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Abstract

This study investigates auditory localization in children with a diagnosis of hearing

impairment rehabilitated with bilateral cochlear implants or hearing aids. Localization accu-

racy in the anterior horizontal field and its distribution along the angular position of the

source were analyzed. Participants performed a localization task in a virtual environment

where they could move their heads freely and were asked to point to an invisible sound

source. The source was rendered using a loudspeaker set arranged as a semi-circular array

in the horizontal plane. The participants’ head positions were tracked while their hands

pointed to the auditory target; the preferred listening position and the onset of active strate-

gies involving head movement were extracted. A significant correlation was found between

age and localization accuracy and age and head movement in children with bilateral hearing

aids. Investigating conditions where no, one, or both hearing devices were turned off, it was

found that asymmetrical hearing caused the largest errors. Under this specific condition,

head movement was used erratically by children with bilateral cochlear implants who

focused on postures maximizing sound intensity at the more sensitive ear. Conversely,

those with a consolidated binaural hearing experience could use dynamic cues even if one

hearing aid was turned off. This finding may have implications for the clinical evaluation and

rehabilitation of individuals with hearing impairments.

Introduction

Spatial hearing is an essential component of auditory scene analysis, primarily aimed at localiz-

ing acoustic events, segregating auditory streams, and orienting multisensory attention [1].

Sound localization is based on sound directionality and distance estimation derived from the

binaural processing of loudness, time delay, phase, and spectral cues. The most important cues

are the interaural time difference (ITD) and the interaural level difference (ILD), determined

by the spatial separation of the two ears [2]. Useful information for localization can also be

extracted from monaural cues, such as time and level differences between individual spectral
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components. Providing identical signals at both ears proved that monaural cues help define

the anterior and posterior sectors of the midplane, the elevation angle, and the distance of the

auditory event [3]. Slight head and body movements, taking place even when trying to keep

still while listening, effectively resolve front-back confusion [4] and improve the precision of

auditory spatial recognition [5].

Spontaneous head movements in response to auditory cues enhance horizontal localization

by turning static binaural cues into dynamic information [6]. This dynamic exploration of

acoustic space has been defined as active listening [7]. Nevertheless, a common principle

underlying the different head dynamics observed during sound localization has yet to be

found [8]. Head movement patterns differ among individuals, suggesting that every active

localization strategy entails subjective rotational and translational movements involving the

torso, head, and eyes [9]. Therefore, monitoring head movements during acoustic localization

in different populations is not obvious. Normal-hearing (NH) individuals in a simulated asym-

metric hearing loss condition possibly exploit their binaural experience [10] and behave differ-

ently from a hearing-impaired (HI) population. An elderly population, NH or HI alike, can

localize a sound source more accurately through active listening than children [11].

Hearing loss impacts every facet of auditory perception, including the ability to accurately

determine the direction of sound sources [12]. Spatial hearing impairment harms awareness of

one’s surroundings, personal safety, and social interaction. Binaural restoration using bilateral

cochlear implants (CIs) offers a better quality of hearing than unilateral implantation [13]. The

recent advances in sound processing technologies feature elements of spatial rendering for

auditory impaired individuals [14]. However, in many cases, acoustic or electric auditory stim-

ulation rehabilitation fails to restore the cues relevant to spatial hearing [5]. Bilateral hearing

aids (HAs) should provide interaural level and time cues. Nevertheless, inconsistencies in

localization have often been found in patients, suggesting that the benefit, although significant,

is usually poorer than predicted [15]. On the other hand, CIs distort ITD cues, so patients

must rely on ILD cues for sound localization [16]. Furthermore, since several CI microphones

are positioned behind the pinna, most of the amplitude and frequency cues conveyed by the

outer ear are lost. The resulting lack of monaural cues deprives infants and children of the

timely development of their acoustic localization skills [17].

Restoring normal hearing is critical in children because hearing loss can harm a regular

speech and language development. HAs [18] and CIs [19] proved effective in improving

speech perception and production. Evolving traditional clinical assessments based on pure

tone audiometry [20] is crucial, though. Assessing the benefits of assistive hearing devices dur-

ing one’s everyday routine tasks can provide future directions for technological developments.

Previous studies demonstrated that children with bilateral cochlear implants are sensitive to

ILDs, possibly due to monaural level cues [11]. Children who are deaf from birth have weak or

absent sensitivity to ITDs. Conversely, children who could rely on previous listening experi-

ence are sensitive to these cues [11]. Another study confirmed that better binaural fusion is

associated with an extended hearing experience before cochlear implantation. These observa-

tions highlight the importance of enabling auditory perception as an essential component in

children’s development [21]. On the other hand, binaural localization in HI children who wear

a device during their auditory development is still partially unexplored, and the role of head

movement is yet to be understood.

The primary objective of this study was to examine how two pediatric populations—one

using bilateral HAs and the other using CIs—localize sound in the horizontal plane. We

assessed their spatial hearing abilities based on performance, active listening, and preferred lis-

tening position, then compared such two populations with each other and with NH listeners.

The second objective was to estimate the potential of bilateral assistive devices to induce
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binaural sensitivity. We analyzed the effect of deactivating one or both devices by examining

the residual localization ability as a function of the sound source position.

The correlation between variables also provided insights into potential localization strate-

gies. Previous research has shown that NH listeners increase their head movements during a

localization task with simulated asymmetric hearing loss [22]. We aimed to determine whether

this behavior also occurs in listeners using HAs and CIs, either as a response to asymmetric

hearing conditions, or rather as a characteristic response of individuals with a consolidated

binaural hearing experience. Correlating their head angular positions and movements with

localization accuracy gave insights into their residual binaural ability. This helped us better

understand the role of head position and movements in HA and CI populations. Furthermore,

a correlation analysis between localization abilities and age provided information on one’s

ability to consolidate spatial hearing through experience.

The task was performed in a mixed (i.e., real and virtual) environment. Listeners wearing a

head-mounted display (HMD) used a virtual laser beam to point to a sound source position

reproduced by a loudspeaker array. This design choice was supported by research that found

no significant difference in the horizontal localization accuracy of NH listeners in real environ-

ments or virtual replicas [23]. Head movements and hand pointing were simultaneously

tracked to collect temporal data about head motor activity during the localization task. Based

on a setup and methodology already tested on an NH population [24], we assessed whether

and how head dynamics and orientation could compensate for adverse listening conditions.

We turned off one hearing device causing asymmetric listening, or both devices when possible,

thus restoring native listening. This experimental design established a valid procedure for

observing the onset of binaural sensitivity.

A preliminary analysis [25] of the results from this procedure has been largely reformulated

here. We interpreted head movements in such adverse hearing conditions as an indicator of

subjective willingness to restore binaural cues. We expected that children with no motor disor-

ders put diverse compensation strategies into action, depending on their residual localization

ability, once their bilateral hearing devices are switched off on either or both ears. We aimed to

compare their active listening against NH individuals [26]. We hypothesized bilateral hearing

devices helped HI children with spatial hearing, but they failed to evoke ITD cues. The sensi-

tivity to these cues was instead the result of a consolidated hearing experience. More specula-

tively, classifying HI children’s compensatory strategies may inform future rehabilitation and

training for localization, speech-in-noise detection, and spatial sound listening [27]. For exam-

ple, knowing that ITD sensitivity can be neither found nor enabled in a particular population

may lead to rehabilitation programs focusing on monaural localization using adequate acous-

tic stimuli.

Materials and methods

The study was approved by the Institutional Review Board of the Institute for Maternal and

Child Health IRCCS “Burlo Garofolo” (Trieste, Italy) under the project “Ricerca Corrente 17/

23”. Informed consent has been obtained for each participant from their parents.

Participants

Twenty-two HI children (13 males and 9 females, mean age μ = 10.45 years, standard deviation

σ = 3.13 years) participated in the experiment. Nine were CI listeners, and thirteen were HA

listeners. Children were affected by non-syndromic hearing loss (“GEN NO SDR”) in 8 cases

(6 GJB2 gene mutations, 2 other gene mutations), syndromic hearing loss (“SDR”) in 4 (2

Usher syndromes, 1 chromosomal instability, 1 Waardenburg syndrome), and 1 enlarged
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vestibular aqueduct (inner ear malformation, “IEM”). Other causes of hearing loss (“Other”)

were congenital cytomegalovirus infection in 2 cases, chemotherapy with platinum derivatives

for neuroblastoma in 2, preterm delivery in 1, and prolonged neonatal intensive care unit stay

in 1 case. The cause was not identified (“ND”) in 3 cases. The two populations were similar in

age (μ = 10.3 years, σ = 3.0 years for the CI listeners and μ = 10.5 years, σ = 3.2 years for the

HA listeners), but they differed substantially in terms of interaural experience of their devices

(μ = 2.4 years, σ = 2.9 years for the CI listeners and μ = 0.1 years, σ = 0.3 years for the HA listen-

ers). All participants confirmed verbally that they were right-handed and had no diagnosis of

motor impairment. Recruitment started on June 17th, 2022, and ended on January 19th, 2023.

Anonymized data became accessible to the authors on January 22nd, 2023. Table 1 displays

the collected participants’ data.

Setup

The acoustic reproduction system consisted of 13 Seeburg i4 loudspeakers (SEEBURG acoustic

line GmbH) driven by a Sonible d:24 multi-channel amplifier (Sonible GmbH). These loud-

speakers were arranged to form a semi-circular array with a radius equal to 1.4 m in a small

enclosure measuring 3×2.6 m, having a 60 dB-reverberation time of 200 ms. With this array,

13 sound sources radiating from equally-spaced horizontal angles of arrival were reproduced

across an egocentric scene spanning between −90˚ and + 90˚, with angles equal to 15˚ between

each pair of adjacent loudspeakers.

A three-dimensional (3D) virtual environment (VE) was developed in the Unity3D pro-

gramming environment. An Oculus Quest 2 HMD, including the Oculus Touch hand control-

lers (Meta Platforms Technologies Ireland Limited, Dublin, Ireland), was employed to

reproduce the visual scene. The HMD tracks the 3D position of the head with submillimeter

precision [28]. The four-valued quaternion representing the orientation of the head in the 3D

scene had a precision of ±1˚ at 20 Hz sampling rate [29]. The data from the HMD were

received via the mqtt protocol [30] running on a 2.4 GHz Wi-Fi connection by an mqtt broker

as a Docker container (Docker, Inc.). From here, data were sent to a custom client app, allow-

ing the experimenter to monitor head tracking and hand pointing and to check whether the

connection between the Oculus and the computer was constantly up and running. A Max

(Cycling ’74) real-time sound synthesis patch running on the same computer was used to

reproduce the auditory scene at runtime. Sounds with 16-bit resolution at 44.1 kHz sampling

frequency were sent to the loudspeakers by a MADIface USB 2.0 Audio Interface (RME

GmbH).

A seat whose height could be adjusted by the experimenter was placed on the focal point of

the semi-circular array so that the head was distant 1.4 m from the speakers at elevation zero.

The experimenter aligned each virtual source to the corresponding loudspeaker by aiming at

each speaker from the seat and then reading the angle displayed by the client app. This angle

defined the target angle. The angular resolution of the pointer was set to 1 degree, based on the

Oculus controller accuracy rotation found in the literature [31].

Stimuli

The acoustic stimulus consisted of pulsated pink noise, with each burst lasting 200 ms and

completed with a 100 ms linear onset and a 100 ms linear decay. Adjacent noise bursts were

separated by 200 ms of silence. This acoustic stimulus has been selected because normal listen-

ers localize it easily; it has a rich broadband spectrum [32]. Furthermore, it provides a periodic

temporal envelope enabling listeners to capture the binaural cues relevant to spatial hearing.

The pulsated stimulus lasted until a participant produced a response. It was presented at a
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sound pressure level (SPL) equal to 65 ± 1 dB, measured with a calibrated meter (XL2 Sound

Level Meter, NTi Audio). SPL was measured during setup by aligning the meter to the experi-

menter’s external ear while he was seated in the test focal point. The measurement was

repeated for each speaker on both ears.

Table 1. Age, cause of hearing impairment (GEN NO SDR: Non-syndromic hearing loss; SDR: Syndromic hearing loss; IEM: Inner ear malformation; ND: Not iden-

tified, other: Other causes), ear devices, and years of experience with the device for each child.

# Age (years) Cause Devices Experience (years)

Left Right Left Right

1 7 Other Cochlear CI532

Kanso 2

Cochlear CI532

Kanso 2

4 5

2 14 GEN

NO SDR

Cochlear CI532

CP1000

Cochlear CI532

CP910

5 5

3 14 GEN

NO SDR

Cochlear CI532

CP1000

Cochlear CI532

CP1000

12 2

4 8 GEN

NO SDR

Cochlear CI532

Kanso

Cochlear CI512

CP910

5 7

5 6 IEM MED-EL

SYNCHRONY SONNET

MED-EL

SYNCHRONY SONNET

5 5

6 9 SDR Cochlear CI532

CP910

Cochlear CI532

CP910

6 8

7 12 ND Cochlear CI24RE

(CA) CP1000

Cochlear CI512

CE CP910

10 6

8 14 Other Cochlear CI512

CP1000

Cochlear CI24RE

(CA) CP1000

7 8

9 9 GEN

NO SDR

Cochlear CI512

CP910

Cochlear CI512

CP910

6 8

10 15 SDR HA Beltone

Legend 17

HA Beltone

Legend 17

6 6

11 9 Other HA Phonak

Sky B70-P

HA Phonak

Sky B70-P

4 4

12 8 SDR HA Ampli

EnergyB 3 P R+

HA Ampli

EnergyB 3 P R+

5 5

13 13 ND HA Beltone

Legend 17

HA Beltone

Legend 17

4 4

14 17 GEN

NO SDR

HA ReSound

Linx 3D 767

HA ReSound

Linx 3D 767

7 7

15 12 SDR HA Beltone

Legend 17

HA Beltone

Legend 17

4 4

16 13 Other HA ReSound

Linx 3D 767

HA ReSound

Linx 3D 767

8 7

17 6 GEN

NO SDR

HA ReSound

Linx 3D 767

HA ReSound

Linx 3D 767

3 3

18 9 Other HA Oticon Opn

Play 1 MiniRITE

HA Oticon Opn

Play 1 MiniRITE

8 8

19 7 ND HA Oticon

Ria2 Pro M.R.

HA Oticon

Ria2 Pro M.R.

4 4

20 11 GEN

NO SDR

HA Resound

Linx 3D 767

HA Resound

Linx 3D 767

4 4

21 7 Other HA Phonak

Sky B70-P

HA Phonak

Sky B70-P

1 1

22 10 GEN

NO SDR

HA Phonak

Audéo Paradise 90

HA Phonak

Audéo Paradise 90

6 6

https://doi.org/10.1371/journal.pone.0312073.t001
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Procedure

Before each session, the seat’s height was adjusted to align the loudspeakers at the participant’s

ear level. Then, participants were instructed to use one controller with their dominant hand to

point toward the sound source position. At this point, they were invited to sit and wear the

HMD. The interpupillary distance was adjusted, and the real and virtual worlds were aligned

in the HMD through a spatial calibration procedure. Calibration was performed by asking

each participant to point to specific visual markers occupying a playground until the system

recorded every hit to a marker to mismatch with the corresponding loudspeaker by less than

1˚. The resulting calibration was loaded through the Oculus Guardian system.

During the task, participants were immersed in a VE consisting of a homogeneous land-

scape free of any absolute azimuth reference (see Fig 1). They were listening to sounds coming

from the loudspeakers and were in a condition to point to a guessed sound source position

with the controller in their hand. A beam was displayed to give participants visual feedback

about the pointing direction. Participants were not instructed to respond as soon as they heard

a sound nor informed that the stimuli came only from the frontal hemifield.

Before a test session started, participants completed a brief training session of five trials.

They were invited to take the time they needed to produce a response. Each trial began when

one loudspeaker started to reproduce a stimulus; concurrently, the system started to track the

participant’s head movement. It finished when a participant pulled the Oculus Touch trigger.

At this moment, the acoustic stimulus stopped. The system recorded the guessed angular posi-

tion and the trajectory of the participant’s head during the trial. After pausing for one second

in silence, a new trial began.

Before a test session started, participants completed a brief training session of five trials.

They were invited to take the time they needed to produce a response. Each trial began when

one loudspeaker started to reproduce a stimulus; concurrently, the system started to track the

Fig 1. The 3D scene with the beam pointing to a guessed sound source position.

https://doi.org/10.1371/journal.pone.0312073.g001
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participant’s head movement. It finished when a participant pulled the Oculus Touch trigger.

At this moment, the acoustic stimulus stopped; the system recorded the guessed angular posi-

tion and the trajectory of the participant’s head during the trial. After pausing for one second

without any acoustic stimuli, a new trial began.

Conditions

Each session included multiple test conditions: up to four for the HA listeners and three for

the CI listeners. In each condition, the stimulus was presented 5 times from each loudspeaker

position across a sequence of 13 × 5 = 65 trials. The sequence was constrained to equate the

number of target position shifts alternating leftward and rightward. Every participant received

a randomly rotated version of this constrained sequence in such a way that our listeners com-

pleted a random module of a series of angular arcs in a test session. To this end, the angular

position forming the sequence tail was pasted to the sequence head, and later, the first trial was

removed from the analysis. We deliberately chose not to reset the participant’s head to a start-

ing position after each trial since the literature reports that interruptions decrease performance

in individuals who are cognitively engaged in a demanding task [33]. Considering the age of

our population we favored engagement, by letting participants keep focus on the pointing task.

Each participant performed the task first with both devices turned on (“ON”), then with

one device turned on and one off (“L” for the left device turned on, or “R” for the right device

turned on, respectively) by randomly starting with either the left or right ear, and finally with

both devices turned off (“NO”). The ON condition was presented first during each test session

because it provided an everyday listening context to which participants were accustomed and

confident. The NO condition was omitted if a patient’s pure tone average threshold in the fre-

quency range [0.5-4] kHz was above the stimulus level used for the test. For this reason, only

nine HA listeners completed the NO condition. Five HA listeners could not complete the L

and R conditions either since their session had to be stopped immediately as they reported

annoyance or fatigue to the experimenter. In the end, four HA listeners completed the whole

session in all four conditions; four completed only the ON, L, and R conditions, and five com-

pleted only the ON and NO conditions. Conversely, CI listeners completed the ON, L, and R

conditions. We analyzed only sessions including the complete set of 65 trials, except seven ses-

sions that were completed by CI listeners (two in both the R and L conditions, one in the R

condition, one in the L condition, and one in the ON condition), each missing one trial that

was not recorded due to a technical problem.

Data analysis

From the 3D array of the positions and the 4D quaternion, we computed the difference

between the target angle and head orientation angle when a response was produced (head rota-
tion) and the total distance covered by the head during each trial (head distance). The latter has

already been used to measure head dynamism in studies examining spontaneous actions dur-

ing music listening [34]. The signed error was computed as the difference between the target

and the pointed angle [35]. From it, we computed the unsigned error as the absolute value of

the signed error. While the signed error indicated angular bias across repeated trials (e.g., the

tendency to shift leftward or rightward), the unsigned error quantified overall accuracy. In the

following, we will name the signed error as bias and the unsigned error as accuracy. Although

the unsigned error is continuous by nature, its measurement to the sexagesimal degree had to

be analyzed with data bins 1 degree apart from each other due to the precision of the Oculus.

The experiment had a mixed design, where the factors were the two populations with HAs

and CIs and conditions, four for the former population and three for the latter. No participant
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with CIs had a hearing threshold sufficient for attending the NO condition; hence, seven sub-
sets were analyzed. As mentioned before, not all participants performed the test in every condi-

tion. The mean μ and standard deviation σ of the unsigned error were computed for each

subset. Trials resulting in unsigned errors larger than three standard deviations above the

mean deviation per target angle were considered outliers and removed from the respective

subset [36]. Exclusion of the outliers is a common procedure in sound localization studies [23,

35]. In our case, the outliers were finally 79 out of 4218 trials, i.e., 1.87%. A wide variance in

the data was noted during the training sessions, especially in terms of localization accuracy by

the CI listeners. As in other studies [16], this variance was mapped on a logarithmic scale, in

such a way as to de-emphasize larger variations. The median of each participant’s five repeated

measurements was computed for each loudspeaker position. It is reasonable to assume that

adult listeners with NH responses are normally distributed because they are likely stable and

consistent across positions [37]. The localization of a specific loudspeaker position in children

who experienced auditory deprivation before being bilaterally implanted is less likely to follow

a normal distribution [38]. Since our subsets often violated the assumption of a normal distri-

bution of their residuals, linear mixed-effects models were not chosen for the analysis.

The analysis first compared each experimental variable of the two populations in the ON

condition. Then, the other conditions were analyzed separately for each population. The data

were hierarchical; they were aggregated via the median of all positions per participant and con-

dition; moreover, they were divided by position and compared by condition. A Shapiro-Wilk

test was performed to check if data residuals followed a normal distribution [39]. Given the

limited sample size in some cases, the normality of the residuals was also tested with the

Anderson-Darling test [40]; we did not report the results of the latter test because they rarely

disagreed with the Shapiro-Wilk test results (14 cases over 504); when they did, we did not

find statistical significance with any test of the subsequent analysis. If the samples came from

the same population and the normality assumption was violated, a Friedman test [41] was per-

formed, followed by a post-hoc Nemenyi test. The test employs the critical difference (CD) sta-

tistics and, according to Nemenyi [42], was developed to account for a family-wise error,

hence being already a conservative test. For this reason, we did not apply p-adjustments. If the

residuals from the same population followed a normal distribution, sphericity was checked

with a Mauchly test [43]. If the sphericity hypothesis was met, we checked the equality of the

means through an RM-ANOVA and performed a post-hoc analysis with a t-test; if sphericity

was violated, the same tests were performed, but with a Greenhouse-Geisser correction of the

p-value. If the samples came from two populations in the ON conditions, we checked the nor-

mality with a Shapiro-Wilk test and the homoscedasticity with a Levene test [44]. If the nor-

mality and homoscedasticity assumptions were met, we compared them with a t-test. If the

latter was violated, a Welch t-test was employed. Otherwise, if evidence of a violation of nor-

mal distribution was found, a Mann-Whitney U test was used to compare the distribution

with residuals with similar variances; diversely, a Yuen test [45] was used. The effect size was

reported for every test; the partial η2 was computed for the repeated measures ANOVA and

the Hedges’ g for the pairwise tests. An effect size (named W) was estimated as in Tomczak

[46] for the non-parametric Friedman test. Hedges’ g was computed from Cohen’s d using an

average variance if the samples came from the same population. A correlation analysis for each

condition’s data was performed using Spearman’s ρ correlation coefficient since we did not

assume a normal distribution of the variables. All tests were two-tailed. A Bonferroni correc-

tion was applied for every multiple comparison, except for the Nemenyi test. Statistical signifi-

cance was set at α = 0.05. The analysis was made using the Python packages Pingouin [47] and

Scipy [48] and the data visualization libraries Seaborn [49] and Matplotlib [50].

PLOS ONE Previous binaural experience supports compensatory strategies in hearing-impaired children’s localization

PLOS ONE | https://doi.org/10.1371/journal.pone.0312073 December 5, 2024 8 / 25

https://doi.org/10.1371/journal.pone.0312073


Results

Medians of signed error, unsigned error, head rotation, and distance are graphically summa-

rized in Figs 2 and 3 for each test condition, aggregated by target and participant. In the ON

condition, the CI listeners’ median of the unsigned error was significantly worse than that of

the HA listeners. The CI listeners’ medians of the signed error were the farthest from zero in

the respective conditions. The signed error in the asymmetrical hearing conditions exhibited

the largest variance. The second largest variance was found in the HA R condition, where the

Fig 2. Medians across conditions of signed and unsigned errors.

https://doi.org/10.1371/journal.pone.0312073.g002
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median was the third farthest from zero. The medians of the signed error in listeners with both

HAs turned on and off were comparable to the mean performance of young NH listeners in

the same mixed environment [24] (μ = 0.60˚, σ = 5.26). The median of the unsigned error in

HA listeners with both devices turned on was similar to the average performance of NH listen-

ers [24] (μ = 4.15˚, σ = 3.28); CI listeners did not fall within this range even in the CI ON con-

dition. The asymmetric hearing condition increased the unsigned error of the former

Fig 3. Medians across conditions of head rotation and head distance.

https://doi.org/10.1371/journal.pone.0312073.g003
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population by more than four times, while it increased for the latter population by three times.

The accuracy in the HA NO condition was the second-best.

Fig 3 shows that asymmetrical hearing leads to the highest head rotation variances. HA lis-

teners had the head rotation median closest to zero when both devices were turned on. Com-

pared to HA listeners, the head distance covered by CI listeners in every condition had larger

variances and medians. Moreover, even if the CI ON condition had a smaller median, the CI

listeners’ head distance variances were similar. The HA ON condition exhibited the lowest

head dynamism. Compared to NH listeners [24] (μ = 0.13 m), HA listeners (μ = 0.22 m) and

CI listeners (μ = 0.28 m) increased head movement.

The statistical analysis first considered the differences between CI and HA populations in

the bilateral listening condition and then the differences between conditions for each popula-

tion separately. The results with statistical significance are presented in Table 2. The statistical

analysis supported these observations: the accuracies of the two populations in the ON condi-

tion were different, and similarly were the head distances. Within each population, the ON

condition led to significantly better accuracy than the asymmetric conditions, except for the

HA R condition, which was not found to be statistically different.

The data of the two populations across loudspeaker positions in the ON condition are dis-

played in Fig 4, and the results having statistical significance are presented in Table 3. For

eight targets out of thirteen, the HA listeners’ signed error variances were smaller than the CI

listeners’, but only at −60˚ were the medians significantly different. The HA listeners’ unsigned

error minima, medians, and maxima were always smaller than the corresponding CI listeners’

ones, except for the 30˚ and 90˚ maxima. The difference between the unsigned error’s medians

of the two populations was always statistically significant, except for ±90˚. The peak of the

unsigned error of the CI listeners occurred at 15˚, while the HA listeners’ one was located at

90˚.

Table 2. Comparison among medians of the variables across condition ON, conditions factorized to CI listeners and HA listeners. Only statistically significant results

are illustrated.

Variable Conditions Normality Sphericity Homoscedasticity Statistical test Post-hoc analysis

Unsigned error CI ON

HA ON

CI ON, True:

W = 0.90, p = 0.25

HA ON, False:

W = 0.83, p = 0.18 � 10−1

- True:

W = 0.80,

p = 0.38,

df = (1, 20)

Mann-Whitney:

U = 106.0,

p = 0.16 � 10−2,

g = 1.81

-

CI L

CI ON

CI R

CI L, True:

W = 0.89, p = 0.18

CI ON, True:

W = 0.90, p = 0.25

CI R, True:

W = 0.95, p = 0.64

True:

W = 0.96,

p = 0.87,

df = 2

- RM ANOVA:

F = 21.97,

p = 0.26 � 10−4,

df = (2, 16),

Z2
p ¼ 0:73

CI ON—CI L:

T = −5.34,

p = 0.21 � 10−2,

g = −1.89

CI ON—CI R:

T = −5.61,

p = 0.15�10−2,

g = −2.56

HA L

HA ON

HA NO

HA R

HA L, True:

W = 0.86, p = 0.11

HA ON, False:

W = 0.83, p = 0.18 � 10−1

HA NO, True:

W = 0.89, p = 0.19

HA R, False:

W = 0.81, p = 0.04

- - Friedman:

F = 9.86,

p = 0.20 � 10−1,

df = 3,

W = 0.21

HA L—HA ON:

CD = 0.95,

p = 0.46 � 10−1,

g = 1.53

Head distance CI ON

HA ON

CI ON, False:

W = 0.83, p = 0.46 � 10−1

HA ON, False:

W = 0.79, p = 0.48 � 10−2

- True:

W = 1.30,

p = 0.27,

df = (1, 20)

Mann-Whitney:

U = 89.0,

p = 0.45 � 10−1,

g = 0.77

-

https://doi.org/10.1371/journal.pone.0312073.t002
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The HA listeners’ head distance medians were always smaller than the CI listeners’ ones,

but only for three target positions were they significantly different.

The data divided by population in each condition are illustrated in Figs 5 and 6. The statisti-

cally significant results are shown in Tables 4 and 5. The asymmetrical hearing conditions

worsened CI listeners’ accuracy at every target position, except for ±15˚. CI R’s accuracy was

Fig 4. Signed errors, unsigned errors, head rotations, and distances of CI and HA listeners in the ON condition across positions. The data are

normalized. Filled circles represent the HA ON medians, empty circles represent the HA ON minima and maxima. Squares represent the CI ON medians,

and diamonds represent the CI ON minima and maxima.

https://doi.org/10.1371/journal.pone.0312073.g004
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significantly worse than CI ON’s everywhere, except for ±15˚, 45˚, 75˚, and 90˚. CI L’s accu-

racy was significantly worse than CI ON’s at −90˚, 0˚, and every target position in the right

hemifield, except for 15˚.

The asymmetric hearing led to larger unsigned error medians and maxima for the HA lis-

teners; a significant difference was found only at −15˚ between the HA R and HA ON condi-

tions. The HA listeners’ head distance maxima in asymmetrical hearing conditions were not

always the largest, and medians were never significantly different.

The correlations between the experimental variables and individual age in every condition

can be inspected from the heat maps in Figs 7 and 8.

When both CIs were turned on, the head distance correlated positively with the unsigned

error. When only one CI was turned on, the head rotation and the signed error correlated with

the unsigned error, positively when the left CI was turned off, and negatively when the right CI

was turned off. In the asymmetrical conditions, the head distance correlated with the signed

error positively when the right CI was turned off, and negatively when the left CI was turned

off.

Considering the correlations in HA listeners, age correlated positively with accuracy in

every condition, except when the left HA was turned off. Also for the HA listeners, head dis-

tance correlated positively with the unsigned error when both devices were turned on. Finally,

Table 3. Statistical results of the variables of CI and HA listeners in the ON condition across positions. Only statistically significant results are illustrated.

Variable Target Normality Homoscedasticity Statistical test

Signed error −60˚ CI ON, True: W = 0.91, p = 0.34

HA ON, True: W = 0.96, p = 0.81

False: W = 6.72,

p = 0.17 � 10−1, df = (1, 20)

Welch: T = −2.34,

p = 0.42 � 10−1, g = −1.13

Unsigned error −75˚ CI ON, True: W = 0.95, p = 0.65

HA ON, True: W = 0.97, p = 0.90

True: W = 0.04,

p = 0.84, df = (1, 20)

t-test: T = 3.63,

p = 0.20 � 10−2, g = 1.51

−60˚ CI ON, True: W = 0.93, p = 0.47

HA ON, True: W = 0.96, p = 0.69

True: W = 0.10,

p = 0.75, df = (1, 20)

t-test: T = 2.83,

p = 0.13 � 10−1, g = 1.23

−45˚ CI ON, False: W = 0.74, p = 0.44 � 10−2

HA ON, True: W = 0.93, p = 0.33

True: W = 0.13,

p = 0.73, df = (1, 20)

Mann-Whitney: U = 97.0,

p = 0.11 � 10−1, g = 1.14

−30˚ CI ON, True: W = 0.98, p = 0.94

HA ON, True: W = 0.99, p = 0.99

True: W = 0.21 � 10−3,

p = 0.99, df = (1, 20)

t-test: T = 2.30,

p = 0.03, g = 0.96

−15˚ CI ON, True: W = 0.84, p = 0.37

HA ON, True: W = 0.92, p = 0.25

True: W = 0.84,

p = 0.37, df = (1, 20)

t-test: T = 2.19,

p = 0.45 � 10−1, g = 0.95

0˚ CI ON, False: W = 0.83, p = 0.47 � 10−1

HA ON, True: W = 0.95, p = 0.54

True: W = 0.22,

p = 0.65, df = (1, 20)

Mann-Whitney: U = 93.0,

p = 0.23 � 10−1, g = 1.03

15˚ CI ON, True: W = 0.89, p = 0.21

HA ON, True: W = 0.93, p = 0.35

True: W = 0.13,

p = 0.72, df = (1, 20)

t-test: T = 4.30,

p = 0.44 � 10−3, g = 1.78

30˚ CI ON, True: W = 0.93, p = 0.51

HA ON, True: W = 0.90, p = 0.12

True: W = 0.99,

p = 0.33, df = (1, 20)

t-test: T = 3.39,

p = 0.30 � 10−2, g = 1.29

45˚ CI ON, True: W = 0.96, p = 0.80

HA ON, True: W = 0.96, p = 0.77

True: W = 0.37,

p = 0.55, df = (1, 20)

t-test: T = 3.44,

p = 0.40 � 10−2, g = 1.51

60˚ CI ON, True: W = 0.88, p = 0.16

HA ON, True: W = 0.93, p = 0.39

True: W = 0.01,

p = 0.93, df = (1, 20)

t-test: T = 2.32,

p = 0.32 � 10−1, g = 0.93

75˚ CI ON, True: W = 0.94, p = 0.63

HA ON, True: W = 0.95, p = 0.59

True: W = 0.44,

p = 0.52, df = (1, 20)

t-test: T = 2.66,

p = 0.15 � 10−1, g = 1.05

Head distance −75˚ CI ON, False: W = 0.77, p = 0.83 � 10−2

HA ON, False: W = 0.64, p = 0.15 � 10−3
True: W = 0.01,

p = 0.93, df = (1, 20)

Mann-Whitney: U = 95.0,

p = 0.16 � 10−1, g = 0.67

−45˚ CI ON, True: W = 0.93, p = 0.45

HA ON, False: W = 0.79, p = 0.59 � 10−2
True: W = 4.26,

p = 0.52 � 10−1, df = (1, 20)

Mann-Whitney: U = 94.0,

p = 0.19 � 10−1, g = 1.14

−30˚ CI ON, False: W = 0.80, p = 0.02

HA ON, False: W = 0.71, p = 0.70 � 10−3
True: W = 1.75,

p = 0.20, df = (1, 20)

Mann-Whitney: U = 95.0,

p = 0.16 � 10−1, g = 0.99

https://doi.org/10.1371/journal.pone.0312073.t003
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Fig 5. Signed errors, unsigned errors, head rotations, and distances of CI listeners in every condition across positions. The data are normalized. Circles

represent the medians, triangles pointing down represent maxima, and triangles pointing up represent minima. Squares represent the CI ON medians, and

diamonds represent the CI ON minima and maxima. Pluses represent the CI L medians, and xs represent the CI L minima and maxima. Hexagons

represent the CI R medians. When rotated, they represent the CI R minima and maxima.

https://doi.org/10.1371/journal.pone.0312073.g005
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age correlated negatively with the head distance when both devices were turned on, and posi-

tively in both the asymmetrical conditions.

Discussion

Here, we summarize the main findings that emerged from the results:

Fig 6. Signed errors, unsigned errors, head rotations, and distances of HA listeners in every condition across positions. The data are normalized. Filled

circles represent the HA ON medians, and empty circles represent the HA ON minima and maxima. Pluses represent the HA L medians, and xs represent

the HA L minima and maxima. Hexagons represent the HA R medians. When rotated, they represent the HA R minima and maxima. Triangles pointing

up represent the HA NO medians, and triangles pointing up represent the HA NO minima and maxima.

https://doi.org/10.1371/journal.pone.0312073.g006
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Table 4. Statistical results of the variables of CI listeners in every condition across positions. Only statistically significant results are illustrated.

Variable Target Normality Sphericity Statistical test Post-hoc analysis

Signed error 75˚ CI L, True: W = 0.95, p = 0.66

CI ON, True: W = 0.97, p = 0.89

CI R, True: W = 0.87, p = 0.12

True: W = 0.56,

p = 0.13, df = 2

RM ANOVA: F = 4.26,

p = 0.33 � 10−1,

df = (2, 16), Z2
p ¼ 0:35

p> α

Unsigned error −90˚ CI L, True: W = 0.95, p = 0.69

CI ON, True: W = 0.90, p = 0.26

CI R, True: W = 0.94, p = 0.55

True: W = 0.48,

p = 0.08, df = 2

RM ANOVA: F = 6.92,

p = 0.68 � 10−2,

df = (2, 16), Z2
p ¼ 0:46

CI ON—CI L: T = −4.00,

p = 0.12 � 10−1, g = −1.43

CI ON—CI R: T = −3.91,

p = 0.13 � 10−1, g = −1.42

−75˚ CI L, True: W = 0.94, p = 0.58

CI ON, True: W = 0.95, p = 0.65

CI R, True: W = 0.91, p = 0.35

True: W = 0.88,

p = 0.63, df = 2

RM ANOVA: F = 11.95,

p = 0.67 � 10−3,

df = (2, 16), Z2
p ¼ 0:60

CI ON—CI R: T = −5.14,

p = 0.27 � 10−2, g = −2.42

−60˚ CI L, True: W = 0.87, p = 0.12

CI ON, True: W = 0.93, p = 0.47

CI R, True: W = 0.91, p = 0.33

True: W = 0.82,

p = 0.50, df = 2

RM ANOVA: F = 14.53,

p = 0.25 � 10−3,

df = (2, 16), Z2
p ¼ 0:64

CI ON—CI R: T = −6.70,

p = 0.46 � 10−3, g = −2.81

−45˚ CI L, True: W = 0.93, p = 0.51

CI ON, False: W = 0.74, p = 0.44 � 10−2

CI R, True: W = 0.96, p = 0.84

- Friedman: F = 6.22,

p = 0.45 � 10−1,

df = 2, W = 0.03

CI ON—CI R: CD = 0.95,

p = 0.48 � 10−1, g = −1.18

−30˚ CI L, True: W = 0.96, p = 0.83

CI ON, True: W = 0.98, p = 0.94

CI R, True: W = 0.96, p = 0.80

True: W = 0.98,

p = 0.93, df = 2

RM ANOVA: F = 5.92,

p = 0.12 � 10−1,

df = (2, 16), Z2
p ¼ 0:44

CI ON—CI R: T = −3.64,

p = 0.20 � 10−1, g = −1.52

−15˚ CI L, True: W = 0.94, p = 0.53

CI ON, True: W = 0.89, p = 0.22

CI R, True: W = 0.91, p = 0.34

True: W = 0.89,

p = 0.67, df = 2

RM ANOVA: F = 4.63,

p = 0.26 � 10−1,

df = (2, 16), Z2
p ¼ 0:37

p> α

0˚ CI L, True: W = 0.88, p = 0.17

CI ON, False: W = 0.83, p = 0.47 � 10−1

CI R, True: W = 0.90, p = 0.24

- Friedman: F = 10.67,

p = 0.26 � 10−1,

df = 2, W = 0.05

CI ON—CI L: CD = 0.99,

p = 0.13 � 10−1, g = −1.18

CI ON—CI R: CD = 0.99,

p = 0.13 � 10−1, g = −2.14

30˚ CI L, True: W = 0.91, p = 0.33

CI ON, True: W = 0.93, p = 0.51

CI R, True: W = 0.98, p = 0.96

True: W = 0.73,

p = 0.33, df = 2

RM ANOVA: F = 19.03,

p = 0.59 � 10−4,

df = (2, 16), Z2
p ¼ 0:70

CI ON—CI L: T = −4.59,

p = 0.60 � 10−2, g = −1.88

CI ON—CI R: T = −4.91,

p = 0.36 � 10−2, g = −1.88

45˚ CI L, True: W = 0.87, p = 0.11

CI ON, True: W = 0.96, p = 0.80

CI R, True: W = 0.96, p = 0.85

True: W = 0.92,

p = 0.76, df = 2

RM ANOVA: F = 12.24,

p = 0.60 � 10−3,

df = (2, 16), Z2
p ¼ 0:60

CI ON—CI L: T = −5.02,

p = 0.31 � 10−2, g = −1.93

60˚ CI L, True: W = 0.93, p = 0.47

CI ON, True: W = 0.88, p = 0.16

CI R, True: W = 0.92, p = 0.40

True: W = 0.55,

p = 0.12, df = 2

RM ANOVA: F = 10.91,

p = 0.10 � 10−2,

df = (2, 16), Z2
p ¼ 0:58

CI ON—CI L: T = −3.35,

p = 0.30 � 10−1, g = −1.38

CI ON—CI R: T = −4.09,

p = 0.10 � 10−1, g = −1.67

75˚ CI L, True: W = 0.88, p = 0.17

CI ON, True: W = 0.94, p = 0.63

CI R, True: W = 0.89, p = 0.21

True: W = 0.90,

p = 0.68, df = 2

RM ANOVA: F = 11.90,

p = 0.68 � 10−3,

df = (2, 16), Z2
p ¼ 0:60

CI ON—CI L: T = −5.15,

p = 0.26 � 10−2, g = −1.75

90˚ CI L, True: W = 0.87, p = 0.12

CI ON, False: W = 0.82, p = 0.03

CI R, True: W = 0.93, p = 0.51

- Friedman: F = 8.00,

p = 0.18 � 10−1,

df = 2, W = 0.04

CI ON—CI L: CD = 0.99,

p = 0.13 � 10−1, g = −1.80

Head rotation 60˚ CI L, True: W = 0.93, p = 0.46

CI ON, True: W = 0.91, p = 0.29

CI R, True: W = 0.92, p = 0.43

True: W = 0.65,

p = 0.22, df = 2

RM ANOVA: F = 3.73,

p = 0.47 � 10−1,

df = (2, 16), Z2
p ¼ 0:32

p> α

90˚ CI L, True: W = 0.96, p = 0.81

CI ON, True: W = 0.92, p = 0.43

CI R, True: W = 0.93, p = 0.49

True: W = 0.99,

p = 0.98, df = 2

RM ANOVA: F = 6.28,

p = 0.97 � 10−2,

df = (2, 16), Z2
p ¼ 0:44

CI L—CI R: T = −3.53,

p = 0.23 � 10−2, g = −1.63

Head distance 0˚ CI L, False: W = 0.77, p = 0.88 � 10−2

CI ON, True: W = 0.87, p = 0.12

CI R, False: W = 0.65, p = 0.40 � 10−3

- Friedman: F = 11.56,

p = 0.31 � 10−2,

df = 2, W = 0.05

CI ON—CI L: CD = 1.00,

p = 0.28 � 10−2, g = −0.93

CI L—CI R: CD = 0.95,

p = 0.48 � 10−1, g = 0.49

https://doi.org/10.1371/journal.pone.0312073.t004
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• CI listeners did not process available localization cues as effectively as HA listeners did. With

bilateral devices on, CI children performed worse than HA children across medians and

overall, except for the most eccentric target locations.

• CI children were more dynamic than HA children with bilateral devices on. CI children’s

head movements presented a large variance in every condition, indicating uncertainty and

Table 5. Statistical results of the variables of HA listeners in every condition across positions. Only statistically significant results are illustrated.

Variable Target Normality Sphericity Statistical test Post-hoc analysis

Signed error 90˚ HA L, True: W = 0.94, p = 0.59

HA ON, False: W = 0.82, p = 0.12 � 10−1

HA NO, True: W = 0.86, p = 0.10

HA R, True: W = 0.94, p = 0.56

- Friedman: F = 8.10,

p = 0.44 � 10−1,

df = 2, W = 0.17

p> α

Unsigned error −30˚ HA L, True: W = 0.87, p = 0.15

HA ON, True: W = 0.99, p = 1.00

HA NO, True: W = 0.88, p = 0.15

HA R, True: W = 0.94, p = 0.61

True: W = 0.07,

p = 0.54, df = 5

df = (3, 9), Z2
p ¼ 0:57

RM ANOVA: F = 3.96,

p = 0.47 � 10−1,

p> α

−15˚ HA L, True: W = 0.96, p = 0.85

HA ON, True: W = 0.92, p = 0.25

HA NO, True: W = 0.91, p = 0.31

- Friedman: F = 10.23,

p = 0.17 � 10−1,

df = 3, W = 0.21

HA R—HA ON:

CD = 0.95,

p = 0.46 � 10−1,

g = 1.07

15˚ HA L, True: W = 0.91, p = 0.33

HA ON, True: W = 0.93, p = 0.35

HA NO, True: W = 0.88, p = 0.15

HA R, True: W = 0.94, p = 0.64

True: W = 0.00,

p = 0.10, df = 5

RM ANOVA: F = 3.97,

p = 0.47 � 10−1,

df = (3, 9), Z2
p ¼ 0:35

p> α

30˚ HA L, True: W = 0.86, p = 0.12

HA ON, True: W = 0.90, p = 0.12

HA NO, True: W = 0.84, p = 0.05

HA R, True: W = 0.93, p = 0.49

True: W = 0.24,

p = 0.82, df = 5

RM ANOVA: F = 5.68,

p = 0.18 � 10−1,

df = (3, 9), Z2
p ¼ 0:65

p> α

Head rotation 30˚ HA L, True: W = 0.86, p = 0.12

HA ON, True: W = 0.97, p = 0.90

HA NO, True: W = 0.89, p = 0.19

HA R, True: W = 0.82, p = 0.05

True: W = 1.62 � 106,

p = 1.00, df = 5

RM ANOVA: F = 7.31,

p = 0.87 � 10−2,

df = (3, 9), Z2
p ¼ 0:71

HA NO—HA ON:

T = −8.59,

p = 0.20 � 10−1,

g = −0.65

75˚ HA L, True: W = 0.95, p = 0.77

HA ON, True: W = 0.96, p = 0.76

HA NO, True: W = 0.96, p = 0.82

HA R, True: W = 0.93, p = 0.51

True: W = 8.40 � 101,

p = 1.00, df = 5

RM ANOVA: F = 4.09,

p = 0.87 � 10−2,

df = (3, 9), Z2
p ¼ 0:58

HA L—HA ON:

T = −10.54,

p = 0.11 � 10−1,

g = −1.43

https://doi.org/10.1371/journal.pone.0312073.t005

Fig 7. Heat maps reporting the correlations occurring in each condition of the CI listeners. Each asterisk indicates the statistical significance of the

correlation. UE stands for unsigned error, HD for head distance, SE for signed error, and HR for head rotation.

https://doi.org/10.1371/journal.pone.0312073.g007
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difficulty in localization. The correlation analysis suggested active listening did not improve

CI children’s localization. Children with HAs exploited their residual and previous binaural

ability in each hearing condition. Asymmetric hearing conditions impaired the performance

of children with CIs much more than children with HAs.

Fig 8. Heat maps reporting the correlations occurring in each condition of the HA listeners. Each asterisk indicates the statistical significance of the

correlation. UE stands for unsigned error, HD for head distance, SE for signed error, and HR for head rotation.

https://doi.org/10.1371/journal.pone.0312073.g008
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• Children with HAs exploited their residual and previous binaural ability in each hearing

condition. Asymmetric hearing conditions impaired the performance of children with CIs

much more than that of children with HAs.

• CI children’s localization strategy was based on intensity cues. In asymmetric hearing condi-

tions, CI listeners aimed to maximize the intensity at the aided ear; head rotation correlated

with the accuracy, showing a clear tendency to turn that ear towards the sound source. Con-

versely, when the target was in the hemifield of the assisted ear, symmetric and monolateral

conditions did not result in significantly different accuracy.

• Age correlated positively with accuracy in children with HAs in three hearing conditions.

This correlation suggested that HA children acquired spatial hearing abilities through binau-

ral experiences. Asymmetric hearing conditions affected head dynamism in older HA indi-

viduals; this sub-group, hence, likely made proficient use of active listening.

Bilateral hearing: CI head movements and HA binaural skills

The bias and accuracy medians represented by the signed and unsigned error boxplots in Fig 2

ranked as expected among populations [51]. CI listeners’ accuracy with both CIs turned on

(median: 18.4˚) was consistent with previous research, where absolute azimuth errors in the

frontal space did not exceed 39.4˚ [38, 52]. Nevertheless, our tests uncovered higher variances

and numbers of outliers, probably because no visual cues were available to support localiza-

tion, unlike previous reports that used a touch screen for response validation, and in which

loudspeakers were visible [38, 52]. CI listeners’ accuracy was significantly worse than HA lis-

teners’, both medians and across positions; the difference was not statistically significant at the

most eccentric positions, where binaural ability was less necessary. Moreover, the CI listeners’

unsigned error peak was reached in correspondence with a central target position, i.e., 15˚,

where the effect size of the difference with the HA listeners’ unsigned error was the highest

(g = 1.78). These results confirmed the poor ITD sensitivity of CI listeners [53, 54], probably

due to two main reasons: the absence of auditory experience during an early critical period

[55], and the pulse rate at which CIs operate [56]. CI processors generally run at fixed rates

between 900 and 3700 pulses per second (pps) [57]; faster temporal sampling of speech enve-

lopes might improve speech recognition in CI users. Nevertheless, even 600 pps could be “too

fast for ITD,” given the poor performance of CI listeners at rates of 300 pps or above [56].

An inspection of bias and accuracy revealed that the signed and unsigned errors in HA lis-

teners performing localization with both devices turned off were close to the ones made with

the devices turned on: the medians of the accuracy were 11.4˚ and 6.0˚, respectively. The bene-

fit of HAs to spatial hearing was found to be significant in old adults, even if poorer than pre-

dicted [15], and was confirmed in children. However, it cannot be generalized as not being

statistically significant. The median of the angular bias improved when both devices were

turned off (−1.0˚) rather than on (2.0˚), even if not significantly. This result has already been

found in some studies [58]. It is interpretable as a residual binaural sensitivity of HA listeners,

who can achieve good localization performance without device support. The importance of a

prelingual binaural experience is supported by the strong correlation between age and accu-

racy in HA listeners when both their devices were turned on or both are turned off. Older lis-

teners consolidated a longer experience, and relied on it for spatial hearing; in the HA ON

condition, these individuals did not rely on dynamic cues produced by head movements, as

the negative correlation between the head distance and the age suggested.
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Concerning motor activity during the task in the ON condition, the results in Table 2 about

head distances show that CI listeners were especially active; the head distance covered by HA

listeners was significantly smaller. The positive correlation between head distance and

unsigned error in the CI ON, HA ON, and HA NO conditions can be interpreted as a sign of

uncertainty in localization [59]. Mueller et al. [60] found that head movements disturbed local-

ization, yet they instructed their participants to move or, conversely, keep their heads still

before attending to specific listening conditions. Head movements were spontaneous during

our task and may have been amplified when a target proved difficult to localize.

Asymmetrical hearing: CI intensity maximization and HA active search

compensatory strategies

The accuracy and angular bias of CI listeners were significantly impacted by asymmetric hear-

ing. The former decreased significantly, while the variance of the latter soared when one CI

was turned off. Both were indicators of uncertainty and difficulty in localization. Unsigned

errors increased at every target location except for ±15˚. Accuracy did not significantly deteri-

orate for a target positioned in the aided ear’s hemifield if the CI was turned off on the other

side. These findings suggested that CI children’s localization was mostly based on intensity

[16]; their strategies aimed at maximizing intensity in the aided ear. This hypothesis was sup-

ported by the significant correlation between head rotation and accuracy. When the assisted

ear pointed towards the source, the intensity was at its maximum, and the best performances

were obtained. As shown in Fig 2, angular bias leaned toward the aided ear in CI asymmetrical

conditions. CI children’s head distance seemed to mitigate the asymmetrical intensity. More-

over, it correlated positively with the head rotation when only the left CI was turned on, indi-

cating a search for the intensity peak at the left ear.

Even if the signed and unsigned error variances increased in both asymmetrical conditions,

the effect of asymmetrical hearing on the accuracy of HA listeners was way more limited. The

post-hoc analysis found significant differences only at 15˚ between the bilateral hearing condi-

tion and the condition with the left HA turned off, and between the medians of the former

condition and the one with the right HA turned off. Again, these two findings suggested that

having just one device turned on created confusion and increased difficulty in localization.

HA listeners compensated for the adverse condition more efficiently; the difference in accu-

racy was found at an almost frontal target position. Here, binaural differences are more subtle,

requiring greater sensitivity. Unlike CI listeners, HA children’s data in asymmetrical condi-

tions did not present a correlation between head rotation and unsigned error. This indicated

that they probably used residual binaurality for spatial hearing.

Fig 3 shows a general tendency for HA children to orient the right ear towards the source in

every condition. An advantage of the right ear in auditory processing has been firmly estab-

lished in decades of behavioral, electrophysiological, and neuroimaging research [61]. Even

the correlation between head rotation and unsigned error in the condition with both HAs

turned on can be read as an attitude to favor right-ear intensity maximization.

Bias and head rotation were positively correlated when only one device, CI or HA, was

turned on, indicating a tendency to couple the pointing gesture with head rotation under

asymmetric listening conditions. Our result extends the training-induced observed behavior

of the NH [62] to the HI.

Previous research found no relationship between head dynamism and age in children with

CIs [5], and our results support this. Children with HAs behaved differently. Head dynamism

correlated negatively with age in the ON condition. HA listeners who developed binaural sen-

sitivity behaved like the NH population, as they did not need to rely on dynamic cues elicited
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by head movement. They did so in asymmetric hearing conditions. Older HA listeners pro-

duced more pronounced head dynamism, as the positive correlation between head distance

and age showed. They faced localization cue disruptions with dynamical changes in binaural

cues, enabling a more reliable response in difficult hearing conditions [63]. The negative corre-

lation between unsigned error and age confirmed that they were also the most successful in

localization, at least when the right HA was turned off. Ultimately, the correlation with age

suggests that active listening is refined throughout life [5].

These findings could be exploited when planning specific interventions for diverse HI pedi-

atric populations. Children with HA must be assisted in acquiring binaural skills, not necessar-

ily by insisting on head movement or unilateral maximization of intensity, unless they are in

adverse hearing situations like speech-in-noise. The bilateral perception of children with CI

should be trained, and vice versa, by insisting on active search motor behavior that includes

unilateral training of even the weaker hemifield.

Spatial hearing investigations ask clinical research to take everyday listening into deeper

consideration. The current study highlighted how crucial it is to support more ecological sce-

narios so that active listening can be taken into account when assessing hearing ability. An

open research question is whether our results would be confirmed after the substitution of

noise bursts with the most informative sound messages we are exposed to during the day, that

is, speech. Although pink noise is a standard stimulus in the literature [24], Neuman et al. [51]

did not find differences in localization accuracy of speech and pink noise sources, suggesting

that the salient ILD cues are preserved by vocal messages. However, the processing algorithms

that an auditory device applies to pink noise in terms of signal compression, noise reduction,

and directional sensitivity remain generally unknown outside the manufacturing company. At

any rate, we remain non-committal about the effectiveness of an accurate rendering of ITDs

with CI because individuals who have not accumulated enough experience with these cues

may not be responsive as expected.

Conclusion

This study examined how children rehabilitated with bilateral hearing aids and bilateral

cochlear implants localized sounds in the anterior horizontal field with concealed visual cues.

Head movement and orientation were instrumental for spatial hearing, with different roles for

the two populations. Asymmetrical hearing causes the largest errors, particularly for cochlear

implant users. Children with bilateral cochlear implants showed more active listening than

children with bilateral hearing aids; nevertheless, their activity revealed uncertainty rather

than configuring as an additional resource. In the latter population, a significant correlation

was found between age and localization accuracy and between age and head movement. Lis-

teners with hearing aids and a longer binaural hearing experience actively searched the sound

source to face the disrupted binaural cues introduced by asymmetric hearing conditions. The

dominance of intensity cues was confirmed for the population with cochlear implants.

Hints regarding strategies based on level maximization at the better hearing ear have been

found in asymmetric listening conditions. The different reactions of the two populations to

the adverse conditions introduced by asymmetric hearing were analyzed. They revealed that

children with hearing aids can rely on richer binaural cues, localize through dynamic informa-

tion, and sharpen this ability over time. A quantitative analysis of active listening may pave the

way for new methodologies in auditory localization studies. They could objectively character-

ize the listeners’ spatial listening strategies based on their motor behavior in an ecological

acoustic environment. Furthermore, based on the positioning of the head-mounted devices

and their orientation angle when the target was hit, the data acquired during a test session
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might be used to train dynamic and adaptive algorithms enhancing the directionality of

cochlear implants and hearing aids.
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