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Abstract: We propose a method for computing the Lyapunov exponents of renewal equations (delay
equations of Volterra type) and of coupled systems of renewal and delay differential equations. The
method consists of the reformulation of the delay equation as an abstract differential equation, the
reduction of the latter to a system of ordinary differential equations via pseudospectral collocation
and the application of the standard discrete QR method. The effectiveness of the method is shown
experimentally and a MATLAB implementation is provided.
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1. Introduction

A delay equation is a functional equation consisting of “a rule for extending a function of time
towards the future on the basis of the (assumed to be) known past” [1]. A renewal equation (RE) is a
delay equation of Volterra type, i.e., the rule for extension prescribes the value of the unknown function
itself, instead of the value of its derivative, as in the case of delay differential equations (DDEs).

The goal of this work is to compute the (dominant) Lyapunov exponents (LEs) of REs and of cou-
pled systems of REs and DDEs (henceforth coupled equations). The usefulness of LEs for measuring
the asymptotic exponential behavior of solutions is well known; for example, they can be used to study
the average asymptotic stability of solutions, the insurgence of chaotic dynamics and the effects of
perturbations on the system, as well as to estimate the entropy or the dimension of attractors.

As for DDEs, recent methods for computing the LEs have been proposed, particularly [2] and [3],
which use two different approaches (for other methods, see the references in the cited works).

In [3] the DDE is reformulated as an abstract differential equation and a pseudospectral discretiza-
tion is applied [4], yielding a system of ordinary differential equations (ODEs); LEs are then computed
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by using the standard discrete QR method (henceforth DQR) for ODEs proposed in [5, 6]. In [2],
instead, the problem is tackled directly: the DDE is posed in an infinite-dimensional Hilbert space as
the state space, the associated family of evolution operators is discretized and the DQR is adapted and
applied to the finite-dimensional approximation; for the error analysis, the DQR is raised to infinite
dimension and compared to the approximated DQR used for the computations.

As for REs, as far as we know, there are no methods available in the literature for computing LEs.
Only a first example of naive computation can be found in [7], where it is done simply to exemplify the
versatility of the collocation techniques used therein, without attempting a rigorous formulation and
error analysis.

In the present work of computational nature, we develop a practical method following the approach
of [3] described above, and based on [8] for the reformulation of REs into abstract differential equa-
tions. As in [3], we use the DQR to compute the LEs of the approximating ODE, but, in principle, any
method can be used; our choice was motivated by our goal of providing a practical way of computing
LEs by using ready-to-use code for a well-known method.

In Section 2 we recall the DQR for linear ODEs. Then, in Section 3 we define the reformulation of
REs, DDEs and coupled equations into abstract differential equations and their pseudospectral collo-
cation into ODEs. After describing the implementation choices in Section 4, we present in Section 5
some numerical experiments concerning the convergence of the method for an example RE with many
known properties, as well as some examples of computation of LEs of REs and coupled equations.
Finally, we present some concluding remarks in Section 6.

The MATLAB codes implementing the method and the scripts to reproduce the experiments of
Section 5 are available at http://cdlab.uniud.it/software.

2. DQR for ODEs

In this section, we first illustrate the DQR to compute the LEs of linear nonautonomous ODEs; in
the nonlinear case, one previously linearizes around a reference trajectory in the attractor. Then, we
comment on the relevant literature.

Let n be a positive integer and consider the ODE

z′(t) = A(t)z(t) (2.1)

for A : [0,+∞) → Rn×n continuous and bounded; also, let Z(t) be the fundamental matrix solution
exiting from a given nonsingular matrix Z0 ∈ Rn×n prescribed at time 0 without loss of generality.
For any sequence {tk}k∈N of time instants strictly increasing from t0 = 0, construct the iterative QR
factorization1

Z(tk) = QkRk (2.2)

starting from Z0 = Q0R0 and, at each step j = 1, . . . , k, solving the n initial value problems (IVPs) Γ′(t, t j−1) = A(t)Γ(t, t j−1), t ∈ [t j−1, t j],
Γ(t j−1, t j−1) = Q j−1

(2.3)

1In what follows, a QR factorization of a nonsingular matrix is intended as the unique one with positive diagonal elements.
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and factorizing the solution at t j as
Γ(t j, t j−1) = Q jR j, j−1. (2.4)

If S (t, s) B Z(t)Z(s)−1 is the state transition matrix associated with (2.1), then

Z(tk) = S (tk, tk−1) · · · S (t2, t1)S (t1, t0)Q0R0

= S (tk, tk−1) · · · S (t2, t1)Γ(t1, t0)R0

= S (tk, tk−1) · · · S (t2, t1)Q1R1,0R0

= S (tk, tk−1) · · · Γ(t2, t1)R1,0R0

= S (tk, tk−1) · · ·Q2R2,1R1,0R0

· · ·
= QkRk,k−1 · · ·R1,0R0.

The uniqueness of the QR factorization and (2.2) give

Rk =

 k∏
j=1

R j, j−1

 R0,

so that, eventually, (upper2) LEs are recovered as

λi = lim sup
k→∞

1
tk

k∑
j=1

ln[R j, j−1]i,i, i = 1, . . . , n. (2.5)

Above, [R j, j−1]i,i denotes the i-th diagonal entry of the j-th triangular factor R j, j−1. Obviously, in the
implementation (2.5) is truncated to some large T > 0. In the end, each step of the DQR requires the
solution of the IVPs (2.3) and the QR factorization (2.4).

The above summary was taken mainly from [3], where the DQR is applied to the ODE obtained
from the pseudospectral collocation of a given DDE (see Section 3), thus following the original ap-
proach of [4] to also address the study of chaotic dynamics. As anticipated in Section 1, the aim of the
present work is to extend this procedure to more general classes of delay equations, such as REs and
coupled equations. Once the pseudospectral collocation is performed (possibly after linearization, see
Remark 4.1 later on), the outcome is an ODE like (2.1); thus, the DQR applies unchanged, independent
of the original delay equation.

The literature on the theory and computation of LEs of ODEs is ample; for a starting reference, see
[12], but see also [9] as a reference monograph. QR methods were first proposed in the pioneering
works [13, 14]; for a complete discussion of the discrete version, see [6]. The literature on the com-
putation of LEs of delay equations is mostly of an experimental flavor and, to the best of the authors’
knowledge, restricted only to DDEs. As initial references, we can suggest [2, 15, 16], but see also

2Lower exponents come either as lim inf or as upper exponents of the adjoint system. Note, however, that for regular ODEs in
the sense of Lyapunov (see, e.g., [9, Definition 3.5.1]) the LEs exist as exact limits, and such quantities are meaningful for stability
statements in the original nonlinear system, thus avoiding the so-called Perron effect (see, e.g., [10]). Nevertheless, an in-depth study of
the theoretical requirements of the original delay equation guaranteeing the regularity of the ODE obtained by pseudospectral collocation
is beyond the scope of the present work, as well as the extension of the regularity concept itself to the infinite-dimensional case of delay
equations (extension that the authors, to the best of their knowledge, are not aware of; see, anyway, [11] and the references therein).
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[17] for a more recent method to reduce DDEs to ODEs by using Galerkin-type projections. Note also
that all of these works rely on a Hilbert state space setting to legitimize orthogonal projections, while
the technique in [3] is free from this constraint and thus maintains the classical state spaces (typically
continuous functions for DDEs and absolutely integrable ones for REs). Beyond the lack of relevant
methods, this is part of the motivation for the extension of the approach proposed in [3] to more general
delay equations.

3. Pseudospectral collocation

In this section, we illustrate the use of pseudospectral collocation to reduce delay equations to
ODEs, in view of the application of the DQR described in Section 2. For the reader’s convenience, we
first present, separately, the discretization of an RE in Section 3.1 and that of a DDE in Section 3.2,
summarizing from, respectively, [8] and [3] the main aspects for the present objective (for a full treat-
ment, see again [3, 8] and also [4]). Eventually, we combine the two approaches in Section 3.3 for a
coupled equation.

In what follows, we use the subscripts X and Y to refer, respectively, to REs and DDEs.

3.1. Pseudospectral collocation of REs

Let τ > 0 be real and dX > 0 be an integer. Consider the IVP for an RE given byx(t) = F(xt), t > 0,
x(θ) = φ(θ), θ ∈ [−τ, 0],

(3.1)

where φ ∈ L1 B L1([−τ, 0];RdX ), F : L1 → RdX and xt, defined as xt(θ) B x(t + θ) for θ ∈ [−τ, 0],
denotes the history or state function (so that x0 = φ represents the initial state). If F is globally
Lipschitz, the IVP (3.1) has a unique solution on [−τ,+∞) [18, Theorem 3.8].

In [8] an efficient application of pseudospectral collocation to reduce (3.1) to an IVP for an ODE is
proposed based on an equivalent formulation of (3.1) as an abstract Cauchy problem (ACP) describing
the evolution of an integral of the original state xt. In particular, by defining the Volterra integral
operatorV : L1 → AC0 as

(Vη)(θ) B −
∫ 0

θ

η(s) ds,

where AC0 B AC0([−τ, 0];RdX ) is the space3 of absolutely continuous functions vanishing at 0, it turns
out that (3.1) is equivalent to the ACPu′(t) = A0,Xu(t) + qXF(A0,Xu(t)), t ≥ 0,

u(0) = Vφ (3.2)

through u(t) = Vxt. Above,A0,X : D(A0,X) ⊂ NBV0 → NBV0 is defined as (V�NBV0
)−1, i.e.,

A0,Xµ B µ′, D(A0,X) B {µ ∈ AC0 : µ = Vη for some η ∈ NBV0}, (3.3)
3Hereinafter, we do not indicate the domain and codomain of a function space when clear from the context.
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where NBV0 is the space of functions of bounded variation vanishing at 0 and continuous from the
right, and qX ∈ NBV0 is defined as

qX(θ) B

0, θ = 0,
−1, θ ∈ [−τ, 0).

In order to discretize (3.2), consider a mesh ΩMX ,X of MX points −τ ≤ θMX ,X < · · · < θ1,X < 0 with
MX a positive integer. Correspondingly, let PMX ,X : RMXdX → NBV0 be the interpolation operator on
{0} ∪ΩMX ,X with value 0 at θ0,X B 0, i.e.,

(PMX ,XΦ)(θ) B
MX∑
j=1

` j,X(θ)Φ j, θ ∈ [−τ, 0],

where {`0,X, `1,X, . . . , `MX ,X} is the Lagrange basis on {0} ∪ΩMX ,X, and let RMX ,X : NBV0 → RMXdX be the
restriction operator

(RMX ,Xµ) j B µ(θ j,X), j = 1, . . . ,MX.

Then, the discrete version of (3.2) is given byU′(t) = DMX ,XU(t) − 1MX ,XFMX (U(t)), t ≥ 0,
U(0) = RMX ,XVφ,

(3.4)

with U(t) ∈ RMXdX that approximates the integrated state Vxt according to U j(t) ≈ (Vxt)(θ j,X), j =

1, . . . ,MX,4 and where DMX ,X B RMX ,XA0,XPMX ,X ∈ RMXdX×MXdX has dX × dX-block entries

[DMX ,X]i, j = `′j,X(θi,X)IdX , i, j = 1, . . . ,MX,

where IdX is the identity on RdX , FMX B F ◦ A0,XPMX ,X and 1MX ,X ∈ RMXdX×dX has all dX × dX-block
entries IdX .5

Remark 3.1. Instead of NBV0, [8] uses the space NBV of functions of bounded variation that vanish
at 0 and are continuous from the right on (−τ, 0), but not necessarily at −τ. In that setting, C0,X B

(V�NBV
)−1 is a multi-valued operator, defined as6 C0,Xµ B {η : µ = Vη}, since functions differing only

by the jump at −τ are mapped byV to the same element of NBV. The trivial semigroup {S 0,X(t)}t≥0 on
NBV defined as

S 0,X(t) : NBV → NBV, (S 0,X(t)µ)(θ) B

µ(t + θ), t + θ ≤ 0,
0, t + θ > 0,

is not strongly continuous. However, its restriction {T0,X(t)}t≥0 to AC0 is strongly continuous and A0,X

is its infinitesimal generator.
From this point of view, the semilinear ACP (3.2) renders a clear separation between the translation

along the solutions (through the linear semigroup {T0,X(t)}t≥0 and its infinitesimal generatorA0,X) and
the rule for extension (basically through the nonlinear right-hand side F of the specific RE), which are
the two ingredients of a delay equation. For these and related aspects of the theory of delay equations,
see [18, 19] for the sun–star (�∗) theory and [1, 8] for the more recent twin semigroup theory.

4Note then thatA0,X PMX ,XU(t) ≈ xt.
5Note that 1MX ,X discretizes −qX .
6It turns out that D(C0,X) = D(A0,X) (see (3.3)).
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3.2. Pseudospectral collocation of DDEs

Let τ > 0 be real and dY > 0 be an integer. Consider the IVP for a DDE given byy′(t) = G(yt), t ≥ 0,
y(θ) = ψ(θ), θ ∈ [−τ, 0],

(3.5)

where ψ ∈ C B C([−τ, 0];RdY ), G : C → RdY and yt is defined as xt in Section 3.1 (so, again, y0 = ψ

represents the initial state). If G is globally Lipschitz, the IVP (3.5) has a unique solution on [−τ,+∞)
[20, Section 2.2].

In [3] (but see also [4]) pseudospectral collocation is used to reduce (3.5) to an IVP for an ODE
based on an equivalent formulation of (3.5) as an ACP describing the evolution of the original state yt,
viz. v′(t) = AYv(t), t ≥ 0,

v(0) = ψ
(3.6)

through v(t) = yt. Above,AY : D(AY) ⊂ C → C is defined as

AYρ B ρ′, D(AY) B {ρ ∈ C : ρ′ ∈ C and ρ′(0) = G(ρ)}.
In order to discretize (3.6), consider a mesh ΩMY ,Y of 1 + MY points −τ = θMY ,Y < θMY−1,Y <

· · · < θ1,Y < θ0,Y B 0 with MY a positive integer. Correspondingly, let PMY ,Y : R(1+MY )dY → C be the
interpolation operator on ΩMY ,Y , i.e.,

(PMY ,YΨ)(θ) B
MY∑
j=0

` j,Y(θ)Ψ j, θ ∈ [−τ, 0],

where {`0,Y , `1,Y , . . . , `MY ,Y} is the Lagrange basis on ΩMY ,Y , and let RMY ,Y : C → R(1+MY )dY be the
restriction operator

(RMY ,Yρ) j B ρ(θ j,Y), j = 0, 1, . . . ,MY .

Then, the discrete version of (3.6) is given by
V ′0(t) = GMY (V(t)), t ≥ 0,
V ′j(t) = DMY ,YV(t), t ≥ 0, j = 1, . . . ,MY ,

V(0) = RMY ,Yψ,

(3.7)

for V(t) ∈ R(1+MY )dY that approximates the state yt according to V j(t) ≈ (yt)(θ j,Y), j = 0, 1, . . . ,MY , and
where DMY ,Y has dY × dY-block entries

[DMY ,Y]i, j = `′j,Y(θi,Y)IdY , i = 1, . . . ,MY , j = 0, 1, . . . ,MY ,

where IdY is the identity on RdY and GMY B G ◦ PMY ,Y .

Remark 3.2. Note that the ACP (3.6) can be alternatively described as the equivalent semilinear ACPv′(t) = A0,Yv(t) + qYG(v(t)), t ≥ 0,
v(0) = ψ,

(3.8)
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whereA0,Y is the infinitesimal generator of the shift semigroup {T0,Y(t)}t≥0 defined as

T0,Y(t) : C → C, (T0,Y(t)ρ)(θ) B

ρ(t + θ), t + θ ≤ 0,
ρ(0), t + θ > 0,

and qY ∈ L∞ is defined as

qy(θ) B

1, θ = 0,
0, θ ∈ [−τ, 0).

Equation (3.8) renders for DDEs the same separation between translation along the solutions and rule
for extension as illustrated in Remark 3.1 for REs (see again [19]). The pseudospectral collocation of
(3.8) leads, again, to (3.7), which can be rewritten equivalently asV ′(t) = D0,MY ,YV(t) + 1MY ,YGMY (U(t),V(t)), t ≥ 0,

V(0) = RMY ,Yψ,
(3.9)

where D0,MY ,Y is as DMY ,Y but with an additional dY-block row of zeros; also, 1MY ,Y ∈ R(1+MY )dY×dY has
the first dY × dY-block equal to IdY and all of the others equal to zero. Now, (3.9) resembles (3.8).

3.3. Pseudospectral collocation of coupled equations

Let τ, dX and dY be as above. Consider the IVP for a coupled equation given by
x(t) = F(xt, yt), t > 0,
y′(t) = G(xt, yt), t ≥ 0,
x(θ) = φ(θ), θ ∈ [−τ, 0],
y(θ) = ψ(θ), θ ∈ [−τ, 0],

(3.10)

where φ ∈ L1, ψ ∈ C, F : L1 ×C → RdX and G : L1 ×C → RdY . For well-posedness, see [18].
By combining the approaches of the previous sections, it follows that (3.10) is equivalent to the

ACP (u′(t), v′(t)) = BX,Y(u(t), v(t)), t ≥ 0,
(u(0), v(0)) = (Vφ, ψ),

(3.11)

with BX,Y : D(BX,Y) ⊂ NBV0 × Y → NBV0 × Y defined as

BX,Y(φ, ψ) B (A0,Xφ + qXF(A0,Xφ, ψ), ψ′),
D(BX,Y) B {(ϕ, ψ) ∈ D(A0,X) × Y : ψ′ ∈ Y, ψ′(0) = G(A0,Xφ, ψ)},

through (u(t), v(t)) = (Vxt, yt).
The discrete version of (3.11) is as follows:

U′(t) = DMX ,XU(t) − 1MX ,XFMX (U(t),V(t)), t ≥ 0,
V ′0(t) = GMY (U(t),V(t)), t ≥ 0,
V ′j(t) = DMY ,YV(t), t ≥ 0, j = 1, . . . ,MY ,

U(0) = RMX ,XVφ,
V(0) = RMY ,Yψ.

(3.12)
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Note that, now, FMX B F ◦ (A0,XPMX ,X, PMY ,Y) and GMY B G ◦ (A0,XPMX ,X, PMY ,Y). The total number
of approximating ODEs is MXdX + (1 + MY)dY , which becomes (2M + 1)d if dX = dY = d and
MX = MY = M.

Remark 3.3. Following Remarks 3.1 and 3.2, it is not difficult to see that (3.11) is equivalent to the
semilinear ACP (u′(t), v′(t)) = A0,X,Y(u(t), v(t)) +NX,Y(u(t), v(t)), t ≥ 0,

(u(0), v(0)) = (Vφ, ψ),
(3.13)

whereA0,X,Y B diag(A0,X,A0,Y) is linear and

NX,Y(φ, ψ) B (qXF(A0,Xφ, ψ), qYG(A0,Xφ, ψ))

is nonlinear. The pseudospectral collocation of (3.13) leads, again, to (3.12), where, correspondingly,
the ODEs for V can be compacted as done in Remark 3.2 for DDEs; see (3.9). The (numerical) analysis
of (3.13) is current work in progress at CDLab,7 also in view of the corresponding sun–star theory of
coupled equations developed in [18] and of the more recent twin semigroup theory of [1].

4. Implementation

Due to our choice of example equations (see Section 5), in our implementation we considered scalar
equations (dX = dY = 1) of the following kinds:

x(t) =

∫ −τ1

−τ2

f (x(t + θ)) dθ (4.1)

for REs, and 
x(t) = y(t)

∫ −τ1

−τ2

f1(x(t + θ)) dθ,

y′(t) = g(y(t)) + y(t)
∫ −τ1

−τ2

f2(x(t + θ)) dθ,
(4.2)

for coupled equations,8 where τ2 > τ1 > 0, and f , f1, f2 and g are (possibly) nonlinear functions
R→ R. Nevertheless, generalizing to other forms of equations is usually fairly straightforward.9

We implemented the pseudospectral discretization10 using Chebyshev nodes of type II (extrema)
as the meshes {0} ∪ ΩMX ,X and ΩMY ,Y of points in [−τ, 0] with MX = MY . To compute the nodes
and the corresponding differentiation matrix, we used the cheb routine of [22, Chapter 6]. For the
interpolation, we used the barycentric Lagrange interpolation formula [23]; the barycentric weights
corresponding to Chebyshev extrema are explicitly known and are given therein. For the quadrature
of the integrals, we used the Clenshaw–Curtis formula [24, 25]. We implemented (A0,XPMX ,XΦ)(θ) as

7http://cdlab.uniud.it/
8Observe that the unknown of the differential equation is not delayed.
9For instance, one can consider models such as (3.3) in [21], yet with finite age-span, which do not enter class (4.2). In such cases,

the method is implemented following the same strategy described here (discretization of the nonlinear system for computing solutions,
linearization and discretization of the linearized system for computing the LEs). However, the authors are currently implementing a
general code for a larger class of equations (ideally the most general (3.10)), which was beyond the scope of this work.

10For more details on pseudospectral methods, see also [22].
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j=1 `

′
j,X(θ)Φ j, computing `′j,X as the polynomial interpolating the j-th column of the differentiation

matrix, again with the barycentric formula.
In order to apply the DQR described in Section 2 to the approximating ODE, the latter needs to be

linearized around a reference solution. The linearization is done explicitly. The solutions are computed
by using MATLAB’s ode45, which implements the embedded Dormand–Prince (5, 4) method [26, 27].
For the differential part of (4.2), the initial value consists of the vector of values of the chosen initial
function at ΩMY ,Y , while, for (4.1) and the renewal part of (4.2), the vector D−1

MX ,Xu is used,11 where u is
the vector of values of the initial function at ΩMX ,X.

Finally, the DQR for a linear ODE is implemented in the dqr routine of [3], which follows [5].
Therein, the IVPs (2.3) are again solved with the Dormand–Prince (5, 4) pair; however, instead of
adapting the step size (initially 0.01) based on the error between the two solutions, the automatic
adaptation controls the error between the corresponding LEs. As an initial guess for the fundamental
matrix solution, a random matrix is used. The computation is stopped when the specified truncation
time T is reached.

Remark 4.1. For REs only, and in particular for the example described in Section 5.1, we experimented
also with a different method, based on computing a solution of (4.1), linearizing the latter around
the former and applying the pseudospectral collocation to the resulting linear RE. We computed the
solution of the RE with the method described in [28], which is based on the trapezoidal quadrature
formula on a uniform grid in [−τ2, 0] with the constraint that −τ1 must be a grid point. Corresponding
to a solution x̄, we considered the linear RE12

x(t) =

∫ −τ1

−τ2

f ′(x̄(t + θ))x(t + θ) dθ. (4.3)

See Section 5.1 for a comparison of the approaches.

Remark 4.2. In Remark 4.1 (more precisely in Footnote 12), we observed that, in most cases, REs
cannot be linearized. However, in many of those cases, the ODE resulting from the pseudospectral
discretization can, in fact, be linearized; for example, the ODEs resulting from (4.1) and (4.2) can be
linearized if f , f1, f2 and g are differentiable. As an example, the linearization of (3.12) around a
solution (U,V) is as follows:

U′(t) = DMX ,XU(t) − 1MX ,X · JFMX (U(t),V(t)) · (U(t),V(t))T ,

V ′0(t) = JGMY (U(t),V(t)) · (U(t),V(t))T ,

V ′j(t) = DMY ,YV(t), j = 1, . . . ,MY ,

11In (3.4) the initial value is specified as RMX ,XVφ, i.e., the vector representing the polynomial interpolating the exact integral of the
initial value ψ. Another approach is to use RMX ,XVPMX ,XRMX ,Xφ, in which the integral of the polynomial interpolating ψ is used. In our
implementation we use neither; our choice is computationally easier and is motivated as follows.

As already noted, in order to represent the integrated state, only the vector U of values at ΩMX ,X is needed, as the value at θ0,X = 0 is
always 0. Computing the derivative of the interpolating polynomial by applying the differentiation matrix to (0,U)T (where the 0 stands
for a column vector of dX zeros), we obtain (dMX ,XU,DMX ,XU)T , where dMX ,X ∈ RdX×MX dX is a row of dX × dX-block entries `′j,X(θ0,X)IdX

for j = 1, . . . ,MX . Since deriving a polynomial lowers its degree by one, DMX ,XU uniquely determines the derivative of the polynomial
represented by U, which motivates our use of D−1

MX ,X
u.

12 In general, (4.3) may actually not be the linearization of (4.1) around x̄ in L1. Indeed, the right-hand side of the equation is not
Fréchet-differentiable unless f is affine. See [18, Section 3.5] for details, in particular with respect to studying the stability of equilibria;
the extension of the results therein is an open problem.
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where J indicates the Jacobian matrix, JFMX (U(t),V(t)) is a dX × (MXdX + (1 + MY)dY) matrix and
JGMY (U(t),V(t)) is a dY × (MXdX + (1 + MY)dY) matrix. In Section 5.1 below, we explicitly show the
linearized ODE for an example RE.

We recall that the MATLAB codes implementing the method and the scripts to reproduce the ex-
periments of Section 5 are available at http://cdlab.uniud.it/software.

5. Results

We present here three example equations: an RE with a quadratic (logistic-like) nonlinearity in
Section 5.1, an RE modeling egg cannibalism in Section 5.2 and a simplified version of the Daphnia
model with a logistic term for the growth of the resource in Section 5.3. In particular, we use the first
example to test the proposed method also from the numerical point of view; we then apply it to the
second and third example to compute the exponents.

5.1. RE with quadratic nonlinearity

The first equation we study is the RE with quadratic nonlinearity from [7]:

x(t) =
γ

2

∫ −1

−3
x(t + θ)(1 − x(t + θ)) dθ, (5.1)

i.e., (4.1) with τ1 B 1, τ2 B 3 and f (x) B γ

2 x(1 − x). Its equilibria and their stability properties are
known; in particular, its nontrivial equilibrium undergoes a Hopf bifurcation for γ = 2 + π

2 and the
branch of periodic solutions arising from there has the analytic expression

x̄(t) =
1
2

+
π

4γ
+

√
1
2
− 1
γ
− π

2γ2

(
1 +

π

4

)
sin

(π
2

t
)
. (5.2)

Observe that the period is 4, independent of γ. Moreover, it is experimentally known that it presents
several period-doubling bifurcations, possibly leading to a cascade and, eventually, to chaos [7].

Since several properties of (5.1) are analytically known, we use it to test the effectiveness and
efficiency of the method proposed for LE computation, and to compare it to the alternative approach
described in Remark 4.1.

For equilibria, the LEs are the real parts of the eigenvalues λ of the infinitesimal generator of the
semigroup of solution operators, which are related to the eigenvalues µ of the solution operator that
advances the solution by h via

µ = eλh. (5.3)

For periodic solutions, the LEs are the real parts of the Floquet exponents, which are related to the
Floquet multipliers (i.e., the eigenvalues of the monodromy operator) via (5.3), where µ, λ and h are,
respectively, a Floquet multiplier, a Floquet exponent and the period. In both cases, we can thus obtain
the LEs by computing the eigenvalues µ of an evolution operator with any time step h for the equilibria
(we choose h = τ2 = 3 for (5.1)) and a time step h equal to the period for periodic solutions (h = 4
for (5.2)), and then computing the real part of log(µ)/h. In order to obtain reference values for our
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experiments, we compute the spectra of evolution operators with the method of [29], which is based
on the pseudospectral collocation of the operator; we use the implementation eigTMNpw of [30, 31].

Although computing the solutions of delay equations is not the focus of this work, given that both
the main approach and the alternative one of Remark 4.1 involve computing solutions, our first ex-
periment compares the error of the computed solutions with respect to the known periodic solutions
of (5.1). We choose γ = 4 > 2 + π

2 , which corresponds to a stable periodic solution, since the first
period-doubling bifurcation is experimentally known to happen at γ ≈ 4.32 [7, 29].

Figure 1 shows the errors on the solution of the approximating ODE and on the solution of the
original RE (5.1) with respect to the number of nodes (minus 1) in the grid in [−3, 0], i.e., MX for the
pseudospectral discretization and 3r for the trapezoidal method13 [28]; in both cases, two errors are
measured, namely the absolute error at t = 500 and the maximum absolute error on a grid of points
in [0, 500] (a uniform grid with step 0.05 for the pseudospectral approach, the time points given by
the trapezoidal method for the alternative approach). To solve the approximating ODE given by the
pseudospectral discretization, we used ode45 with RelTol = 10−6 and AbsTol = 10−7, which justifies
the barrier on the error in Figure 1.

The experiment confirms that the trapezoidal method has order 2, as proved in [28], and that the
pseudospectral discretization has infinite order, which is often the case for pseudospectral methods
applied to smooth problems [22]. Even for rather small values of MX = 3r, the error for the pseu-
dospectral method is several orders of magnitudes smaller than the one for the trapezoidal method.14

In the next experiment, we investigate how the errors on the LEs depend on the choice of MX and
of the final time15 T . We choose values of γ corresponding to the stable trivial equilibrium (γ = 0.5),
the stable nontrivial equilibrium (γ = 3) and the stable periodic orbit (γ = 4).

Since we are going to use the linearization of the ODE (3.4) coming from the RE (5.1), as an
example, we show it explicitly here. With reference to Remark 4.2, observe that the right-hand side of
(5.1) is not Fréchet-differentiable as a map from L1 to R, while the right-hand side of the discretized
equation is differentiable. The linearization of the approximating ODE around the solution U is given
by

U′(t) = DMX ,XU(t) − 1MX ,X · JFMX (U(t)) · U(t),

where JFMX (U(t)) is a row vector with components

[JFMX (U(t))] j =
γ

2

∫ −1

−3

(
1 − 2

MX∑
k=1

`′k,X(θ)Uk(t)
)
`′j,X(θ) dθ, j = 1, . . . ,MX.

In Figures 2 and 3, we can see the absolute errors on the dominant LE increasing either MX or T .
The tolerance for dqr is 10−6, while those for ode45 are RelTol = 10−6 and AbsTol = 10−7. The

13As noted in Remark 4.1, −τ1 = −1 must be a grid point in [−τ2, 0] = [−3, 0]; we thus choose the number r of nodes (minus 1) in
[−τ1, 0] as the discretization parameter for the trapezoidal method [28], resulting in 3r + 1 nodes in total.

14As already noted, computing the solutions is not the focus of the present work. Admittedly, there are other more sophisticated
methods in the literature: see, e.g., [32, 33, 34]. However, in most cases, they are not readily applicable to (4.1) and (4.2), due to the
discontinuity in the integration kernel at −τ1, when the integral is considered on the interval [−τ2, 0]; in other cases, the implementation
of the method is not available and is not as straightforward as [28]. It is worth mentioning that pseudospectral methods for computing
periodic solutions of REs and coupled equations, exhibiting the usual infinite order of convergence, are available in [35, 36, 37]; they
are based on solving the corresponding boundary value problem, so they cannot be straightforwardly adapted to computing generic
solutions.

15Observe that the dqr routine does not stop exactly at T , but at the first time step exceeding T , i.e., it does not refine the final step.
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1 10 60
10−9

10−6

10−3

100

MX = 3r

pseudospectral
trapezoidal

error at t = 500
maximum error
for t ∈ [0, 500]

Figure 1. Errors on the solution of the RE with quadratic nonlinearity (5.1) with γ = 4
with respect to the known periodic solution (5.2), computed via pseudospectral discretization
(solid lines) and directly with the trapezoidal method (dashed lines), measured as the absolute
error at t = 500 (•) and as the maximum absolute error on a grid of points in [0, 500] (◦), when
varying the number of nodes (minus 1) in the grid in [−3, 0], i.e., MX for the pseudospectral
discretization and 3r for the trapezoidal method. The exact periodic solution (5.2) is used as
the initial value.

reference values are obtained by using eigTMNpw with the default options and 120 as the degree of the
collocation polynomials (fixed independently of MX).

In Figure 2 the final time T = 1000 is fixed and MX increases. We can observe that, apart from very
low values of MX, the error reaches a barrier.16 We performed the same experiment with T = 10000 and
could make the same observation, although the barrier was smaller by about one order of magnitude.
The barrier depends on the error due to the time truncation in (2.5). Indeed, Figure 3, where MX is
constant and T varies, shows that the LEs converge linearly (confirming what is explained in [2]). In
Figure 2 the truncation error appears to dominate on the error due to the collocation.

For the dominant nontrivial exponent17 of the periodic solution, we observe in Figure 3 that, for
MX = 8, the error seems to reach a barrier, indicating that more ODEs are necessary to reproduce the
properties of the original RE more accurately, as it is reasonable to expect. In other experiments, we
observed that, as T increases, error barriers are reached also for increasing values of MX.

We showed here the results of the main approach only. We performed the same experiments also
with the alternative approach of Remark 4.1, using, for the linearization, both the exact solutions (which
are known for the chosen values of γ) and the numerical solutions computed by using the trapezoidal
method. With the exact solutions, we obtained almost exactly the same values: this means that the
solution of the ODE is a good enough approximation of the solution of the RE, and that exchanging
the linearization and the collocation does not influence the results. However, when using the numerical
solutions obtained via the trapezoidal method, the errors on the LEs were higher: in the experiment
shown in Figure 2, the errors in the periodic case were one order of magnitude larger, while in the

16Note in Figure 2 that for γ = 3 the error is initially below the final barrier; we do not have an explanation of this phenomenon, but in
Figure 3 for γ = 3 and MX = 8 we can observe rather erratic behavior of the error when varying T , despite the fact that it has a linearly
decreasing bound. Moreover, we remark that the value of MX required to reach the error barrier for a given T depends, in general, on the
specific equation and the specific values of its parameters.

17The trivial exponent 0 is always an LE for a periodic solution due to the translation invariance.
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10−4

10−2

MX

γ = 0.5
γ = 3
γ = 4, trivial
γ = 4, nontrivial

Figure 2. Absolute errors on the dominant LEs of the RE with quadratic nonlinearity (5.1)
for values of γ corresponding to the stable trivial equilibrium (γ = 0.5), the stable nontrivial
equilibrium (γ = 3) and the stable periodic orbit (γ = 4). For the last one, both the trivial
and the dominant nontrivial exponents are shown. The errors are measured with respect to
the exponents computed via eigTMNpw. The final time for dqr is T = 1000.
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T
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101 102 103
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γ = 4, nontrivial

MX = 8 MX = 12 MX = 16 MX = 20

Figure 3. Absolute errors on the dominant LEs of the RE with quadratic nonlinearity (5.1)
for values of γ corresponding to the stable trivial equilibrium (γ = 0.5), the stable nontrivial
equilibrium (γ = 3) and the stable periodic orbit (γ = 4). For the last one, both the trivial and
the dominant nontrivial exponents are shown. The errors are measured with respect to the
exponents computed via eigTMNpw. The exponents are computed for MX ∈ {8, 12, 16, 20} as
shown in the legend.
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experiment of Figure 3 the errors reached barriers ranging between 10−2 and 10−1. For these reasons,
we henceforth use only the main approach as the more practical one.

Figure 4 (compare with [7, Figure 2.3]) presents, on the top row, the diagram of the first two dom-
inant LEs of (5.1) when varying γ, computed with MX = 15 and T = 1000, following previous ex-
perimental considerations. We can observe that the dominant LE is 0 at the expected Hopf bifurcation
(γ = 2 + π

2 ), after which one LE is always 0 since periodic solutions appear. The dominant nontrivial
exponent reaches 0 again for the expected period-doubling bifurcations at γ ≈ 4.32, 4.49, 4.53, and
it becomes positive for γ ≥ 4.55, indicating the insurgence of a chaotic regime, which is compatible
with what was obtained in [7]. Finally, for γ ∈ [4.86, 4.9] other stability islands appear, corresponding
to a branch of stable periodic solutions (appearing at γ ≈ 4.8665) and the corresponding cascade of
period-doubling bifurcations (at γ ≈ 4.8795, 4.8860) leading back to chaos (starting at γ ≈ 4.8885).
As an example, Figure 4 (second and third row) shows some stable periodic solutions in the branches
arising from the first and the second set of bifurcations. Observe that indeed the period approximately
doubles at each bifurcation.

5.2. Egg cannibalism model

The second equation we consider is the egg cannibalism (toy) model from [38]:

x(t) =
γ

2

∫ amax

amat

x(t − a)e−x(t−a) da, (5.4)

with amat and amax being, respectively, the constant maturation and maximum ages. Observe that (5.4)
corresponds to (4.1) with τ1 B amat, τ2 B amax and f (x) B γ

2 xe−x. Also in this case, the equilibria and
their stability properties are known, including the occurrence of a Hopf bifurcation for the nontrivial
equilibrium at log(γ) = 1 + π

2 , although here the periodic solutions are not explicitly known; again, the
presence of period-doubling bifurcations is experimentally known [4, 7, 8, 38].

Figure 5 (top row) presents the diagram of the first two dominant LEs of (5.4) when varying γ, with
amat = 1 and amax = 3. The numerical parameters are MX = 15, T = 1000, a tolerance of 10−6 for dqr,
and RelTol = 10−6 and AbsTol = 10−7 for ode45. Similar to the previous example, the dominant
exponent is 0 at the Hopf bifurcation, and one exponent remains 0 thereafter. The dominant nontrivial
exponent reaches 0 again for the expected period-doubling bifurcations at log(γ) ≈ 3.855 ([8] finds
log(γ) ≈ 3.8777 with MX = 20 and log(γ) ≈ 3.8763 with MX = 40, setting MatCont’s tolerances to
10−10 for Newton’s method and 10−6 for the calculation of the test functions for bifurcation points) and
log(γ) ≈ 4.54, and it becomes positive for log(γ) ≥ 4.66, indicating chaos. Figure 5 (bottom row)
shows some stable periodic solutions, confirming the (approximate) doubling of the period.

5.3. Simplified logistic Daphnia

The third and final equation is a simplified version of the Daphnia model with a logistic term as the
growth of the resource, taken from [38]:

b(t) = βS (t)
∫ amax

amat

b(t − a) da,

S ′(t) = rS (t)
(
1 − S (t)

K

)
− γS (t)

∫ amax

amat

b(t − a) da,
(5.5)

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1249–1269.



1263

3 3.5 4 4.5 5
−0.6

−0.4

−0.2

0

0.2

γ
4.86 4.87 4.88 4.89 4.9

−0.2

0

0.2

γ

1st 2nd

992 994 996 998 1000
0.2

0.4

0.6

0.8

1

t

γ = 4, period = 4

985 990 995 1000
0.2

0.4

0.6

0.8

1

t

γ = 4.40, period ≈ 8.02

970 980 990 1000
0.2

0.4

0.6

0.8

1

t

γ = 4.51, period ≈ 16.11

990 995 1000

0

0.5

1

t

γ = 4.870, period ≈ 5.86

980 990 1000

0

0.5

1

t

γ = 4.883, period ≈ 11.76

960 980 1000

0

0.5

1

t

γ = 4.887, period ≈ 23.53

Figure 4. Diagram of the first two dominant (in descending order) LEs (top row) and solu-
tions (other rows) of the RE with quadratic nonlinearity (5.1) when varying γ, computed with
MX = 15 and T = 1000. The solutions are computed via pseudospectral discretization with
MX = 15, starting from a constant initial value of 0.2. The final time of T = 1000 ensures
sufficiently good convergence to the stable periodic solution. For each solution, the last two
periods are shown, separated by a vertical dashed line. The values of γ and of the period
are given above the diagrams; the values of γ are also marked by vertical dashed lines in the
diagram of the LEs.
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Figure 5. Diagram of the first two dominant (in descending order) LEs (top row) and solu-
tions (bottom row) of the egg cannibalism RE (5.4) with amat = 1 and amax = 3, when varying
γ, computed with MX = 15 and T = 1000. The solutions are computed via pseudospectral
discretization with MX = 15, starting from a constant initial value of 0.2. The final time of
T = 1000 ensures sufficiently good convergence to the stable periodic solution. For each
solution, the last two periods are shown, separated by a vertical dashed line. The values of γ
and of the period are given above the diagrams; the values of γ are also marked by vertical
dashed lines in the diagram of LEs.
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−0.1
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0.1

β

1st
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Figure 6. Diagram of the first two dominant (in descending order) LEs of the simplified
logistic Daphnia equation (5.5) with amat = 3, amax = 4 and r = K = γ = 1, when varying β,
computed with MX = 15 and T = 1000.

where b is the birth rate of the consumer population, S is the density of the resource, r and K are,
respectively, the growth rate and the carrying capacity of the resource, and amat and amax have the same
meaning as in Section 5.2.18 Equation (5.5) corresponds to (4.2) with τ1 B amat, τ2 B amax, f1(x) B βx,
f2(x) B −γx and g(y) B ry(1 − y

K ). The equilibria are known, along with the stability properties of the
trivial (zero and consumer-free) ones; in particular, the consumer-free equlibrium exchanges stability
with the nontrivial equilibrium in a transcritical bifurcation at β = (K(amax − amat))−1; moreover, when
varying β, the nontrivial equilibrium is experimentally known to undergo a Hopf bifurcation [4, 38, 39].

The diagram of the first two dominant LEs of (5.5) when varying β is shown in Figure 6. The values
of the other model parameters are amat = 3, amax = 4 and r = K = γ = 1. The numerical parameters are
MX = MY = 15, T = 1000, a tolerance of 10−6 for dqr, and RelTol = 10−4 and AbsTol = 10−5 for
ode45. We can observe a spike at β = 1 (albeit not touching the value 0), corresponding to the known
transcritical bifurcation, while the Hopf bifurcation seems to happen for γ ≈ 3 ([4] finds γ ≈ 3.0161
with MX = 10 and MatCont’s tolerances set to 10−10). We continued the experiment for values of β
higher than those shown in Figure 6, but we did not find other bifurcations.

Compared with the previous examples, the diagram seems less accurate (observe the spike corre-
sponding to the transcritical bifurcation and the trivial LE after the Hopf bifurcation). The explanation
for this phenomenon is still unknown. In this example, we have increased the tolerances for ode45 in
order to improve the computation times; however, for β = 1 the dominant LE differs absolutely from
the one computed with RelTol = 10−6 and AbsTol = 10−7 (as in the previous examples) by less than
10−7 and is thus still substantially far from 0 (as a further example, for β = 5 the absolute difference
is larger but still less than 10−5). Moreover, as β increases, the periodic solution presents flat regions
followed by spikes, which may suggest that the equation is becoming stiff; however, we tried replacing
ode45 with MATLAB’s ode23s, implementing a modified Rosenbrock formula of order 2 for stiff
ODEs [27], with no substantial changes.

18Note that the second term on the right-hand side of the equation for S in (5.5) can be rewritten as γb(t)/β, rendering that equation
an ODE. This does not bring any simplification since the integral term is computed for the first equation anyway. We prefer to keep
the form of (5.5) because it comes from a more general class where the fertility and consumption rates are not constant, but, rather, are
functions of the age and the size of the individuals (see (1) in [38]).
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6. Concluding remarks

In this work, we have provided the first method, to our knowledge, for computing LEs of REs and
coupled equations. The proposed method appears to be effective when applied to examples with known
properties; however, since the nature of our study has been purely computational, further investigation
into the method’s convergence properties is required. As far as efficiency is concerned, LEs are no-
toriously expensive to compute [2], and that is true also in this case; the computational cost depends
linearly on T , while its relation with MX and MY is currently unclear from the experiments, even though
it is expected to be of order 4, according to (2.3).

The next step in our research is to tackle the problem following the approach of [2]; as recalled in
Section 1, this involves the reformulation of the equation (RE or coupled equation, in our case) in a
Hilbert space and the rigorous definition of LEs and the DQR in the new setting. The technique of [3]
and of the present work, however, is a rather general approach which can also be applied to other kinds
of equations (e.g., certain classes of partial differential equations of interest for mathematical biology
[40]), as anticipated in [3] and according to the pragmatic point of view discussed in [7].
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