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Abstract
HERMES Pathfinder is an in-orbit demonstration consisting of a constellation of six
3Unano-satellites hosting simple but innovative detectors for themonitoring of cosmic
high-energy transients. The main objective of HERMES Pathfinder is to prove that
accurate position of high-energy cosmic transients can be obtained using miniaturized
hardware. The transient position is obtained by studying the delay time of arrival
of the signal to different detectors hosted by nano-satellites on low-Earth orbits. In
this context, we need to develop novel tools to fully exploit the future scientific data
output of HERMES Pathfinder. In this paper, we introduce a new framework to assess
the background count rate of a spaceborne, high energy detector; a key step towards
the identification of faint astrophysical transients. We employ a neural network to
estimate the background lightcurves on different timescales. Subsequently, we employ
a fast change-point and anomaly detection technique called Poisson-FOCuS to identify
observation segmentswhere statistically significant excesses in the observed count rate
relative to the background estimate exist. We test the new software on archival data
from the NASA Fermi Gamma-ray Burst Monitor (GBM), which has a collecting area
and background level of the same order of magnitude to those of HERMES Pathfinder.
The neural network performances are discussed and analyzed over period of both high
and low solar activity. We were able to confirm events in the Fermi-GBM catalog,
both solar flares and gamma-ray bursts, and found events, not present in Fermi-GBM
database, that could be attributed to solar flares, terrestrial gamma-ray flashes, gamma-
ray bursts and galactic X-ray flashes. Seven of these are selected and further analyzed,
providing an estimate of localisation and a tentative classification.
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1 Introduction

Gamma-Ray Bursts (GRBs) originate in extraordinarily energetic explosions taking
place in distant galaxies. They appear as irregular pulses of X and γ -ray radiation in
detectors of today work-horse satellites such as SWIFT [1], INTEGRAL [2], Fermi
[3], and Agile [4]. The typical distribution of GRBs duration is bimodal; ‘long bursts’,
lasting longer than 2s, are associated with black hole formation in collapsars, while
‘short bursts’, lasting less than 2s, are associated to mergers of binary neutron stars
[5–9].

Present instrumentation dedicated toGRBs and cosmic transients has been launched
during the 2010s. There is no guarantee that it will continue to operate beyond the
mid-2020s. For this reason, several proposals to NASA and ESA have been already
submitted to select the successors of these instruments (such asTHESEUS [10], SVOM
[11], e-ASTROGAM [12], AMEGO-X [13] and several CubeSats missions [14, 15]).
The High Energy Rapid Modular Ensemble of Satellites (HERMES) concept is to
develop a constellation of nano-satellites to study high-energy transients [16, 17], thus
providing a fast-track and affordable solution bridging the gap between current X-ray
monitors and the next generation.A technological and scientific pathfinder (HERMES-
TP, funded by ASI and HERMES-SP funded by the European Commission, HERMES
Pathfinder hereafter) is in preparation to prove the concept, that is the capability to
detect and localize GRBs with miniaturized instrumentation hosted by nano-satellites.
The first six HERMES Pathfinder spacecrafts are expected to be launched in low-
Earth, near-equatorial orbit during 2024. A seventh payload unit identical to those
hosted by HERMES Pathfinder will be hosted by SpIRIT [18], an Australia-Italy
nano-satellite mission planned for launch in 2023 and developed by a consortium
led by the University of Melbourne. SpIRIT will be the only satellite among the
HERMES Pathfinder constellation to be launched into a polar orbit, improving the
localization capability of the whole constellation [19]. The HERMES Pathfinder and
SpIRIT payload is a small yet innovative “siswich" detector providing broad-band
energy coverage (fewkeV - 1MeV) and very good temporal resolution (a fewhundreds
ns) [20–23].

GRBs manifest as transient increases in the count rates of detectors. The activity of
these phenomena appear as unexpected, and not explainable in terms of background or
any other known sources. Any automated procedure for detecting GRBs is generally
concernedwith searching the time series of the observations for statistically significant
excesses in photon count rates, relative to a reference background estimate in the
absence of γ /X-ray GRB related events. The on-orbit physical background observed
byGRBmonitor experiments is determined by factors inherent to the highly dynamical
near-Earth radiation environment, to the spacecraft geographic position and attitude, as
well as the spacecraft geometry, and the detector’s pointing, design and response.Given
the difficulty intrinsic to a real-time modelling of the expected scientific background,
algorithms dedicated to the ‘online’ search of GRBs often resort to extrapolate the
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background from recent observations. For example, the trigger algorithms running
on-board NASA Fermi-GBM assess a background estimate from an average of the
photon count rates observed over the previous 17 s excluding the most recent 4 s of
observations [3]; similar moving average approaches were used by Compton-BATSE
[24] and BeppoSAX-GRBM [25].

In ‘offline’ analysis, archival data are searched for GRB events that the online and
on-board algorithms may have missed. Examples of this approach can be found in
Kommers et al. (1999) [26], which uses the BATSE catalog, or in Kocevksi et al.
(2018) [27] and Hui et al. (2017) [28] where they search for faint, short GRBs at times
compatible with known gravitational wave events. In Biltzinger et al. (2020) [29] for
example, an estimate is assessed starting from detailed models of the background
expected for GBM, such as the detector response, the cosmic γ -ray background, the
solar activity, the geomagnetic environment, the Earth albedo and the visibility of
X and γ point sources. The background description so achieved has been shown to
reproduce very well the observations of Fermi-GBM and could potentially allow for
the identification of otherwise hard to detect GRBs such as long-weak events with
slow raising times. However, having been specifically tailored for the observations
of Fermi-GBM, this technique is not immediately applicable to other experiments.
In Sadeh (2019) [30] a Recurrent Neural Network (RNN [31]) is used to predict the
background and, on top of it, classify or detect anomalies in the observations of a count
rate detector. To recognize a GRB event, this RNN is trained onto existing catalogues
of burst observations. We believe such an approach could inherit the detection biases
of standard strategies for GRB detection, ultimately leading to missing events which
already defied previous searches.

In Section 2 we introduce our approach to estimate the scientific background of a
gamma-ray burst monitor experiment using a Neural Network (NN). In particular, we
employ a Feed Forward Neural Network ([32, 33]) to estimate the count rate expected
from background sources over the 12NaI detectors of Fermi-GBM, in different energy
bands and at regular time intervals. Our model is designed to learn the dynamics of the
background over a timescale of months, enabling the detection of long and eventually
faint GRBs.

In the literature, there are studies focusing on faint events, such as the Low-
Luminosity GRB (LLGRB) [34], as well as events with duration of hundreds to
thousands seconds, the so-called ultra-long GRBs [34–37]. Currently, there is no con-
sensus on a clear distinction between long and ultra-long GRBs, although the latter
may have different progenitors, such blue supergiants with a low metallicity (GRB
111209A [38, 39]) or magnetars [40, 41]. For GRB 101225A, also known as Christ-
mas burst, it has been proposed that the emission might be originated by the tidal
shredding of an asteroid by a neutron star, or a burst in coincidence with a supernova
inside a dense envelope. For GRB 110328A it has been proposed that the emission
might be originated by tidal disruption event caused by a star falling in a supermassive
black hole [34].

Estimating the burst duration using classical methods like T90 is challenging
because the duration of the burst depends on the observing band and the prompt
phase could spread across thousands of seconds and therefore including gaps in sig-
nal, due for example passages of the satellites through the South Atlantic Anomaly or
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around the Poles, where the particle background is too high to allow normal operation
of X-ray and gamma-ray instruments, or due to reorientation of the satellite because
of download of the data over a ground station. These factors make the estimation of
burst duration more complex and require careful consideration in the analysis [38],
in particular in the estimate of the background. As an example, we can refer to the
estimated duration of three ultra-long GRBs discussed in Levan et al. (2013) [34]:
GRB 101225A, with an estimated prompt emission duration exceeding 7000s, GRB
111209A about 10000s and GRB 121027A about 6000s. Appendix A provides a back-
ground estimation around the ultra-long GRB 091024 with prompt duration of about
1020s [42]. Moreover, employing a robust loss function in the training phase, we are
able to deal with outliers in count rate observations, such as transients due to astronom-
ical events or brief period of detector high/low activity, see Section 4.2. The choice
of applying our framework to archival Fermi data was motivated by the facts that (1)
the HERMES Pathfinder spacecrafts are expected to be launched in a low inclination
orbit with altitude 500 − 550 km, an orbit where the background and its variations
are expected to be smaller than those of Fermi-GBM [3]; and (2) the Fermi-GBM and
HERMES Pathfinder detectors both rely onto scintillators and have similar collecting
areas [43–45] resulting in background count rates of the same order of magnitude. To
estimate the background observed by Fermi-GBM, we leverage on a large ensemble
of information, including features both intrinsic to the satellite and its orbital setting
such as the satellite attitude and geographic location in time, the Sun visibility and so
on. These features are expected to be independent of events such as GRBs. This idea
is consistent with Fitzpatrick et al. (2012) [46], which describes a method that esti-
mates the background at the period of interest by using count rates from adjacent days
when the satellite has similar geographical footprint. To retrieve these information’s
we use the Fermi-GBM Data Tools [47] software package, an Application Program-
ming Interface (API) allowing to download, analyse and visualise GBM data. Being
completely data-driven, we believe our approach to be in principle applicable to any
GRB monitor experiment for which a similar dataset is available.

The background estimates produced by the NN are compared with the observations
by mean of an efficient change-point detection technique called Poisson-FOCuS [48,
49], aiming at the automatic identification of statistically significant astrophysical
transients. We tested the combination of the NN background estimates and Poisson-
FOCuS trigger on real Fermi-GBM data. We were able to confirm known events, but
we also find events with no counterpart in the Fermi-GBM trigger catalog1 [50], yet
with features resembling astronomical transients such as GRBs and solar flares and
other galactic high-energy sources.

Thepaper is organised as follows. InSection2wepresent the background estimation
in a supervisedMachine Learning settings, the architecture of the NN and the Poisson-
FOCuS change-point detection technique. In Section 3 we describe the data used and
the pre-processing steps to build the dataset. In Section 4 we report the performance
of the NN estimator and the result of the application of the trigger algorithm. A
comparison between the background estimated in a period of solar maxima and in a
solar minima is described in the Section 4.2. In Section 5 we discuss the results of

1 https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigtrig.html
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our search for undiscovered astrophysical transients. We identify 110 events with no
counterpart in GBM trigger catalog over a period of about 9 months. We report on a
subset of seven events providing lightcurves, localization and classification. Finally,
in Section 6 we draw our conclusions and discuss future prospects.

2 Methodology

The background assessment problem is expressed as a supervised Machine Learning
estimator,with the variables inherent to the satellite and its orbital position as inputs and
the count rate observed by each detector in three different energy bands as outputs. The
background estimates so obtained are compared against the actual observations using
Poisson-FOCuS. The significance of the excess in the count rate observations relative
to the background model is quantified in units of standard deviations and recorded as
a time series. Finally, these records are searched for intervals in the observation where
the excess significance exceeds a threshold over one or more detector-energy band
combinations.

2.1 Background estimation

We define X as the input variables, see col_sat_pos and col_det_pos in Section 3,
and Y as the output variables, see col_range in Section 3. We suppose that a function
f (X) exists which predict Y given X , that is the solution that minimize L( f (x),Y )

(argmin f L( f (x),Y )) where L is the loss function that quantify the error in the pre-
dictions. The model’s goal is to estimate a quantity F(x) such that f (x) ≈ F(x) [51].
Here we are dealing with a multi-output regression: F : X ∈ R

k −→ Y ∈ R
m , where

k is the number of features into the model and m the number of outputs.
The model employed is a feed forward neural network with 3 hidden dense layers.
Each hidden layer is followed by a batch normalization layer [52] and a dropout layer
[53]. The input layer has dimension k = 60. Each of the first two hidden layers is
composed of 2048 neurons, while the third hidden layer hosts 1024 neurons. The last
(output) layer has m = 36 neurons. Each of the output neurons is associated with a
particular detector-energy combination. The probability parameter for the drouputs is
0.02. The optimizer used is Nadam [54] with learning rate η varying accordingly to
(1), β1 = 0.9, β2 = 0.99 and ε = 10−7.

η =

⎧
⎪⎨

⎪⎩

0.01 if epoch < 4

0.0016 if 4 ≥ epoch < 12

0.0004 if epoch ≥ 12

(1)

We run the fitting for 64 epochs with a batch size of 2048.
Other neural network architectures were considered during the design process. For

instance, the background estimation could be approached by utilizing sequential count
rates to predict future ones, i.e. employing a RNN. This approach has been discussed
in the literature, such as in the work of Sadeh (2019) [30]. Training an RNN to pre-
dict background count rates, it is crucial to exclude periods that contain astrophysical
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transients from the training dataset. This prevents the RNN from learning the count
rate dynamics in a way that would make it difficult to distinguish astrophysical tran-
sients from the actual background. To filter transients such as GRBs from the training
dataset, the presence of these events should be known in advance. This implies rely-
ing on existing catalogs of transient astrophysical phenomena. We believe such an
approach could result in the model inheriting the detection biases of standard strate-
gies for GRB detection. This scenario would prove detrimental to the present work,
as our goal is precisely to detect transients that may have evaded previous searches.
On the other hand, our approach differs in that we utilize input features related to
the satellite/detector, which should be independent of events like GRBs, to estimate
the expected count rates for each detector. This "mapping" from the satellite config-
uration to the expected count rates is currently accomplished through the previously
described FFNN, but could in line of principle be extended by incorporating an RNN
that considers the previous satellite configurations.

In a pre-processing step, the input training dataset is standardised and filtered. Data
filtering takes place in two steps in which the following data subsets are removed:

• data collected while Fermi is transiting through the high radiation environment of
the South Atlantic Anomaly (SAA).

• data acquired at times in which an event of the Fermi-GBM trigger catalog
occurred.

This latter choice isn’t strictly necessary, yet it is useful to better understand the neural
network performances over known events. The splitting procedure divides the dataset
into 75% for training and 25% for testing; 30% of the training set is further kept as
validation set. The resulting splitting is 52% for training, 23% for validation and 25%
for testing. The instances inside these sets are not sequential but rather taken randomly.

The purpose of our framework is to evaluate the effectiveness of our model on a
known dataset, hence the choice of a loss function L which is robust against outliers
is critical. The Mean Square Error loss function (MSE) is:

MSE(z, y) = 1

n

n∑

i=1

(yi − zi )
2 , (2)

where n is the total number of sample in training set, i refers to the specific sample, yi
the target value (the observed count rate) and zi is the estimated value (the estimated
count rate). MSE is very sensitive to the discrepancy between the prediction and the
target value, thus it is a bad choice when outliers are present in the training dataset. We
remark that the filtering of catalog events is not enough to guarantee the optimization
of the background estimator when using MSE. Indeed, anomalous events, which are
not present in the GBM catalog, may be over-fitted when minimizing MSE; these
events are the actual targets of our search.

The Mean Absolute Error (MAE) loss function is less sensitive to residuals:

MAE(z, y) = 1

n

n∑

i=1

| yi − zi |, (3)

123



Experimental Astronomy

the term are the same as in (2).
When anomalous events are included in the training dataset, the use ofMAE instead

ofMSE can lead to a neural network less prone to overfitting, as discussed inAppendix
F.1.

In the settings of multi-output regression, the overall loss L is define as the MAE
average of the NN outputs:

L = 1

m

m∑

j=1

(MAE(Z j ,Y j )), (4)

where j a specific detector/energy range, m the total number of detector/energy
range, X ∈ R

n,k the input feature matrix of the NN (samples times features),
Z = {F(Xi ), i = 1 : n} ∈ R

n,m is the Neural Network outputs (estimated count
rates per each detector/energy range), Y ∈ R

n,m the observed count rates for each
detector/energy range.

For evaluation purposes, the Median Absolute Error (MeAE) is employed because
of its robustness against the outliers

MeAE(z, y) = median({| yi − zi |}), (5)

where the terms are the same as in (2).

2.2 Trigger algorithm

An efficient change-point and anomaly detection algorithm called Poisson-FOCuS
(Functional Online CUSUM) [48, 49] is employed to find anomalous transients in
Fermi-GBM CSPEC data—photon counts with bin-length 4.096 s, see the discussion
of Section 3—relative to the NN estimates of the background.

The Poisson-FOCuS algorithm is executed sequentially over the time series of the
observed count rate data and the background estimates, separately for each combi-
nation of detectors and energy range. For a given detector-energy range combination
with label i and a given time step t , Poisson-FOCuS outputs an estimate of the maxi-
mum significance in the observed count rate excess relative to the background, m(i)

t .
This value is computed over an optimal time interval ending at t and starting at a
past time-step t − d. Crucially, the interval length d is not predetermined but rather
assessed and optimized by the algorithm itself, conditionally on the observations. The
significance values m(i)

t are recorded, in units of standard deviations, in a table with
dimensions M × N , where M equals the length of the input time series and N equals
the number of detector-energy range combination. From these table, candidate tran-
sients are extrapolated in two steps. The first step is to identify vertical table slices
(time intervals, rows segments) where the trigger condition is verified (e.g., the times
when the significance of a detector-range combination exceeds a pre-set threshold),
see Fig. 1. The second step is to cluster together segments whose start and end times
are closer than a pre-defined value. The user controls the search’s output through three
parameters. For the trigger condition to be verified it is required that the significance
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Fig. 1 A diagram representing the pipeline’s transient search component. Poisson-FOCuS is given in input
two tables. The first input table contains the NN’s background count rate prediction, while the second
reports the actual observations. The container outputs a table with same dimension as the inputs, and values
representing statistical significance in unit of standard deviations. All tables share the same dimension and
organization: columns are used to represent different combinations of detectors and energy ranges, while
rows are used to represent different times. The output table is searched for time intervals in which statistical
significance exceeds the threshold value over the energy 50 − 300 keV (r1). Then, intervals close in time
and exceeding the threshold are clustered together. Finally, clustered over-threshold intervals are reported
in a list
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values exceed a threshold parameter T over a minimum number detectors and energy
ranges. Additionally, the user can limit the choice of the best interval to those whose
length does not exceed a value dmax or whose average intensity, given as a multiplica-
tive factor of the observed count rates in relation to the integral of background values,
is greater than a minimum μmin.

3 Data

The Fermi-GBM daily CSPEC data products were used for both the testing and the
training of the neural network and for searching astrophysical transient events with
Poisson-FOCuS. These data are photon count rates (with unit counts/s) over a duration
of 4.096 s, binned over 128 logarithmically spaced energy channels spanning from
≈ 8 keV to ≈ 900 keV [3, 55]. The time resolution provided by CSPEC data is
high enough to investigate long and ultra-long GRBs, yet it is too low to reliably
identify short GRBs and other transients with characteristic duration shorter than a
few seconds. This is unfortunate, yet justified for our use-case. Indeed, the variability of
background over time intervals of duration comparable to the duration of short GRBs
is negligible, hence our method provides little benefits relative to simpler approaches
such as moving average or exponential smoothing. On the other hand, an accurate
description of the background become essential when searching for long, faint events,
in particular events whose duration is comparable to that of the Fermi orbit such as
ultra-long GRBs.

We consider data from all of the Fermi-GBM’s twelve NaI detectors. Each detector
is identified according to the standard GBM nomenclature (ten detectors labelled with
integers ranging from 0 to 9, two detectors are identified by the letters a and b). In
our analysis we disregard the Fermi-GBMbismuth-germanate detectors. These instru-
ments are in fact sensible to energies much greater than the energies typically involved
with GRBs prompt emission and are mainly used for the detection and observation of
phenomena different fromGRBs, such as Terrestrial Gamma-Ray Flashes (TGF) [50].
To build the target variables Y , the input CSPEC data from each detector are binned
anew, this time over three coarser energy ranges (28-50 keV, 50-300 keV and 300-500
keV, see Table 1). The resulting dataset is arranged in a table with 36 columns, one
for each of the 36 detector-energy combinations.

Beside the CSPEC data product, the neural network is trained using information
on the satellite geographical location and the detectors pointing direction, as well as
a number of auxiliary features such as the Earth occultation status and the visibility
of the Sun for each detector at a given time. These informations are gathered from the

Table 1 Energy ranges table Range Energy range (keV)

r0 28-50

r1 50-300

r2 300-500
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Table 2 A table of the 24 orbital features used to form the NN’s input table

Feature label Description

pos_x , pos_y, pos_z position of Fermi in Earth inertial coordinates

a, b, c, d Fermi attitude quaternions

lat Fermi geographical latitude

lon Fermi geographical longitude

alt Fermi orbital altitude

vx , vy, vz velocity of Fermi in Earth inertial coordinates

w1, w2, w3 Fermi angular velocity

sun_vis Sun’s visibility boolean flag.

sun_ra Sun’s right ascension

sun_dec Sun’s declination

earth_r Earth’s apparent radius

earth_ra Earth center right ascension

earth_dec Earth center declination

saa SAA transit boolean flag

l approximate McIlwain L value

The features are obtained from the POSHIST files and processed by the library Fermi GBM Data Tools

Fermi-GBM POSHIST data products. A detail of the orbital and detectors features
used in the training of the NN is given in Tables 2 and 3.

Sources of background for high-energy count detectors in low-Earth, near-
equatorial orbits have been discussed thoroughly in literature (see [29, 56] for
discussions relevant to the present context). Our choice of the NN feature inputs was
designed to provide a sufficient description of the different background components
along the Fermi’s orbit. For example, the instantaneous rate of primary and secondary
cosmic ray particles, a majour component of the background, will change depending
on the the spacecraft geographical latitude, altitude, as well as the McIlwain parame-
ter. Furthermore, the intensity of the cosmic photon background is influenced by the
spacecraft’s attitude and the position of the Earth in a detector’s field of view. Leverag-
ing information such as the pointing direction of different detectors and the spacecraft
attitude can also aid the neural network in predicting the impact of point sources on
the instantaneous background rate; as considering the presence of Earth in the field
of view of a detector can potentially improve the neural network’s ability to resolve

Table 3 A table of the 36 detector features used to form the NN’s input table

Features Description

ni_ra i-labelled detector pointing right ascension

ni_dec i-labelled detector pointing declination

ni_vis i-labelled detector Earth occulation boolean flag

The features are obtained from the POSHIST files and processed by the library Fermi GBM Data Tools
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the impact of components such as the albedo Gamma-ray and neutron background.
The rate of change of individual components is influenced by the spacecraft’s velocity
in the Earth’s inertial system and the angular velocity of the spacecraft itself. Special
flags were utilized to indicate the presence of the Sun in a detector’s field of view,
as well as transits through the high-radiation environment of the SAA. The resulting
input datasets X include a total of 60 different features, sampled with a step length of
4.096 s.

4 Results

In this section we present the results of the background estimator and the trig-
ger algorithm application. The open source code implementation is available on
github.com/rcrupi/DeepGRB.

4.1 Background estimator performance

To show the effectiveness of this approach, a NN is trained over 7 months of data from
January to July 2019. An excerpt of the resulting background estimation is presented
in Figs. 2 and 3 for one detector-range combination, specifically Fig. 3 during a day
without any events in the Fermi-GBM trigger catalog. The MAE values are reported
in Table 4. The energy range bins are the same as those used in Section 3 and are
defined in Table 1.

Fig. 2 Fermi-GBMNaI-4 detector photon count rates (crosses) in the energy range 50 - 300 keV (r1) versus
the respective prediction from the Neural Network (red solid lines). The lower panels show the residuals
and relative change percentage between the two quantities, with a black solid line denoting the reference
of null residual. Data span 1400 s and one SAA crossing. Anomalously low count rates were observed
immediately before and after the instrument’s switch-off during the SAA crossing. These values manifest
as outliers above the bisector of Fig. 4
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Fig. 3 The background estimation for the n4 detector, in the energy range r1, during 21 May 2019. The
Fermi-GBM count rate observations are represented over time as a black line, whereas the neural network
estimation is plotted as a red solid line. The middle panel shows the residuals between the two quantities,
with a black solid line denoting the reference of null residual. The lower panel shows the residuals as relative
change percentage

One qualitative approach for assessing the quality of a background estimator is
to estimate the background during an event and then see whether the residuals can
emerge clearly and if the dynamics estimated are coherent before, during, and after
the event. In Appendix A, the NN background prediction over a dataset comprising
GRB 091024 is similar to the background of an established physical Fermi-GBM
background model [29] except for detector n6 in range r0, where the NN shows an
higher residual before the event begins. In Fig. 4 we plot the NN predictions against
the corresponding observed value, in particular we filtered out the data points 150 s
before and after the SAA, specifically if the satellite remains in the SAA for at least
500s.

Transient, bright events such as GRBs result in a temporary increase of the observed
count rates (see Fig. 5) and, taking place at random times and directions, are not

Table 4 The NN MAE loss
function (within one standard
deviation) per energy range, over
the training and the testing
datasets, averaged over the 12
Fermi’s GBM NaI detectors

det range MAE train (counts/s) MAE test (counts/s)

r0 4.942 ± 0.331 4.953 ± 0.328

r1 6.088 ± 0.167 6.098 ± 0.163

r2 1.790 ± 0.044 1.792 ± 0.045

average 4.273 4.281
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Fig. 4 Fermi-GBM photons count rates from NaI-8 detector in the energy range 50 - 300 keV (r1) versus
the respective prediction from the NN over the same combination of detector and energy range. Data spans
from 1 January 2019 to 1 July 2019. The three white lines represent the contour plots at 1σ , 2σ and 3σ

predictable from features intrinsic to the Fermi spacecraft motion and attitude, which
are the actual inputs of the NN. Hence, these events are found below the bisector (see
the horizontal lines in Fig. 4),where the observed count rates exceed theNNprediction.
For data points close to the bisector, the NN’s predictions closely match the observed
count rates. This group constitutes the majority of the dataset and can be attributed
to background sources. In contrast, a few outliers are positioned above the bisector,
where the NN’s predictions exceed the observed count rates. An illustrative example
of this phenomenon is provided in Fig. 2, where these outliers are often encountered
in close proximity to SAA transits, coinciding when the Fermi-GBM instruments are
switched off.

The three time periods chosen for the application of the trigger algorithm spans 1
November 2010 to 19 February 2011, 1 January 2014 to 28 February 2014, 1 March
2019 to 9 July 2019. For the sake of brevity, we will refer to these epochs as the ‘2010’,
the ‘2014’ and the ‘2019’ periods. These periods are chosen to test the framework
under a variety of conditions, including solar activity intensities and potential detector
degradation.
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Fig. 5 Observed and background estimation count rates for detector n8 energy range r1, around the GRB
190507970, with residual difference and residual as relative change percentage. These event is visible as
the seven horizontal data points on the bottom right of the ellipse in Fig. 4

A separateNN is trained and tested for each of these periods to account for variations
in background count rates over long time scales (years),whichmaybe causedby factors
such as the solar activity and detector degradation. We report the performance metrics
in Table 5.

Additional details on the neural network’s performance during times of both high
and low solar activity are provided in the following section, whereas Section F is
dedicated to the choice of the NN’s hyperparameterers.

4.2 Solar minima andmaxima

Hermes Pathfinder will be launched in 2024 that is near the next solar maximum
forecast in 2025 [57, 58]. This analysis is interesting because reveals what background
is expected and how the NN background estimation performs in the two periods. The
most sensitive detector for the solar activity is the Sun-facing n5 [3]. In this analysis
are considered background binned in a GBM period orbits (about 96m) and 16 GBM
period orbits, for range 0, the most sensitive for solar flares, in the year of the last
solar minima, 2014, and the local minima, 2020. The Figs. 12, 13, 14, 15, and 16
are obtained considering respectively years 2014 and 2020, a NN per each year is
trained. One orbit time binning for 2020 Fig. 12, around 240 counts/s, and 2014 Fig.
14 are not comparable due to the high values of the latter but if we zoom the estimated
background part, Fig. 13, we see count rates around 225 counts/s. The same reasoning
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Table 5 Mean Absolute Error (MAE) and Median Absolute Error (MeAE), on the test datasets, for each
energy range and averaged for detectors within one standard deviation

NN performance metrics on test set
Period Energy range MAE (counts/s) MeAE(counts/s)

2010 r0 7.730 ± 4.842 3.963 ± 0.232

2010 r1 6.469 ± 1.517 4.777 ± 0.100

2010 r2 1.864 ± 0.033 1.563 ± 0.028

2014 r0 19.79 ± 18.92 4.545 ± 0.409

2014 r1 13.29 ± 11.10 5.604 ± 0.196

2014 r2 1.949 ± 0.099 1.598 ± 0.082

2019 r0 4.831 ± 0.300 3.938 ± 0.245

2019 r1 5.640 ± 0.082 4.716 ± 0.070

2019 r2 1.804 ± 0.038 1.510 ± 0.032

The higher MAE in 2014 compared to 2019 and 2010 can be attributed to the effect of solar activity.
However, the use of MeAE as the evaluation metric shows comparable results among the three periods

applies for 16 orbits in 2020 Fig. 15 and 2014 Fig. 16. In Table 6 are presented the
performance of the background estimation for the year 2014 and 2020.

The solar activity is known to follow a cycle of 11 years [59]. For periods consisting
in few months we can assume the solar activity to be constant. Some reference for the
solar cycle prediction can be found in Hathaway et al. (1994) [60], Upton et al. (2018)
[61], Bhowmik et al. (2018) [59].

4.3 Transients detection

With reference to the technique described in Section 2.2, the following detection
parameters were used to obtain the results discussed in this section. The trigger con-
dition was defined to resolve whenever at least one detector observed enough count
rate for the significance level to exceed a threshold T = 3σ over the range of energy
spanning 50 keV and 300 keV. This choice was made to ensure comparability with the
approach used by the online search algorithm of Fermi-GBM and other major GRB
monitoring experiments [26, 50], as well as to filter out softer events such as solar
flares. Subsequent segments resolving the trigger condition were clustered together if

Table 6 For each year a neural network is trained and are presented MAE and MeAE metrics averaged per
detector and range

year MAE train (counts/s) MAE test (counts/s) MeAE train (counts/s) MeAE test (counts/s)

2014 10.601 10.467 3.940 3.944

2020 4.897 4.914 3.901 3.909

The comparison between the training and test results demonstrates that the neural network does not suffer
from overfitting. The higher MAE in 2014 compared to 2020 can be attributed to the effect of solar activity.
However, the use of MeAE as the evaluation metric shows comparable results because it is robust against
outliers in the data
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closer than 600 seconds, a duration large enough to capture most long GRBs and equal
to the duration of the Fermi-GBM time-tagged event lightcurves [62]. The Poisson-
FOCuS algorithm was executed with the parameters dmax and μmin set to the values
120.4 s and 1.2 s, respectively. The choice of these parameters was driven by a trade-
off between the need to find most astrophysical transients in our dataset both known
and potentially unknown and the need to minimize the rate of false detection.
A filter was applied to exclude data points within 150 seconds before and after a
SAA transit, specifically if the satellite remains in the SAA for at least 500s. The
purpose of filtering out data in proximity to the SAA is to reduce false detections.
This is necessary due to various factors including the dynamic nature of the SAA
environment, even on short time-scales [63], the spacecraft’s apparent direct motion
(Fermi enters the SAA at different geographic locations during each orbit), and the
presence of a discontinuity in the observed data resulting from the instrument switch-
off during the SAA transit. These factors make estimating a reliable background count
rate near the SAA challenging, often resulting in an underestimation of the background
rate and, in turn, false detections by the trigger algorithm. Through empirical analysis,
we have determined that a filter duration of 150 seconds is the minimum required to
ensure accurate estimation of background count rates. However, this precaution has
the unfortunate consequence of preventing the detection of transients that occur during
these filtered periods.

The transient search was performed over three distinct time periods, as defined in
the previous section. In the period spanning March 2019 and July 2019 a total of 100
events were identified. Of these, 74 events match the trigger time of events already in
the Fermi-GBMTrigger Catalog [50], one event is due to artifacts in the dataset, while
the nature of the remaining 25 events is uncertain. These results, along other from the
remaining test periods, have been summarized in Table 7. Over the same period, the
Fermi-GBM Burst Catalog [50] reports on 96 known GRBs. Of these bursts, 15 are
missing a counterpart in our dataset due to the clipping of data 150 s before and after a
SAA transit. Of the remaining 81 bursts (65 detected and 16 undetected), 68 have T90
duration larger than the bin-length resolution of our dataset (4.096 s). We were able
to correctly identify 60 of these bursts (88%). Finally, we detected 5 out of 13 (34%)
GRBs with T90 duration inferior to the the bin-lenght resolution of our dataset. These
results are summarized in Fig. 6 and Table 8, the latter also reporting on results from
other periods.

Table 7 Total number of transients identified, number of transients with counterparts in the Fermi-GBM
Trigger Catalog and its median consistency; number of transients of uncertain origin with no counterparts
in the Fermi-GBM Trigger Catalog and its median consistency; false detection

Transient detection statistics
Period Total events Known C median known Unknown C median unknown False Detections

2010 81 55 > 10 18 8.83 8

2014 195 81 > 10 71 > 10 43

2019 100 74 > 10 25 8.71 1

Each table row corresponds to a different time period
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Fig. 6 GRB detection performances. Each dot represents a gamma-ray burst of the Fermi-GBM Burst
Catalog discovered between March 1st and July 1st 2019 over the space spanned by the GRB’s duration
T90 and flux, the latter computed as the ratio between the catalog’s GRB fluence in band 10-1000 keV and
T90). Events in the shaded grey region have T90 duration smaller than the bin-length time resolution of the
dataset tested with the present framework (4.096 s, CSPEC data). Colors are used to identify the detection
status within our search. In red the events unidentified with our method. Missing events (no data) are due
to clipping of data 150 s before and after a SAA transit or portion of data that could not be preprocessed

To measure the significance of the events in Table 8 the Standard Score z is com-
puted:

z = x − μ

σ
(6)

where μ is the mean and σ the standard deviation of the distribution X . Since we are
dealing with count rates that follows the Poisson distribution, with sufficiently high

Table 8 Detected and undetected number of GRBs in the Fermi-GBM Burst Catalog, fraction of detected
bursts with duration greater than the bin-length time resolution of the tested dataset, fraction of correctly
detected bursts with duration smaller than the bin-length time resolution of the tested dataset

Known GRBs detection statistic
Period Detected GRBs Undetected GRBs T90 > 4.096 s T90 < 4.096 s Missing (no data)

2010 41 25 39/52 (75 %) 2/14 (14 %) 11

2014 21 7 17/18 (94 %) 4/10 (40 %) 8

2019 65 16 60/68 (88 %) 5/13 (34 %) 15

Each table row corresponds to a different time period. The last column of the table displays the number of
missing events in our dataset, due to SAA data clipping (see Section 4.3). These missing events, along with
the counts of detected and undetected GRBs, contribute to the total number of GRBs in the specific period
as recorded in the Fermi-GBM Burst Catalog
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count rates we can consider μ ≈ σ 2. Then the Standard Score can be approximated
to:

S = N − B√
B

(7)

where N is the observed count rates integrated over an interval spanning the event’s
start time and end time2 and over each triggered detectors. B is the total count rates
comes from the background estimated by the NN, over the same event time. Standard
Score is determined independently for each energy range Sr0, Sr1 and Sr2. The overall
consistency for the event is defined as:

C = max(Sr0, Sr1, Sr2). (8)

5 Discussion

According to Tables 4 the test set and train set MAE values are similar up to 1%
indicating no over-fitting and strong generalization across energy range and detector.
Table 5 shows that the neural network trained on data from the 2014 period has the
highest (worst) MAE, which can be attributed to the presence of strong solar activity.
This is understandable since, during an activity maximum, the background particle
count rate is more unpredictable due to the influence of the Sun on the local radiation
environment (see Fig. 7b). Nonetheless, MeAE shows similar performance with the
other two periods, thanks to its robustness against outliers. On the other hand, the 2019
period has the lowest MAE most likely due to low solar activity and low background
variability.

Similar conclusions can be derived from the analysis presented in Section 4.2. The
performance of the two neural networks trained on the complete data from 2014 and
2019 is nearly identical in terms of MeAE, see Table 6. This suggests a comparable
central tendency of the residuals in both periods.

It is important to note that the performance results are presented for both metrics, as
they provide complementary information about the algorithm’s performance. During
the 2014period,which had a solarmaximum, theMAEwas significantly larger than the
MeAE due to the inclusion of 71 transient events not found in the Fermi-GBM trigger
catalog (see Table 7). These events, some of which are likely of solar origin, affected
theMAEmore than theMeAE. However, it is important to note that a lowMeAE does
not guarantee a perfect background estimation, as indicated by a high number of false
detections in 2014 (Table 7). Factors such as the inclusion of luminous solar transients
and the reduced training dataset length can contribute to background estimation issues
during this period.

In Fig. 4, most of the data points are distributed along the plot bisector y = x ,
indicating that most often the neural network prediction is in agreement with the actual
observations. Above the bisector, more count rates are expected than they are actually
observed. From spot analysis, it is observed that outliers in this domain correspond

2 To avoid noise count rates and calculate the significance around the event’s peak, only count rates greater
than a quantile-based threshold were included in the integral.
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to anomalously low values in the observed count rates. Most of these outliers are
encountered in immediate proximity to SAA transits (for example, see Fig. 2) when
the Fermi-GBM instruments are switched on and off.

In periods of high solar activity, Fermi-GBM data include a large number of soft
transient events of solar origin; thus, the soft (25 - 50 keV) trigger conditions have
been disabled on multiple occasions (e.g. see Table 4 in [64] for 2014). Likewise, we
required that at least one detector must be over threshold in the energy band spanning
50 and 300 keV in order for the trigger condition to be satisfied. Still, Table 7 shows a
higher number of total events for the 2014 period. Themajority of these events aremost
likely associated to solar flares; indeed, 50 of the 81 events in the GBM trigger catalog
for this period are solar flares, and themajority of the eventswefindwith no counterpart
in the Fermi-GBM trigger catalog are triggered over Sun facing detectors (n0, n1, n2,
n3, n4, n5). False detections may be caused by artifacts in the background estimation.
These are generally easy to identify; most of the time these artifacts take the form
of sudden steps in the background estimate, simultaneously over all detector/range
combination. One of these events is represented in Fig. 7a. This behaviour is less
frequently present in the other two periods analyzed, indicating that noisy background
impacts on performance (see MAE) and therefore more false positive are detected.
This issue should be investigated in future work, for instance integrating explainability
techniques in the NN or implementing different architectures, such as RNNs.

To further investigate the detected and undetected GRBs, we plot the flux (total
fluence divided by T90) vs T90 for our triggered events in Fig. 6. The red points are
events reported in the Fermi-GBM catalog but undetected by our method. The Fermi-
GBMevents with a duration less than our time binning (4.096s) are often undetected in
our analysis because of the too coarse binning. We also miss a few longer events with

Fig. 7 Photon count rates from each triggered detector are plotted with step lines, across three energy bands
spanning 28 − 50 keV, 50 − 300 keV and 300 − 500 keV (Table 1), with a resolution of 4.096 s. The
neural network’s prediction of background count rates is represented by solid lines. Different detectors
are identified using different colors. A red shaded area limits Poisson-FOCuS’s best guess of the transient
duration. Times are expressed in units of seconds according to Fermi’s standardmission elapsed time (MET).
(a) Example of False Detection in which all the detector are triggered over an imprecision of the Neural
Network estimation. (b) Example of a solar flare in the Fermi-GBM catalog detected by our approach.
The event start and end MET time, as reported in the Fermi-GBM trigger catalog, is represented by a grey
shaded area
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low count rates. Reducing the time binning by using data with higher time resolution,
such as CTIME or TTE, could be beneficial to capture shorter and fainter events.
Despite the unfavorable adopted time binning of 4.096s, we recovered ≥ 75% of the
GRBs with T90 greater than 4.096s, see Table 8.

We also detect many events not present in the Fermi-GBM catalog, and we use the
methodology outlined in Kommers et al. (1999) [26] to characterize these transients.
More specifically, we classify events as:

• Solar flare (SF) when the majority of the count rates are in the low-energy range
and the Sun is in the field of view of the triggered detectors.

• Terrestrial Gamma-ray Flash (TGF) when most of the count rates are in the high-
energy range and the event’s source reaches the detector from the Earth’s horizon.

• Gamma-ray burst (GRB) when most of the count rates are in the 50 − 300keV
energy range, and the source direction is not occulted by the Earth and is distant
from both the Sun and the galactic plane.

• Galactic X-ray flash (GF) when the source direction is compatible with that of the
galactic plane.

• Uncertain (UNC) in all other cases.

To determine the source direction, we employ a simplemethod based on the evaluation
of the pointing and the relative photon count rate of the detectors. Further details can
be found in Appendix B.

Two classes of transient events are discussed further in this section: events already
classified as GRBs in the Fermi-GBM trigger catalog; events not present in the Fermi-
GBM catalog but classified by us as candidate GRBs. We report In Table 9 six more
events that have no catalog counterpart, suggesting one or more of the previously
mentioned categories. All these events are a cherry pick selection of the unknown
events in Table 10.

Table 9 List of interesting events

ID Trigger time T (s) Detectors
triggered

RA (◦) Dec (◦) Transient
class

C

1 2014-01-27 05:21:12 32.77 n0 n1 n2 n3 n4
n5 n8 nb

306 -22 SF > 10

2 2010-11-11 18:58:17 16.38 n2 n4 n5 230 -20 SF > 10

3 2014-01-12 13:59:58 102.40 n6 n7 n8 n9 na
nb

105 10 GF/TGF > 10

4 2019-04-04 13:08:07 8.19 n9 na 220 -10 GRB 4.93

5 2019-04-20 22:32:56 16.38 n6 n7 n8 n9 nb 187 40 GRB > 10

6 2019-06-06 13:21:42 16.38 n7 n8 nb 250 25 GRB/GF 9.12

7 2011-02-15 15:59:02 118.79 n0 n1 n2 n5 n6
n7 n8 n9 nb

208 62 UNC > 10

We report the ID, the start time in MET and UTC, the end time in MET, the detectors triggered during the
event, the localisation expressed in right ascension and declination, the proposed transient class and the
consistency of the event
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GRB 190320A

At 01:14:16 UTC on March 20, 2019, the long GRB 190320052 triggered the Fermi-
GBM on board trigger algorithm across detectors n6 and n9. The estimated T90
duration is 43 s, with the highest emission component in the 50-300 keV band. In
our analysis, the detectors n6, n7, n8, n9 and na all exceeded a 3.0 σ significance
threshold during the period event (Fig. 8) with a resulting consistency greater than 10
on energy range r1 and 5.74 on r2. The background estimate is comparable to a second
order polynomial fitting in the soft energy range and first order polynomial fitting in
the 50-300 keV energy range.

Fig. 8 The Fermi-GBM catalog GRB190320, as detected by our method. Photon count rates from each
triggered detector are plotted with step lines, across three energy bands spanning 28−50 keV, 50−300 keV
and 300 − 500 keV (Table 1), with a resolution of 4.096 s. The neural network’s prediction of background
count rates is represented by solid lines. Different detectors are identified using different colors. The GRB
start and end MET time, as reported in the Fermi-GBM burst catalog, is represented by a grey shaded area.
A red shaded area limits Poisson-FOCuS’s best guess of the transient duration. Times are expressed in units
of seconds according Fermi’s standard mission elapsed time (MET)
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Event 190420939

Figure 9 shows an event not present in the GBM trigger catalog, similar to
GRB190320052 but with higher low-energy count rate. The event has been triggered
by detectors n6, n7, n8, na and nb in the low energy band with a consistency greater
than 10. Two detectors provided a trigger in the 50-300 keV energy band, with a
consistency of 8.4.

We can see from the localization estimate in Fig. 10 that the event is far from the
galactic plane, the Sun, and the Earth’s horizon. With all of this information, this event
could be a long soft GRB. The localization algorithm used is described in detail in
Section B.

Fig. 9 The 190420939 transient event with no direct counter part in the Fermi-GBM trigger catalog. The
event was classified as a candidate gamma-ray burst, according to the discussion presented in Section 5. For
the corresponding localization see Fig. 10. Photon count rates from each triggered detector are plotted with
step lines, across three energy bands spanning 28−50 keV, 50−300 keV and 300−500 keV (Table 1), with
a resolution of 4.096 s. The neural network’s prediction of background count rates is represented by solid
lines. Different detectors are identified using different colors. A red shaded area limits Poisson-FOCuS’s
best guess of the transient duration. Times are expressed in units of seconds according Fermi’s standard
mission elapsed time (MET)
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Fig. 10 Estimate of the candidate event’s source localization over the celestial sphere at 2019-04-2022:32:56
UTC

Interesting events

We list in Table 9 a selection of interesting events, including the one already dis-
cussed, which are not present in the GBM catalog and which deserve further analysis.
Appendix D present plots associated to these events. Events 1 and 2 are classified as
Solar Flares because their location is close to the Sun and the majority of the detectors
triggered are in the energy range r0. Because event 3 is far from the Sun yet close
to the galactic plane and the Earth’s horizon, it might be a Galactic X-ray flash or a
Terrestrial Gamma-ray Flash. Event 4 and 6 are categorized as GRBs for the same
reasons as event 5, however because they are near the galactic plane, event 6 might be
a Galactic X-ray burst. Finally, in event 7, nine detectors with roughly equal intensities
are triggered, suggesting that this event is likely due to Local Particles. This is further
validated by the satellite’s position at high geomagnetic latitude (Fig. 23), which is
highly correlated with the localization of charged particle events [50]; as a result, the
event is classified as uncertain.

It’s worth noting that GRB 190404B GCN Circular notice discovered by Monitor
of all-sky X-ray image (MAXI) satellite3 has location (RA = 221◦,Dec = −22◦),
which is similar to event 4, and trigger time 2019/04/04 13:14:34.00 UTC, which is
six minutes after event 4.

The complete catalog of unknown and known events for the three time periods
analyzed can be found in Appendix in Tables 10 and 11, respectively. The events are
reported with the trigger time, duration, the triggered detectors, the Standard Score for
each energy range, and a significance classification. Unknown events were assigned
tentative transient classes using the methodology described in this section.

3 http://maxi.riken.jp/grbs/190404b/
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6 Conclusion

A novel method for high-energy, transient event detection is presented, integrating the
precise estimation of a NN with an efficient trigger algorithm. The method has been
designed to be applied to HERMES Pathfinder data, but it can be extended to analyze
data from other space-based, high-energy missions and we have presented here an
application using Fermi-GBM data. The first step is to estimate the background count
rate with a NN using satellite data that may be used to build a physical background
model. The accuracy of the background estimate is measured using Mean Absolute
Error andMedianAbsolute Error. An experiment is carried out to assess the robustness
of the background estimator during the periods of solar maxima (2014) and solar
minima (2020), demonstrating that the background estimation is stable enough to
have comparable performance in both periods. Because HERMES Pathfinder will be
deployed near the next solar maximum, a scenario of expected count rates is provided
in Section 4. The background is then used by Poisson-FOCuS, an evolution of the
CUSUM algorithm, to efficiently detect the transient events. This method is tested
using three periods of Fermi-GBM data binned in time for 4s. We provide statistics on
known and unknown transients in the GBM catalog.We show that with our method we
are able to recover known events longer than 4s, and to selected events not included
in the Fermi-GBM catalog. Seven of the unknown events are discussed in details. In
the 9 months of data analyzed, we did not detect any ultra-long GRB. However, we
did identify candidate long GRBs, some of which exhibited softer spectra compared
to typical GRBs. Based on these findings, the next logical progression is to apply the
framework to the complete 15 years of Fermi data. In future work, our focus will be
on improving the prediction capabilities of the neural network. We plan to explore
the use of Recurrent Neural Networks (RNNs) and expand the training dataset to
achieve a smoother signal, particularly in regions affected by data clipping, such as
the South Atlantic Anomaly (SAA). By reducing the time binning, we aim to enhance
the detection of shorter events with higher precision. Additionally, we will integrate
explainability methods into our framework to enable users to understand and interpret
specific predictions made by the neural network. This will provide insights into the
underlying factors and features that contribute to the predictions. It will also facilitate
the debugging process, enabling us to identify and address any issues or biases within
the neural network.

Appendix A: Background estimate for GRB 091024

To demonstrate the potential of the background estimator in the presence of a long
event, a background estimation is performed in a period containing the ultra-longGRB
091024 [42], for which a similar evaluation is provided in [29].

In Fig. 11 are shown detectors n0, n6 and n8 in the three energy band specified in
Table 1. The data and background estimation of a Neural Network trained and tested
during a three-month period, from September 1 to November 30, 2009, are presented
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in black and red, respectively. The dataset consists of 1.63 million of samples and the
hyperparameters are the same used in Section 2.1 except for the learning rate

η =

⎧
⎪⎨

⎪⎩

0.025 if epoch < 4

0.004 if 4 ≥ epoch < 12

0.001 if epoch ≥ 12

The event emerges clearly from the residuals of all the detectors in range r1 and r2, in
detector n0 and range r2 it is still visible a peak probably belonging to the end of it. In
detector n6 range r0, in the first part of the time series before the peaks of the event,
the background estimation underestimates the foreground (data observed). This could
be due to a too short period of training dataset, a non optimal parameter settings of
the NN, a different event such as Local Particles or, more interestingly, the first part
of the GRB, where photon count rates were too low to be detected due to background
variability.

Fig. 11 Observed and background estimate count rates around the event GRB 091024. From left to right
the plots refer respectively to range r0, r1, r2, from top to bottom the plots refer respectively to detectors
n0, n6, n8. This figure can be compared with the background estimation around the GBM trigger time of
GRB 091024 in Biltzinger et al. (2020) [29]

Appendix B: Localization

For the standard reference for the localization of events found by GBM, look [65].
In this work the localization is done by a simple geometric reasoning, but in future
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we hope to use more sophisticated algorithm of localization. To optimise the function
loss it is employed a particle swarm optimiser4.

Consider two vectors in the equatorial coordinates ψd = (rad , decd) and ψs =
(ras, decs), respectively the pointing of a detector and the localization of the event
source. The incidence intensity ismodeled as the cosine between the angle cos(ψd , ψs)

is:

cos(ψd , ψs) = cos(ψd,ra)cos(ψd,dec)cos(ψs,ra)cos(ψs,dec)+
+ sin(ψd,ra)cos(ψd,dec)sin(ψs,ra)cos(ψs,dec)+
+ sin(ψd,dec)sin(ψs,dec)

If the angle of incidence is grater than π/2 than the incident intensity must be set
to 0. Finally we have (B1)

I(ψd , ψs) = max(cos(ψd , ψs), 0) (B1)

The loss to optimise in (B2), where i is a particular detector in D detectors (in
our case 12). The energy range chosen is the one with the biggest residuals among
detectors/energy ranges, then the count rates corresponding to the timestamp of the
maximum value is given to the loss (B2) and minimized.

∑D
i=1(countss(I(ψi , ψs)) − countsi )2

D
(B2)

where ψs and countss are the unknown variables.

4 https://github.com/tisimst/pyswarm
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Appendix C: Solar minima andmaxima figures

Fig. 12 The background estimation in year 2020 for detector n5 (Sun-facing) in the energy range r0. The
count rates are averaged over a bin time corresponding to 1 period orbit (96m)
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Fig. 13 The background estimation in year 2014 for detector n5 (Sun-facing) in the energy range r0. The
count rates are averaged over a bin time corresponding to 1 period orbit (96m). A zoom-in is applied to
avoid the outliers shown in Fig. 14
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Fig. 14 The background estimation in year 2014 for detector n5 (Sun-facing) in the energy range r0. The
solar activity in this year is tremendously high. The count rates are averaged over a bin time corresponding
to 1 period orbit (96m)
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Fig. 15 The background estimation in year 2020 for detector n5 (Sun-facing) in the energy range r0. The
count rates are averaged over a bin time corresponding to 16 period orbits (25.6h)
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Fig. 16 The background estimation in year 2014 for detector n5 (Sun-facing) in the energy range r0. The
count rates are averaged over a bin time corresponding to 16 period orbits (25.6h)
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Appendix D: Interesting events

Fig. 17 Lightcurve and localization for id 1. The Sun is located under the purple spot. We classify this event
as SF

Fig. 18 Lightcurve and localization for id 2. The Sun is located under the purple spot. We classify this event
as SF
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Fig. 19 Lightcurve and localization for id 3. Because of its location near the galactic plane and the Earth’s
horizon, we could classify this event as TGF or GF

Fig. 20 Lightcurve and localization for id 4. We classify this event as a GRB

Fig. 21 Lightcurve and localization for id 5. We classify this event as a GRB
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Fig. 22 Lightcurve and localization for id 6. We could classify this event as a GRB or, because of its
proximity to the galactic plane, a GF
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Fig. 23 In the first two figures, the lightcurve and localization for id 7 are shown. The third one
shows where the GBM satellite is located on Earth. Local Particles events like LOCLPAR1905205 and
LOCLPAR1904085 have occurred in this region. We classify this event as uncertain

Appendix E: Catalog table
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Appendix F: On the hyperparameters choice of the NN

The choice of hyperparameters and settings in Section 2.1 was the result of a trial
and error process to fit the neural networks that performed well over the three men-
tioned periods in Section 4.1. It is important to note that due to the time-consuming
nature of testing all possible combinations of hyperparameters, a limited number of
combinations were selected based on a sense of practice and intuition.

For simplicity, here we report the final configuration settings: the first layers had
2048 neurons, the third layer had 1024 neurons, dropout was set to 0.02, and the
learning rate (denoted as η) was varied according to (1), with β1 = 0.9, β2 = 0.99,
and ε = 10−7. The models were trained for 64 epochs with a batch size of 2048, early
stopping was applied after 32 epochs, the loss function used was MAE, and events
known from the training set were removed.

The choice of a larger number of neurons (2048) for the first layers was made to
ensure minimal residual in terms of MAE. Doubling the number of neurons did not
lead to a significant increase in performance.

Initially, a constant learning rate of 0.0008 was chosen. However, it was observed
that especially in the first epochs, a higher learning rate was needed to reduce the loss
function and avoid getting stuck in a local minimum. In the later steps, a learning
rate of 0.0004 was used to reach convergence and achieve a stable loss function. The
values of β1 = 0.9, β2 = 0.99, and ε = 10−7 are similar to the default values for the
optimizer of the Neural Networks.

Regarding the number of epochs, it was decided to stop training at 64 epochs
because, along with a batch size of 2048, the neural network tended to achieve good
and stable performance within this range.

Dropout, introduced by Srivastava et al. (2014) [53], is a technique that randomly
deactivates neurons according to a user-defined probability. The dropout parameter
serves as a regularizer, preventing overfitting and ensuring that the loss function does
not become stuck at a high MAE. The dropout probabilities tested are 0.2, 0.02, and
0.0002. In all cases, the neural network converges with similarMAE. But with dropout
0.02, the model demonstrates stable and good performance on validation set even as
early as the 4th epoch.

F.1 MAE vs MSE

The choice of the appropriate loss function is indeed crucial in many applications of
data science. In this case, we would like to emphasize the properties ofMAE andMSE
and provide a mathematical justification for their use.

It can be demonstrated that a regressor using MSE and MAE approximates the
conditional mean E(Y | X = x) and the conditional median median(Y | X = x),
respectively, see Equations 2.13 and 2.18 in Hastie et al., (2009) [51]. Therefore,
when employing MAE, the estimator’s output behaves similar to the median, making
it robust against outliers. Conversely, when using MSE, the output behaves more like
the mean, which is not robust against outliers.
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In the case where the training set contains significant event count rates, such as
solar flares similar to Fig. 7b, the estimator should treat these events as outliers since
they do not belong to the common background dynamics. Even after normalizing the
count rates by subtracting the mean and dividing by the standard deviation, the scaled
dataset still retains the same outliers, preserving the proportion among the count rates.

An empirical example showcasing the robustness of the method can be found in
Section 4.2. Figure 24 presents two training phases including events from the Fermi-
GBM catalog for (a) MAE and (b) MSE. Only the run with MAE (a) exhibits good
convergence, and Fig. 25a showcases an example of prediction using MAE. In (b), the
neural network has converged, but the validation loss is higher and noisier than the
training loss, indicating poor generalization (overfitting). Figure 25b displays MSE
predictions over a short period where the approximation of the background dynamics
shows artifacts and inconsistencies in respect to MAE. It is worth noting that even
when other hyperparameters were adjusted, this effect persisted, leading us to choose
MAE as the preferred loss function.

Based on these plots, it becomes apparentwhy 64 epochswere sufficient for training
the neural network, as the desired convergence and performance were achieved.

(a) MAE including events in the training
set

(b) MSE including events in the training
set

Fig. 24 Evaluation of the loss function on both the training and validation sets across different epochs of
the neural networks
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(a) MAE including events in the training set

(b) MSE including events in the training set
Fig. 25 An excerpt of background prediction for a Neural Network (best one with loss on the validation set
across all epochs) using (a) MAE and (b) MSE
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