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Abstract One of the main requirements in the design of structures made of functionally
graded materials is their best response when used in an actual environment. This optimum
behaviour may be achieved by searching for the optimal variation of the mechanical and
physical properties along which the material compositionally grades. In the works available
in the literature, the solution of such an optimization problem usually is obtained by search-
ing for the values of the so called heterogeneity factors (characterizing the expression of the
property variations) such that an objective function is minimized. Results, however, do not
necessarily guarantee realistic structures and may give rise to unfeasible volume fractions
if mapped into a micromechanical model. This paper is motivated by the confidence that a
more intrinsic optimization problem should a priori consist in the search for the constituents’
volume fractions rather than tuning parameters for prefixed classes of property variations.
Obtaining a solution for such a class of problem requires tools borrowed from dynamic
optimization theory. More precisely, herein the so-called Pontryagin Minimum Principle is
used, which leads to unexpected results in terms of the derivative of constituents’ volume
fractions, regardless of the involved micromechanical model. In particular, along this line of
investigation, the optimization problem for axisymmetric bodies subject to internal pressure
and for which plane elasticity holds is formulated and analytically solved. The material is
assumed to be functionally graded in the radial direction and the goal is to find the gradation
that minimizes the maximum equivalent stress. A numerical example on internally pressur-
ized functionally graded cylinders is also performed. The corresponding solution is found to
perform better than volume fraction profiles commonly employed in the literature.
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1 Introduction

In recent years, composite materials have been used in many applications in civil and me-
chanical engineering. In the design of these materials, control and optimization of stress
and displacement fields are serious goals. A special class of composite materials, known
as Functionally Graded Materials (FGMs), has been gaining considerable attention by re-
searchers and engineers. In these materials, both the composition and the structure change
(usually continuously) along specific directions, resulting in corresponding changes in the
properties of the material. In the simplest FGMs, two different material constituents change
gradually from one to the other. The most common material of this kind compositionally
grades from a ceramic material to a metal one.

The general idea of structural gradients was first advanced for composites in the Sev-
enties [1]. However, there was no genuine investigation about how to design, fabricate and
evaluate graded structures until the Eighties [2]. More recently, FGMs are present in many
engineering applications such as space shuttles, nuclear fusion reactors and energy conver-
sion systems [3]. Since FGMs are not homogeneous materials, it is clear that in order to
create them, comprehensive studies need to be performed in design methodology and theo-
retical modeling as well as in processing and properties evaluation. On the other hand, unlike
conventional homogeneous materials, the spatial variation of mechanical and physical prop-
erties in FGMs can be exploited to obtain better performances by micro-structural control.

Generally, the variation in material properties of FGMs is exclusively examined within
two categories of analyses. While in the first one the mechanical and physical properties
are assumed to vary according to specific functions with respect to spatial coordinates by
means of the so called heterogeneity factors, the second category is based on the description
of the material heterogeneity by means of volume fractions of the constituents. Volume
fractions are in turn linked to the material properties through the so called micromechanical
models, which may range from explicit traditional rule of mixtures, such as Voigt, Reuss,
Mori-Tanaka and Wakashima-Tsukamoto models, to implicit ones (such as Hill-Budianski
model) to variational ones (e.g., Hashin-Shtrikman model) [2].

Works pertaining to both categories can be found in the literature concerning, for in-
stance, the torsion in bars [4], the stress concentration factors and the static, buckling, and
free- and forced-vibration in plates [5, 6] as well as the out of plane displacement field in
inclined cracks [7]. Besides, as far as axisymmetric bodies are concerned, several papers are
devoted to the stress analysis in hollow cylinders subject to internal pressure [8], thermal [9]
and axial [10] loads, pressure vessels [11] and rotating disks [12].

The optimum response of the material to an actual environment is one of the most impor-
tant aspects in the design of FGMs [13], leading to interesting results for several different
functionally graded structures. However, to the extent of our knowledge, the overwhelming
majority of works belongs to the first category, namely dealing with optimization problems
in FGMs which consist in finding the values of some tuning parameters of the heterogene-
ity factors for prefixed types of property variations (e.g., power-law, exponential, trigono-
metric models, etc.) such that an objective function is minimized or maximized. Gradient-
based methods as well as meta-heuristic algorithms led researchers towards these objectives.
For instance, a finite element based optimization of a pressure vessel consisting in a finite
length hollow cylinder and two spherical closed ends has been performed in [14]. In [15],
a combination of a co-evolutionary particle swarm optimization approach coupled with a
differential quadrature method is applied to obtain minimized stress and displacement fields
through the geometry of a disk under thermo-elastic loads. The thermo-mechanical analysis
and optimization of functionally graded rotating hollow disks is dealt with in [16] using the



An Intrinsic Tailoring Approach for FG Axisymmetric Hollow Bodies 17

sequential quadratic programming method. Not by chance, all the aforementioned works
consider power-law property distributions, as they are simple and allow closed-form so-
lutions amenable for numerical optimization, yet imposing considerable limitations to the
generalization of the optimization procedures. In our opinion, another strong limitation not
mentioned in the works cited above is that once fixed the class of property variation and
once the optimized heterogeneity factors have been found, optimal solutions for material
properties do not necessarily give rise to realistic structures, i.e., with unfeasible associated
metallic and ceramic volume fractions, being considered a micromechanical model.

1.1 Motivation of the Work

The above mentioned facts entail that a more intrinsic optimization procedure should a
priori consist in the search for the best volume fractions and not merely in the tuning of
the parameters of prefixed property behaviors. In this case, the formulation of the resulting
problem is also useful from the technological viewpoint. In fact, although it must be based
on a micromechanical model to relate elastic properties to volume fractions, it does not
hinder one to deal with a specified class of functions describing property variations.

To the extent of our knowledge, only a few studies concerning with a material tailoring
approach have been addressed. For instance, in [17, 18] the inverse problem of finding the
variation with the radius of the shear modulus is considered, yet it is desired that the differ-
ence between the radial and the hoop stress satisfies a particular relation along the radius.
Moreover, in [19], the shear modulus such that stresses radially evolve in rubber-like cylin-
ders and spheres within a more general functional constraint is sought. These latter works
provide interesting solutions, however they have been written in a context different from that
of optimal design, which is the framework of the present paper.

1.2 Objectives and Results

The present paper addresses the problem of finding the optimal composition profile of the
constituents for axisymmetric bodies subject to mechanical loadings and for which plane
elasticity holds. The material is assumed to be functionally graded in the radial direction.
In light of these considerations, equilibrium, compatibility and constitutive relations are
firstly recalled and a general background on the most used micromechanical models is then
presented. The problem of minimizing the maximum equivalent stress is subsequently for-
mulated and analytically solved in the context of dynamic optimization theory by means
of Pontryagin’s Principle. Optimal solutions have been found to perform better than classic
variations distributions, commonly employed in the literature, leading to promising results
in terms of stress reduction. Finally, the effect of technological constraint on optimal solu-
tions is discussed.

A first attempt to deal with the aforementioned optimization problem has been done for
the first time in [20] for a functionally graded pressurized thick-walled cylinder within the
plane stress condition. Nevertheless, the present paper remarkably presents three novelties
that can be summarized as follows.

• Firstly, different from [20] where only plane stress condition is considered, a unified math-
ematical approach for both plane stress and plane strain hypotheses is presented.

• Secondly, goal functions are expressed in terms of constituents volume fractions and not
merely in the property variations, making therefore the present framework suitable for
technological aspects associated with the manufacture process.

• Finally, it is shown that the proposed optimization framework can be applicable regardless
of the involved micromechanical model, resulting novel from the theoretical viewpoint.
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Fig. 1 Schematic representation
of the axisymmetric hollow body
considered in the analysis

2 Governing Equations

Consider a radially graded axisymmetric hollow body and let Ri and Ro denote the inner
and outer radii, respectively (see Fig. 1). Define a cylindrical coordinate system and let the
radial, circumferential and axial coordinates be denoted by r , θ and z, respectively.

If the body is subject to an axially-uniform and axisymmetric loading, then deformations
are also axisymmetric, i.e., they vary only in the radial direction. In particular, the strains
and the internal stresses, denoted by εi and σi (with i = r, θ, z), respectively, are supposed
to be continuous functions of r only.

According to the theory of elasticity, a problem may be simplified if either one of the
stresses or the strains is zero along a particular direction. Such behaviors are referred to as
plane stress (in which a generic infinitesimal element is subject to a biaxial stress condi-
tion accompanied by a triaxial strain state) and plane strain (in which a generic infinitesimal
element is subject to a triaxial stress condition accompanied by a biaxial strain state), respec-
tively. The resulting elastic problem may be formulated following either Beltrami-Michell
or Navier approaches, so far as boundary conditions are expressed in terms of radial stresses
or displacements, respectively [21]. With reference to the former approach, herein used for
convenience, the equilibrium equation written for the infinitesimal element in the radial di-
rection and the consideration of Hooke’s constitutive laws for linear, elastic, isotropic and
non-homogeneous materials entail that both the hoop σθ and axial σz stresses may be written
in terms of the radial stress σr . Consequently, the stress analysis may be described in terms
of σr only.

In the following, the governing equations are written within the plane stress state assump-
tion, while several remarks are given when the plane strain condition applies.

2.1 Equilibrium, Kinematic and Constitutive Laws

According to the infinitesimal linear elasticity theory (in absence of body forces), the stress
equilibrium equation in the radial direction may be written in the form [22]

(rσr(r))
′ − σθ (r) = 0, (1)
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where the prime symbol denotes a first derivative with respect to r . The strain-displacement
(or kinematic) equations for an axisymmetric body loaded by axisymmetric forces are

εr(r) = u′(r), εθ (r) = u(r)/r, (2)

where u is the radial displacement, while the plane stress state Hookean constitutive relations
in terms of Young’s modulus E(r) and Poisson’s coefficient ν (assumed constant along the
radius due to its marginal variation among a wide range of materials), are

εr = σr − νσθ

E
, εθ = σθ − νσr

E
, εz = −ν(σr + σθ )

E
. (3)

In the last equations and hereafter, the dependence on r is omitted for the sake of a simple
notation.

Remark 1 For the plane strain condition, Hookean constitutive relations are obtained sub-
stituting E with E

1−ν2 and ν with ν
1−ν

and imposing εz = 0.

The radial strain in (2) can be written as

εr = (εθ r)
′ =

(σθ

E
r − ν

σr

E
r
)′

, (4)

which, together with (3), yields

(σθ − σr)(E + νE) − (σθ − νσr)E
′r + Erσ ′

θ − νErσ ′
r = 0. (5)

From (1) the hoop stress σθ and its first derivative with respect to r are

σθ = σr + rσ ′
r (6)

and

σ ′
θ = 2σ ′

r + rσ ′′
r , (7)

respectively. Substituting (6) and (7) in (5) and rearranging the terms one obtains

Oσr = 0 (8)

where O is a differential operator given by

O(.) = r2(.)′′ + r(3 − rE ′)(.)′ − ν̃rE ′(.) (9)

with E = ln(E) and ν̃ = 1 − ν.

Remark 2 If the plane strain condition holds, the differential operator reads

O(.) = r2(.)′′ + r(3 − rE ′)(.)′ − ν̆rE ′(.), (10)

where ν̆ = 1 − ν
1−ν

.
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2.2 Micromechanical Models

Realistic predictions of the stress and strain behavior of FGMs require appropriate constitu-
tive relations. This aspect represents the most significant difficulty in FGM modeling when
subjected to thermal or mechanical loading conditions. Efforts to analytically determine
the effective properties of heterogeneous structures were initiated more than a century ago
by such famous scientists as Maxwell, Lord Rayleigh, and Einstein [2] (see also the work
by O.F. Mossotti [23]). Recently, due to the increased interest in composite structures for
industrial applications, the subject of composite materials properties has been thoroughly
developed, and a large literature nowadays exists. In several extensive review articles and
textbooks, both good overviews of the subject and insight into the significant involved com-
plexities are provided (see, e.g., [24, 25, 33]). For simple geometries and reasonably simple
material properties (e.g., elastic behavior) analytical solutions are often available in terms
of volume fractions. It is worthwhile to note that most of the micromechanical models are
expressed in terms of effective bulk K and shear G moduli. Because of the isotropic as-
sumption, these latter are linked to the Young’s modulus by the relation

E = 9KG

3K + G
. (11)

2.2.1 Voigt (V) and Reuss (R) Models

The simplest micromechanical model to achieve the equivalent macroscopic material prop-
erties is the rule of mixture which was first formulated by Voigt. Voigt’s idea is to determine
material properties by averaging stresses over all phases with the strain uniformity assump-
tion within the material [2]. The resulting model, that is frequently used in most FGM anal-
yses, estimates Young’s modulus of FGMs as a volume based arithmetic average, i.e., [26]

E = EmVm + EcVc, (12)

where Em and Ec are Young’s moduli of the metal and ceramic constituents and Vm and Vc

are their volume fractions, respectively, both functions of r and related to each other by the
relation

Vc + Vm = 1. (13)

It is convenient to rewrite (12) in terms of one volume fraction function only (usually Vc)
exploiting (13), namely

E = Em(1 − Vc) + EcVc = Em + (Ec − Em)Vc. (14)

Another well-known mixture rule is that based on the harmonic mean estimate (Reuss
model), namely [2]

E = EcEm

EmVc + (1 − Vc)Ec

. (15)

In their most basic form, the above rules of mixtures are employed using bulk constituent
properties, assuming no interactions between phases. They are often used for FGMs, since a
single relationship can be used for all volume fractions and micro-structures. However, due
to their simplicity, their validity is limited.
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2.2.2 Mori-Tanaka (MT) Model

The Mori-Tanaka model provides effective mechanical properties estimation of a graded
micro-structure with ceramic and metal phases. The steps for obtaining the overall material
properties depend on the bulk and shear moduli of the metal and the ceramic. More pre-
cisely, if Km and Kc , Gm and Gc denote bulk and shear moduli of the metal and ceramic,
respectively, the effective bulk K and shear G moduli are given by [27]

K = (Kc − Km)Vc

1 + 3(Kc−Km)

3Km+4Gm
(1 − Vc)

+ Km (16)

and

G = (Gc − Gm)Vc

1 + (Gc−Gm)

Gm+ Gm(9Km+8Gm)
6(Km+2Gm)

(1 − Vc)
+ Gm. (17)

2.2.3 Other Models

It is worth to note that several other models are covered in the literature, such as the models
proposed by Wakashima and Tsukamoto [28], Tamura [29], by Hashin and Shtrikman [30],
by Kerner [31] or by Ravichandran [32]. Recently [33], a comparison of various analytical
methods with experimental data is graphically made to find out the best suitable microme-
chanical model.

Notwithstanding the above mentioned models generally yield dissimilar estimates (dis-
crepancies of more than 50% may be observed in the case of some volume fractions [6]),
they are explicit in terms of phases’ volume fractions, offering a possibility to estimate the
FGM properties for the whole composition range with a single model.

3 Formulation of the Optimization Problem

In order to formulate the optimization problem in the context of dynamic optimization the-
ory, a state-space representation, boundary conditions and a goal functional are needed.

3.1 State-Space Representation and Boundary States

Firstly, since the Young’s modulus is a function of the ceramic volume fraction, namely
E = E(Vc), the term E ′ can be written as

E ′ = (ln(E(Vc)))
′ = g(Vc)vc, (18)

where vc = dVc

dr
(the rate of change of the ceramic volume fraction through the domain) is

chosen to be the control function and

g(Vc) = 1

E(Vc)

dE(Vc)

dVc

,

whose explicit expression is derived from the involved micromechanical model.
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Introducing the state variables x1 = σr , x2 = dσr/dr and x3 = Vc , the differential equa-
tion (8) may be written as the first-order non-linear system

⎧⎪⎪⎨
⎪⎪⎩

x ′
1 = x2 ,

x ′
2 = g(x3)vc

(
x2 + ν̃

x1

r

)
− 3x2

r
,

x ′
3 = vc,

(19)

or, defining x = (x1 x2 x3), in more compact form as

x′ = f(r,x(r), vc(r)). (20)

Note that not all the boundary states are specified. In particular, x1(Ri) and x1(Ro) can
be deduced from the mechanical loads, yielding

x1(Ri) = −pi, x1(Ro) = 0, (21)

while x2(Ri) and x2(Ro) are unknown. As far as concerns x3, if the cylinder is composition-
ally graded from ceramic to metal, then

x3(Ri) = 1, x3(Ro) = 0. (22)

3.2 Goal Functional

In this paper, goal functionals of the Mayer form are considered, consisting in a function K
depending on the initial and final state conditions, namely1

J (vc) = K(x(Ri),Ri,x(Ro),Ro). (23)

Taking into account the plane-stress condition and using the above introduced state vari-
ables and Eq. (6), the equivalent Tresca stress may be written as

σT
eq = |σθ − σr | = |x1 + rx2 − x1| = |rx2|.

Now if the body is pressurized only internally, x1 strictly increases along the radius (x2 > 0)
and σT

eq achieves its maximum value at the inner radius. Therefore, taking

K = x2(Ri)

leads to the minimization of the maximum Tresca stress, being fixed Ri .

Remark 3 The same problem can be stated within the plane-strain condition, taking into
account that σz = ν(σr + σθ ) = ν(2x1 + rx2).

1If f is Lipschitz continuous, then, given an input vc that satisfies the boundary conditions (21) and (22),
the solution of system (19) is unique (for mathematical justifications, see [34]). As a consequence, the goal
functional J turns out to be a function of vc only.
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3.3 Constraints

According to [13], there are a few optimization studies in which the manufacturability cost
is taken into consideration. Adding technological constraints to the optimization studies
is highly recommended since it leads to more practical designs with prospects of being
produced in large scales. To this purpose, one may model the cost in such a way that steep
variations of the volume fractions along the radius are, reasonably, more costly and more
difficult to obtain than moderate variations. As a consequence, in the present optimization
framework, it is reasonable to assume that vc be constrained in an admissible range of values.
More precisely, we assume, for all values of r , vc ∈ [v−, v+]. Note that the following analysis
remains unchanged if, instead of [v−, v+], one considers the union of a set of disjoint closed
and bounded intervals [v−, v1] ∪ [v2, v3] ∪ · · · ∪ [vn, v+], with v− < v1 < · · · < vn < v+,
thus including in the model also situations for which, for some technological reasons, some
values of vc between v− and v+ are not admissible. Suitable values for v− and v+ can be
deduced from fixed radial property variations or from technological process data.

3.4 Statement

The optimization problems can now be stated formally. In the formulation of the problem,
as well as in the computation of the solution, reference is made to the goal functional (23)
in its general form. Hence, solutions to the maximum Tresca stress minimization problem
within the plane stress and plane strain conditions can be found in a common fashion.

Problem 1 Given the dynamical system (20) and the boundary conditions (21) and (22),
find the control function vc : [Ri,Ro] → [v−, v+] such that the functional (23) is minimized.

To solve Problem 1 analytically, the dynamic optimization theory is considered [34]. In
particular, Pontryagin’s Minimum Principle is applied in order to find the optimal solution.
Many engineering problems have been considered using this method, ranging from strongest
columns against buckling [35], to cylinders and spheres of minimum strain energy [36], to
minimum weight rod hanging under gravitational load from a fixed support [37] and to
minimum weight straight pin fins [38] (see also the introductory book [39] where several
engineering applications are described).

4 Solution to the Optimization Problem

Pontryagin’s principle applied to Problem 1 states that the optimal control function vc , i.e.,
the one which minimizes the cost functional J (vc) is, among all admissible functions, the
one which, at any value of r , minimizes the Hamiltonian function H(r,x,p, vc) defined by
[34]

H = p�f (24)

where p = (p1 p2 p3) is the vector of the so called co-state variables, all functions of r .
Recalling (19), the Hamiltonian function H exhibits a linear dependence on the control
function vc , i.e., Eq. (24) can be written as

H = s + qvc , (25)



24 H.M.A. Abdalla, D. Casagrande

where s and q are functions of the states and co-states, whose explicit expressions for the
plane-stress condition are given by

s = p1x2 − 3p2x2

r
, q = g(x3)p2

(
x2 + ν̃

x1

r

)
+ p3. (26)

Since the problem is characterized by a Hamiltonian function linear with respect to vc and
since the set of admissible values for vc is compact, Pontryagin’s Principle yields extremal
solution for the minimization of (25). More precisely, the optimal control function v∗

c is
defined by

v∗
c (r) = arg min

vc

H(r,x,p, vc) =
{

v− , if q(r) > 0 ,

v+ , if q(r) < 0 ,
(27)

that is, the optimal control function only may assume its minimum or maximum value,
possibly switching among them when q = 0. In the parlance of the control theory, the design
admits a “bang-bang” control scenario, jumping in value at certain points rj (with j =
1,2,3, . . .). The roots of q are called switching points since the control function switches
from a bound to the other. Recalling the definition of vc , optimal ceramic volume fraction V ∗

c

turns out to be piece-wise linear with respect to r . This conclusion is particularly interesting
since the piece-wise linearity is supposed to be the simplest volume fraction profile among
all possible forms of variation.

4.1 Computational Aspects

Equation (27) does not yet provide the explicit expression of the optimal solution; in fact,
it is clear that in order to know the explicit value of vc for any value of r one should know
the value of q . In turn, the computation of q requires the knowledge of the solution of the
dynamical system (19) and of the differential equations [34]

p′
k = − ∂H

∂xk

(28)

for the co-states, which for the plane-stress condition are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p′
1 = − ν̃p2g(x3)vc

r
,

p′
2 = −p1 − p2g(x3)vc + 3p2

r
,

p′
3 = −p2

dg(x3)

dx3
vc

(
x2 + ν̃

x1

r

)
.

(29)

Boundary conditions for co-states are determined by the transversality conditions [34]

p2(Ri) = − ∂K
∂x2(Ri)

, p2(Ro) = ∂K
∂x2(Ro)

, (30)

which, once again, for the plane-stress condition, yield

p2(Ri) = −1, p2(Ro) = 0. (31)
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Remark 4 The state-space representation, boundary states, co-state equations and boundary
co-states for the plane-strain condition are the same as (19)–(22), (28) and (31), provided
that ν̃ is replaced by ν̆.

The application of Pontryagin’s Principle, therefore, leads to a system of six first-order
and coupled non-linear differential equations described by (19) and (28), that has to be
solved taking into account the six boundary conditions (21), (22) and (30).

Remark 5 Usually, to solve a non-linear dynamical systems like (19)–(28), numerical tools
(such as the shooting methods or the pseudospectral methods) are needed. The implementa-
tion of these algorithms may give raise to convergence and computational issues, due to the
non-linear nature of the involved equations, which are beyond the scopes of this article and
could be addressed in future investigations.

Remark 6 The optimization problem above could be solved also by searching for the so-
lution to the Hamilton-Jacobi-Bellman (HJB) equation, as in classic dynamic program-
ming [40]. However, Pontryagin’s principle allows one to understand some characteristics
of the optimal control function without knowing the explicit solution to the HJB equation
which, in the non-linear case under investigation, would not be easy to find. Analogously,
the validity of a candidate optimal control function could be analysed according to the ver-
ification principle, yet the application of this principle would require the integration of (19)
which is beyond the scope of the article.

4.2 Single Switching Point Case

To overcome the computational burden of the numerical approach, special attention is drawn
to the case in which q has only one root, i.e., when the optimal solution admits a single
switching point. Beside its simplicity, this choice is justified since the resulting volume frac-
tion profile is amenable for physical realization from the technological viewpoint. Denoting
by v̄ the rate of the linear variation between x3(Ri) = 1 and x3(Ro) = 0, namely

v̄ = − 1

Ro − Ri

,

two situations may occur. Firstly, if v̄ /∈ [v−, v+], there is no feasible solution, since no
variation vc : [Ri,Ro] → [v−, v+] is consistent with the boundary conditions (see Fig. 2,
left). As a consequence, no optimal solution exists either.

On the other hand, if v̄ ∈ [v−, v+], two optimal solutions are possible. More precisely,
one characterized by a subinterval in which vc = v+ followed by a subinterval in which
vc = v− (black bold line in Fig. 2, right) and the other one with the opposite situation (first
vc = v− and then vc = v+, as in the grey bold line in Fig. 2, right). With reference to Fig. 2,
right, the switching points r1 and r2 can be geometrically determined as

r1 = −1 − v−Ro − v+Ri

v+ − v−
, r2 = 1 − v−Ri + v+Ro

v+ − v−
. (32)

Remark 7 It is worth to point out that, in general, not all the dynamic optimization problems
admit a formulation or a closed-form solution as in the case considered above. In some
cases, one must resort to numerical approximation techniques, including neural networks
or genetic algorithms, to which several works available in the literature are dedicated (see,
among the others, [41–44]).
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Fig. 2 Optimal control function V ∗
c and definition of v̄, v−, v+, r1 and r2. Case v̄ /∈ [v−, v+] (left) where

no solutions are feasible and v̄ ∈ [v−, v+] (right) where two solutions may exist (black and grey solid lines)

Table 1 Mechanical properties
of alumina and steel E [MPa] K [MPa] G [MPa]

Alumina 3.9 × 105 3.25 × 105 1.5 × 105

Steel 2.1 × 105 1.75 × 105 0.8 × 105

5 Numerical Example

We now show a numerical example concerning the design of a family of internally pressur-
ized thick-walled FG cylinders where the material variation has to be chosen to minimize
the maximum equivalent Tresca stress. We first show the results obtained with three “clas-
sic” material variations widely used in the literature. These results are then compared with
the ones associated with the optimal solution described in the previous section where, for
simplicity, a single switching point is supposed to exist. The inner radius is selected to be
20 mm, while the outer radius is chosen to vary from Ro,min = 30 mm to Ro,max = 50 mm.
The hollow cylinder is subject to an internal pressure pi = 10 MPa. Alumina and steel are
taken as the ceramic and metallic constituents at the inner and outer radii, respectively.
Young’s modulus, as well as bulk and shear moduli of both materials are summarized in
Table 1, while Poisson’s ratio is chosen to be ν = 0.3.

5.1 Results of Classic Variations

In a first analysis, linear, sinusoidal and sigmoidal volume fraction profiles have been taken
into account. They are widely used in the literature and exhibit different stress behaviors
throughout the thickness. Employing the micromechanical models introduced in Sect. 2,
effective bulk and shear moduli are obtained while the effective Young’s modulus is derived
using (11). Figure 3 shows the above mentioned volume fractions and the associated Young’s
moduli for a fixed Ro/Ri ratio.

A finite element model (whose details are omitted for brevity) has been developed to
numerically forecast the stress behavior within the plane-stress and plane-strain conditions.
Numerical values for the maximum Tresca stress have been computed for selected Ro/Ri

ratios. The effect of micromechanical models on the stress responses can be readily seen in
Table 2, where the values of the ratio σT

max/pi are reported. Voigt and Reuss estimates yield
the lowest and highest normalized maximum equivalent stress values, respectively, for all
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Fig. 3 Linear, sinusoidal and sigmoidal volume fractions (left) and the associated Young’s moduli (right) by
Voigt (solid line), Reuss (dotted line) and Mori-Tanaka (dashed line) micromechanical models

the aforementioned volume fraction profiles, while results for Mori-Tanaka model present
an intermediate stress behavior. Moreover, the employment of a sigmoidal volume fraction
leads to lower σT

max/pi values with respect to the linear and sinusoidal ones, regardless of
the involved micromechanical model.

5.2 Results of the Pontryagin Solution

Solutions associated with the Pontryagin’s Principle have been, then, investigated and com-
pared to the three above-mentioned volume fractions. In light of the single switching point
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Table 2 Numerical values of
σT
max/pi for linear, sinusoidal

and sigmoidal volume fraction
profiles and for Voigt (V), Reuss
(R) and Mori-Tanaka (MT)
micromechanical models

Ro/Ri Plane stress Plane strain

V R MT V R MT

Linear 1.50 4.309 4.526 4.422 4.327 4.552 4.444

1.75 3.469 3.630 3.552 3.486 3.654 3.573

2.00 3.057 3.189 3.125 3.073 3.212 3.144

2.25 2.815 2.929 2.874 2.830 2.950 2.892

2.50 2.657 2.758 2.709 2.670 2.778 2.726

Sinusoidal 1.50 4.591 4.807 4.706 4.618 4.843 4.737

1.75 3.674 3.839 3.761 3.698 3.872 3.790

2.00 3.222 3.361 3.294 3.245 3.392 3.322

2.25 2.954 3.077 3.018 2.976 3.106 3.044

2.50 2.778 2.889 2.836 2.798 2.917 2.860

Sigmoidal 1.50 4.253 4.312 4.284 4.263 4.324 4.295

1.75 3.410 3.452 3.432 3.419 3.462 3.442

2.00 2.996 3.029 3.014 3.004 3.039 3.022

2.25 2.753 2.781 2.768 2.760 2.789 2.775

2.50 2.595 2.618 2.607 2.601 2.625 2.614

assumption, two possible extremal solutions may occur (see Eq. (32)). One of the two solu-
tions corresponds to the minimum value of σT

max/pi , while the other one can be discarded.
Upper and lower limits for v− and v+, respectively, are firstly determined. In particular,

from simple geometric considerations, an optimal solution exists for all Ro/Ri ratios when

v− <
1

Ri − Ro,min

= −1/10, v+ >
1

Ri − Ro,max

= −1/30. (33)

Two suitable values for v− and v+ are therefore preliminary chosen to be −0.2 and
−0.02, respectively (v−/v+ = 10). The associated extremal solutions for ceramic volume
fractions and the effective Young’s moduli obtained by Voigt, Reuss and Mori-Tanaka mod-
els are represented in Fig. 4 as Ro/Ri increases. The equations for the locus of switching
points can be derived easily from (32), showing a linear dependence with respect to Ro/Ri ,
being fixed v−/v+. In particular, the switching points r1 and r2 get close to the inner and
outer radii, respectively, as Ro/Ri increases.

Numerical values of σT
max/pi for both extremal solutions are reported in Table 3, showing

worse and best stress scenarios when the switching point occurs at r1 and r2, respectively.
These considerations allow one to conclude that the optimal solution is the one associated
with r2 (grey bold line in Fig. 2, right) while the one associated with r1 (black bold line in
Fig. 2, right) has to be discarded.

5.3 Comparison

From the results described above, it is clear that the optimal solution, despite its simplic-
ity, outperform the classical linear, sinusoidal and sigmoidal variations. Taking for instance
Ro/Ri = 1.50 and considering Voigt and Mori-Tanaka models, optimal volume fraction pro-
file shows, for the Pontryagin’s solution, a significant normalized maximum equivalent stress



An Intrinsic Tailoring Approach for FG Axisymmetric Hollow Bodies 29

Fig. 4 Extremal solutions for ceramic volume fractions and the locus of switching points as Ro/Ri increases
(left) and the associated effective Young’s moduli (right) by Voigt (solid lines), Reuss (dotted lines) and Mori-
Tanaka (dashed lines) micromechanical models with v−/v+ = 10

Table 3 Numerical values of
σT
max/pi for both extremal

scenarios with v−/v+ = 10 and
for Voigt (V), Reuss (R) and
Mori-Tanaka (MT)
micromechanical models

Ro/Ri Plane stress Plane strain

V R MT V R MT

Switching point r1 1.50 4.797 4.994 4.903 4.832 5.038 4.942

1.75 3.945 4.117 4.038 3.985 4.167 4.084

2.00 3.473 3.645 3.567 3.515 3.697 3.614

2.25 3.161 3.333 3.254 3.200 3.383 3.299

2.50 2.931 3.100 3.021 2.965 3.147 3.062

Switching point r2 1.50 3.920 4.026 3.977 3.929 4.036 3.983

1.75 3.162 3.251 3.206 3.162 3.251 3.206

2.00 2.833 2.919 2.876 2.837 2.927 2.881

2.25 2.653 2.739 2.696 2.657 2.745 2.700

2.50 2.543 2.628 2.586 2.551 2.643 2.595

reduction of about 10%, 15% and 9% with respect to the linear, sinusoidal and sigmoidal
ones, respectively, for both plane-stress and plane-strain conditions. The reduction percent-
ages read slightly higher considering Reuss model for the same Ro/Ri ratio. The normalized



30 H.M.A. Abdalla, D. Casagrande

Fig. 5 The effect of the variation
of v−/v+ on the optimal volume
fraction profile for two instances
of Ro/Ri

Table 4 The effect of variation
of v−/v+ on the normalized
maximum Tresca stress σT

max/pi

for two instances of Ro/Ri

Ro/Ri Plane stress Plane strain

V R V R

v−/v+ = 20 1.50 3.814 3.905 3.818 3.912

2.00 2.819 2.904 2.825 2.916

v−/v+ = 30 1.50 3.777 3.866 3.780 3.872

2.00 2.814 2.902 2.821 2.912

maximum equivalent stress reduction percentage decreases as Ro/Ri increases, reaching av-
eragely 3% for Ro/Ri = 2.50.

To further analyse the performance of the Pontryagin’s solution the effect of the v−/v+
has also been investigated. We have pointed out above that volume fraction profiles switch-
ing at r1 can be discarded. As a consequence, numerical analyses have been performed con-
sidering only the switching in r2 (grey bold line in Fig. 2, right). In particular, results have
been obtained by keeping v+ constant and acting on v− only. The resulting volume fraction
profile is characterized by a switching point r2 getting linearly closer to Ro as v−/v+ in-
creases. Figure 5 shows the optimal volume fraction profiles and the corresponding switch-
ing points for v−/v+ = 10,20,30 and for Ro/Ri = 1.5,2. The corresponding numerical
values of σT

max/pi are listed in Table 4 considering only Voigt and Reuss models for the as-
sessment of lower and higher stress behaviors, respectively, showing further maximum stress
reduction as v−/v+ increases (see Table 3, where results are reported for v−/v+ = 10).2

6 Conclusions

Material property variation in functionally graded materials has been reported in the context
of dynamic optimization theory. In particular, optimal volume fractions for maximum equiv-
alent stress minimization problem in axisymmetric bodies within the theory of plane elastic-
ity is analytically derived by means of Pontryagin’s Principle. The optimization framework

2Numerical analyses show marginal stress percentage reduction for higher Ro/Ri ratios with respect to
v−/v+ = 10.
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is independent of the involved micromechanical model. Optimal volume fraction profiles
turn out to be piece-wise linear along the radius, consequence of a bang-bang control sce-
nario and amenable for physical realization. Comments on a special class of optimal solu-
tions are addressed and a numerical example considering a pressurized functionally graded
cylinder is performed. Maximum equivalent stresses are numerically assessed and compared
to those obtained by other gradations found in literature. The achieved results are encour-
aging and future works may be extended to deal with other axisymmetric components with
loads of different kinds, e.g., thermal, electric and magnetic.
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