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Abstract: Recently, scientists have been developing sustainable processes, and in this context,
mechanochemistry is commonly associated with green chemistry for its ability to reduce waste gener-
ation from chemical reactions. The well-known acetate complex, diacetate bis(triphenylphosphine)
ruthenium(II) [Ru(OAc)2(PPh3)2], is a versatile precursor for preparing active complexes for several
catalytic reactions. This report presents an efficient and straightforward manual grinding protocol
for the sustainable synthesis of ruthenium carboxylate complexes starting from the commercially
available [RuCl2(PPh3)3] and metal carboxylates. This work represents a novel and preliminary inves-
tigation into carboxylate precursors’ alternative solventless synthesis route based on manual grinding.
To our knowledge, this is the first time [Ru(OAc)2(PPh3)2] has been prepared via a mechanochemical
procedure. The synthesis method has also been investigated for other alkali metal carboxylates and
yields ranging from 30 to 80% were obtained. A comparison of sustainability and environmental
impact between conventional solution synthesis and the grinding route has been carried out using
the E-factor and Mass Productivity. While for the acetate complex E-factor and MP were only slightly
better compared with the solvent method (3 vs. 4 for E-factor and ~6 vs. 5 for MP), for benzoate
higher results were found (1 vs. ~4 for E-factor and 10 vs. 5 for MP).

Keywords: ruthenium(II) complexes; acetate; carboxylate; manual grinding; sustainable processes

1. Introduction

In recent decades, the development of sustainable processes has received much atten-
tion. A key aspect of the assimilation and implementation of these processes is that this
new concept came along with a series of guidelines according to the Twelve Principles of
Green Chemistry, which provided the parameters to extend the idea of sustainability to a
higher level, resulting in the design of new reactions and products and to the development
of new processes and concepts [1]. In this context, mechanochemistry has stimulated
the scientific community’s interest, providing physicochemical transformations promoted
by mechanical energy originating from compression, shear, impact, extension, etc. [2–6].
Mechanochemistry is commonly associated with green chemistry for its ability to reduce
waste production in chemical synthesis and reactions. In addition to their efficiency and
practicality, mechanochemical reactions are also recognized for their sustainability, due to
the solvent-free nature of most mechanochemical protocols. Several works demonstrate
the potential of mechanochemistry as an alternative route that could reduce the costs and
environmental footprint of fine chemical production [7–11].

Phosphine ligands have proven very attractive due to their crucial role as ancillary
ligands in organometallic complexes which have been widely investigated and applied
in homogeneous catalytic reactions [12–15]. Grubbs [16–18] for the olefin metathesis and

Processes 2024, 12, 1413. https://doi.org/10.3390/pr12071413 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12071413
https://doi.org/10.3390/pr12071413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-0382-0525
https://orcid.org/0000-0001-7765-1715
https://orcid.org/0000-0001-7367-1102
https://orcid.org/0000-0002-2648-1848
https://doi.org/10.3390/pr12071413
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12071413?type=check_update&version=2


Processes 2024, 12, 1413 2 of 11

Noyori [19–23] for the asymmetric hydrogenation of the C=X (X = C, N, O) bonds have
obtained ground-breaking results (Figure 1).
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Carboxylate complexes have been widely used for several applications. The Noyori’s 
catalysts BINAP-Ru(O2CR)2 [36–39] have shown to be highly active in the enantioselective 
hydrogenation of a wide range of prochiral functionalized olefins such as terpenes, amino 
acids, and isoquinoline alkaloids [40], some α,β-unsaturated carboxylic acids [41], and 
ketoesters [19], while ampy, cycloemetalated, and pincer complexes have been found to 

Figure 1. Noyori’s catalysts [16,20,21].

On the other hand, carboxylate complexes display attractive catalytic properties, and
a large number of ruthenium complexes have been synthesized [12,13,24–26]. Specifically,
ruthenium diphosphine complexes with carboxylate ligands have been investigated for
their valuable activity in catalytic hydrogenation reactions [12,27–33].

The well-known bis(triphenylphosphine) diacetate ruthenium(II) ([Ru(OAc)2(PPh3)2]),
is a versatile precursor for the preparation of active complexes for several catalytic reac-
tions [27,34,35]. Carboxylate ruthenium complexes are prepared from the commercially
available precursor RuCl2(PPh3)3 by exchange of the chloride with the correspondence
carboxylate and, eventually, modification of the phosphine ligand. In Scheme 1 is displayed
the preparation of [Ru(OAc)2(PPh3)2] which is a key intermediate of this chemistry, via the
classical route in solution with t-BuOH at reflux and via the new mechanochemical process
at RT.
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Scheme 1. Traditional procedure (top) and manual grinding route (bottom) to obtain [Ru(OAc)2(PPh3)2]
from [RuCl2(PPh3)3].

Carboxylate complexes have been widely used for several applications. The Noyori’s
catalysts BINAP-Ru(O2CR)2 [36–39] have shown to be highly active in the enantioselective
hydrogenation of a wide range of prochiral functionalized olefins such as terpenes, amino
acids, and isoquinoline alkaloids [40], some α,β-unsaturated carboxylic acids [41], and ke-
toesters [19], while ampy, cycloemetalated, and pincer complexes have been found to be active
in the hydrogenation and transfer hydrogenation of carbonyl compounds [24,26–28,42].

Thus, on account of the wide applications of carboxylate ruthenium complexes, we
investigated the synthesis of the carboxylate PPh3 ruthenium precursors via an alternative
solventless synthesis route based on the manual grinding of the reagents.

Milling reactions provide several advantages over solution chemistry, such as working
at room temperature and shorter reaction times [4,43]. It also offers a platform for reagents
with poor or no solubility and hence low performance in organic solvents [44], overcoming



Processes 2024, 12, 1413 3 of 11

the need to use biphasic solvent systems to achieve high reactivity. This preliminary
work investigates the applicability of new sustainable procedures for the preparation of
homogenous catalysts. The conventional method is relatively simple, but the possibility
of a solvent-free synthesis route is increasingly attractive due to the need to convert
conventional solution-based transformations into more environmentally friendly processes,
improve sustainability, and provide feasible solutions to realize the concepts of Green
Chemistry and the United Nations Sustainable Development Goals (UN SDGs). Thus, this
work aims to investigate a new facile route for synthesizing ruthenium(II) carboxylate
complexes via manual grinding.

To the best of our knowledge, this is the first preparation of [Ru(OAc)2(PPh3)2] via
a mechanochemical route from [RuCl2(PPh3)3] and sodium acetate. The process has also
been investigated for other alkali metal carboxylates.

The E-factor has been used to compare the sustainability and environmental impact of
conventional solution synthesis and the grinding route.

The E-factor is a green metric developed by Roger Sheldon in 1992 [45,46], focused
on the quantity of waste produced for a given mass of product. The assessment of the
E-factor evidenced the resource efficiency and the environmental footprint of the process.
In addition, mass productivity (MP) was also calculated. In this case, all the materials used
in the process are considered (reagents, solvents, catalysts, etc.) [47,48].

2. Materials and Methods

Ru carboxylate complexes have been prepared by grinding a defined amount of alkali
metal carboxylate and dichlorotris(triphenylphosphine)ruthenium(II) ([RuCl2(PPh3)3]) in
an agate mortar for a specific time (Scheme 1). After grinding, the obtained powder was
collected with a spatula. The carboxylates are listed in Scheme 2.
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Scheme 2. Alkali metal carboxylates used in this study.

Although [RuCl2(PPh3)3] can be easily synthesized [49], in this study we used a com-
mercial product loaned from Johnson Matthey Inc. (Royston, UK) Metal carboxylates
(reagent-grade chemicals) were used as purchased. Lithium acetate (>99%), sodium ben-
zoate (99%), and sodium phenylglyoxylate (95%) were purchased from Sigma Aldrich
(Saint Louis, MO, USA), potassium acetate (98%) and sodium acetate anhydrous (99%)
were purchased from Riedel-de Haen (Charlotte, NC, USA), sodium pyruvate (>99%) from
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Calbiochem (San Diego CA, USA). Dichloromethane d2 and methanol d4, for NMR analysis,
were purchased from Sigma Aldrich (Saint Louis, MO, USA).

Three different molar ratios of [RuCl2(PPh3)3] and sodium acetate (1:10, 1:5, and 1:3)
have been used for the preparation of the acetate complex, while 1:5 has been adopted
for all other carboxylate complexes; we chose a 1:5 ratio because it is a good compromise
between saving reagents in line with an environmentally friendly process and a good yield.
The manual grinding has been carried out for 10, 20, and 30 min.

The progress of the reaction and the purity of the final product were checked by 1H
and 31P NMR using a Avance III HD 400 MHz spectrometer (Bruker, MA, USA) at 298 K.
The deuterated solvent, CD2Cl2, was used without any further purification. Notably, 10 mg
of the reaction mixture was dissolved in 500 µL of CD2Cl2 or CD3OD. 31P NMR spectra
have been integrated by the ERETIC (Electronic REference To access In vivo Concentrations)
method [50] with the software TopSpin 4.1.4. The ERETIC method provides a reference
signal synthesized by an electronic device that can be calibrated against absolute concentra-
tions. Once the ERETIC peak has been calibrated, the concentration of the compound can
be easily obtained. The reported conversions are an average of three runs.

Work-up of [Ru(OAc)2(PPh3)2]: after the grinding of [RuCl2(PPh3)3] and NaOAc in a
ratio of 1:10 for 30 min, the resulting mixture was collected and kept under reduced pressure
overnight; then it was transferred to a filter. The washing procedure was performed under
an argon atmosphere. The solid was washed with 15 mL of H2O (3 × 5 mL), 15 mL of
CH3OH (3 × 5 mL), and 15 mL of Et2O (3 × 5 mL). The powder was then dried under
reduced pressure.

The sustainability of the proposed reaction has been assessed using the E-factor and MP.
The green metric factors were calculated after the work-up procedure to also consider the
solvent used for product isolation. The E-factor has been calculated for grinding procedures
and conventional solution synthesis of diacetate bis(triphenyl phosphine) ruthenium(II)
and dibenzoate bis(triphenyl phosphine) ruthenium(II) using Equation (1):

E-factor =
mass waste

mass of desired product
(1)

MP is the percentage ratio between the mass of the desired product and the total mass
of the materials used (Equation (2)):

MP (%) =
mass of desired product × 100

total mass of used materials
(2)

3. Results

All reactions were carried out by grinding 50 mg of RuCl2(PPh3)3 and the correspond-
ing amount of alkali metal carboxylate (Scheme 2) in an agate mortar with an internal
diameter of 70 mm.

3.1. Alkali Metal Acetates

Manual grinding of [RuCl2(PPh3)3] with sodium acetate (NaOAc), in a molar ratio of
1:10, for 30 min leads to the formation of the corresponding complex [Ru(OAc)2(PPh3)2]
in 80% yield (yield from 31P NMR analysis). A color change from black to brown-red was
observed during milling (Figure S1). The 1:10 molar ratio was chosen for the comparison
with the conventional solution synthesis [51]. The molar ratio between [RuCl2(PPh3)3] and
NaOAc, was progressively reduced to 1:5 and 1:3 to investigate the possibility of carrying
out the synthesis with a smaller amount of reagents in light of a more sustainable procedure
(Figure 2).

As the excess acetate decreases, the yield of the final product decreases. However, the
1:5 ratio can be considered a good compromise between saving reagents and maintaining
acceptable yield; thus, this ratio was chosen for subsequent studies. The time dependence
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of the reaction was then investigated by grinding the reagent for 10 and 20 min (Figure 2);
the yield of the reaction progressively increased as the grinding time increased.
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These results show that the mechanochemical synthesis of [Ru(OAc)2(PPh3)2] is a
facile alternative synthesis route to conventional solution procedure. Indeed, similar yields
are obtained, but the reaction is faster and solvent-free. In addition, the alkali metal cation
has been varied, and lithium and potassium acetate have been exploited (Figure 3).
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alkali metal ion (M+ = Li+, Na+ and K+) and grinding time (1:5 molar ratio).

Again, the final products were obtained with good yields in a short grinding time.
When lithium or potassium acetate has been used, the dependence of the reaction yield
on grinding time is more evident. Considering the reaction after 30 min, a better result is
obtained with sodium acetate than with the other alkali metal precursors; with sodium
acetate, 60% of the product was obtained against 40% (LiOAc) and 46% (KOAc).
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The reaction between RuCl2(PPh3)3 and metal acetate formed Ru(OAc)2(PPh3)2 and
MCl. Calculating the difference in the standard molar enthalpy of formation, ∆Hf

0 (Table 1)
between the product (MCl) and the reactant (MOAc), it is observed that the reaction with
potassium is thermodynamically favored, but the yield is higher for sodium acetate. From
thermodynamic data, the conversion does not follow the ∆H0

reaction, but it is correlated to
the ∆fH0 of the acetate, suggesting, to a first approximation, that the grinding reaction of
metal acetates in the presence of RuCl2(PPh3)3 may be governed by a kinetic factor.

Table 1. ∆Hf
0 (from [52]) and product yields for alkali metal acetates.

Alkali Metal Acetate ∆fH0 MOAc
(kJ/mol)

∆fH0 MCl
(kJ/mol)

Product Yield (%)

LiOAc −741 −409 40
NaOAc −709 −411 60
KOAc −723 −436 46

Indeed, the yield of conversion is in the order NaOAc > KOAc > LiOAc and follows
the ∆Hf

0 of the respective acetates, and can be related to the fact that the Na-OAc bond is
easier to break, compared to the other M-OAc (M = Li, K) bonds (Table 1).

After a work-up starting from 150 mg of RuCl2(PPh3)3, the acetate product [Ru(OAc)2
(PPh3)2] was isolated in a 69% yield which is mostly the same as that obtained through the
classical synthesis in solution [51], confirming that mechanosynthesis is an efficient route
for the preparation of ruthenium carboxylate complexes.

3.2. Sodium Carboxylates

To further highlight the versatility of the method, other ruthenium complexes were
prepared by mechanosynthesis, starting from sodium benzoate, sodium pyruvate, and
sodium phenylglyoxylate (Scheme 2). Manual grinding for 30 min of [RuCl2(PPh3)3] with
sodium carboxylate (RCO2Na) in a molar ratio of 1:5 leads to the formation of the corre-
sponding complexes [Ru(O2CR)2(PPh3)2] in good to excellent yields (Figure 4). Reactions
have also been carried out with shorter grinding times (10 and 20 min).
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Figure 4. Dependence of the reaction between [RuCl2(PPh3)3] and sodium carboxylate on grinding
time (1:5 molar ratio).

By reacting [RuCl2(PPh3)3] with sodium benzoate, the formation of the product is
strongly influenced by grinding time. After 10 min, 63% of the benzoate derivative is
obtained; then, the yield progressively increases to 76 and 85% after 20 and 30 min, respec-
tively. Thus, the synthesis of the benzoate complex obtained by grinding is very fast, with
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a yield comparable to that obtained by the conventional solution procedure, using a lower
excess of sodium carboxylate without solvent [53].

When [RuCl2(PPh3)3] was ground with sodium phenylglyoxylate, only 47% of the
corresponding carboxylate complex was obtained. The grinding time only slightly affects
product formation, as 45% yield was already achieved after 10 min. The additional time
does not significantly improve the yield. By contrast, poor conversion is achieved for
sodium pyruvate, with a 24% yield after 30 min.

It is worth noting that under these conditions a dicarboxylate species [Ru(OCOR)2
(PPh3)2] is formed, as inferred from 31P NMR measurements showing a singlet in the range
of 55–63 ppm (Figures S2–S6). Conversely, the monocarboxylate derivative [Ru(OCOR)
Cl(PPh3)3] displaying three non-equivalent P signals has not been detected.

It is interesting to evaluate the difference between the carboxylate salts (sodium acetate
and benzoate, blue bars) and the corresponding sodium salt of alpha-keto acids (sodium
pyruvate and phenyl glyoxylate, green bars); indeed, when sodium carboxylates are used,
higher yields are obtained compared to salts of alpha-keto acids, respectively, 60 and 85% vs.
24 and 47% (Figure 5). This effect could be related to the different acidity of the carboxylic
acids and alpha-keto acids. In contrast, pyruvic and phenylglyoxylic acids are moderately
acidic with a pKa in the range of 2.39–2.15; acetic and benzoic acids have a higher pKa
(4.75–4.21). The higher the acidity, the lower the donor ability of the carboxylate anions
to coordinate with ruthenium metal and form the metal complex [54]. This observation is
consistent with the trend found in a previous study between the stability constant of some
metal carboxylate complexes and the basicity of the anions [55].
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acids (red bars).

For carboxylates and the salts of alpha-keto acids, the variation of the substituent, CH3-
or C6H5-, induces a significant effect on the product yield. CH3- is inductively electron-
donating. In this case, the inductive effect pushes electron density onto the carboxylate
anion, producing a destabilizing effect, while C6H5- is electron-withdrawing and draws
electron density away from the carboxylate anion, dispersing the charge and creating a
stabilizing effect that enhances the formation of the ruthenium carboxylate complex.

In summary, the ability of the carboxylate anion to react with the metal complex is
primarily related to the basicity of the anion. Still, when the basicity is similar, the conjugate
effect of the substituent can influence the electron cloud density of the carboxylate salt
modifying its ability to react with the ruthenium metal center [54].

3.3. Comparison of Green Chemistry Metrics

An evaluation of green chemistry factors for two selected ruthenium carboxylate
complexes, [Ru(OAc)2(PPh3)2] and [Ru(O2CPh)2(PPh3)2], has been carried out to assess the
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green efficiency of the grinding procedure. The green metrics have been calculated for the
ruthenium complexes obtained after the work-up procedures. For a better understanding
of the sustainability of the process, two green chemistry metrics, the E-factor and the MP
(mass productivity), have been calculated for both the ruthenium complexes isolated by
grinding and by the classical solution procedure (Figure 6). When the grinding route
is used, moderately better results in green chemistry metrics are achieved, with a lower
E-factor and higher MP, thus demonstrating the sustainability and the low environmental
impact of the mechanosynthesis of these ruthenium complexes. While the E-factor and MP
for the OAc complex were slightly better compared with the established solvent method
(3 vs. 4 for E-factor and ~6 vs. 5 for MP), higher results were found for O2CPh (1 vs. ~4 for
E-factor and 10 vs. 5 for MP).
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Figure 6. Comparison of E-factor and mass productivity (MP) for ruthenium acetate ([Ru(OAc)2

(PPh3)2]: Ru(OAc)) and ruthenium benzoate ([Ru(O2CPh)2(PPh3)2]: Ru(O2CPh)) complexes prepared
by grinding (G) route (ratio 1:10, 30 min) and by classical solution (S) procedures.

This confirms that mechanochemistry can be useful for the sustainable synthesis of
ruthenium complexes.

4. Conclusions

Here, a general and straightforward mechanochemical synthetic approach for syn-
thesizing valuable ruthenium carboxylate complexes by manual grinding (mortar and
pestle) has been developed. This procedure is an efficient method for synthesizing these
complexes, with good yields in very short reaction times. This procedure was carried out
in a mortar at room temperature and was compared to the traditional synthesis conducted
in t-BuOH under N2 reflux. This preliminary study should open a new perspective for
solventless strategies by the mechanosynthesis route of ruthenium complexes. The yield
of the final product is strongly influenced by the molar ratio of [RuCl2(PPh3)3] to metal
carboxylate, the grinding time, and the alkali metal cation.

In particular, more considerably, a larger excess of metal acetate and longer grinding
times result in higher yields. Higher yields were obtained when sodium acetate was used
as the precursor due to its better tendency to react to form ruthenium complexes than
lithium and potassium salts. The different acidity of the carboxylate salts and the corre-
sponding sodium salt of alpha-keto acids can affect the ability to react with the ruthenium
metal center; the higher the acidity, the lower the yield of the product. Furthermore, an
electron-withdrawing substituent can enhance the formation of Ru-carboxylate complexes.
A comparison of green chemistry metrics between the conventional synthesis in solution
and the grinding route indicates the low environmental impact of the mechanosynthe-
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sis procedures, thus opening new perspectives for the development of new ruthenium
complexes by milling.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/pr12071413/s1, Figure S1: [RuCl2(PPh3)3] + NaOAc before
(left) and after (right) the milling process. Figure S2–S6: 31P NMR Spectra of [Ru(OAc)2(PPh3)2],
[Ru(OAc)2(PPh3)2] after work-up and [Ru(OCOR)2(PPh3)2].
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5. Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3, 13–19. [CrossRef] [PubMed]
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