
Journal of Scheduling (2022) 25:35–58
https://doi.org/10.1007/s10951-021-00701-x

Algorithm selection and instance space analysis for curriculum-based
course timetabling

Arnaud De Coster1 · Nysret Musliu2 · Andrea Schaerf3 · Johannes Schoisswohl1 · Kate Smith-Miles4

Accepted: 1 July 2021 / Published online: 10 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We propose an algorithm selection approach and an instance space analysis for the well-known curriculum-based course
timetabling problem (CB-CTT), which is an important problem for its application in higher education. Several state of the
art algorithms exist, including both exact and metaheuristic methods. Results of these algorithms on existing instances in
the literature show that there is no single algorithm outperforming the others. Therefore, a deep analysis of the strengths
and weaknesses of these algorithms, depending on the instance, is an important research question. In this work, a detailed
analysis of the instance space for CB-CTT is performed, charting the regions where these algorithms perform best. We further
investigate the application of machine learning methods to automated algorithm selection for CB-CTT, strengthening the
insights gained through the instance space analysis. For our research, we contribute new real-life instances and extend the
generation of synthetic instances to better correspond to these new instances. Finally, this work shows how instance space
analysis and the application of algorithm selection complement each other, underlining the value of both approaches in
understanding algorithm performance.

Keywords Timetabling · Scheduling · Algorithm selection · Classification · Instance space · Instance generation

1 Introduction

Course timetabling is a combinatorial problem that all uni-
versitiesmust solve on a regular basis. It consists of assigning

B Arnaud De Coster
e11704379@student.tuwien.ac.at

B Johannes Schoisswohl
e1327384@student.tuwien.ac.at

Nysret Musliu
musliu@dbai.tuwien.ac.at

Andrea Schaerf
schaerf@uniud.it

Kate Smith-Miles
smith-miles@unimelb.edu.au

1 Database and Artificial Intelligence Group, Institute of Logic
and Computation, TU Wien, Vienna, Austria

2 Christian Doppler Laboratory for Artificial Intelligence and
Optimization for Planning and Scheduling DBAI, TU Wien,
Vienna, Austria

3 DPIA, University of Udine, Udine, Italy

4 School of Mathematics and Statistics, The University of
Melbourne, Melbourne, Australia

rooms and timeslots to courses, avoiding conflicts and max-
imizing student and teacher convenience. In this work, we
consider a specific version of this problem, the so-called
curriculum-based course timetabling (CB-CTT) problem,
which was proposed as one of the three tracks of the Second
International Timetabling competition (ITC-2007) (McCol-
lum et al. 2010) in 2007, and has since received considerable
attention in the scientific literature. The distinguishing fea-
ture of this version of the problem is that conflicts are based
on predefined curricula, and not on student enrollment data.

As for most optimization problems, for CB-CTT there
is no single “winning” algorithm that outperforms all others
on all test instances. This suggests the possibility of applying
automated algorithm selection (AS) (Rice 1976; Smith-Miles
2009) to the problem, which consists of having a portfo-
lio of “good” algorithms and learning to predict which one
is likely to be best for a given problem instance based on
instance-specific features. Indeed, AShas been used success-
fully in competitions (e.g., Lin et al. 2008) to solve collections
of benchmark instances of hard combinatorial optimization
problems, better than any individual algorithm can, by select-
ing the likely best solver for each instance.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-021-00701-x&domain=pdf
http://orcid.org/0000-0001-8496-3231

36 Journal of Scheduling (2022) 25:35–58

Therefore one aim of this paper is to investigate whether
AS can be used to obtain an effective portfolio-based solver
for CB-CTT that performs better than any of the individual
solvers on most instances. Beyond being able to identify in
advance the algorithmmost likely to be best suited to solving
a particular instance, our interest here extends to a second aim
of seeking greater insight into algorithm strengths and weak-
nesses. Such insight is critical for improving timetabling
algorithm design. To achieve both of these aims, we adopt
a recent methodology known as instance space analysis
(Smith-Miles et al. 2014; Muñoz et al. 2018), which also
offers the opportunity to scrutinize and improve the quality
of benchmark test instances currently available to support
algorithm selection and understanding of algorithm perfor-
mance.

In this study,wehave generated an extensive set of features
describing CB-CTT problem instances, and constructed an
instance space in which we study the performance of four
state-of-the-art solvers, made available by the authors. Our
instance space reveals that the ITC-2007 benchmarks, which
have become the standard data set uponwhich algorithms are
compared in the literature, as well as the instances created
by the random generator proposed in Lopes and Smith-Miles
(2013), occupy only a small region of the possible instance
space, compared to the region that is occupied by other real-
world instances we have considered. Therefore, based on our
analysis, we extended the random generator to create a set of
new and more diverse instances.

We decided to address specifically CB-CTT, rather than
other popular timetabling problems, such as the post-
enrolment course timetabling (PE-CTT) problem, due to the
availability of many real-world instances, which are scarce
or even totally absent for other problems (e.g., all PE-CTT
instances are artificial).

This paper extends related literature where an earlier
version of an instance space for CB-CTTwas studied (Smith-
Miles and Lopes 2011; Lopes and Smith-Miles 2010, 2013),
but with a different focus and methodology. In Lopes and
Smith-Miles (2010) it was pointed out that the random
instances created by the generator of Burke et al. Burke
et al. (2008) did not resemble the real world instances from
University of Udine used in ITC-2007. In particular, it was
observed that the random instances were not sufficient to dis-
tinguish the performance of the two different solvers studied
in Lopes and Smith-Miles (2010, 2013). Due to this fact,
the random generator was refined, as described in Lopes and
Smith-Miles (2013), to generate instances that are more sim-
ilar to those from ITC-2007. Subsequent work from Lopes
and Smith–Miles (Smith-Miles and Lopes 2011) created an
instance space (a 2D projection of the feature vector of the
instances) of the following instance sets: randomly gener-
ated (Burke et al. 2008), ITC-2007, and using their modified
random generator from Lopes and Smith-Miles (2013). The

high-dimensional feature space was visualized using a self-
organizing map (SOM), trained using a feature set described
in Smith-Miles and Lopes (2011), and the performance of
two heuristics (a tabu search solver1, and a hybrid constraint
propagation and simulated annealing based method (Müller
2009)) was studied.

Our current study described in this paper extends these ini-
tial investigations in light of the recently advanced instance
space methodology (Smith-Miles et al. 2014; Muñoz et al.
2018), where visualizations of the instance space are based
on both algorithm performance as well as instance features.
This allows us to realize the aim of showing the strengths and
weaknesses of solvers, while the SOM used in Smith-Miles
and Lopes (2011) generated only clusters in the instance
space, without taking any information from solvers into
account. While in Smith-Miles and Lopes (2011) explana-
tions of the differences between solvers were explored using
a separate process (via decision trees), the visualization of
those differences is built into the projection method used
in the instance space analysis methodology adopted in this
paper.

We propose a new method for randomly generating
instances which aims to generate greater diversity in the
instance space, in contrast to the random generator in Lopes
and Smith-Miles (2013) which was tailored to produce
instances more similar to ITC-2007and more discriminat-
ing of the two studied heuristics. Our instance generation
process covers the space occupied by a broader set of real-
life instances, including several new instances from diverse
universities, which is a larger region than that covered by
the real-life instances of ITC-2007alone. The new instances
also explore more extreme regions of the instance space, to
push the boundaries and algorithm testing and expose greater
differences in the performance of solvers.

In addition, we consider an augmented set of features, and
included more state of the art solvers in our analysis, which
also include, for the first time, two exact solvers.

Our research contributions to the timetabling community
can therefore be summarized as follows:

– An extensive set of features for describing CB-CTTinsta-
nces is introduced, extending previous features proposed
in the literature.

– The properties of real-life and random instances based
on existing generators are carefully analyzed. Based on
this analysis, regions of the instance space that were not
sufficiently covered by the generated instances are iden-
tified.

– A more diverse set of instances is generated to better
support algorithm selection and improve the analysis of
solver performance.

1 http://www.cs.qub.ac.uk/itc2007/winner/atsuta.htm.

123

http://www.cs.qub.ac.uk/itc2007/winner/atsuta.htm

Journal of Scheduling (2022) 25:35–58 37

– Detailed experimental comparison of state of the art
solvers on many new real-life and randomly generated
instances is conducted.

– Algorithm selection is successfully applied for CB-CTT,
and the provided features, especially probing features,
are shown to be predictive.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the CB-CTT problem in detail. In Sect. 3, we
present the instance space analysis methodology. Section 4
describes themeta-data we constructed for the instance space
analysis and algorithm selection problem. Concretely this
means we describe the instances, algorithms, features, and
performance measures used for our experiments. In Sect. 5,
the instance space is visualized and analyzed, and the new
random generation procedure is described to create new
instances to fill gaps in the instance space. Section 6 investi-
gates the application of various machine learning models to
perform algorithm selection for the CB-CTT problem. In the
last section, we provide some conclusions of our work and
discuss opportunities for further research.

2 Curriculum-based course timetabling

We consider the classical version of the Curriculum-Based
Course Timetabling problem (CB-CTT), which is the one
proposed for the ITC-2007. The detailed definition of CB-
CTT is provided in McCollum et al. (2010), but in order to
make the paper self-contained, we briefly recall it here. In
essence, the problem consists of the following basic entities:

Days, Timeslots, and Periods. We are given a number of
teaching days in the week. Each day is split into a fixed
number of timeslots. Each pair (day, timeslot) represents
a period.

Courses Each course consists of a fixed number of lectures
to be scheduled in different periods. A course is attended
by a number of students, and is taught by a teacher. For
each course, there are a minimum number of days over
which the lectures of the course should be spread. More-
over, there are some unavailable periods in which the
course cannot be scheduled.

Rooms Each room has a capacity, specified as the number
of available seats.

Curricula A curriculum is a group of courses that poten-
tially have students in common. As a consequence,
lectures of courses belonging to the same curriculum are
in conflict and cannot be scheduled in the same period.

A solution of the problem is an assignment of a period
and a room to all lectures of all courses so as to satisfy a

set of hard constraints and to minimize the violations of soft
constraints.

2.1 Hard constraints

There are three types of hard constraints:

Conflicts: Lectures of courses either in the same
curriculum, or taught by the same
teacher, must be scheduled in distinct
periods.

Availabilities: A course may not be scheduled in an
unavailable period.

RoomOccupancy: Two lectures cannot take place in the
same room in the same period.

A solution that does not satisfy the hard constraints is
called infeasible. In order to rank infeasible solutions, the
ITC-2007 rules count the distance to feasibility, which is
measured as the number of violated hard constraints.

2.2 Soft constraints

There are four types of soft constraints:

RoomCapacity: For each lecture, the capacity of the
room assigned to it must be at least
equal to the number of students attend-
ing the course. The cost for the viola-
tion is equal to the number of students
in excess.

MinWorkingDays: The lectures of each course must be
spread into a given minimum number
of days. The cost is the (positive) dif-
ference between the actual number of
days and the minimum.

IsolatedLectures: Lectures belonging to a curriculum
should be adjacent to each other (i.e.,
be assigned to consecutive periods in
the same day to minimize student idle
time). There is a violation of this con-
straint every time, for a given curricu-
lum, there is one lecture not adjacent to
any other lecture of the same curricu-
lum within the same day.

RoomStability: All lectures of a course should be given
in the same room. The cost is the num-
ber of distinct rooms used by the course
minus one.

The total cost of a solution is theweighted sum of the costs
incurred by violations of the soft constraints above. For the
version of the problem that we consider, the weights are 1,

123

38 Journal of Scheduling (2022) 25:35–58

5, 2, and 1, respectively. Other versions of the problem are
proposed and classified in Bonutti et al. (2012), in which this
one is named UD2.

3 Framework: algorithm selection and
instance space analysis

An instance space is a visual representation of the rela-
tionship between structural properties of problem instances
and the performance of algorithms on those instances. It
seeks to project instances into a 2D plane in such a way
that easy and hard instances are well separated, and the
distribution across the instance space of both algorithm per-
formance metrics and instance features are mapped in a way
that facilitates visual interpretation of their relationships.
Instance space analysis was first proposed by Smith-Miles
et al. Smith-Miles et al. (2014), building upon the algorithm
selection problem framework of Rice Rice (1976). Through
the analysis of the instance space it is possible to understand
how the varying characteristics of problem instances affect
performance of algorithms, exposing algorithm strengths,
weaknesses, and suitability for various classes of instances.
Such insights support amore nuanced understanding of algo-
rithm performance than a mere average performance metric
across a set of test instances can reveal. Instance space
analysis also supports scrutiny of the adequacy of bench-
mark instances—their diversity, bias, discrimination ability
and real-world-likeness. Furthermore, gaps in the instance
space can reveal opportunities to generate new test instances
with controllable characteristics to reach target locations in
the instance space (Smith-Miles and Bowly 2015), enabling
more comprehensive benchmark test suites to be developed
to support stronger conclusions about algorithmperformance
reliability. The methodology of instance space analysis has
been applied to a variety of problems including several in
combinatorial optimization (Smith-Miles 2009; Smith-Miles
et al. 2014), continuous optimization (Muñoz and Smith-
Miles 2017), and machine learning (Muñoz et al. 2018).

Figure 1 illustrates the framework underpinning the devel-
opment of the instance space: the five core component spaces
of the algorithm selection problem framework proposed by
Rice Rice (1976). The first is the general problem space, P ,
which contains all the relevant instances in the application
problem (e.g., CB-CTT). However, we only have computa-
tional results for a subset of all possible problem instances,
I , which is the second space. Third is the algorithm space,
A, which is composed of a portfolio of algorithms applied to
the problems in I . Fourth is the performance space,Y , which
is the set of metrics y(α, x), measuring the performance of
an algorithm α ∈ A to solve a problem x ∈ I . Fifth is the
feature space, F , which contains multiple measures to dis-
tinguish similarities and differences between instances in I ,

and that may correlate with difficulty for various algorithms.
These features are represented by the vector f (x). The meta-
data, composed of the features and algorithm performance
for all the instances in I , is used to learn the mapping
g(f (x), y(α, x)) and predict the performance of an algo-
rithm, given a feature vector summary of an instance. This
was the framework proposed by Rice in 1976 (Rice 1976) for
the algorithm selection problem, where simple models such
as regression were proposed to learn the mapping.

Finally, in the extended framework proposed by Smith-
Miles et al. Smith-Miles et al. (2014) the instances are
projected from the feature space to a lower-dimensional (2-
d) instance space, a sixth space in the framework, so they
can be visualized and algorithm performance inspected and
objectively measured. The methods used to learn the perfor-
mance mapping for algorithm selection, and to project from
a high-dimensional feature space to a 2-d instance space are
flexible, and a self-organizing map was used in Lopes and
Smith-Miles (2013). In this paper, we adopt the most recent
development of the instance spacemethodology fromMuñoz
et al. Muñoz et al. (2018) to obtain an optimal projection that
encourages linear trends in both features and algorithm per-
formance to be visualized across the resulting instance space
to support interpretability and insights.

Instance space analysis thereby supports the study of
instances described by their location in the instance space,
according to their features, and the performance of algo-
rithms in various parts of the instance space. In particular, we
are able to construct footprints for each algorithm, defined as
the region in instance space where we statistically infer good
performance of the algorithm, for a user-defined criteria of
good. This inference is applied to the entire problem space
P . Furthermore, instance space analysis allows us to:

1. visualize the distribution and diversity of existing random
and real-world instances;

2. assess the adequacy of the features;
3. describe the unique strengths and weaknesses of algo-

rithms;
4. identify and measure an algorithm’s footprint to objec-

tively compare algorithms;
5. partition the instance space into recommended regions

for automated algorithm selection;
6. distinguish areas of the instance space where it may be

useful to generate additional instances to gain further
insights.

The unique advantage of visualizing algorithm performance
in the instance space, rather than as a small set of summary
statistics averaged across a large collection of instances, is
the nuanced analysis that becomes possible when visually
exploring interesting variations in performance that may be

123

Journal of Scheduling (2022) 25:35–58 39

Fig. 1 Summary of the instance
space methodology proposed by
Smith-Miles et al. (2014),
underpinned by the algorithm
selection framework (in the
dotted box) by Rice (1976)

x ∈ I
Problem
subset

f (x) ∈ F
Feature
space

y ∈ Y
Performance

space

α ∈ A
Algorithm

space

g (f (x)) ∈ R
2

Instance
space

x ∈ P
Problem
space

Footprints
in instance

space

Learn selection mapping
from the instance space

α∗ = S (g (f (x)))

Dimensionality reduction
and visualisation

α∗ = S (f (x))

Select α∗ to
maximise ‖y‖

y (x, α)
apply α to x

Feature selection f

Define algorithm
footprints ϕ (y (x, α))

Select or generate
a subset I ⊂ P

Infer algorithm
performance
for any x ∈ P

hidden by tables of summary statistics, or too insignificant to
attract attention from automated machine learning methods.

4 Methodology

In this section, we provide details of the meta-data we have
generated for CB-CTT to enable the construction of the
instance space.

4.1 Problem subset I

Since the ITC-2007(McCollum et al. 2010)was the first com-
petition involving a set of real-world instances for CB-CTT,
the set of 21 instances2 from University of Udine became
the benchmark set on which algorithms are compared (Achá
and Nieuwenhuis 2014; Banbara et al. 2019; Bellio et al.
2016; Müller 2009). We used the competition instances and
additionally used a different set of 54 real world instances,
including instances from theUniversity ofErlangen, the com-
pany EasyStaff, the University of Pristina, and some other

2 These instances are actually 20, given that for our formulation two of
them, namely comp03 and comp15, are identical.

Italian universities. Of these, the instances obtained from the
company EasyStaff and the University of Pristina are used
for the first time in an instance space analysis. The compe-
tition instances will be referred to as ITC, and the set of all
real world instances as Real.

Since these 83 real-life instances is a rather limited amount
of data for applying machine learning methods, in the first
phase, we additionally generated 495 instances using an open
source random generator3. There are two main versions of
the random generator: Originally, it was developed by Burke
et al. Burke et al. (2008). Later the random generator was
revised by Lopes and Smith-Miles Lopes and Smith-Miles
(2013, 2010) to produce instances more similar to ITC.
In our paper, we used this latest version to generate this
first batch of 495 random instances. We will refer to these
instances asRand0. The setReal∪Rand0will also be called
the initial set of instances.

Additionally, based on our initial instance space analysis,
we created a newversion of the randomgenerator (see Sect.5)
which we used to generate 3852 additional instances. Those
will be referred to as RandPCA. Rand0 ∪ RandPCA will be
called Rand.

3 https://code.google.com/archive/p/udinettgen/.

123

https://code.google.com/archive/p/udinettgen/

40 Journal of Scheduling (2022) 25:35–58

4.2 Algorithm spaceA

Our objective for the selection of solvers is twofold. On the
one hand, we want to use solvers that achieve the best results
in the literature; on the other hand,wewant to have a balanced
mix between meta-heuristicsand exact methods. According
to these aims, we consider the four solvers described in the
following, whose source code was kindly supplied to us by
their authors.

HYBR The first solver is the winner of ITC-2007, which
is the hybrid solver developed by Tomáš Müller
Müller (2009). This is a constraint-based local
search method, in which hard constraints are never
violated, but some lectures might remain unas-
signed. It uses a combination of several complex
neighborhoods, each one targeting the improve-
ment of one specific type of soft constraint. For
guiding the search, it uses three different meta-
heuristicsin turn, namely Hill Climbing, Simulated
Annealing, and Great Deluge.

SA The second solver is another meta-heuristicsapp-
roach based on local search, and it is proposed by
Bellio et al Bellio et al. (2016). This is a simu-
lated annealing procedure that solves hard and soft
constraints together in one single stage. It uses the
classical metropolis acceptance criterion and geo-
metric cooling, plus a cutoff mechanism to reduce
the computational cost on the early stages of the
search. The neighborhood employed is a relatively
small one, based on the union of two atomic ones:
move a single lecture and swap two lectures.

SAT The third solver is an exact one, which is based
on the encoding into MaxSAT and on the use of a
general-purpose MaxSAT solver. In detail, it uses
the ad hoc encoding proposed by Asín Achá and
Nieuwenhuis Achá and Nieuwenhuis (2014) into a
PartialMaxSAT formula, where Partial means that
only some clauses can be violated (the soft one),
whereas the others must be strictly satisfied. For
the validation of the formulas, we use the solver
developed by Berg et al Berg et al. (2019).

ASP The fourth and final solver is based on answer set
programming (ASP) which is also an exact tech-
nique, based onBoolean constraint propagation and
nogoods learning techniques. A sharp ASP model
of CB-CTT has been developed by Banbara et al.
Banbara et al. (2019), and we use this specific
model. For solving themodel, we run clasp (Gebser
et al. 2012), a popular state-of-the-art ASP solver.

Table 1 Base features X of which we computed stat(X)

Base feature Special values
Rooms Capacity None.

Courses # lectures None.

Min working days constraint 1, # teaching days

students 0

unavailable periods 0

4.3 Feature spaceF

The problem space of CB-CTT has already been studied
in Lopes and Smith-Miles (2010, 2013); Smith-Miles and
Lopes (2011). Furthermore there have been studies of the
instance hardness for a related course timetabling prob-
lem in Chiarandini and Stützle (2003); Rossi-Doria et al.
(2002);Kostuch and Socha (2004). In addition, feature-based
parameter-tuning has been studied in Bellio et al. (2016).
In this study, we use the CB-CTT features found to be
most significant in other studies and adjusted some of the
most important features fromChiarandini andStützle (2003);
Rossi-Doria et al. (2002); Kostuch and Socha (2004) so that
they can be used for CB-CTT.

As explained in detail later, our full set of features is com-
puted based on a graph-based representation of more basic
features, extending the original formulation of the features
in previous work. Therefore, we will point out in which way
the most important features from other studies are included,
and in which way they have been generalized in the course
of this section.

Statistical FeaturesWeextracted different base features from
each instance. For each base feature X, we computed the set
of features stat(X), which contains the count, sum, mean,
variance, standard deviation, variation coefficient, entropy,
quantiles, moments, central moments, skewness, and kurto-
sis. Additionally for some base features, we defined “special
values”. An example of a special value is the cluster coef-
ficient of a graph being 1. This value is special since it
represents the theoretical maximum. For each special value,
we added both the number of observations of that value, as
well as the number of special values divided by the number
of all (special and non-special) values.
The base features we considered are listed in Table 1.
Graph Features In addition to statistics of plain numerical
values, we generated several graphs G from the problem
instances, and extracted several base featuresX(G), of which
we computed the statistical features stat(X(G)) as well. We
computed regular, and bipartite graphs, with both weighted,
and unweighted edges. Table 2 lists all base features we
used for each class of graphs. The local clustering coeffi-
cient for each vertex v was computed as the global clustering

123

Journal of Scheduling (2022) 25:35–58 41

Table 2 Base features X(G) on which the statistical graph features
stat(X(G)) are based

Regular Base feature Special values

Unweighted Sizes of connected comp. 1

Degrees of vertices 0, 1, |V |, |V | - 1
Local clustering coefficient 0, 1

Weighted local clust. coeff.

Weighted Edge weights

weighted degrees Depend on specific graph

Bipartite Base feature Special values

Unweighted Left degree 0, 1, |R|, |R| - 1
Right degree 0, 1, |L|, |L| - 1

Weighted Weighted left degree

Weighted right degree

Edge weights Depend on spec. graph

Note that we do not consider bipartite graphs as a special case of a
regular graph, but as a disjoint concept, while the weighted counterparts
are considered as a specialization of the unweighted ones

coefficient # triangles
#possible triangles of the sub-graph induced by the

neighborhood of v. The weighted local clustering coefficient
is the local clustering coefficient multiplied by the vertex’
degree.

In addition to the statistical measures, we added edge
count, edge density |E |

1
2 |V |(|V |−1)

, and global clustering coef-

ficient # triangles
#possible triangles as features for regular (weighted)

graphs. We also used edge density |E |
|L|·|R| as a feature for

bipartite graphs.
For each feature fR on the right-hand side of a bipartite

graph, there is a corresponding feature fL on the left hand
side. Therefore, we added for each such pair of features two
new features fL

fR
and fR

fL
. An example for this is

count(deg(Right(BRoomCourse)))
count(deg(Le f t(BRoomCourse)))

which can be interpreted as “number of courses per room”.
Note that these features do not only include fractions for
simple measures like the number of nodes, but also for other
statistical measures like the mean degrees on both sides of
the graph.

A list of the graphs we built from the problem instances
are listed in Table 3.

The graphs GCourseTeacher, GCourseCurr, and
GCourseConflict are the same as used in Smith-Miles and
Lopes (2011) and similar to those used in Kostuch and Socha
(2004), but with GCourseCurr having weighted edges. We
generalize the features describing graphs’ degrees used in
Smith-Miles and Lopes (2011) by not only using mean and
standard deviation as statistical measures, but also many
other statistical measures as described in Table 2.

In Bellio et al. (2016), it was observed that one of the
most important features for parameter tuning is the average
number of conflicts per course. This feature is included in our
feature set as mean(degree(GCourseConflict). Note that
due to our general method we obtain not only the average
number, but many more statistical features describing the
number of conflicts per course.

BRoomCourse is also inspired by a feature in Kostuch
and Socha (2004), and Smith-Miles and Lopes (2011): The
papers mention that BRoomCourse, the average number of
roomoptions per event, is a useful feature. A very similar fea-
ture is given by mean(degrees(Right(BRoomCourse))).
It can be interpreted as the mean number of rooms on
which a course cannot be scheduled. Therefore, it is an
inverse of the prior feature. Nevertheless, this feature is
less important in our case since room capacity viola-
tions are not hard constraints in our timetabling problem.
A feature that is similar but probably more accurate in
our case would be mean(degrees(Le f t(BCourseSlot)))
which can be interpreted as the average number of schedul-
ing options over all courses. In Smith-Miles and Lopes
(2011) and Kostuch and Socha (2004) also the number
of one-room events is used as a feature. This feature is
also included in this work as count(specialV alue(|L| −
1, degrees(Right(BRoomCourse)))).

Probing features In addition to the static features already
described, we also investigate the usefulness of features
describing dynamic aspects of the problem instance. There-
forewe have computed so-called probing features by running
SA 4 times, with timeouts of 0.5, 1, 1.5, and 2 seconds. From
each run, we used the cost, number of violations, and the
algorithm’s internal objective function as a feature, which is
a linear combination of the cost and the violations.

Since we used anASP-encoding for one of the algorithms,
we used the tool claspre2 Hoos et al. (2014) to extract
features from the ASP-program. The features generated by
claspre2 include static as well as probing features. A
detailed description of those features can be found in Hoos
et al. (2014).

As we will see in Sect. 6, the probing features are useful
for algorithm selection, since they are predictive of algo-
rithm performance. Nevertheless, they were not used for the
instance space analysis, to get more insight into the impor-
tance of the static features of the instance, which are more
interpretable than the probing features.

Timetabling features As pointed out in Smith-Miles and
Lopes (2011); Kostuch and Socha (2004); Smith-Miles and
Lopes (2012), the slackness of an instance is a valuable fea-
ture. Therefore we used three different slack features, which
can be found in Table 4. As described before, many intuitive
timetabling features are included implicitly as graph or statis-
tical features. For example, one such feature is the number of

123

42 Journal of Scheduling (2022) 25:35–58

Table 3 Graphs considered for feature computation

(a) Regular graphs

GCourseTeacher

Nodes V Courses

Edges E vEw iff v and w are taught by the same teacher.

GCourseCurr

Nodes V Courses

Edges E vEw iff v and w are both in a common curriculum.

Weights w w(v,w) is the number of curricula v and w are both in.

GCourseConflict

Nodes V Courses

Edges E cEc′ iff c and c′ are taught by the same teacher or have a curriculum in common.

GEvent

Nodes V Courses c × lectures(c)

Edges E (c, l)E(c′, l ′) iff c and c′ are taught by the same teacher or have a curriculum in common.

GCourseUnav

Nodes V Courses

Edges E vEw iff v and w share an unavailable period.

Weights w w(v,w) is the number of unavailable periods v and w share.

GCurrCourse

Nodes V Curricula

Edges E vEw iff v and w share at least one course.

Weights w w(v,w) is the number of courses v and w share.

(b) Bipartite graphs

BCourseCurr

Nodes L + R Courses + Curricula

Edges E lEr iff l is a course of curriculum r .

BCourseRoom

Nodes L + R Courses + Rooms

Edges E lEr iff r not a suitable room for l.

BCurrTeacher

Nodes L + R Curricula + Teachers

Edges E lEr iff l contains a course with r as a teacher.

BPeriodCourse

Nodes L + R Periods + Courses

Edges E lEr iff r is unavailable on period l.

BDayCourse

Nodes L + R Days + Courses

Edges E lEr iff r is unavailable on more than the half of the time-slots of day l.

BRoomCourse

Nodes L + R Rooms + Courses

Edges E lEr iff the number of students of r exceed the capacity of l.

Weights w w(l, r) is the number of students the capacity of r is exceeded by.

Special weights None.

BCourseSlot

Nodes L + R Courses + (Periods×Rooms)

Edges E lE(p, r) iff the course l is allowed to be scheduled on period p.

Weights w w(l, (p, r)) is the number of students of l - the capacity of r .

Special weights the capacity is big enough (w ≥ 0), the room is too small (w < 0)

123

Journal of Scheduling (2022) 25:35–58 43

Table 4 Features describing the slackness of an instance

Name Definition

slack.seat
∑

Rooms capacity − ∑
Courses students

slack.seat_period |Periods| ∗ ∑
Rooms capacity −∑

Courses students ∗ lectures

slack.events |Periods| ∗ |Rooms| − ∑
Courses lectures

courses that occur in only one curriculum, which is given by
count(specialV alue(1, degrees(Le f t(BCourseCurr)))).

Based on the above descriptions, it can be seen that our
feature set is comprehensive and includes features proposed
in earlier studies as well as many extended instance proper-
ties.

4.4 Performance spaceY

Asdescribed in Sect. 2, the problemyields a two-dimensional
cost measure, consisting of the cost c and the distance to
feasibility v (i.e., the number of hard constraint violations).

Regarding the running time, since most algorithms for
CB-CTT are compared via their performance on the bench-
mark instances from ITC-2007 we decided on using the
competition’s setup for our experiments. This means that
each algorithm was run on each instance with a timeout of
t0 = 288 seconds (this timeout was set according to the
tool which was provided for ITC-2007), as its own single-
threaded process. To make up for algorithms estimating their
runtime inaccurately, we included a tolerance factor of 1.2
for the timeout, so that we fix tmax = t0 × 1.2.

Note however that, while the metaheuristic approaches
fully utilize the time granted, the exact ones may reach the
optimal solution in a shorter time. We want to “reward” the
exact solver in case of this achievement. Everything else
being equal, the faster algorithm will be preferred in prac-
tical applications. For this reason, we add to the above two
measures, a third one, which is the runtime t .

To be able to perform algorithm selection and to visu-
alize the instance space we decide to normalize the three-
dimensional cost measure per f (a, i) = 〈v, c, t〉 (a ∈ A, i ∈
I) , consisting of violations, cost, and time into a single real
number between 0 and 1, where 1 is the best result and 0 the
worst one.

In order to simplify the mapping we decide to give all
solutions with violations, i.e., with v > 0, the value 0, inde-
pendent of the actual distance to feasibility, so that we can
ignore v. Similarly, in the cases in which one solver, due to
some malfunctioning, runs for t longer than tmax (or loops
indefinitely), then it is interrupted and given score 0.

Regarding the other two measures, we decide to give a
higher priority to the cost c and use the time t only as a
secondary criterion. To this aim,we define costT ime(c, t) =

c+ t/tmax , in which c is the integer-valued CB-CTTcost and
t/tmax , by construction, is always smaller that 1.

In summary, we use the following exponential function as
the performance metric y, within the range [0, 1], which has
a limit of 0 for an arbitrary large cost c, and is most sensitive
at the best performances, helping us to distinguish the best
performing algorithms.

ExpGlobal(v, c, t) =

⎧
⎪⎨

⎪⎩

1.01−costT ime(c,t) if v = 0

and t ≤ tmax

0 otherwise

The base 1.01 for the exponential function was chosen
such that the score is scaled down by 1% if the cost increases
by 1 unit.

Ranking the results by descending y scores gives the same
ranking as the original competition ranking, except that we
ignore the distance to feasibility, meaning that all infeasible
solutions are ranked equally. This only has a minor effect,
since in the large majority of the cases the solvers do find a
feasible solution.

The absolute performance measure ExpGlobal is used
(see Sect. 5) to separate instances which are easy for all
algorithms from those hard for all algorithms, but for a finer-
grained evaluation we use a second normalization, which
is parametrized by the instance i ∈ I for which the perfor-
mance is being measured. The value of that measure depends
on the best result minCTi for instance i over all algorithms.
It is defined such that the best algorithm for i will always
get a score of 1, in case any algorithm a ∈ A finds a feasi-
ble solution within the time limit. Such a measure is needed,
to not be biased toward low-cost instances when evaluating
classification performance using the scoremeasure in Sect. 6.

ExpLocali (v, c, t) =

⎧
⎪⎨

⎪⎩

1.01−(costT ime(c,t)−minCTi) if v = 0

and t ≤ tmax

0 otherwise

Since some of the algorithms used in our experiments
adopt some kind of randomization, we conducted five runs
for each pair of algorithm and solver and used the mean of
the performance measures (ExpGlobal and ExpLocali) in
our analysis.

5 Instance space analysis

In this section, we will visualize the instance space, give
some insights gained by the visualization, and discuss why
and howwe generated new instances. The instance spacewas
analyzed with the tool MATILDA4.

4 https://matilda.unimelb.edu.au.

123

https://matilda.unimelb.edu.au

44 Journal of Scheduling (2022) 25:35–58

The resources of this paper, including all instances and
the corresponding features, algorithm run results, the pro-
jection matrix, and the scripts for generating new random
instances and for computing the features of instances, are
publicly available and can be found here5. Additionally, the
reader can analyze the instance space for this problem with
the latest version of MATILDA directly online6.

5.1 Feature selection

In total, we had 2124 features. As described in Sect. 4,
for the instance space analysis we did not use the prob-
ing features, but only the 2044 static ones. Due to the fact
that the graphs we used to compute features sometimes
encoded the same characteristics of the instances in dif-
ferent ways, some features were duplicated. We removed
those from our set of features. After the removal, 1857
distinct features remained. To decrease computation time
for the 2D-projection, and—more importantly—to make it
possible to interpret plots, we selected features by their cor-
relation with the algorithms’ scores. For each algorithm
a ∈ A, we selected the feature that is most corre-
lated with the algorithms’ score ExpGlobal(per f (a, ·)),
and for each pair of algorithms a, a′ we selected the fea-
ture that is most correlated with their difference in score
ExpGlobal(per f (a, ·))−ExpGlobal(per f (a′, ·)). As we
selected themost important feature for each algorithms’ indi-
vidual performance, and the most important feature for each
paired algorithm difference in performance, in total 10 fea-
tures were selected, of which 7 features were unique, as some
features were the most important for predicting the perfor-
mance, or performance difference, for several algorithms.
The selected features, are shown in 5.

5.2 Feature preprocessing

As our goal was to visualize the instance space using a linear
transformation, our features all needed to be finite numerical
values. Since some of our features had non-finite values (i.e.,
NaN , −∞, and ∞), we needed to apply a step of prepro-
cessing. There were two reasons for infinite values: either
a division by zero when comparing statistical values of the
two partitions of a bipartite graph, or a timeout of some fea-
ture computation. The only feature computations that could
time out are the ASP, and the simulated annealing probing
features.

To represent all values in our plot, we firstly normalized
the real values to be within [0, 1], and mapped non-finite
numbers NaN �→ −0.1,−∞ �→ −0.2, and ∞ �→ 1.2, so

5 https://cdlab-artis.dbai.tuwien.ac.at/papers/cb-ctt/.
6 https://matilda.unimelb.edu.au/matilda/problems/opt/tt#tt.

that they are not within the range of the valid feature values,
but can still be visualized.

5.3 Projection equation

Table 5 shows the projection equation, the linear transforma-
tion used to compute an instance’s position in the instance
space based on its feature vector, determined using the
methodology ofMuñoz et al. (2018), as well as the minimum
and maximum of each feature used for normalization. The
projection has been computed using the full set of instances,
the generation of which is described in Sect. 5.4. The features
used in the projection are the ones selected in the manner
described in Sect. 5.1. Their distribution in the instance space
projection can be seen in Fig. 2. All instance space figures
have axes x and y defined by the projection equation.

The selected features can be interpreted as follows:
moment(4, weights(BCourseSlot)) is the fourth moment
of weights of the graph BCourseSlot. Each of these weights
describes how many seats would stay free if a specific
course would be scheduled at a specific point of time
in a specific room. This feature is therefore a similar
feature to slack.seat , but statistically transformed to the
fourth moment, and on a per-slot basis. Since the feature
slack.seat has been shown to be predictive for solvers’ per-
formance in Smith-Miles and Lopes (2011); Kostuch and
Socha (2004), it is not surprising that this similar feature
corresponds to the performance of solvers as well. The gra-
dient arrow in Fig. 2 shows that, compared to the other
features, it has a rather small impact on the final projec-
tion.quantile(14 , wghtDeg(Le f t(BCourseSlot))) gives us
more information about this localized slack feature: it
describes the distribution of a kind of slackness in the num-
ber of seats over all courses. If we have a look the figure, we
can see that this feature is distributed almost orthogonal to
slack.seat . The feature sum(minWorkingDays(courses))
is rather easy to make sense of. This feature is high
for problems where many lectures need to be spread out
over all working days, which as we will see later highly
correlates with an intuitive measure of problem size.
count(1 == deg(Le f t(BCourseCurr))) measures how
many courses there are that are only contained in one cur-
riculum. We can see that this feature is somewhat correlated
to instance size, but has been projected very differently.
count(deg(Right(BCourseCurr))) is a rather intuitive fea-
ture, as it is the total number of curricula. count(1 ==
localClusterCoe f f (GCourseCurr)) describes the num-
ber of courses c, where all courses conflicting with c, conflict
with each other. This feature could be seen as the number of
courses that cannot be scheduled easily.

123

https://cdlab-artis.dbai.tuwien.ac.at/papers/cb-ctt/
https://matilda.unimelb.edu.au/matilda/problems/opt/tt#tt

Journal of Scheduling (2022) 25:35–58 45

Table 5 This figure lists the minimum and maximum values (Fig. 5b) for each feature used for normalizing the feature values, and transforming
infinite and NaN values, and the matrix (Fig. 5a) used to project the normalized features to the 2D plane

(a) Projection matrix

[
x
y

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

-0.086370 -0.210422

-0.240798 0.247303

0.295782 -0.360920

0.580145 0.244040

-0.091966 -0.485488

0.548373 0.236265

-0.225460 0.611454

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

moment(4,weights(BCourseSlot))

quantile(14 ,wghtDeg(Left(BCourseSlot)))

sum(minWorkingDays(courses))

count(1 == deg(Left(BCourseCurr)))

count(deg(Right(BCourseCurr)))

count(1 == localClusterCoeff(GCourseConflict))

slack.seat

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(b) Minimum and maximum values
Feature Min Max

moment(4,weights(BCourseSlot)) 4060.939 609175937945.081

quantile(14 ,wghtDeg(Left(BCourseSlot))) −5882625.000 250.000

sum(minWorkingDays(courses)) 5.000 1723.000

count(1 == deg(Left(BCourseCurr))) 0.000 321.000

count(deg(Right(BCourseCurr))) 1.000 4036.000

count(1 == localClusterCoeff(GCourseConflict)) 0.000 154.000

slack.seat −594005.000 7030.000

5.4 Populating the instance space

Our goal was to gain an understanding of the instance space,
and therefore we wanted to explore different regions of the
space, in order to find out where the algorithms’ perfor-
mances differ. For this purpose, we need a random generator
that can produce instances with strongly varying character-
istics. The random generator from Lopes and Smith-Miles
(2013) was tailored to produce instances that are similar
to ITC, and offers only two degrees of freedom, which
means that we needed another method for generating ran-
dom instances for our purpose.

Therefore, we extended the random generator from Lopes
and Smith-Miles (2013). It contained many hard-coded val-
ues sufficient to produce instances similar to ITC, which we
turned into parameters. In total, our new random generator
has 16 parameters:

– the total number of lectures, courses, working days,
rooms, teachers, curricula, and unavailability constraints

– the number of periods per day
– the minimum and maximum of the lectures per course,
courses per teacher, courses per curriculum, room size

In order to generate instances similar to our broader set of
real-world ones, we configured the values of those parame-
ters based on their distribution in the real-world instances.
Many of these properties are highly correlated for real
world instances (e.g., the number of courses and the num-

ber of rooms), which means sampling the distributions of
those parameters independently would lead to very unreal-
istic and often trivially infeasible instances. Therefore we
firstly performed a principal component analysis on the real
world instances. Then, we estimated the distributions of the
transformed parameters using kernel density estimation with
Gaussian kernels. We sampled the resulting distributions and
finally performed the inverse of the principal component
analysis to get parameters in the original parameter space.
The procedure is summarized in Fig. 3.

Since not all combinations of parameters always yield
feasible instances, we filtered out instances which could be
determined to be infeasible by some simple checks.We there-
fore removed instances where

– the total number of lectures (over all courses) is greater
than the total number of scheduling options (Rooms ×
Periods),

– there is a course c where the number of allowed periods
for c is less than the number of lectures of c

In summary, our method of generation performs the fol-
lowing task: it gets a set of instances as input, samples their
distribution of parameters using the method illustrated in
Fig. 3, and uses these sampled parameters to generate new
instances using the random generator. In essence, we gener-
ate a set of random instances with similar characteristics to
another set of instances.

123

46 Journal of Scheduling (2022) 25:35–58

Fig. 2 The distribution of all
features that were pre-selected
for the visualization of the
instance space. The arrow in
each of the subplots points in the
direction where high values of
the feature are shifted. The
length of the arrow corresponds
to how strong they are shifted.
The colors represent the
normalized feature values,
where 0 is mapped to black, and
1 to cream. Axes are defined by
the projection equation in
Table 5a

123

Journal of Scheduling (2022) 25:35–58 47

Input
a set of problem instances

Output
a vector of parameters, sampled from the estimated distribution of the parameters in the

input set of instances

procedure GenerateSimilarParams(instances)
par = extractParams(instances) � analyzes the values of the input set
pc = PCA(p) � compute principal components
par’ = tansform(pc, par) � transform parameters using principal components
dstr = estimateDistr(par’) � estimates the distribution of transformed parameters
smpl = sample(dstr) � samples estimated distribution
return transform−1(pc, smpl) � transforms sample back

Fig. 3 PCA parameter sampling

Our initial projection of the instance space contained
holes, and sparse regions. Therefore, we generated new
instances, based on those close to the holes, and sparse
regions of the instance space, visualized the instance space
again and repeated this process until we had an instance space
with a rather even distribution of instances.

The projection of the final set of instances RandPCA ∪
Rand0 ∪Real, and the location of those groups of instances
within the space is given in Fig. 5a. Furthermore, we visu-
alized these groups of instances in Fig. 4, by creating a
scatterplot of some of the intuitivelymost important features.
From this figure,we can see thatwe cover the set of realworld
instancesmore accurately than the old randomgenerator.Due
to the previously mentioned hard-coded values in this ran-
dom generator, the instances of the group Rand0 are hardly
scattered around in the plots, but rather just occupy small
regions, that are close to most of ITC, but far off the major-
ity of the region occupied by Real. Our newly generated
instances RandPCA, cover the space occupied by Real bet-
ter, and many of them show similar characteristics to the real
world instances, with respect to the analyzed features.

5.5 Discussion

Figure 6 shows the best solution of any algorithmper instance
in the instance space projection. Instances where no feasible
solution was found are shown in gray. The color encodes the
cost of the solution, if a feasible one was found. The cost is
mapped to the color by the function ExpGlobal.

Comparing the feature distributions (Fig. 2) to the best
performance among all algorithms (Fig. 5b), we can see that
the number of curricula (count of the number of degrees of the
right hand side of the graphBCourseCurr) is a goodmeasure
of hardness of an instance. Investigating this further showed
that this is not a measure of instance size. An intuitive mea-
sure of size would be the number of events (sum of the lec-
tures over all courses) that need to be scheduled. As is shown

in Fig. 7, the size of the instance does not follow the same
gradient as the number of curricula feature. If we compare
this intuitive measure problem size to the selected features,
we see that the feature sum(minWorkingDays(courses)),
is distributed rather similarly, hence instance size is still an
important feature for comparing different solvers. Interest-
ingly, a large number of difficult instances are to be found in
the upper left area of the instance space, where the instance
size is small. As this is also the area where the number of
curricula is high, and hence the complexity of the instance
increases, this points to two different factors being relevant
to the hardness of an instance. On the one hand, the size of an
instance increases the cost, and lowers the likelihood of find-
ing a feasible solution within the allotted time; on the other
hand, a large number of curricula increases the likelihood
of violating soft constraints, and of not finding a feasible
solution.

If we have a look at which groups of instances occupy
which parts of the instance space (Fig. 5a), we see that
Rand0 are mostly located in the region where we have small
instances, with high slack. Comparing Fig. 5a to the perfor-
mance of the individual algorithms (Fig. 6) shows that this
is also the region that is easy to solve well for all algorithms.
Visualizing ties between algorithms, without taking runtime
into account (Fig. 8a), we see that they cover almost the same
region as Rand0. As shown in Fig. 8b this is also the region
wheremainly the exact methods perform best. The reason for
that is that all solvers can find optimal solutions, but the exact
methods can prove optimality and terminate earlier than the
incomplete solvers.

Figure 5a also reveals that the parts of the instance space
occupied by Rand0 are quite different from those occupied
byReal. The regions partly overlap but most of the instances
from Real are not in the range of the randomly generated
instances.

At first sight this seems to contradict the results found
in Smith-Miles and Lopes (2011); Lopes and Smith-Miles

123

48 Journal of Scheduling (2022) 25:35–58

Fig. 4 Scatter plot of intuitive features for different the groups of instances

(2013), namely that the random generator proposed in Lopes
and Smith-Miles (2013) yields instances that are similar to
real world instances. However, this is due to additional real-
life instances being used in our work rather than only ITC as
in Lopes and Smith-Miles (2013). Moreover, the visual-
ization in this paper does not attempt to cluster instances
separating synthetic from real instances as it was done in
Smith-Miles and Lopes (2011). In our case, we aim to sepa-
rate easy from hard instances, and to separate instances that
yield different performance among solvers.

We see that almost all instances from Real are in regions
covered by RandPCA, and occupy large parts of the instance
space, while ITC on which most solvers are compared, only
occupy a very small region. We also see in Fig. 8b that the
region of ITC is the region where there is no clear winner
among the algorithms. This could be the case since the algo-
rithms are being compared on those instances and therefore
fitted to work best in this region of the instance space. On
the other hand, outside of the region of ITC, the winning
algorithms are easier to separate.

123

Journal of Scheduling (2022) 25:35–58 49

-3 -2 -1 0 1 2 3 4
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

(a) Groups of instances
-3 -2 -1 0 1 2 3 4

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Best found solution

Fig. 5 Projections of all instances, using ExpGlobal as a quality mea-
sure. In a the location of different instance groups is visualized. The
rectangle surrounds most of ITC. The same region is marked on Fig. 8b
in order to be able to compare this regions easily. In b, the best solution

over all solvers is visualized. Instances where no feasible solution was
found are drawn in gray. Axes are defined by the projection equation in
Table 5a

In Fig. 5a, we can also see that there is a small cluster of
real world instances, in the lower-right region, that are clearly
separated from the rest of the instances. This cluster is formed
by instances from the University of Erlangen. Their features
differ strongly from those of the other real world instances,
and most of the solvers could not find feasible solutions for
these instances.

This cluster of instances reveals an important fact about
the CB-CTTproblem. Namely that we cannot make strong
assumptions about what real world instances for this prob-
lem will look like, since the Erlangen instances have very
different characteristics compared to most other real-world
instances, but are also real-world instances.Hence,we cannot
tell whether the instances RandPCA, are realistic. Neverthe-
less, our results show thatRandPCAcovers instances that are
similar to real world instances with respect to those features
that turned out to be most predictive for the solvers’ perfor-
mances.

Having a closer look at Figs. 6 and 8b reveals that
both meta-heuristicsachieve similar performance for many
instances. The difference between their performances can
be observed in the high-cost regions of the feature space.
SA is better in the region that is closer to easier real-world
instances, while HYBR is better for the instances that are
not as similar to the real-world ones. We also observe a quite

large (but sparse) cluster in the high cost region in the lower-
right corner, where SA outperforms HYBR.

6 Algorithm selection

For the algorithm selection problem, the same four algo-
rithms as discussed in Sect. 4.2, that is, HYBR, SA, ASP
and SAT, were used.

The instances considered were the same as in Sect. 4.1.
For algorithm selection, the full feature set was used, includ-
ing the probing features, as described in Sect. 4.3. In order to
evaluate the performance of the classifiers, the usual split
in training, validation, and test set data was used, where
the training and validation set consist only of the generated
instances, from now on referred to as Rand, in a random
80/20 split, and the test set data consists solely of Real.
In this way, we can evaluate how well algorithm selection
generalizes to real-life instances, based on synthetic training
data only. We note that the advantage of the previously used
instance space analysis to visualize the synthetic and real-life
instances is that it enabled us to ascertain that the synthetic
instances are sufficiently similar to the real-life instances. As
mentioned in Sect. 5, several iterations of instance genera-
tion were performed in order to cover the real-life instances,
with the initial results of applying algorithm selection train-

123

50 Journal of Scheduling (2022) 25:35–58

-3 -2 -1 0 1 2 3 4
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Inf

231.41

161.75

121

92.09

69.66

51.34

35.85

22.43

10.59

0

(a) SA
-3 -2 -1 0 1 2 3 4

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Inf

231.41

161.75

121

92.09

69.66

51.34

35.85

22.43

10.59

0

(b) HYBR

-3 -2 -1 0 1 2 3 4
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Inf

231.41

161.75

121

92.09

69.66

51.34

35.85

22.43

10.59

0

(c) SAT
-3 -2 -1 0 1 2 3 4

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Inf

231.41

161.75

121

92.09

69.66

51.34

35.85

22.43

10.59

0

(d) ASP

Fig. 6 Algorithms’ performances. Color encodes cost using ExpGlobal. Grey dots represent instances where no feasible solution was found. Axes
are defined by the projection equation in Table 5a

ing only on the Rand0 being disappointing. Having reached
a sufficient coverage of the instance space, we proceeded
with confidence that applying machine learning to the algo-
rithm selection problem could be successful. Finally, good
results in algorithm selection will confirm the quality of the
synthetic instances, affirming the conclusions of the instance
space analysis.

6.1 Performance evaluation

In the classification setting, the goal is to predict the best-
performing algorithm(s) from the algorithm-portfolio for a
given instance. Two different performance measures were
considered, where a performancemeasure is given by a func-
tion f : I × A → [0, 1]:

1. Cost-only: For the cost-only performance measure, the
runtime (up until timeout) of the algorithm is ignored.

123

Journal of Scheduling (2022) 25:35–58 51

The performance is then computed using the ExpLocali
measure, applied to the cost, not including runtime.

2. Cost-time: For the cost-time performance measure, the
ExpLocali measure was used as originally defined in
Sect. 5.

Especially when the cost-only measure is used, but to a
lesser degree also using the cost-time measure, several algo-
rithms can be best-performing for a given instance, as can
be seen in Fig. 8. This implies that we have several positive
labels for a given instance. Contrary to the usual setting of
multi-label classification, we are not interested in predict-
ing every best-performing algorithm, but are satisfied with
predicting only one of this set. This is because the final aim
of algorithm selection is to get the best performance, and if
several algorithms perform equally, the choice between them
is immaterial. Hence, two evaluation measures were consid-
ered:

1. Adaptedaccuracy: Since the usual accuracymeasure for
classification problems requires only one positive label
for each instance, we used an adapted accuracy measure:
acc = |{i∈I |c(i)∈Bi }||I | , where i is a given instance, Bi is the
set of best-performing algorithms for the instance i, and
c(i) is the prediction for the instance i.

2. Score: Although we are primarily interested in accurate
classification of the best-performing algorithm, there is
still value in a classifier which selects near-optimal algo-
rithms over sub-optimal algorithms. To tease out this
aspect of the classifier, we define the score evaluation

measure as:
∑

i∈I f (i,c(i))
|I | , where f is the performance

measure under consideration, i.e. either the aforemen-
tioned cost-only or cost-time performance measure.

6.2 Classification algorithms

Four different popular classification algorithms were applied
in the algorithm selection problem. They are k-nearest neigh-
bors classification (KNN), random forest classification (RF),
gradient-boosted trees (GB), and support vector machines
(SVM). For all these algorithms the scikit-learn implemen-
tation was used (Pedregosa et al. 2011).

6.3 Parameter configuration and feature selection

In order to select the optimal parameters for each classifica-
tion algorithm, fivefold cross-validation was performed on
the training data. The optimal parameters for each algorithm
are summarized in Table 6.

Since often classification algorithms generalize better to
unseen data by restricting the number of features, recur-

-3 -2 -1 0 1 2 3 4
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 7 The distribution of problem size (as defined by the number of lec-
tures that need to be scheduled) in the instance space. Axes are defined
by the projection equation in Table 5a

sive feature selection was performed using a measure of
feature importance. Concretely, the recursive feature selec-
tion as implemented in scikit-learn was used for the random
forest and gradient-boosted tree classifiers. As KNN and
SVM using a radial basis function kernel do not expose fea-
ture importance, this type of feature selection could not be
performed for these algorithms. The results of the feature
selection are shown in Fig. 9a, b. As we can see in Fig. 9a,
reducing the number of features improves the performance
of the classifiers when the cost-only performance measure
is used, but with different points at which the performance
starts to suffer. In case of the cost-time measure, we can
see in Fig. 9b that the performance remains relatively stable
with number of features for the RF classifier, and decreases
slightly for the GB classifier. In order to keep the compu-
tation costs of the remainder of the experiments reasonable,
and improve the generalization performance, a final selection
of 256 features was made, based on the best run for the cost-
time performance measure. These same 256 features were
used for the four algorithm selection classifiers.

Aside from studying the effect of restricting the number
of features, we also looked at the relation between num-
ber of training instances and classifier accuracy. Using the
same 20% validation set, we performed 10 runs of algorithm
selection for differently sized groups of randomly selected
training instances. The results are shown inFig. 10a, b.Asone
would expect, the accuracy increases with increasing num-
ber of training instances for each classifier. Interestingly, the
increases with larger number of instances level off, suggest-
ing that more training instances would not have improved
accuracy further.

123

52 Journal of Scheduling (2022) 25:35–58

-3 -2 -1 0 1 2 3 4
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

1

1.5

2

2.5

3

3.5

4

(a) Ties (without time)
-3 -2 -1 0 1 2 3 4

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

(b) Best performance (with time)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1

1.5

2

2.5

3

3.5

4

(c) Ties (without time)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(d) Best performance (with time)

Fig. 8 a and c show instances where algorithms performed equally
well-concerning cost. The colors encode how many algorithms found
the lowest cost solution. b and d visualize the winning algorithm for
each instance, with time taken into account. In all subfigures instances

where no feasible solution was found are displayed in gray. The rectan-
gle in a and bmarks the same region as in Fig. 5a, in order to be able to
locate the region of ITC easily. c and d show a zoom of this rectangle.
Axes are defined by the projection equation in Table 5a

6.4 Experimental results

The performance of the 4 different classifiers was gauged
by training each of them on a randomly selected training
data-set, consisting of 80% of Rand, and evaluating the
performance on the validation data set consisting of 20%

of Rand and test-set consisting of Real. This process was
repeated 20 times, with different random seeds, in order to
estimate the spread in performance. In case several algo-
rithms performed equally well on a given instance, the same
instance was placed multiple times in the training data, each
time with a different winner as label. The results for the

123

Journal of Scheduling (2022) 25:35–58 53

Table 6 Parameter choice for the different classification algorithms

Classifier Parameter choice Parameter choice Parameter choice

splk-NN n neighbors = 10 Algorithm = ’auto’

SVM kernel = ’rbf’ C = 100 γ = 1 × 10−5

RF n estimators = 800 Max depth = 8

GB n estimators = 100 Max depth = 4

Fig. 9 Feature selection for the two different performance measures. The number of features on the x-axis shown in base-2 logarithm

Fig. 10 Dependency of algorithm selection accuracy on number of training instances. The number of training instances on the x-axis are shown in
base-2 logarithm

classifiers and individual algorithms, separated by perfor-
mance measure and instance set of evaluation, are shown in
Fig. 11. On the left-hand side of the plots, the performance of
always predicting the individual algorithm is shown, whereas
on the right-hand side the performance of the classifiers for
algorithm selection is shown. Notice that the results on the

left-hand side of the plot correspond to the results of the indi-
vidual algorithms, i.e., no algorithm selection is involved. For
example, considering the cost-onlymeasure and the instances
in Real (test-set) in Fig. 11b, theHYBR algorithm performs
best, reaching the lowest cost on 68% of the instances.

123

54 Journal of Scheduling (2022) 25:35–58

Several interesting observations can be made. First of
all, the performance of the different classifiers is higher on
the validation set than on the test set. This should not be
surprising given the results of the instance space analysis,
especially apparent in Fig. 8b, whereas the best-performing
algorithms are relatively well-separated in instance space,
many instances inReal, ITC in particular, are locatedmostly
in the boundary regions where no single algorithm outper-
forms all others. Hence, predicting for the validation set,
which is selected from all over the instance space, is eas-
ier than predicting for Real.

Secondly, although in general algorithm selection per-
forms better when considering the adapted accuracy eval-
uation metric, it only outperforms the best-performing algo-
rithm for the scoremetric on the validation set. For the test set,
algorithm selection does not perform better on the score met-
ric than the HYBR and SA baseline. Since the exact solvers
perform much worse on the score measure for the harder
instances, and the classifiers are optimized to improve accu-
racy rather than score, this is not unexpected. After all, the
classification accuracy can only be improved by correctly
predicting that an exact solver will perform best, but a sin-
gle misclassification will have a large impact on the average
score achieved. In practice, this means that the HYBR and
SA algorithms will on average perform better than algorithm
selection, whereas algorithm selection will more often pro-
duce the best result for a given instance. One could address
this issue by optimizing algorithm selection for the average
score, rather than the accuracy measure considered, which is
interesting for future work.

Thirdly, the classification accuracy is higher when the
cost-only performance measure is used, both for the algo-
rithms themselves, and the classifiers. This is readily explained
by the fact that many more ties result using the cost-only
measure, and hence, it is easier to predict at least one best-
performing algorithm correctly. On the other hand, although
the classification accuracy is lower when using the cost-time
performancemeasure, the relative improvement in classifica-
tion accuracy compared to the baseline of predicting the best
individual algorithm is much higher. This is due to the fact
that the classifier can exploit the ability of the exact solvers
to prove the optimality of their solution, thus finishing before
the time-out, in its predictions.

Finally, we can see that algorithm selection performs very
well when the cost-time performance measure is considered,
with the RF-classifier performing 19% better in accuracy
than the SAT baseline on the test set, but this advantage is
reduced to only 3% for the RF classifier compared to the
HYBR baseline when the cost-measure is considered. This
is at least in part due to the fact thatwhen considering only the
cost, the meta-heuristic algorithms perform extremely well,
andHYBR and SA are hard to distinguish in the relevant area
of the instance-space for the different real-life instances.

In general, we can conclude that algorithm selection is
useful in cases where both the runtime and the cost is taken
into consideration. As this is the most common and rele-
vant scenario in practice, we believe that algorithm selection
offers substantial benefits to the practice.

In order to gain a deeper understanding of the perfor-
mance of algorithm selection, the confusion-matrices for RF,
separated again by performance metric and instance set, are
shown in Fig. 12. The confusion matrices show the predic-
tions of theRFclassifier on the horizontal axis,with the actual
best performing algorithms on the vertical axis. Since several
algorithms can tie in performance for a given instance, the
vertical axis contains all subsets of the four algorithms con-
sidered. It can be seen in Fig. 12a, b that indeed the likelihood
of a tie is much larger when using the cost-only performance
metric, confirming the results shown in Fig. 8. It is also appar-
ent that the RF-classifier struggles the most with separating
the twometa-heuristic algorithms, since in all four confusion
matrices oftenHYBR will be predicted when SA is the win-
ner and vice-versa. The exact and meta-heuristic algorithms
on the other hand are easier to separate, as SAT andASP are
rarely predicted when a meta-heuristic is the winner. Given
the instance space results shown in Fig. 13, this should not be
surprising. Indeed, SA andHYBR overlap much more in the
instance space than the exact algorithms and meta-heuristics
do.

Aside from the feature selection already in place, study-
ing the impact of one particular class of features is especially
interesting. The dynamically calculated probing features,
both SA and ASP based (see Sect. 5), differ from the static
features in that they are not in themselves descriptive of the
instance, but rather descriptive of algorithm performance on
the instance. As can be seen in Fig. 12b, this is not a small
difference. The classification performance on the adapted
accuracy metric is reduced by 3% for the best-performing
GB-classifier on the validation set, and drops by 4% on the
test-set if probing features are excluded. Interestingly, the
SVM-classifier seems more robust in the sense that it does
not worsen with exclusion of the probing features, account-
ing for its relatively good performance on the test set when
probing features are excluded. The previous analysis under-
lines the effectiveness of using probing features, although a
trade-off must be made in practice to take on the additional
runtime and implementation complexity of the probing fea-
ture generation.

7 Conclusion

In this paper, we have both applied an instance space anal-
ysis to the CB-CTT problem, and shown the viability of
automated algorithm selection. For the instance space anal-
ysis, we characterized the instances with an extensive set

123

Journal of Scheduling (2022) 25:35–58 55

Fig. 11 Evaluation measure results for the different algorithms and classifiers on different instance sets. The algorithm results are shown on the
left, the classifier results are shown on the right

of features. Based on our investigation, we concluded that
the competition instances and the original random generator
for CB-CTT do not sufficiently cover the instance space. In
particular, the instances generated with the original random
generator are generally easier than the competition instances
andmany of the other real-life instances. Moreover, the com-
petition instances are shown to occupy a small region in
the instance space, compared to the other real-life instances.
Based on these results, we improved the random generator to
generate instances which cover a larger part of the instance
space, helping us distinguish the different areas where each
algorithm performs well. Our results show that the exact
methods, SAT and ASP, tend to perform better for easier
instances, if the run-time is taken into account, since the
solution optimality can be proved. On the other hand, for the
harder instances, themeta-heuristics dominate. However, SA

andHYBR are not uniformly better for the harder instances,
but perform best in different regions of the instance space.

Building on the results of the instance space analysis,
we explored automated algorithm selection for the CB-CTT
problem. Four different classifiers were explored, of which
the RF-classifier performed best, significantly outperform-
ing any of the individual algorithms with regards to accuracy,
when both cost and run-time are taken into account. In the
case where only the cost is used as the performance measure,
the random forest classifier performs best, but the relative
advantage to the individual algorithms is smaller. These
results confirm the conclusions of the instance space analysis,
which show that while SAT and ASP perform better in the
easy regions of the instance space when run-time is included
in the performance measure, this advantage evaporates when
only the cost is considered. Hence, a meaningful distinction
between algorithms cannot be exploited by the classifier in

123

56 Journal of Scheduling (2022) 25:35–58

Fig. 12 Confusion matrix for the random forest classifier on different instance sets, with the different performance measures. Note that the true
labels are in this case sets, but only one prediction is possible. A good prediction is a prediction that is an element of the true labels set

123

Journal of Scheduling (2022) 25:35–58 57

Fig. 13 Algorithm selection using the cost-time performance measure without probing features

this case. However, this scenario is less relevant, and hence
we believe that algorithm selection is useful in practice in
the case that both runtime and cost are considered. Finally,
we investigated the effect of including the dynamically gen-
erated probing features and observed that they do contribute
significantly to the classification performance, especially for
the real-life instances.

One overarching aim of this paper is to show that algo-
rithm selection and an instance space analysis complement
each other very well. Particularly, algorithm selection alone
would not have been sufficient to recognize that the original
synthetic instances did not cover the real-life instances. Due
to the instance space analysis, we were able to identify the
regions of the instance space with gaps, and generate more
meaningful instances with which to learn algorithm selection
models more effectively.

In future work, one could also investigate another instance
generation process where instances are generated randomly
and then optimized heuristically to match the desired fea-
tures, as proposed in Smith-Miles and Tan (2012). We also
aim to consider either more CB-CTT solvers or other real-
life timetabling problem variants and optimization problems.
Lastly, our focus was on classification and improving the
classification accuracy. As our results show, this does not
imply that the average score will be optimized. One approach
to directly optimize the score would be to perform regression
on the performance measure, using these results to optimize
the score rather than classifying the instance directly.

Acknowledgements The financial support by the Austrian Federal
Ministry for Digital and Economic Affairs, the National Foundation
for Research, Technology and Development and the Christian Doppler
Research Association is gratefully acknowledged. This work was also
supported by the Austrian Development Cooperation: Project HERAS
– Higher Education, Research and Applied Science. Support from the

AustralianResearchCouncil is also acknowledged through theLaureate
Fellowship grant FL140100012.

References

Achá, R. A., & Nieuwenhuis, R. (2014). Curriculum-based course
timetabling with sat and maxsat. Annals of Operations Research,
218(1), 71–91.

Banbara, M., Inoue, K., Kaufmann, B., Okimoto, T., Schaub, T., Soh,
T., et al. (2019). Teaspoon: Solving the curriculum-based course
timetabling problems with answer set programming. Annals of
Operations Research, 275(1), 3–37.

Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., & Urli, T.
(2016). Feature-based tuning of simulated annealing applied to
the curriculum-based course timetabling problem. Computers and
Operations Research, 65, 83–92.

Berg, J., Demirovic, E., & Stuckey, P.J. (2019). Core-boosted linear
search for incomplete maxsat. In Integration of constraint pro-
gramming, artificial intelligence, and operations research - 16th
international conference, CPAIOR 2019, Thessaloniki, Greece,
June 4–7, 2019, Proceedings, pp. 39–56.

Bonutti, A., De Cesco, F., Di Gaspero, L., & Schaerf, A. (2012). Bench-
marking curriculum-based course timetabling: formulations, data
formats, instances, validation, visualization, and results. Annals of
Operations Research, 194(1), 59–70.

Burke, E. K., Causmaecker, D., & Patrick, S. (Eds.). (2003). Practice
and theory of automated timetabling iv, 4th international confer-
ence, PATAT 2002, Gent, Belgium, August 21–23, 2002, selected
revised papers. Lecture Notes in Computer Science (Vol. 2740).
Springer.

Burke, E.K.,Mareček, J., Parkes,A. J.,&Rudová,H. (2008). Penalising
patterns in timetables: Novel integer programming formulations.
In J. Kalcsics & S. Nickel (Eds.), Operations Research Proceed-
ings 2007 (pp. 409–414). Heidelberg: Berlin.

Chiarandini, M., & Stützle, T. (2003). Experimental evaluation of
course timetabling algorithms. fachgebiet intellektik at tu darm-
stadt.,03,

Coello C., Carlos A., editor. (2011). Learning and intelligent optimiza-
tion - 5th international conference, LION 5, Rome, Italy, January

123

58 Journal of Scheduling (2022) 25:35–58

17–21, 2011. Selected Papers, volume 6683 of Lecture notes in
computer science. Springer, Berlin

Gebser,M., Kaufmann, B.,&Schaub, T. (2012). Conflict-driven answer
set solving: From theory to practice. Artificial Intelligence, 187,
52–89.

Gottlieb, J., & Raidl, G.R., (eds.) (2004). Evolutionary computation
in combinatorial optimization, 4th european conference, EvoCOP
2004, Coimbra, Portugal, April 5–7, 2004, Proceedings, volume
3004 of Lecture notes in computer science. Springer, Berlin

Hoos, H. H., Lindauer, M. T., & Schaub, T. (2014). claspfolio 2:
Advances in algorithm selection for answer set programming.
TPLP, 14(4–5), 569–585.

Kostuch, P., & Socha, K. (2004). Hardness prediction for the university
course timetabling problem. In Evolutionary computation in com-
binatorial optimization, 4th European conference, EvoCOP 2004,
Coimbra, Portugal, April 5–7, 2004, Proceedings, pp. 135–144.

Lin, X., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008). Satzilla:
Portfolio-based algorithm selection for SAT. The Journal of Arti-
ficial Intelligence Research, 32, 565–606.

Lopes, L., & Smith-Miles, K. (2010). Pitfalls in instance generation for
udine timetabling. In C. Blum & R. Battiti (Eds.), Learning and
intelligent optimization (pp. 299–302). Heidelberg: Berlin.

Lopes, L., & Smith-Miles, K. (2013). Generating applicable synthetic
instances for branch problems.Operations Research, 61, 563–577.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R.,
Parkes,A. J., et al. (2010). Setting the research agenda in automated
timetabling: The second international timetabling competition.
INFORMS Journal on Computing, 22(1), 120–130.

Muñoz, M. A., & Smith-Miles, K. A. (2017). Performance analysis
of continuous black-box optimization algorithms via footprints in
instance space. Evolutionary Computation, 25(4), 529–554.

Muñoz, M. A., Villanova, L., Baatar, D., & Smith-Miles, K. (2018).
Instance spaces for machine learning classification. Machine
Learning, 107(1), 109–147.

Musliu, N., Schwengerer, M. (2013). Algorithm selection for the graph
coloring problem. In Learning and intelligent optimization - 7th
international conference, LION 7, Catania, Italy, January 7–11,
2013, Revised Selected Papers, pp. 389–403.

Müller, T. (2009). Itc 2007 solver description: A hybrid approach.
Annals of Operations Research, 172(1), 429–446.

Nicosia, G., & Pardalos, P.M. (eds.). (2013). Learning and intelligent
optimization - 7th international conference, LION7,Catania, Italy,
January 7–11, 2013, Revised Selected Papers, volume 7997 of
Lecture Notes in Computer Science. Springer, Berlin

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825–2830.

Rice, J. R. (1976). The algorithm selection problem. Advances in Com-
puters, 15, 65–118.

Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo,
M., Gambardella, L.M., Knowles, J.D., Manfrin, M., Mastrolilli,
M., Paechter, B., Paquete, L., & Stützle, T. (2002). A comparison
of the performance of different metaheuristics on the timetabling
problem. In Practice and theory of automated timetabling iv, 4th
international conference, PATAT 2002, Gent, Belgium, August 21–
23, 2002, Selected Revised Papers, pp. 329–354.

Smith-Miles, K., Baatar, D., Wreford, B., & Lewis, R. (2014). Towards
objective measures of algorithm performance across instance
space. Computers and Operations Research, 45, 12–24.

Smith-Miles, K., & Bowly, S. (2015). Generating new test instances by
evolving in instance space. Computers and Operations Research,
63, 102–113.

Smith-Miles, K., & Lopes, L. (2012). Measuring instance difficulty for
combinatorial optimization problems. Computers and Operations
Research, 39(5), 875–889.

Smith-Miles, K., & Tan, T. T. (2012). Measuring algorithm footprints
in instance space. IEEE CEC, 12, 3446–3453.

Smith-Miles, K., & van Hemert, J. (2011). Discovering the suitability
of optimisation algorithms by learning from evolved instances.
Annals of Mathematics and Artificial Intelligence, 61, 87–104.

Smith-Miles, K. A. (2009). Cross-disciplinary perspectives on meta-
learning for algorithm selection. ACM Computing Survey, 41(1),
6:1–6:25.

Smith-Miles, K., & Lopes, L. (2011). Generalising algorithm perfor-
mance in instance space: A timetabling case study. In Learning
and intelligent optimization - 5th international conference, LION
5, Rome, Italy, January 17–21, 2011. Selected Papers, pp. 524–
538.

Smith-Miles, K., & Lopes, L. (2012). Measuring instance difficulty for
combinatorial optimization problems. Computers and OR, 39(5),
875–889.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Algorithm selection and instance space analysis for curriculum-based course timetabling
	Abstract
	1 Introduction
	2 Curriculum-based course timetabling
	2.1 Hard constraints
	2.2 Soft constraints

	3 Framework: algorithm selection and instance space analysis
	4 Methodology
	4.1 Problem subset I
	4.2 Algorithm space mathcalA
	4.3 Feature space mathcalF
	4.4 Performance space mathcalY

	5 Instance space analysis
	5.1 Feature selection
	5.2 Feature preprocessing
	5.3 Projection equation
	5.4 Populating the instance space
	5.5 Discussion

	6 Algorithm selection
	6.1 Performance evaluation
	6.2 Classification algorithms
	6.3 Parameter configuration and feature selection
	6.4 Experimental results

	7 Conclusion
	Acknowledgements
	References

