, 31,
33, 35, 39, 45,
51, 52, 56, 58,

59, 66, 68

11 (100) 13 (56.5) cervical
(biopsy)

V3-V4
16S rRNA

I: 1 (9.1), II: 7
(63.6), III: 3

(27.3)

NILM-: I: 6
(60), II: 4 (40);
NILM+: I: 5
(38.5), II: 5
(38.5), III: 3

(23.1)

NR NR

NILM- vs. ↑ NILM+:
p = 0.03971 vs. ↑ cases:
p = 0.004151 (Shannon);

NILM- vs. ↑ NILM+:
p = 0.01851 vs. ↑ cases:
p = 0.000894 (Simpson)

NR

Wu,
2021 [32] China 13 ICC 28 NILM-,

12 NILM+

16, 18, 31, 33,
35, 39, 45, 51,
52, 56, 58, 59,
66, 68, 53, 6,

11, 42, 43, 44,
CP8304(81)

10 (76.9) 12 (30) cervical
(swab)

V4
16S rRNA

II: 11 (85),
III: 2 (15)

NILM-: NR;
NILM+: II: 10

(83), 2 (17)
NR NR ↑ p < 0.05 (Shannon,

Simpson)

p < 0.01
(weighted
Unifrac)
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Table 1. Cont.

Author,
Year Country Cases

(n)
Controls

(n)
HPV

Genotypes
Cases+
(n, %)

Controls+
(n, %)

Sample
Type

Microbial
Analysis

CSTs
Cases
(n, %)

CSTs
Controls

(n, %)

Lactobacillus
Profiles
Cases
(n, %)

Lactobacillus
Profiles
Controls

(n, %)

α-Diversity
(Index)

β-Diversity
(Index)

Xie,
2020 [33] China 18 ICC+ 25 NILM-

16, 18, 26, 31,
33, 35, 39, 45,
51, 52, 53, 56,
58, 59, 66, 68,
73, 82, 6, 11,
40, 42, 43, 44,
54, 61, 81, 83

18 (100) 0 (0) vaginal
(swab)

V4
16S rRNA NR NR

LDo: 3 (18.4),
LDe: 15
(81.6)

LDo: 9 (35.6),
LDe: 16
(64.4)

↔ p = 0.2609 (Shannon),
p = 0.2245 (Simpson) NR

Xu,
2022 [34] China 10 ICC 10 NILM

16, 18, 31, 33,
35, 39, 42, 43,
44, 45, 51, 52,
56, 58, 59, 68

NR NR
cervico-
vaginal
(swab)

V3-V4
16S rRNA NR NR NR NR ↑ p = 0.04 (Shannon),

p = 0.02 (Simpson)

F = 1.8557,
R2 = 0.1407,

p = 0.008
(Bray–Curtis)

Zeber-
Lubecka,
2022 [35]

Poland 16 ICC 30 NILM- NR NR 0 (0) cervical
(swab)

V2-V3-V4-
V6-V7-V8-

V9
16S rRNA

NR NR NR NR

premenopause: ↔
p = 0.055 (Chao), ↑

p = 0.0025 (Shannon);
postmenopause: ↔

p = 0.7 (Chao), ↑
p = 0.026 (Shannon)

NR

Zeng,
2023 [36] China 15 ICC 15 NILM NR NR NR vaginal

(swab)
V3-V4

16S rRNA NR NR NR NR

↑ p = 0.0023 (Chao1),
p = 0.0023 (Shannon),
p = 0.0043 (Simpson),

p = 0.0012 (OTUs),
p = 0.0010 (PD whole

tree), p = 0.0007 (goods
coverage)

NR

Zhai,
2021 [37] China 38 ICC 29 NILM-,

29 NILM+ NR NR NR cervical
(swab)

V3-V4
16S rRNA NR NR NR NR

↔ p > 0.05(Chao1,
Shannon, Simpson, PD

whole tree, ACE), ↓
cases vs. NILM-:
p ≤ 0.05 (OTUs)

p ≤ 0.05
(weighted
UniFrac)

Zhang,
2024 [38] China 22 ICC+ 22 NILM-,

21 NILM +
16, 18, 33, 51,

52, 53, 58 22 (100) 21 (48.8) vaginal
(swab) 16s rDNA NR NR NR NR

NILM- vs. ↑ NILM+:
0.013 vs. cases: ↑ 0.00055

(Chao1), NILM- vs. ↑
NILM+: p=0.005 vs. ↑

cases: 6.7 × 10−7

(Shannon), NILM- vs. ↑
NILM+: 0.0039 vs. ↑

cases: 1.3 × 10−6

(Simpson)

R2 = 0.189,
p = 0.001

(unweighted
UniFrac),
R2 = 0.05,
p = 0.017

(weighted
UniFrac)

CST, community state type; ICC, invasive cervical cancer; LDe, Lactobacilli-depleted; LDo, Lactobacilli-dominant; n, number; NILM, negative for intraepithelial lesion or malignancy;
NR, not reported; PD, phylogenetic diversity. “-” means HPV-negative; “+” means HPV-positive; “↑” means that the index (or indices) is higher in cases than in controls, “↓” means that
the index (or indices) is lower in cases than in controls, “↔” means no significant difference between the groups.
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The studies included were published between 2015 and 2024. The studies were
conducted in various countries, with the highest number of studies coming from China
(14 studies, 50%). A total of 2082 patients were included in the analysis, with 323 (41.9%) of
the 770 cases testing positive for HPV and 327 (24.9%) of the 1312 controls testing positive
for HPV.

Eighteen studies specifically examined HPV genotypes.
The studies utilized various sample types and collection methods to analyze the CVM.

Cervical swabs were the most used sample type, employed in 19 out of 28 studies (67.9%),
while vaginal swabs were used in 17 studies (60.7%). Additionally, two studies included
samples collected via cervical biopsy (7.1%), four studies utilized cervicovaginal lavage
(14.3%), and one study used a cervical brush for sample collection (3.6%).

Regarding microbiota profiling, the majority of studies (26 out of 28, 92.9%) employed
16S rRNA analysis, while one study (3.6%) utilized WGS, and another (3.6%) used 16s
rDNA. A total of 10 studies (35.7%) examined the distribution of CSTs. The studies reported
various microbial profiles, with CST IV being identified in multiple samples. Five studies
(17.9%) specifically reported on Lactobacillus profiles. Across these studies, different levels of
Lactobacillus crispatus and Lactobacillus iners were observed, along with variations between
Lactobacillus-dominant and Lactobacillus-depleted communities.

A total of 22 studies (78.6%) assessedα-diversity, and 17 studies (60.7%) examinedβ-diversity.

4. Discussion
4.1. Cervical Cancer and Microbiota

ICC is one of the most common gynecological cancers, with nearly all cases being
linked to HPV [39]. However, while HPV is essential for the development of cancer, it alone
is not sufficient [40], as only 0.6–3% of individuals with HPV infection progress to ICC [41].
This suggests that other contributing factors are involved in the carcinogenic process [42].
Although the exact mechanisms behind HPV persistence and the development of cervical
neoplasms are not fully understood, it is clear that a range of factors influence this process,
including host-related elements like immune status, smoking habits, parity, and sexual
behavior; mechanical influences such as vaginal douching; and other biological factors,
including sexually transmitted infections [7]. Among these, some studies have focused
on the CVM, finding that individuals with a microbiota composition lacking Lactobacillus
species or dominated by Lactobacillus iners (as seen in CST IV) have more than double the
risk of HPV infection [43]. For example, a study involving 68 HPV-discordant monozygotic
female Korean twins found that the HPV-positive twins had lower levels of Lactobacillus
spp. and increased levels of Fusobacteria and Sneathia spp. compared to their HPV-
negative twins [44]. This evidence suggests that an abnormal CVM may play a significant
role in the onset of cervical neoplasms [45], similar to findings from other research that
connect specific bacterial species to the development of various cancers [46]. From a
pathogenic perspective, bacteria associated with dysbiosis have been linked to genital
inflammation, which may encourage carcinogenesis. In fact, one study found elevated
levels of proinflammatory cytokines in patients with cervical dysplasia [47]. Supporting
this, research conducted among South African women examining HPV, vaginal dysbiosis,
and cervical intraepithelial neoplasia grade 2 or higher (CIN2+) found that acquiring HPV
alters the CVM. Moreover, the likelihood of anaerobic dysbiosis seems to rise in parallel
with the development of CIN2+, indicating that the vaginal microbiome’s composition
could mediate CIN2+ development through persistent HPV infection [48]. Additionally,
other studies have indicated that Lactobacillus iners populations tend to increase in HPV-
positive women and in those with cervical dysplasia [49].
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4.2. Cervical Cancer and Community State Types

CST IV, typically dominated by anaerobic bacteria such as Gardnerella vaginalis,
Atopobium vaginae, and Sneathia, seems to be frequently associated with bacterial vagi-
nosis and heightened inflammation, which may support HPV persistence and promote
oncogenic transformation [42]. In line with this, a longitudinal analysis of vaginal swabs
collected over 16 weeks from 32 sexually active women found that CST IV is linked to
the slowest regression of HPV, while CST II is associated with the most rapid regression
rates [50]. These findings underscore the importance of understanding how specific CSTs
influence HPV infection and its progression. Such insights could lead to the development
of microbiota-based biomarkers, aiding in early detection and risk stratification.

4.3. Cervical Cancer and Lactobacillus Profiles

Lactobacillus crispatus is well known for its ability to produce lactic acid, which main-
tains vaginal pH at levels inhospitable to many pathogens, including HPV [3]. The deple-
tion of Lactobacillus species in ICC cases suggests that these beneficial bacteria are crucial in
preventing HPV persistence and the subsequent progression to malignancy. This finding
highlights the potential for therapeutic interventions aimed at reinforcing the Lactobacillus
population within the microbiota. For instance, targeted probiotics, prebiotics, or even
microbiota transplantation could be explored as complementary strategies to enhance
the effectiveness of existing preventive measures, such as HPV vaccination and regular
screening. Some studies have demonstrated a significant positive effect of probiotics on
the clearance of HPV and the regression of low-grade lesions [51]. Similarly, a longitudinal
cohort study confirmed that the composition of genital tract flora is significantly associated
with the regression of cervical intraepithelial neoplasia (CIN). Women with precancerous
lesions dominated by lactic acid bacteria were more likely to experience regression within
one year. Conversely, Lactobacillus depletion and specific anaerobic overgrowth were closely
linked to the slower elimination of cervical lesions [52].

4.4. Cervical Cancer and Microbiota Diversity

α- and β-diversity are linked to the changes in the microbiota. Higher α-diversity in
ICC cases may indicate a more heterogeneous and less stable microbial community, possibly
reflecting a state of dysbiosis. In contrast, healthy controls generally show lower α-diversity,
indicative of a stable, Lactobacillus-dominated microbiota. The distinct β-diversity patterns
seen in ICC cases point to specific shifts in microbial composition associated with cancer
development. These shifts might involve the overgrowth of pathogenic or opportunistic
bacteria, exacerbating inflammation and creating a microenvironment favorable to HPV
persistence and malignant transformation. The consistent differences in β-diversity re-
ported across multiple studies highlight the need for further research to identify the key
microbial players driving these changes. Gaining a deeper understanding of the specific
microbial interactions and pathways involved could pave the way for the development
of novel biomarkers for early ICC detection. Additionally, these findings suggest that the
microbiota itself could be a target for therapeutic intervention. For instance, treatments
aimed at modulating the microbiota to restore a more protective, Lactobacillus-dominant en-
vironment might help reduce the risk of HPV persistence and progression to ICC. However,
studies on cervical dysplasia have yielded varied and sometimes contradictory results. For
example, Mitra et al. found that the severity of CIN could be linked to an increase in vaginal
microbiota diversity [52]. In a case–control study comparing the cervical microbiota of
healthy individuals with that of patients diagnosed with CIN2/3 or ICC, microbial richness
was significantly higher in the CIN2/3-ICC group than in the control group, accompanied
by an increase in the number of operational taxonomic units (OTUs) [53]. Conversely,
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another study investigating the relationship between cervical microbiota and CIN2+ in
women with HPV found no association between the α- and β-diversity of the vaginal
microbiota and either CIN severity or oxidative DNA damage [54]. This variability in
findings may be attributed to differences in the sequencing methods used across studies.

The range of sample types and collection methods used across studies underscores the
challenges inherent in studying the CVM. While cervical and vaginal swabs are frequently
employed due to their non-invasive nature and ease of collection, the use of cervical biop-
sies and cervicovaginal lavage reflects efforts to gather more detailed and representative
microbiota samples. Cervical biopsies, for example, can provide a deeper understanding of
the interaction between the microbiota and the cervical epithelium, which is the primary
site for HPV infection and subsequent transformation. On the other hand, cervicovagi-
nal lavage allows for the collection of a diverse array of microbial species from both the
cervix and vagina, potentially offering a more comprehensive perspective on the CVM. The
studies included in this review employed various sampling methods, with cervical swabs
being the most frequently used (67.9%), followed by vaginal swabs (60.7%). A smaller
proportion of studies used cervicovaginal lavage (14.3%) or cervical biopsies (7.1%), and
these differences in sampling techniques likely contributed to the variability in microbial
profiles observed, particularly regarding Lactobacillus abundance and CSTs. This variety
in sampling techniques highlights the need for standardized protocols in microbiota re-
search, as differences in how samples are collected can significantly alter the microbial
profiles observed.

Moreover, the lack of consistency in laboratory methods, such as using 16S rRNA
sequencing versus WGS, further complicates the comparability of results across studies.
16S rRNA sequencing was the predominant method employed in 92.9% of the studies
reviewed, while WGS was used in only one study (3.6%). The widespread use of 16S rRNA
sequencing as the primary method for microbiota profiling highlights its effectiveness and
reliability in identifying bacterial communities by targeting the hypervariable regions of
the 16S rRNA gene. However, this method is limited in providing detailed functional
information about the microbiota. WGS, in contrast, has the potential to provide a deeper
insight into the microbiota’s full genetic content, including the detection of virulence factors,
antibiotic resistance genes, and metabolic pathways that may influence cancer progression.
Despite its clear advantages, the relatively infrequent use of WGS suggests that practical
challenges, such as higher costs, increased computational demands, and longer analysis
times, may limit its widespread application. Nevertheless, WGS could provide invaluable
insights into the functional dynamics of the CVM that go beyond taxonomic profiling,
potentially revealing mechanisms of interaction between the microbiota and the host that
contribute to cervical cancer development. To gain a more thorough understanding of
the functional roles of the CVM in ICC, future research should aim to integrate 16S rRNA
sequencing with WGS or other metagenomic techniques. This would enable researchers to
both accurately characterize microbial communities and assess the functional potential of
the microbiota in influencing disease outcomes.

4.5. Cervical Cancer and Human Papillomavirus

Despite HPV detection being a cornerstone of cervical screening, there remain chal-
lenges in effectively stratifying HPV-positive patients according to lesion risk. The current
HPV testing is constrained by various factors, including its significant dependence on
human interpretation [55]. To address these limitations, it may be advantageous to combine
HPV testing with analysis of CVM characteristics if an interplay exists, which could be
conducted on the same clinical specimen within a single diagnostic pipeline. This combined
approach could potentially enhance the positive predictive value in managing cervical



Healthcare 2025, 13, 599 12 of 15

disease. Noninvasive microbiome models have already been successfully developed for
the diagnosis of several cancer types, including colorectal, breast, and liver cancers [56]. In
a similar vein, the composition of the CVM could be hypothesized as a valuable biomarker
of ICC. Previous studies suggest that Lactobacillus species may serve as effective biomarkers
for predicting HPV infection, while various pathogenic anaerobic and aerobic bacteria could
be potential biomarkers for the prediction of cervical lesions [44]. Specifically, Lactobacillus
crispatus has been consistently associated with a stable and healthy cervicovaginal micro-
biota, which may protect against HPV persistence and the development of cervical lesions.
In contrast, the depletion of Lactobacillus crispatus and the predominance of Lactobacillus
iners or other anaerobic species, as observed in CST IV, have been linked to dysbiosis,
increased inflammation, and higher risks of HPV infection and progression to CIN or ICC.
Given these associations, Lactobacillus species, particularly Lactobacillus crispatus, could be
explored as biomarkers not only for the presence of a healthy CVM but also for stratifying
the risk of cancer progression. Further research is needed to validate the use of Lactobacillus
as a clinical biomarker, considering its potential application in noninvasive screening tools
for early detection of HPV-related lesions. The ability to monitor shifts in Lactobacillus
abundance and diversity could aid in identifying individuals at higher risk for developing
ICC, enabling earlier intervention and potentially improving patient outcomes.

4.6. Strengths and Limitations

This study has several strengths, including a comprehensive literature review con-
ducted in strict accordance with PRISMA guidelines. The inclusion of studies spanning
nearly a decade, from 2015 to 2024, offers a thorough overview of the evolving research
landscape regarding the role of the CVM in ICC. Additionally, the large sample size of
patients from diverse populations and settings further enhances the comprehensiveness of
this review.

However, several limitations must be acknowledged. This study was limited to summa-
rizing the main characteristics of the existing literature. The variability in sample types and
collection methods across the included studies, coupled with the relatively small number
of studies focusing on specific elements, like CSTs and Lactobacillus profiles, restricts the
ability to perform robust statistical evaluations of associations. The inherent complexity of
the microbiota-cancer relationship further complicates the establishment of definitive con-
nections. Additionally, environmental factors, such as treatment interventions and disease
progression, may introduce confounding variables, necessitating a cautious interpretation
of the findings. The diversity in microbial compositions and pathogen-specific responses
adds further complexity to the analysis, highlighting the critical need for standardized
methodologies and larger-scale studies to elucidate these relationships definitively.

5. Conclusions
In conclusion, this study emphasizes the heterogeneous features of the studies explor-

ing the association between alterations in the CVM, HPV, and the development of ICC,
highlighting the need for further research to better understand this relationship. Future
studies should aim to standardize methodologies and incorporate longitudinal assessments
to gain a deeper understanding of the intricate connections between the CVM and ICC,
ultimately enhancing prevention and treatment strategies.
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