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Abstract

This paper presents the results of an archaeological survey carried out in the Navkur

Plain, Iraqi Kurdistan, as part of the ‘Asingeran Archaeological Project’. The survey

was prepared using remote sensing products accessed via Google Earth Engineⓒ, a

large-scale cloud computing service freely available to the scientific community that

allows processing remote sensing big data. Outputs generated with a multitemporal

approach are particularly successful for archaeological research, because it is possible

to maximize the visibility of archaeological sites, improving their detection. Multi-

spectral imagery from Landsat 5, Landsat 7 and Sentinel-2 collections were used and

processed, testing their utility for finding unknown ancient settlements in the densely

studied area of Northern Mesopotamia. Seventeen new sites were discovered in an

already surveyed area of limited size (<100 km2), showing the potentialities of this

method. The advantages of cloud computing for Near Eastern Archaeology and the

results of the survey are also presented and discussed.
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1 | INTRODUCTION

The archaeological heritage of the autonomous region of Iraqi

Kurdistan, part of whose territory belongs to the historical area of

Northern Mesopotamia, has been widely investigated by numerous

international archaeological missions in recent decades that have

conducted excavations and regional surveys, increasing our

knowledge of a region where human occupation has been continuous

for millennia (Kopanias et al., 2015). In the northern part of Kurdistan,

four regional projects currently cover a continuous area of about

13,500 km2; from west to east, these are the Eastern Habur

Archaeological Survey (Pfälzner et al., 2016), the Land of Nineveh

Archaeological Project (LoNAP), the Upper Greater Zab

Archaeological Reconnaissance (UGZAR) (Koli�nski, 2018) and the Erbil

Plain Archaeological Survey (EPAS) (Ur et al., 2021). Among these pro-

jects, LoNAP has been carried out by the University of Udine since

2012 and covers approximately 3000 km2 eastward of the artificial

lake created by the Mosul Dam; after almost 10 years of extensive

surveying on the field, a total of 1098 archaeological features, from

monumental tells to isolated ruins, have been identified (Bonacossi &

Iamoni, 2015; Coppini, 2018; Gavagnin et al., 2016; Gavagnin, 2016;

Iamoni, 2016; Morandi Bonacossi, 2016; Palermo, 2016; Simi, 2020).

Within the borders of LoNAP, the Asingeran Excavation Project (AEP)

was started in 2019 to explore the archaeological potentialities of Tell

Asingeran, located at the south-eastern limit of the LoNAP's territory

and the surrounding areas (Iamoni & Qasim, 2021).
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Although all of the previous regional projects cover areas with

diverse morphology and land use, remote sensing (RS) resources

have been widely used for the remote exploration and the identifi-

cation of new ones (Herrmann et al., 2018; Koli�nski, 2015; Ur et al.,

2021). RS is an important tool for archaeological research and is

now generally used for the discovery, assessment and management

of global archaeological heritage (Lasaponara & Masini, 2012; Luo

et al., 2019; Masini & Lasaponara, 2017; Parcak, 2009; Wiseman &

El-Baz, 2007), with many published examples. Lasaponara and

Masini ((2006), (2007)) and Gallo et al. (2009) used RS sources to

identify archaeological features in southern Italy, while Grøn et al.

(2011) applied multispectral imagery and ground-truthing methods

to Norwegian archaeological sites. Agapiou et al. ((2010), (2016))

used vegetation indices coupled with field spectroscopy and high-

resolution multispectral imagery for sites in Cyprus and southern

Italy. Traviglia and Cottica (2011) and Traviglia and Torsello (2017)

explored the potential of RS applications in the area of Venice, Italy.

Moreover, Calleja et al. (2018) used high-resolution commercial

imagery combined with unmanned aerial vehicle (UAV) photography

to detect buried structures in northern Spain. As further example,

Elfadaly, Abouarab, et al. ((2019)) employed historical topographic

maps, and Landsat and Sentinel imagery to map settled areas

around known sites in the northern Nile Delta in Egypt. RS was also

extensively used to assess the conditions of archaeological areas

and Cultural Heritage sites for the assessment of risks posed by

uncontrolled urban sprawl, natural hazards and looting (Agapiou

et al., 2017; Elfadaly et al., 2017; Elfadaly, Attia, &

Lasaponara, 2018; Elfadaly et al., 2018; Elfadaly, Abouarab

et al., 2019; Elfadaly, Shams Eldein et al., 2019; Elfadaly &

Lasaponara, 2019; Lasaponara et al., 2017; Lauricella et al., 2017).

The employment of RS for archaeological purposes in the Near

East is also a well-established practice. Aerial images have been used

since the 1930s to identify ancient settlements and other sites

(Poidebard, 1934). Significant progress has been made since the

1960s and 1970s in particular, due to investigations carried out by

large regional archaeological projects that started to analyse aerial

photos consistently in order to facilitate or speed up the identifica-

tion of ancient features in the modern landscape

(Adams, 1965, 1981). This in turn led to a notable increase in the use

of RS resources, in particular as a valuable tool for site detection.

This trend is based on one hand on the constant improvements in

the quality of RS products, namely, satellite images, and their

increase in number, resolution and accessibility, with open access

digital repositories like the Copernicus Open Access Hub and the

U.S. Geological Survey. For instance, Wilkinson et al. (2006) used

IKONOS and CORONA imagery to explore the area of Homs, Syria;

Altaweel (2005) used ASTER imagery to reconstruct the palaeolands-

cape of Northern Mesopotamia; and Menze and Ur ((2007), (2012),

(2013), (2014)) also employed ASTER imagery, with a multitemporal

approach to identify anthropogenic soils related to archaeological

evidence through the use of artificial intelligence. Hritz (2010)

mapped settlements and canals in southern Mesopotamia using

declassified CORONA imagery, British military maps and the Shuttle

Radar Topography Mission digital elevation model (DEM). Linck et al.

(2013) explored the use of Synthetic Aperture Radar (SAR) compared

with geophysical data acquired on Roman archaeological sites in

Syria. Silver et al. (2015) mapped ancient tracks and pathways in the

Syrian area using CORONA, Landsat and Spot imagery. Furthermore,

Ansart et al. (2016) used QuickBird imagery and Global Navigation

Satellite System (GNSS) field measurements to identify and assess

features connected to pastoral settlements in the Leja region, south-

ern Syria. Stewart et al. (2018) performed RS analysis of the

Qasrawet site in northern Sinai, while Rayne and Donoghue (2018)

focused the use of RS resources to localize traces of canals in North-

ern Mesopotamia between Syria and Iraq; Jotheri also used RS imag-

ery to try to distinguish between rivers and canals but in the

Southern Mesopotamia region (Jotheri, 2020). Jotheri et al. (2019)

used CORONA imagery and QuickBird imagery, accessed via Google

Earth Pro, to identify hollow ways in southern Iraq. RS has also been

crucial for assessing the damage caused to archaeological sites by

the conflicts of the last two decades over the entire Near and Middle

East (Angiuli et al., 2020; Casana, 2015; Casana & Laugier, 2017; Par-

cak et al., 2016; Rayne et al., 2017).

An invaluable contribution to research for the reconstruction of

ancient Near and Middle East landscapes has come from declassi-

fied military CORONA imagery: Acquired for military purposes dur-

ing the 1960–1972 period by different platforms of the same class,

they gained a lot of popularity after their declassification and their

combination into the CORONA Atlas (Agapiou et al., 2016;

Casana & Cothren, 2013). They have been widely used in recent

decades for archaeological purposes in the Near East (Beck et al.,

2007; Casana & Cothren, 2008; Challis et al., 2004;

Ur, 2003, 2005, 2013b, 2013a), enabling the identification of hun-

dreds of archaeological sites. The advantages they offer include rela-

tively high spatial resolution, although they were originally recorded

on film, and the possibility to observe large portions of the Near

East (in particular Iraq and Syria) before the extensive use of mod-

ern cultivation techniques and above all prior to the urban sprawl

that occurred during the second half of the 20th century. Many dif-

ferent approaches were applied to extract information from these

images, from fully automated processes to manual analysis

(Casana, 2020a, 2020b). Another crucial declassified military RS

product is the aerial imagery produced by U2 aircraft, whose mis-

sions in the 1950s and 1960s covered large parts of the Near and

Middle East and proved to be a formidable source for the recon-

struction of their ancient landscapes (Hammer & Ur, 2019).

In addition to the archaeological projects cited (Koli�nski, 2018;

Pfälzner et al., 2016; Ur et al., 2021), RS has been successfully

employed in many archaeological investigations in Iraqi Kurdistan.

Altaweel and Squitieri (2019) used UAV imagery of the Dinka site, in

Sulaymaniyah province, to assess a possible correlation between the

presence of stones on the surface of fields and buried structures, sub-

sequently confirmed by magnetometer analysis. Kalayci et al. (2019)

explored the spectral response of hollow ways, that is ancient com-

munication routes, in upper Mesopotamia. Soroush et al. (2020) used

deep learning to automatically identify on CORONA imagery ancient
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qanat in the area of Erbil, while Pirowski et al. (2021) tried to identify

the Gaugamela battlefield in the Navkur Plain (the same area consid-

ered in this paper) from Pleaides and WorldView-2 imagery, using sev-

eral processing techniques such as principal component analysis and

vegetation indices. Laugier and Casana (2021) mapped archaeological

features in the Sirwan region of Iraqi Kurdistan through the combined

use of cartographic resources and RS and geophysical surveys. Titolo

(2021) used Google Earth Engineⓒ (GEE) to assess the conditions of

sites in the areas of the Mosul, Haditha and Hamrin dams in relation

to the seasonal changes in the levels of the artificial reservoirs. Laugier

et al. (2022) used satellite and aerial images to monitor the damage

occurred to archaeological sites in the Sirwan/Upper Diyala River

Valley region.

Cloud computing for geospatial products is becoming increas-

ingly popular as the number of available imagery and datasets is

constantly growing and offers exceptional opportunities, because it

allows the processing of amounts of data that could be hardly man-

aged by normal workstations (Gorelick et al., 2017). GEE (not to be

confused with the Google Earth application that has well-established

applications in the Cultural Heritage field: Luo et al., (2018)) is a

recent online resource for large-scale cloud processing of geospatial

data. It has been already experimented for archaeological purposes

(Agapiou, 2017; Firpi, 2016), such as the identification of archaeo-

logical features in Jordan (Liss et al., 2017); the evaluation of urban

sprawl over the area of the Amathus site in Cyprus (Agapiou, 2021)

and the city of Matera in Italy (Danese et al., 2021); the assessment

of Ethiopian archaeological heritage (Khalaf & Insoll, 2019); the

detection of the looting activities on the archaeological site of

Apamea in Syria (Agapiou, 2020); the assessment of risks for

archaeological sites in Libya and Egypt (Rayne et al., 2020); the

reconstruction of palaeolandscape and buried Bronze Age features

in the Po Plain in Italy (Brandolini et al., 2021); the estimation of

the environmental risks coming from fires and floods on the archae-

ological site of Metaponto, Italy (Fattore et al., 2021); the hidden

parts of the via Appia in Italy (Lasaponara et al., 2022); and the

palaeolandscape in proximity of archaeological features in Egypt

(Elfadaly et al., 2022).

This paper presents the result of the application of an easy-to-use

cloud computing approach with open access RS data for archaeologi-

cal site identification in three target areas within the LoNAP bound-

aries. The research can rely on the strong benchmark of LoNAP

investigations: the archaeological features found during the Land of

Nineveh Archaeological Project have all been checked on the ground.

This is a paramount advantage when it comes to assessing RS tech-

niques, because the ground-truthing of sites is always a time-

consuming activity that needs careful planning. The aim of this

research was not only to evaluate a new RS approach in the LoNAP

area but also to verify the possible presence of previously undetected

sites. The integration of RS analysis and ground surveys is not always

performed during similar researches due to different reasons, includ-

ing limited resources or restricted access to the areas, and only some

projects organize a cross-check on the ground (Campana et al., 2022;

Laugier et al., 2022).

2 | MATERIALS AND METHODS

2.1 | Surveyed areas

The Plain of Navkur (the Mud Plain in Badînî/Kurdish) is about

165 km2 of fertile land bordered to the north and east by the south-

ern fringes of the Zagros chains, whereas the southern and western

limits are defined by the Jebel Bardarash and Jebel Maqloub moun-

tains (Morandi Bonacossi et al., 2018). It is characterized by deep

brown soils crossed by several watercourses (Buringh, 1960), which

are mostly seasonal in character, that is, active only during the cold

season (winter and early springtime). There are two major rivers, the

Nahr al-Khazir and the Gomel Su, which make a significant contribu-

tion to regional water availability, shaping the plain with their channels

that, unlike most seasonal streams, sometimes cut deeply into the

plain (Forti et al., 2021).

Precipitation is also substantial, well above the minimum average

necessary for dry farming (Iamoni, 2018). The Navkur area therefore

offers ideal conditions for permanent settlement, a trait confirmed by

recent regional investigations that found substantial evidence of sta-

ble human presence since the beginning of the Neolithic epoch

(ca. 10 000 BCE). In order to test alternative and complementary RS

methods that might significantly contribute to further explore the

archaeological landscape and increase the number of archaeological

sites identified in this particular environment, three new subareas

were selected in different portions of the Navkur Plain: Area 1 is in

the same sector as the Asingeran site, which is the core of the AEP;

Area 2 spans the river Gomel; and Area 3 is in the plain between

Baadhrah and Ash Shaykhan, close to the first foothills. Together, the

three areas cover about 95 km2, approximately 3% of the LoNAP area

(Figure 1). Although different from each other, the study areas feature

similar environments—fertile fields with a relatively flat morphology—

except for some low natural slopes that are often located close to a

wadi, one of the frequent temporary streams that run over the entire

Navkur. The three areas were selected in part because of the different

distributions of known LoNAP archaeological features within them:

41 in Area 1 and nine in Area 2, mostly located along the banks of the

river Gomel; there are no known sites in Area 3, although a couple are

located just outside its northern limit.

2.2 | Datasets

The RS resources used for this research are all open access data. This

means that only medium resolution images have been used, with a

spatial resolution ranging between 10 and 30 m. This approach was

justified not only by the cost of commercial high-resolution images,

but also by the free availability of open access imagery that is revolu-

tionizing the RS field and is widely preferred for this kind of research.

The main platforms selected were Landsat 5 (L5), Landsat 7 (L7) and

Sentinel-2 (S-2). L5 (USGS Landsat 5) was the fifth satellite of the

long-standing Landsat mission, started in 1972; the platform was

launched in March 1984 and was decommissioned in June 2013; it
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was a single polar-orbiting satellite with a sun-synchronous orbit and

a revisit time of sixteen days at the Equator. It was equipped with

Multispectral Scanner and Thematic Mapper instruments that deliv-

ered seven bands (radiometric resolution: 0.45–2.35 μm; spatial reso-

lution: 30 m reflective, 120 m thermal). L7 (USGS Landsat 7) is the

seventh satellite of the Landsat mission and has the same orbiting

characteristics of L5. It is equipped with an Enhanced Thematic Map-

per Plus sensor that delivers eight bands (radiometric resolution:

0.45–2.35 μm; spatial resolution: 15 m panchromatic, 30 m reflective,

60 m thermal). It was launched in April 1999 and is still active. S-2 is

one of the missions designed and controlled by the European Space

Agency; its constellation is composed of two polar-orbiting satellites

(Sentinel-2A and Sentinel-2B) with a sun-synchronous orbit and a

revisit time of ten days at the Equator, that means 5 days with the

two satellites and optimal conditions. S-2 satellites are equipped with

a multispectral imaging sensor that delivers 13 bands (radiometric res-

olution: �0.443–�2.19 μm; spatial resolution: from 10 to 60 m). All

Sentinel missions have an open access policy, so the imagery can be

easily retrieved from the Sentinel Open Access Hub. Sentinel-2A was

launched in June 2015, while Sentinel-2B in March 2017 (Sentinel 2).

The Sentinel-2 imagery has been already used for archaeological and

Cultural Heritage applications with positive results (Abate &

Lasaponara, 2019; Abate et al., 2020; Agapiou et al., 2014; Tapete &

Cigna, 2018; Zanni & De Rosa, 2019).

As will be further shown in detail in the next sections, the

chosen platforms guarantee a good trade-off between image

resolution, ease of use, computational efficiency and acquisition

period.

2.3 | Preliminary analysis

As a first step towards the identification of possible new archaeologi-

cal sites, we assessed the general appearance of the known sites in

the Navkur Plain, which normally looks like clear roundish traces on

recent multispectral images; S-2 imagery in particular was selected for

a preliminary test. The bands that proved to be more useful for site

identification were B4 (red) and B8 (near infrared [NIR]), although the

morphology of sites may be also enhanced in the other bands (B2 and

B3) of the visible spectrum, RedEdge and shortwave infrared (SWIR).

The preliminary identification of some possible regions of interest

(ROI) in the survey area was carried out on a single S-2 image acquired

on 15 February 2021 with good visibility conditions, available on the

Copernicus SciHub and accessible through the EO Browser. However,

as already noticed in previous works, this approach presents signifi-

cant limits: In the Navkur Plain site, site visibility in open fields is sub-

ject to many variables, including the amount of moisture in the ground

and the presence/absence of plantations. Unlike for other remains,

such as settlements with a significant presence of stone or brick struc-

tures or ditches, plantations in northern Kurdistan usually conceal the

presence of ancient sites; the practice of burning the harvest stubble

in the fields contributes to making the surface completely hidden from

remote observation for several months per year. This means that their

visibility is highly dependent on seasonality for both of the variables

mentioned. It is rather difficult, if not impossible, to obtain optimal

conditions of visibility for all the sites in just a single satellite image:

This method can be used for the assessment of single sites in a certain

period but could not be used as the basis for a regional-scale survey,

F IGURE 1 The three surveyed areas (solid lines) within the LoNAP survey area (dashed line) [Colour figure can be viewed at
wileyonlinelibrary.com]
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because many sites would certainly be not recognizable. Single

images, retrieved via EO Browser or alternatively GEE, were instead

employed to identify the best months for site visibility, using some

known LoNAP sites for reference. Winter and wet seasons, when

levels of moisture in the soil are higher, are usually considered the

best periods for the remote detection of archaeological sites. The

visual analysis of monthly images confirmed the assumption; the

months from May to September were the worst period for site obser-

vation but showed too that site visibility also changes during the

favourable seasons, so that it is very unlikely to find the maximum vis-

ibility of all the sites contemporaneously, due to their different mor-

phologies and differing local conditions. In order to identify the best

period for site detection, a rapid test on GEE using Normalized Differ-

ence Water Index (NDWI) values was also carried out.

The NDWI index (Gao, 1996) is used to calculate the moisture in

vegetation and soil and is principally applied for agricultural purposes,

but it can suggest which could be the most favourable months for the

recognition of archaeological features. The average NDWI value over

the three survey areas was computed in GEE using the MODIS Com-

bined 16-Days NDWI dataset in the 2012–2021 period (i.e., from the

beginning of LoNAP surveys to the present day). MODIS, that stands

for ‘Moderate-resolution Imaging Spectroradiometer’, is the sensor

on board the Terra and Aqua satellites, which is used for climate mea-

surements. The analysis of these data (Figure 2) shows that the

amount of water in the soil and vegetation in the three targeted areas

tends to increase constantly from December to April, when the annual

peak occurs, and to continually decrease from May to October–

November; this trend appears to be quite regular and to repeat every

year, with limited changes. These results helped us to set a seasonal

interval from January to April, privileging the satellite images acquired

during this interval.

2.4 | Data processing

In order to overcome the visibility issues and improve the results of

the remote survey, a multitemporal approach was chosen, using the

powerful resources of GEE and its cloud computing.

For this study, three datasets acquired by the L5, L7 and S-2 plat-

forms were selected from the GEE catalog due to the similarities of

the sensors, their free availability and popularity, and good coverage

of the surveyed area. The L5 and S-2 datasets, respectively, the

‘USGS Landsat 5 Level 2, Collection 2, Tier 1’ and the ‘Sentinel-2
MSI: MultiSpectral Instrument, Level-2A’, have atmospherically cor-

rected reflectance values, while the L7 dataset, the ‘USGS Landsat

7 Collection 1 Tier 1 TOA Reflectance’, has calibrated top-of-

atmosphere values. Three reference periods within the last 40 years

were chosen as well, one for each dataset: a first decade between the

1980s and 1990s for L5, a second decade between 2000 and 2010

for L7 and a last short period between 2018 and 2021 for S-2. This

selection exemplifies three different periods separated by about a

decade, which also correspond to three recent epochs in the history

of Kurdistan landscape: a relatively ‘intact’ situation, with small settle-

ments and few main roads, the beginning of development and the pre-

sent situation. Within these three periods, only the months from

January to April were selected, as previously stated. The main charac-

teristics of the datasets are reported in Table 1, while the workflow

adopted in this study is shown in Figure 3 and described as follows.

In GEE, instead of using single images as done for the preliminary

identification of sites (Section 2.3), all of the images available for the

selected periods were chosen and processed. At first, images were

masked by the presence of clouds. Then, for the three datasets, a

median function was applied to each pixel, separately for each spec-

tral band, in order to get from the multitemporal sequence a single

image suitable for the subsequent analyses. Because all the images in

a dataset are georeferenced, the product obtained is an image com-

posed of pixels that are not the result of a single acquisition at a cer-

tain moment in time but the median of the pixels over time; thus, it is

characterized by robust values and free from outliers. All of these

operations were performed through the JavaScript console within the

GEE environment. This gives certain general advantages: the effects

of atmospheric disturbances, the presence of smoke or dust or any

other visual obstacle between the ground and the satellite sensor is

minimized. Of course, this approach has also a direct impact on site

visibility: if a site is visible only for some months per year and the vari-

ation in its visibility is not regular, an image that is the result of a

F IGURE 2 2012–2021 NDWI chart over the
three investigated areas [Colour figure can be
viewed at wileyonlinelibrary.com]
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combination of tens or hundreds of acquisitions will much more likely

show it than a single image.

More in detail, with regard to the L5 1984–1994 collection, the

final result obtained was the median of 125 images. For the L7 2000–

2010 collection (132 images), the same operation as with L5 was car-

ried out; a pan-sharpening with B8 (panchromatic) was also per-

formed, in order to increase the spatial resolution from 30 to 15 m.

Although with a series much more limited in time (4 years), the same

data processing was also performed with the S-2 dataset on a total of

31 images. For the S-2 dataset, a further product was generated via

GEE, developing a basic simple ratio involving B4 and B8:

IB4,B8 ¼B4=ðB4�B8Þ: ð1Þ

This permitted the enhancement of traces often not recognizable

in the visible spectrum, with clear details of the shape and extension

of sites (Figure 4). All of the final outputs were also reprojected from

EPSG:4326 to EPSG:3395 and resampled on the same grid using the

bicubic interpolation method.

After the image generation, the outputs were uploaded in QGIS

and each band manually scanned to look for visible anomalies that

could indicate possible new sites; a false-colour visualization was used

to enhance the anomalies and help the analysis. First of all, the

appearance of already known LoNAP sites within the three studied

areas was checked; their positions are recorded by point features. In

addition to these, some new anomalies were also detected, that repre-

sent the ROI for the subsequent analyses. L5 and L7 outputs proved

to be most useful when observed in B5 (SWIR), while the S-2 output

was observed in the RGB range, B4 (red), B8 (NIR) and IB4,B8

(an example is shown in Figure 5). The same ROI were searched on all

the outputs generated from the previous processing steps. The spots

recognized as possible new sites on the GEE outputs were marked by

point features in QGIS for a total number of 42 ROI. This identifica-

tion was principally carried out considering different parameters such

TABLE 1 Characteristics of datasets used for this study

MODIS LANDSAT LANDSAT COPERNICUS

MCD43A4_006_NDWI LT05/C02/T1_L2 LE07/C01/T1_TOA S2_SR

Time series 2012–2021 1985–1995 2000–2010 2018–2021

Spatial resolution 463.3 m 30 m 15–30 m 10–20–60 m

Radiometric resolution - 0.45–2.35 μm 0.45–2.35 μm �0.443–�2.19 μm

No. of processed images 3652 110 137 31

F IGURE 3 Workflow
developed for site identification
and adopted in GEE [Colour
figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 4 Single S-2 RGB image of Area 1 acquired on 15 February 2021 (top); the same area displayed according to the IB4,B8 index
(bottom) [Colour figure can be viewed at wileyonlinelibrary.com]
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as the shape of the area where the multispectral response was differ-

ent, the presence of modern structures that could have altered the

locality and the proximity of rivers or watercourses.

2.5 | Spectral signature extraction and analysis

Spectral signatures can represent a further clue as to whether the

identified regions may or may not correspond to archaeological sites.

The S-2 median output was therefore used to extract the spectral sig-

natures of each ROI, by averaging the spectral values associated with

the pixels in a 50 m � 50 m area centred on a possible new site; the

S-2 dataset was selected for this operation due to the higher spatial

resolution of some of its bands. Furthermore, the spectral signatures

of already known LoNAP sites located within the three target areas

were also analysed. GEE allows easy computation of the spectral sig-

natures for every single site and as averages of multiple different

regions: the mean spectral signatures of cultivated fields (that do not

represent actual archaeological sites) and of the aforementioned

LoNAP sites were also computed as possible references for the new

sites.

Statistical classification was then performed on the signatures

corresponding to the 42 ROI identified, distinguishing between two

clusters. More in detail, common unsupervised classification

approaches were tested, namely k-means (MacQueen, 1967), hierar-

chical clustering with the minimum-variance linkage criterion (Ward

Jr. 1963), fuzzy c-means Bezdek (1981) and self-organizing map (SOM)

(Kohonen, 1982; Maset et al., 2015), applying the Python

F IGURE 5 Location of Site 199: the second and third rows show the site appearance on images generated in GEE according to the
processing steps described in Section 2.4 [Colour figure can be viewed at wileyonlinelibrary.com]
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implementation provided by the scikit-learn library.1 The cluster

whose representative element most closely resembled the average

spectral signature computed for the already known LoNAP sites was

labelled ‘site’ and the associated ROI were marked consequently. On

the contrary, the ROI whose signatures were assigned to the other

cluster were labelled ‘no site’. The default values suggested by the

library were applied to the algorithm parameters. In fact, limited sensi-

bility on the results was noticed when changing the parameter values

and in this a fine tuning was avoided, making the method more gener-

alizable also to other datasets.

2.6 | Ground-truthing

A series of field surveys were subsequently planned to assess the

remote observations and verify the results; they were carried out by a

team of a minimum of three to a maximum of five persons over six

days. The sites were reached using simple smartphone devices where

the ROI coordinates had been previously uploaded. Once on the spot,

the team members split up to cover the largest possible area in search

for potsherds and other artefacts. The spots were documented with

photographs, and field notes were also taken on the nature and mor-

phology of the soil. Where possible, the maximum extensions of

potsherd scatters were measured. Pottery samples were also collected

and later classified to provide a preliminary chronology of the

settlements.

3 | RESULTS

Three out of the initial 42 ROI identified on the images, as described

in Section 2.4, were not accessible during the field surveys mainly due

to the presence of crops. Among the remaining 39 ROI, 17 regions

yielded anthropic remains (44%) and were classified as sites (15) or

ceramic clusters (2), while 22 furnished no significant anthropic evi-

dence (56%); the results are illustrated in Figure 6. One site (indexed

as number 196) is probably to be considered a previous LoNAP site

whose exact location was better positioned thanks to the observa-

tions on multispectral images. The classification of a ROI as an archae-

ological site performed on the field was principally based on the

widespread presence of potsherds; a limited number of sherds was

considered a ‘ceramic cluster’ if spread over a relatively small area or

as ‘noise’ due to agricultural plowing or proximity to other sites if

spread over a very wide area.

The sizes of the new sites are generally small, up to 3 hectares,

with some larger exceptions. Their appearance on remote imagery is

basically twofold: roundish spots, often lighter than the surrounding soil,

or irregular, with no clear shape. Their morphology on the ground could1https://scikit-learn.org/stable/.

F IGURE 6 Location of surveyed ROI: new sites are in green, ceramic clusters in yellow, negative regions in red and not verified in grey
[Colour figure can be viewed at wileyonlinelibrary.com]
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be described by three categories: flat sites, that is, sites with no appre-

ciable elevation; artificial mounds, often of very limited altitude and only

rarely presenting the characteristics of a tell; sites on natural slopes,

although these are generally very gentle and of low altitude. At present,

no effective correlation between a site's appearance on the images and

its ground morphology has been identified. Most of the newly identified

sites are located on active wadis or palaeorivers, confirming the impor-

tance of watercourses for human settlement (Figure 6).

With regard to the RS outputs generated via GEE, the Landsat

images proved to be very reliable. The 1985–1995 combined L5

image records a period when the urbanization of the Navkur Plain,

and of all of Iraqi Kurdistan, was far lower than today, with small vil-

lages and few road connections: This allows the immediate identifica-

tion of ancient settlements, as they are the only multispectral

anomalies, in addition to the few urban centres. By contrast, the rela-

tively low spatial resolution (30 m) prevents clear identification of the

medium–small size sites that stud the Plain. The 2000–2010 L7

image, with 15 m spatial resolution, partially solved this problem, pro-

viding a better visibility in an environmental context that was still less

urbanized than today. The largest sites already mapped by LoNAP are

clearly visible in B5 (SWIR), as well as other new sites identified in this

work. The S-2 outputs and their 10 m spatial resolution were

extremely useful for the assessment of the smaller sites that were

hardly or not visible on the Landsat outputs (Figure 5).

The automatic classification of spectral signatures based on unsu-

pervised algorithms provided the results shown in Figure 7. Note that

the three sites that were not accessible during the field surveys are

not included in this evaluation, whereas the two sites labeled as

ceramic clusters are considered as actual archaeological sites. Com-

paring the unsupervised classification outcomes with the field results,

it is worth highlighting that three algorithms, that is, k-means, fuzzy c-

means and SOM, allowed the identification of actual sites with good

accuracy, reaching an overall classification performance (i.e., the ratio

of correctly classified sites to the total number of ROI investigated) of

69%, 67% and 74%, respectively. The best performance is given by

SOM: 12 sites of the 17 identified in the field were correctly classified

by the algorithm as true sites, and 17 out of 22 were rightly labeled as

‘no site’. The SOM method is also that which yields the lowest rate of

false negatives, that is, actual sites that were misclassified as ‘no site’.

On the contrary, the hierarchical clustering algorithm provides the low-

est overall accuracy (54%), with only two out of 17 sites correctly

identified. Most of the spectral signatures fall within the ‘no site’
class, proving that the algorithm is not able to effectively distinguish

between the two classes.

4 | DISCUSSION

The case study presented is undoubtedly limited to a relatively small

area and number of sites in comparison with the whole LoNAP area,

setting the scale of the survey to a microregional level. Despite the

spatial size of the datasets, the results are promising and could be eas-

ily adapted to larger, unexplored areas. The availability of several

products derived from different platforms revealed to be useful

because it allowed the cross-checking of anomalies. In fact, anomalies

that were clearly visible on images acquired from different platforms

and on different bands were more likely to be archaeological sites.

During visual inspection of the processed images, it was noticed that

some sites apparently showed a ‘stronger’ spectral response, resulting
in a more intense trace being visible on the processed images. This is

certainly due to the soil composition, but a future aspect to be investi-

gated is whether this appearance is also due to the ‘density’ of the
archaeological deposit, which might be related to a particular ‘monu-

mentality’ of the site or its longer life over the centuries. The multi-

temporal approach and the selection of the sites's period of maximum

visibility helped us to overcome one of the most frequent issues in

remote identification of archaeological features, that is, limited visibil-

ity due to seasonal soil conditions. Furthermore, the ease of the work-

flow and limited processing time thanks to cloud computing suggest

that this tool will spread quickly through the archaeological commu-

nity, which may well progressively abandon the use of single satellite

images and establish new standards for RS analysis.

The processed outputs had a significant impact on the remote

identification of sites. In particular, if study areas are visualized using

the IB4,B8 index, some sites appear to be less visible if compared with

seasonal images, but a lot of new features can also be perceived, indi-

cating a potential that will be fully assessed through future surveys

and additional research.

F IGURE 7 Results of the spectral signature
classification process for the four methods tested.
True positive sites are shown in green, true
negative in red, false positive in blue and false
negative in yellow [Colour figure can be viewed at
wileyonlinelibrary.com]
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One of the results obtained is more accurate site recognition

within site clusters. The site indexed as 227 is a good example

(Figure 8): it is not far (approximately 150 m) from other sites already

identified by the LoNAP survey, included the clearly visible tell

Holarash. Due to the reduced distance between the sites, the scatter

of potsherds on the ground surface is almost continuous, allowing dis-

tinction between the major sites in the field only on the basis of their

elevation. By contrast, using a multispectral image a clear (though

small) round trace detached from the other sites is visible, suggesting

the presence of a distinct settlement (or portion of a more visible

one). If the chronology of finds from Site 227 was similar or equal to

those from the surrounding sites, it would be basically invisible during

a regular field survey, even after the spatial analysis of collected

potsherds.

With regard to the large number of regions that proved not to be

sites after the ground-truthing phase (22 out of the 39 ROI that could

be verified on the field, corresponding to 56%), this can be partially

explained by the nature of the research itself. The surveyed areas are

within a region that has been extensively surveyed in recent years,

with a considerable number of known sites: slight anomalies that had

been excluded at first from the remote surveying carried out during

previous campaigns were considered in this study and then checked

on the ground. For the same reason, also the number of new ancient

settlements (44% of the total) can be considered relatively high. These

results would not be directly reproducible over the entire LoNAP sur-

vey area, because site distribution is not regular, but some more sites

could be certainly identified in the future and added to the number of

known archaeological features in Iraqi Kurdistan.

Moreover, this work shows that analyses based on human obser-

vation can be effectively supported by the statistical classification of

spectral signatures. As highlighted by the results reported in previous

section, common unsupervised clustering algorithms can provide

reliable indications concerning the probability that a ROI identified on

an image is an actual archaeological site and therefore help to priori-

tize field surveys. Of course, the approximately 70% overall accuracy

obtained and above all the number of false negatives (five out of

39 for the best result, provided by SOM) do not allow the field sur-

veying of any region identified on the images as a possible site to be

omitted. However, thanks to this approach, ground-truthing activities

can be accurately planned, establishing priorities between the differ-

ent spots and assuring a certain reliability that could help researchers

to achieve better results when extensive surveying is not possible for

lack of time or resources.

Figure 9 shows that the average spectral signature computed as

the mean of the 17 newly identified sites closely corresponds to that

of the previously known sites. This outcome suggests also the

F IGURE 8 Infra site recognition: (a) three sites (white points) detected by the LoNAP survey, the eastern one is tell Holarash; (b) the same
area seen using false colours; a previously undetected small distinct site (227) is clearly visible [Colour figure can be viewed at wileyonlinelibrary.
com]

F IGURE 9 Average spectral signature of all new sites identified
during the 2021 survey (red) compared with the average spectral
signatures of previously known sites in the target areas (cyan) and of
cultivated fields (yellow). The red dashed lines show the standard
deviation (1σ) from the average values for the new sites [Colour figure
can be viewed at wileyonlinelibrary.com]
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possibility of effectively applying supervised classification techniques

in future work, exploiting already verified sites.

A broader aspect to be discussed is the general approach to RS

surveys for archaeological purposes. The debate is about automatic

versus human-driven analyses, regardless of the nature of the dataset

(e.g., satellite rasters and airborne laser scanning). For instance,

Casana (2014) questioned the effectiveness of automated tools for

site recognition and proposed an approach mainly based on experi-

enced human operators performing manual identification of possible

new sites. This is a non-trivial aspect because unsupervised and super-

vised classification of landcover are widespread approaches—often

used to classify the characteristics of soils, forest canopy and so on—

and are necessary when working on regional or planetary scales. The

automatic recognition of anthropogenic soils, that suggests the pres-

ence of archaeological sites, can currently be performed, taking

advantage of the multispectral data of satellite imagery. Many exam-

ples already exist: for instance, the automatic extraction of archaeo-

logical features has been tested by De Laet et al. (2007) on the site of

Hisar (Turkey), by Alexakis et al. (2009) on Neolithic settlements in

Thessaly (Greece), Trier et al. (2009) on burial mounds in south-

eastern Norway, Harrower et al. (2013) and Schuetter et al. (2013) on

lithic tombs in southern Arabia and Toumazet et al. (2017) on rural

structures in France. An up-to-date overview of object-based

methods can be also found in Davis (2018). Some quick tests of super-

vised classification carried out on the three surveyed areas using Clas-

sification and Regression Trees (CART) and Random Forest algorithms

implemented in GEE on the S-2 outputs did not give clear and useful

results, with a large number of riverbeds and cultivated fields put in

the same class as known and possible sites.

Also, the unsupervised classification of spectral signatures con-

ducted during this study, notwithstanding the undeniable contribution

that it can make to the remote exploration of a region, produced false

positives within the ROI, and a future more in-depth analysis of spec-

tral signatures of new sites will be necessary to further reduce their

presence. False positives and false negatives actively influence the

planning of an archaeological field survey that involves a ground-

truthing phase, because the verification of the analysis requires physi-

cal examination of the detected ROI, an activity that needs a signifi-

cant amount of time, especially when dealing with hundreds of areas

to be checked. In the present case study, five sites identified by the

SOM algorithm turned out to be false positives; the application of

more advanced RS techniques could reduce this degree of uncer-

tainty. Human operators can deal relatively well with variables such as

the morphology of the observed anomalies and their position with

respect to other features (closeness to waterways, known sites, etc.)

that would require a major work of implementation to be completely

automatized. But as highlighted by Davis (2018), with very large por-

tions of territory to be explored, a totally manual approach would be

too time-consuming. With standard available resources and skills, a

mixed approach combining an expert-led and automatic identification

of sites would probably be the right solution.

Considering the specific context of Near Eastern Archaeology,

many RS analyses have relied on CORONA imagery because of its

acquisition period and good spatial resolution (Beck et al., 2007;

Casana, 2020a; Casana & Cothren, 2013, 2008; Challis et al., 2004;

Ur, 2003, 2013a). Although the first of these is still a good reason for

using it, this study shows that the use of open access datasets with

medium spatial resolution (30 m and especially 10 m images) is also

feasible for the identification of small and medium size sites, especially

in flat terrain. The advantages of digital multispectral images and the

possibilities offered by their customized processing compensate for

loss of detail that could be in any case regained using commercial

high-resolution imagery. The unique value of historical RS imagery,

such as CORONA and U2, is in the landscape they recorded, which is

completely different from today's, with many ancient sites clearly visi-

ble. Its use should be undoubtedly encouraged for studies on histori-

cal landscapes and for site identification in areas that have changed a

lot in recent decades, such as zones of urban sprawl around the main

city centres. For recognition of new sites in relatively intact areas

instead, priority should be given to current digital multispectral imag-

ery analysed with a multitemporal approach. Cloud computing, regard-

less of the service provider, is a crucial tool for advanced processing

and making use of large imagery datasets.

5 | CONCLUSIONS

Despite its relatively small scale range, the 2021 survey based on RS

resources and conducted in proximity to the excavated site of Asin-

geran within the LoNAP survey area had positive outcomes. On the

archaeological side, 17 previously undetected archaeological sites

were identified, improving our knowledge of Neolithic to Middle Ages

settlement patterns in the Navkur Plain. Although no high-resolution

imagery was used, the relatively small size of the new identified sites

suggests that medium resolution images are nonetheless useful for

the identification of sites of modest size in flat areas and that high-

resolution images can be used in a further phase of the research, for

specific targets or the detection of smaller archaeological features

(such as isolated graves or architectural elements). This is an important

conclusion, because it means that wider archaeological remote sur-

veys can be successfully carried out worldwide without using com-

mercial imagery. The opportunity of directly checking on the ground

the results of the RS survey represented the added value that allowed

to verify on the field what was acquired remotely and to present more

accurate results.

From a broader perspective, this study confirms the benefits of

cloud-based computing of RS products for archaeological purposes.

The availability of more than 40 years of multispectral imagery that is

remotely accessible offers a paramount archive that would be difficult

to collect because of its size and the time needed to build and main-

tain it. An even greater impact is the opportunity to use supercomput-

ing through a relatively friendly interface for users with basic coding

skills. This is particularly crucial for archaeological studies, because

‘traditional’ supercomputing is usually limited to large projects and

needs to be planned and performed by highly skilled personnel; more-

over, computing facilities are often national interest sites, with strict
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working schedules and limited accessibility, while cloud computing

allows single users to utilize this technology just with standard

machines and an internet connection. GEE interface allows perfor-

mance of all the operations presented in one environment, and out-

puts can be downloaded for further analysis with open source and

proprietary software. As online data archives are constantly updated

with new images acquired by active platforms, the results achieved

can be also updated, facilitating the monitoring of variables over time.

Large-scale cloud computing can boost the use of RS products and

researches among the Near Eastern archaeological community, and

among the global archaeological community as well, because no par-

ticular hardware or software requirements are needed. Multitemporal

analysis, customization of RS products depending on the aims of the

research, and the availability of large online datasets are extremely

important advantages, especially for archaeologists whose use of RS

sources is still highly dependent on free imagery that offers little con-

trol over selection and processing.

The statistical classification methods applied in this study helped

to interpret spectral signatures at 70% overall accuracy, with advan-

tages for the efficient planning of ground-truthing survey activities.

As a future work, the potential of supervised classification algorithms

will be also investigated, leveraging on the spectral signatures of

already verified sites. The availability of a larger number of training

samples would also allow to test the possibility of identifying different

types of sites through the classification process.

Although similar results from the direct application of the proces-

sing workflow presented in another regional area are not guaranteed,

the local tuning and improvement of the code used could overcome

issues related to differences in site and soil morphology, broadening

the impact of large-scale computing applied to RS for archaeological

purposes.
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Nováček, K. (2021). The Erbil Plain Archaeological Survey: Preliminary

results, 2012-2020. Iraq, 83, 205–243. https://www.cambridge.org/

core/product/identifier/S0021088921000024/type/journal_article

U.S. Geological Survey. https://www.usgs.gov

USGS Landsat 5. https://www.usgs.gov/landsat-missions/landsat-5

USGS Landsat 7. https://www.usgs.gov/landsat-missions/landsat-7

Ward Jr., J. H. (1963). Hierarchical grouping to optimize an objective

function. Journal of the American Statistical Association, 58(301),

236–244.
Wilkinson, K. N., Beck, A. R., & Philip, G. (2006). Satellite imagery as a

resource in the prospection for archaeological sites in central Syria.

Geoarchaeology, 21(7), 735–750.
Wiseman, J. R., & El-Baz, F. (2007). Remote sensing in archaeology:

Springer.

Zanni, S., & De Rosa, A. (2019). Remote sensing analyses on Sentinel-2

images: Looking for Roman roads in Srem Region (Serbia). Geosciences,

9(1), 25. https://www.mdpi.com/2076-3263/9/1/25

How to cite this article: Valente, R., Maset, E., & Iamoni, M.

(2022). Archaeological site identification from open access

multispectral imagery: Cloud computing applications in

Northern Kurdistan (Iraq). Archaeological Prospection, 1–17.

https://doi.org/10.1002/arp.1874

VALENTE ET AL. 17

https://www.cambridge.org/core/product/identifier/S0021088921000024/type/journal_article
https://www.cambridge.org/core/product/identifier/S0021088921000024/type/journal_article
https://www.usgs.gov
https://www.usgs.gov/landsat-missions/landsat-5
https://www.usgs.gov/landsat-missions/landsat-7
https://www.mdpi.com/2076-3263/9/1/25
https://doi.org/10.1002/arp.1874

	Archaeological site identification from open access multispectral imagery: Cloud computing applications in Northern Kurdist...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Surveyed areas
	2.2  Datasets
	2.3  Preliminary analysis
	2.4  Data processing
	2.5  Spectral signature extraction and analysis
	2.6  Ground-truthing

	3  RESULTS
	4  DISCUSSION
	5  CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


