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Abstract: Augmented reality (AR) is a promising technology to enhance image guided surgery and
represents the perfect bridge to combine precise virtual planning with computer-aided execution
of surgical maneuvers in the operating room. In craniofacial surgical oncology, AR brings to the
surgeon’s sight a digital, three-dimensional representation of the anatomy and helps to identify
tumor boundaries and optimal surgical paths. Intraoperatively, real-time AR guidance provides
surgeons with accurate spatial information, ensuring accurate tumor resection and preservation
of critical structures. In this paper, the authors review current evidence of AR applications in
craniofacial surgery, focusing on real surgical applications, and compare existing literature with their
experience during an AR and navigation guided craniofacial resection, to subsequently analyze which
technological trajectories will represent the future of AR and define new perspectives of application
for this revolutionizing technology.

Keywords: augmented reality; virtual surgical planning; navigation; sinonasal undifferentiated
carcinoma; craniofacial resection; oncology

1. Introduction

Transposition of virtual digital plans into real patients during surgery has always
represented a major problem, especially in cases of complex oncology procedures. Various
technologies have been tested to solve this issue and translated into clinical practice,
of which navigation is the most successful and widespread example, although it fails to
provide a three-dimensional guidance and involves an expensive and cumbersome machine
which requires the surgeon to modify their sight of the surgical field [1].

Augmented reality (AR) involves the projection of a computer-generated image into
the real eyesight of the surgeon. In particular, optical see-through devices, including
Hololens (Microsoft, Redmond, WA, USA) are the key to providing a wearable, comfortable
device that can be used during surgery as a guidance to enhance anatomical understanding
thanks to the simultaneous and superimposed vision of the virtual surgical planning [2].
Although this technology still lacks optimal calibration and therefore no solution is still
certified for its use, it has been tested in a number of circumstances in head and neck surgery,
including, orthognathic surgery, trauma, temporomandibular joint (TMJ), endoscopy and
orbit [3,4]. However, no single use has been reported in complex oncologic surgery of the
head and neck region, owing to its perceived limits and the complexity of optimizing a
virtual surgical planning for such cases. Sinonasal undifferentiated carcinomas (SNUC) are
rare high-grade epithelial neoplasms affecting the sinonasal cavity. Since its first description
in 1986, only a few hundred cases of SNUC have been documented in medical literature [5].
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The lack of known histogenesis and glandular or squamous differentiation caused it to
be classified as a separate entity by the World Health Organization (WHO) [6]. It is more
common in men, with a male to female incidence ratio of 2:1, and the age of presentation
is typically in the fifth decade of life. [7] SNUC’s possible differential diagnoses include
squamous cell carcinoma, olfactory neuroblastoma, neuroendocrine carcinoma, lymphoma,
melanoma, rhabdomyosarcoma, and lymphoma [8]. Imaging techniques are not definitive
in distinguishing SNUC from these conditions. Hence, the diagnosis of SNUC relies
on examining tissue samples histopathologically, often involving immunohistochemical
analysis. It is a highly aggressive neoplasm, with patients presenting to clinical attention at
a very advanced stage, where fundamental structures of the skull base, brain, and orbit are
already involved [9]. The initial symptoms of SNUC can seem harmless, like nasal blockage,
nosebleeds, headaches, and facial discomfort. However, they may also manifest as vision
problems, swelling around the eyes, proptosis, and cranial nerve palsies [9]. Cervical
lymph nodes are involved in 10–30% of patients at the time of clinical presentation. The
prognosis is bleak, also in view of the high rate of locoregional recurrences and distant
metastases [10]. The treatment of choice is currently multimodal, with combinations of
chemotherapy, radiotherapy and surgical resection. This latter remains the mainstay of
treatment for SNUC [11]. However, due to the tumor’s proximity to critical structures
like the orbit and skull base, performing surgery and ensuring complete removal of the
tumor can be challenging. We conduct a narrative review about surgical applications
of AR in maxillofacial surgery and we compare results of our experience to currently
reported standards for craniofacial surgical oncology. The aim of this review is to widen
perspectives for the clinical application of AR in a complex oncologic scenario represented
by craniofacial resection of SNUC. Advantages of AR in this context are then discussed,
emphasizing inherent limitations as well, and perspectives of possible future optimizations
are presented to understand how this technology will become a valuable ally for complex
head and neck surgical oncology.

2. Materials and Methods

This is a technical report presenting results of a case series enrolling 4 patients who
underwent craniofacial oncologic surgery from January 2023 to November 2023. Patients’
demographic and clinical characteristics are described in Table 1. This study complies with
ethical guidelines reported in the Declaration of Helsinki and was granted the approval
number IRB_45_2020 by the Institutional Review Board of the University of Udine.

Table 1. Patients’ demographic and clinical data.

Patient ID Gender Age Pathology

1 Male 56 SNUC involving the right maxillary sinus, extending to the nasal cavity right ethmoid
sinus and retro maxillary space

2 Female 69 SNUC involving the left maxillary sinus eroding the medial, lateral and superior wall
breaching through the orbit.

3 Male 62 SNUC involving the nasal cavity with extension to the ethmoidal and frontal sinus,
eroding the right medial orbital wall

4 Female 73 SNUC involving the right maxillary sinus extending to the right nasal cavity into
ethmoid, sphenoid, and frontal sinus and through cribriform plate.

2.1. From Imaging to VSP

The first step for the digitalization of anatomy consists in performing adequate imag-
ing techniques which can address both diagnostic and virtual surgical planning (VSP)
needs [12]. For this reason, multiparametric imaging including both high-resolution CT
(HRCT) and magnetic resonance (MR) sequences was acquired with well-defined spatial
resolution criteria, including a voxel matrix of 512 × 512 px and a slice thickness of 1 mm
for MR and 0.625 mm for HRCT. Several anatomical regions rely on a specific acquisition
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modality, including HRCT for reliable bone reconstruction with minimization of partial
volume effect; time of flight (TOF) sequences to capture arterial blood flow through head
and neck vasculature using flow void effect; volumetric interpolated breath-hold examina-
tion (VIBE) enables the creation of T1-weighted three-dimensional images within a 30 s
breath-hold, allowing representation in detail of soft tissue anatomy in a short time interval
and with spatial features much superior to traditional non-volumetric MR: this sequence is
ideal for defining tumor boundaries, muscles, and moving fluids.

Once imaging is acquired in accordance with this protocol, multiple sequences must
be coregistered within a unique coordinate system both using transformational algorithms
that apply normalization and difference calculations between paired images and using a
reference image. This ensures that all sequences match the same anatomical localization
and is a crucial step to ensure the creation of a reliable presurgical model [13].

After coregistration, anatomy is digitized in 3D models (geometrical meshes) that are
reconstructed through segmentation techniques, which involve a combination of threshold-
based, free hand and semi-automatic brush techniques to include specific regions of the
volumetric DICOM dataset in segmentation masks. Such masks are then converted into
corresponding 3D triangulated representations, which can be entirely managed in an
open software environment through universally accepted formats for computer graphics,
including STereoLithography (STL) and Wavefront OBJect (OBJ).

Virtual surgical planning is entirely managed within the Materialise Mimics Innovation
Suite version. 23.0 (Materialise, Leuven, BE), the most complete software package for
surgical planning. Multiple osteotomies were traced according to the facial disassembly
criteria for craniofacial resection, including a fronto-orbital access to the anterior skullbase
and a transfacial approach using a rotational nasal-cheeck flap [14–16]. Each STL was
assigned a different color pattern to be separately imported in the AR project.

2.2. Setting Up AR Project for VSP

Microsoft’s Mixed Reality Toolkit (MRTK) (Microsoft Corporation, Redmond, WA,
USA) provides a key role to bridge virtual surgical planning with Hololens 2 as a device
which supports augmented reality. In fact, MRTK also provides support for importing and
working with custom 3D models, which are provided by VSP. Alternatively, Unity platform
(Unity Technologies, San Francisco, CA, USA) can be used as an editor to build and then
deploy the AR application based on VSP.

Interactable components are a core part of both Unity and MRTK and provide the
basics to define a physical interaction between a virtual object and the physical space. It
supports different types of input, including hand interactions and gestures as well as eye
motion tracking.

Spatial Map Interaction represents another key feature of both Unity and MTRK and
is based on a raycast from the camera along the camera’s viewing angle, providing a tool
of interaction with the virtual surgical plan in the context of the real-world environment.
There are additional technologies deserving to be mentioned which are implemented in
such software models:

• Hand tracking: MRTK supports HoloLens 2 articulated hand tracking, allowing for
direct hand interactions with virtual objects in the AR space. This can be used to
manipulate the virtual surgical plan in a more intuitive and natural way [15].

• Eye tracking: Using built-in Hololens 2 sensors, MRTK also supports eye tracking.
This can be used for more advanced interactions, enabling centering of the virtual
surgical plan within the user’s sight field.

• Spatial anchors: Such tools enable fixing the AR model to any given reference of the
physical space. Using Azure’s cloud technologies, such anchors can be moved to the
cloud to adapt the same coordinate system between multiple devices.

Once the VSP is successfully transferred in the AR app and has been made interactable
with both gaze and hand movements, it can be deployed and installed in the physical
Hololens 2 headset.
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2.3. Surgery

In these cases, given the need to perform a neck dissection, we proceed with a tem-
porary tracheotomy, preferring a percutaneous tracheotomy to a surgical one. Patient
preparation proceeds by positioning of the tracking system, usually in parieto-occipital
region and the subsequential calibration of the navigator. Neck dissection can be performed
before or after craniofacial resection of the malignant tumor. In the case of the patients
under investigation, all underwent modified bilateral neck dissection. SNUC tends to
mainly affect the maxillary sinus, so an en bloc resection is performed through various
surgical accesses. After a Weber–Ferguson incision, a dissection plane is established and
two osteo-myocutaneous flaps are prepared: a maxillary flap laterally and a nasogenial
flap medially. Osteotomy of the bone portions affected by the tumour is then performed
using a piezoelectric device, establishing the bony limits of the craniofacial resection. After
pterygomaxillary disjunction, the tumor is excised. During these maneuvers, attention
must be paid to possible severe bleeding, especially from the internal maxillary artery.
When the neoplasm involves the frontal sinus, a coronal approach must be performed. A
frontal bandeau above the superior orbital rim to allow access to the neoplasm and the
anterior cranial fossa. Neuronavigation is crucial throughout surgery but particularly at the
intracranial level, indicating and highlighting the limits of the neoplasm. An exenteratio
orbitae is often required. Reconstruction of the defect often requires the use of local flaps,
temporalis muscle flaps, or nasal septum flaps. Bony defects, e.g., in the frontal bone,
are reconstructed using a titanium mesh. If it is necessary to restore the dural plane, a
pericranial flap is normally used with a frontal sinus obliteration with fat. All patients then
followed a protocol of adjuvant chemotherapy and radiotherapy.

3. Results

All patients were followed for the first year with monthly follow-up visits according to
the oncology protocol of our clinic. No significant immediate postoperative complications
were noted. All patients underwent adjuvant radio-chemotherapy. Patients underwent
follow-up MRI between 2 and 4 months post-operatively. To date, there has been no
evidence of recurrence.

4. Discussion

Augmented reality is advocated as a future game-changer in complex surgical sce-
narios. The availability of a virtual image overlapped to the real patient can provide
a number of benefits, including continuous guidance, real-time scoping of the complex
three-dimensional anatomy, lesion targeting, and avoidance of vulnerable structures [1,2].
Such possibilities will have a consistent impact on complex craniofacial oncology surgeries,
and they will act as the bridge to transpose virtual surgery performed preoperatively in a
software environment within the operating theatre.

Currently, AR is being increasingly applied in CMF surgery. Reported evidence in
the literature is mostly limited to in vitro settings, where phantom models are used to
test calibration methods or to compare novel AR interfaces with navigational stations in
terms of accuracy [17–19]. Moreover, there is no standardized solution for AR, as wearable
devices, smartphone or tablet app, and composite circuits made of connected cameras and
laptops have been interchangeably reported [20].

Evidence of AR application in a real surgical setting is scant in the literature. This
can be explained considering that AR adoption is recent and still largely unreliable for
a validated clinical use owing to a number of reasons, primarily including the inherent
imprecision in patient-to-VR (virtual reality) matching, parallax error, gross environmental
mapping, light interference, patient position, and sterile drapes concealing the anatomical
region used for calibration. Nevertheless, there is some speculative research trying to
explore the possible advantages of AR in surgical scenarios as well as hardware ergonomics
in terms of wearability, interference with surgical maneuvers, vision through optical lenses
with overlapped display for VR, mesh rendering, and overall fluidity.
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Table 2 collects the few reports presenting examples of AR in a real surgical setting.
Despite the obvious lack of a regulatory framework for this early technology, some appli-
cations have been tested using a combination of commercially available or custom-built
hardware and a variety of software interfaces.

Table 2. Review of studies presenting clinical applications of augmented reality in real surgical
operations, documented by pictures.

Author and Year Surgery Hardware Software

Ahn et al., 2019 [21] Orthognathic Coupled cameras, processing
station, markers Custom built software in C++

Pham Dang et al., 2021 [22] Maxillary cyst excision Single DSLR camera
open-source libraries Qt,
OpenCV and VTK
(Visualization Tool Kit)

Battaglia et al., 2019 [3] Fibula flap harvesting Smartphone-Tablet Unity 3D

Lysenko et al., 2022 [23] Maxillary cyst excision Microsoft Hololens Not declared

Ceccariglia et al., 2022 [2] Oncologic surgery Microsoft Hololens Unity 3D + VuForia engine;
UWP app

Among the very few reports dealing with augmented reality, there is not a single
paper trying to implement this promising technology in complex oncologic craniofacial
procedures. Although in such an initial stage the implementation of AR in this setting is
mainly conceptual, its practical adoption may provide valuable insights in the perception
of the value that this technology may have in the future and how it may be supposed to
enter the clinical routine.

Our group started to speculate on AR for complex craniofacial procedures, among
which open craniofacial resection for advanced-stage sinonasal tumors represented the
ideal setting of application. Virtual surgical planning was described according to the
protocol of digital anatomical reconstruction for deep facial compartments described by
the same authors [24]. A multilayer segmentation method was applied for the separate
reconstruction of bone, segmented using a thresholding algorithm on CT scans, whereas,
for soft structures, multiple MR sequences performed with a 3T magnet were coregistered
and matched with the CT and allowed to reconstruct the tumor mass and critical vascular
structures, both arterial, using time-of-flight volumetric and venous sequences using a 3D
venography sequence to track the centripetal proton flow (Table 3).

Table 3. Multilayer anatomical segmentation and techniques for each structure [25,26].

Anatomical Structure Imaging Acquisition
Modality Segmentation Method Software Used for

Segmentation
Software Used for
Postprocessing

Skull and mandible hi-res CT scan Gobal thresholding and
mask split Materialise Mimics Materialise 3-matic

Eye T2 MRI Local region growing and
voxel dilation Materialise Mimics Materialise 3-matic

Arterial system TOF (3T) Dynamic region growing +
vessel tracking Materialise Mimics Materialise 3-matic

Venous system 3D venography (3T) Dynamic region growing Materialise Mimics Materialise 3-matic

Tumor VIBE volumetric Smart brush + manual Materialise Mimics Materialise 3-matic

Based on the segmented virtual anatomy, a virtual patient replica was generated and
could be further processed for topological optimization of 3D models. Virtual surgical
planning of osteotomies was conducted by CMF specialists according to the procedure
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described by Ketcham [27], including the simulation of an orbito-frontal bandeau to access
the anterior cranial fossa and nasal bone and maxillary osteotomies for the midfacial
translocation approach described by Janecka and Tiedemann [28]. This allowed us to
split the midface in a maxillary cheek flap and a contralateral nasal–maxillary cheek flap
(Figure 1).
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Figure 1. Virtual surgical planning for facial disassembly to be imported in AR headset. (A) os-
teotomies are traced in VSP software; (B) all bone flaps are removed (purple—frontal bone flap;
blue—nasal bridge; red—subspinal medial orbital wall flap; green—maxilla flap), leaving the tu-
mor (brown) visible in its relationships with the surrounding structures; (C) facial translocation is
simulated, pivoting and rotating bone segments according to the surgical prediction.

The models with facial disassembly according to planned osteotomies were exported
either to create a 3D printed replica, and to be imported in the navigation plan. We used
for this purpose a novel commercially available platform, Mimics Viewer XR (Materialise,
Leuven, BE, USA) which allowed us to create an AR plan suitable for Hololens 2 glasses
(Microsoft, Redmond, WA, USA). The viewer provides a real time rendering engine without
any graphic detail loss and is well integrated with Hololens hand tracking for fine motion
gestures that enable the user to manipulate the virtual object in real space. Moreover, with
a simple gesture, the user can display a pop-up menu allowing them to selectively show
and hide parts, in order to dismantle the craniofacial skeleton according to the virtual
surgical plan, as well as cropping the model to scope in-depth anatomy, including skull
base and deep facial compartments. As this is a preliminary investigation based on a single
experience, AR was not used as a real guidance to perform osteotomies, which were instead
traced under navigational control. At first, Hololens software performs an environmental
recognition to determine the conformation of surrounding space, including floor and wall
recognition. This is achieved using embedded coupled infrared cameras that are natively
inserted in the headset and ensures that the virtual object is located stably in the physical
environment. Then, the AR model is manually positioned over the real patient, using
anatomical prominences as reference. A soft tissue model provides the best alignment
template as it matches the size and shape of the patient. The model is overlapped using
fine gestures to the real patient from multiple sight angles to compensate for the parallax
error and, once the surgeon is satisfied with the registration, the soft tissue mask is hidden,
leaving the skeletal surgical plan and the tumor visible, as well as the area marked for
resection (Figure 2).
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This system is at its earliest development phase but, compared with traditional navi-
gation systems, it provides unprecedented ergonomics and simplicity, as the surgeon does
not need a navigation pointer or a cumbersome infrared camera in the operating theatre.
Moreover, wearing the AR headset makes it unnecessary to modify head position or to
shift gaze from the operating field to look at the navigation monitor [29].

There are of course multiple drawbacks that still must be approached from an engineer-
ing perspective—not just parallax error but also eye movements and discrepancy between a
focal plane and an object can render the image misaligned. Current-generation AR devices
implement a single focal plane, which increases such discrepancy between the observer’s
focal plane and the object’s distance. Newer devices will integrate eye-tracking technology
by measuring eye positions and eye movement to account for the user’s viewing positions.
In addition, the AR image perceived on Hololens is flat and lacks depth of field, and this
is likewise due to the fact that a single focal plane restricts the user to focus the virtual
image exclusively at a fixed distance, leading to eye fatigue. Depth perception is essential to
determine the penetration of surgical instruments within the overlaid surgical planning in
a real operative field, and the addition of multiple focal planes might significantly enhance
the performance of AR headsets [30].

However, especially in complex craniofacial surgery, the operative field changes con-
tinuously due to different phases of surgical operations, head movements, light conditions,
and instrumentation. Therefore, it is foreseeable that in the future an interactive method of
AR-to-patient registration will become necessary, which will be able to readapt calibration
of the virtual image on the variations of the operative field. For this purpose, deep learning
and convolutional neural networks are the most promising approaches, as such algorithms
will “learn” from the different surgical phases, will elaborate a novel calibration, and will
provide the new output back to the headset, thus enabling a real-time virtual image process-
ing [31]. Similarly, subject recognition capabilities will substantially improve using deep
learning, including the possibility to adapt recognition to the progression of surgical steps
and the modification of anatomy, as a midfacial split overturns completely any landmark
registered before.

Moreover, novel AR system will provide the user with visual feedback options, as
suggested by Maal et al. [31], showing the user an immediate clue on the correctness of
surgical maneuvers, such as lesion targeting or osteotomies [32].

Finally, AR applied in craniofacial surgical oncology, but also in endoscopic ap-
proaches [33], is likely to become a fundamental resource to enhance anatomy under-
standing and lesion identification and to avoid critical structures using a see-through,
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wearable display. This preliminary report aimed to present the importance of progressively
introducing AR to enhance surgical orientation in complex scenarios, a process that will be
fostered as soon as certification authorities validate AR systems for clinical use.

The main limitation of this study is that it collects AR experience at its earliest, given
the fact that few solutions are available in the market for certified use. The main problem
still consists in the correct calibration of the holographic image with the reality of the
patient and the physical environment, although artificial intelligence will definitely help to
overcome this limitation.

5. Conclusions

The importance of AR is growing in modern craniofacial surgery and is steadily shift-
ing from mere research interest to practical application. Especially in cases of complex
surgical oncology procedures, the guidance provided by AR may be helpful in resolving
scenarios in which the tumor mass is located in deep spaces or in proximity of crucial struc-
tures. We urge technological innovation and especially artificial intelligence to enhance the
reliability of AR and translate it into a standard of care for the new generations of surgeons.
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