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Abstract: This article deals with the existence, multiplicity, minimal complexity, and global structure of
the subharmonic solutions to a class of planar Hamiltonian systems with periodic coefficients, being the
classical predator-prey model of V. Volterra its most paradigmatic example. By means of a topological
approach based on techniques from global bifurcation theory, the first part of the paper ascertains their
nature, multiplicity and minimal complexity, as well as their global minimal structure, in terms of the
configuration of the function coefficients in the setting of the model. The second part of the paper introduces
a dynamical system approach based on the theory of topological horseshoes that permits to detect, besides
subharmonic solutions, “chaotic-type” solutions. As a byproduct of our analysis, the simplest predator-prey
prototype models in periodic environments can provoke chaotic dynamics. This cannot occur in cooperative
and quasi-cooperative dynamics, as a consequence of the ordering imposed by the maximum principle.

Keywords: periodic predator-prey Volterra model, subharmonic coexistence states, global structure,
minimal complexity, Chaotic dynamics
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1 Introduction

The analysis of subharmonic solutions to differential systems with periodic coefficients is a classical
research topic which has been widely investigated also with respect to its relevant significance in several
applications, including the study of differential equations models arising from celestial mechanics and
engineering. Generally speaking, given a first-order differential system

z F t z, ,( )′ = (1.1)

for z z z, , Ωd1( )= … ∈ , where Ω is an open domain of d� and F : Ω d� �× → is a sufficiently regular vector
field which isT-periodic in the t-variable, by a subharmonic solution of order n 2≥ to system (1.1)we mean a
nT -periodic solution of the system which is not kT -periodic for all integers k n1, , 1 .{ }∈ … − As pointed out
by Rabinowitz in [1]:
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This latter quest is complicated by the fact that any T -periodic solution is a fortiori kT -periodic. Thus an additional
argument is required to show that any subharmonics are indeed distinct.

In particular, it will also be important to check whether a subharmonic solution of order n has indeed nT as
its minimal period. This is a difficult task that nevertheless can be overcome in some circumstances thanks
to the special structure of the vector field F . Some sufficient conditions have been already proposed in the
literature (see, e.g., Michalek and Tarantello [2]).

The general aim of this work is to investigate, as deeply as possible, the subharmonics to a class
of Lotka Volterra systems under seasonal effects. Precisely, the model is a planar Hamiltonian system
of the form

x λα t f y
y λβ t f x

,
,

⎧

⎨
⎩
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(1.2)

where f : � �→ is a locally Lipschitz continuous function with f 0 0( ) = and f s s 0( ) > for s 0≠ such that
f is bounded on , 0( ]−∞ and has a superlinear growth at +∞. The assumptions on f are motivated by
the paradigmatic case

f s e 1,s( ) = − (1.3)

coming from the original Volterra’s equations.
In 1926, Volterra in [3] proposed a mathematical model for the predator-prey interactions as an answer

to the statistics on the fishing data in Northern Adriatic sea, provided by the biologist Umberto D’Ancona.
His model, extraordinarily famous today, since it is discussed in most of textbooks on Ordinary Differential
Equations (ODEs) and Ecology, has shown to be a milestone for the development of more realistic predator-
prey models in environmental sciences and population dynamics (see, e.g., Begon et al. [4]). It can be
formulated as follows

N N a bN
N N c dN
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(1.4)

where N t 01( ) > and N t 02( ) > represent, respectively, the density of the prey and the predator populations
at time t . In (1.4), the coefficients, a, b, c, and d, are assumed to be positive constants (see Braun [5]). The
same system had been already introduced few years before by Alfred J. Lotka from a hypothetical chemical
reaction exhibiting periodic behavior in the chemical concentrations (see Murray [6, §3.1]), which reveals
how the same models can mimic a variety of phenomenologies of a different nature. After these pioneering
contributions, differential equations involving the interaction of two or more species are usually named
as Lotka-Volterra systems and are represented in the general form:

N N a b N i n, 1, , .i i i
j

n

ij j
1

⎛

⎝
⎜

⎞

⎠
⎟∑′ = − = …

=

(1.5)

However, in this article we will focus attention on those satisfying b 0ii = . The choice of the sign of the
coefficients ai and bij allows describing different kinds of interactions, as competition, cooperation, or
parasitism.

Although Volterra [7] and Lotka [8] considered the possibility of some varying in time coefficients, an
extensive study of the Lotka-Volterra systems with periodic coefficients has not been carried out until more
recently (see, e.g., Butler and Freedman [9], Cushing [10,11], and Rosenblat [12], for some early works in this
direction). However, in the past four decades, the researches in this area have originated a great number of
contributions, also in connection with the study of periodically perturbed Hamiltonian systems and reac-
tion-diffusion systems arising in genetics and population dynamics, beginning with the influential mono-
graph of Hess [13] and the refinements of López-Gómez [14], where a general class of spatially heteroge-
neous diffusive Lotka-Volterra systems with periodic coefficients was studied. To understand the role
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played by the spatial heterogeneities in these models, the reader is sent to the early works of López-Gómez
[15] and Hutson et al. [16], as well as to the monographs [17,18]. Further models covering more general
spatial interactions, outside the Lotka-Volterra World, were introduced by López-Gómez and Molina-
Meyer [19,20].

Although the assumption that the coefficients of the model are periodic with a common period might
seem restrictive, it is based on the natural assumption that the species are affected by identical seasonal
effects, which is rather natural as they interact in the same environment. Precisely, the article focuses into
the following periodic counterpart of the autonomous system (1.4):

N N a t b t N
N N c t d t N

,
,

1 1 2

2 2 1

⎧

⎨
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( ( ) ( ) )

( ( ) ( ) )

′ = −

′ = − +

(1.6)

where, typically, a, b, c, d : � �→ are T -periodic functions such that

b t d t a t t c t t0, 0, d 0, d 0.
T T

0 0

( ) ( ) ( ) ( )∫ ∫⪈ ⪈ > >

In this case, by [21, Th. A.1], the system (1.6) has a component-wise positive T -periodic solution,
N t N t˜ , ˜1 2( ( ) ( )), and the change of variables

N t u t N t N t v t N t˜ , ˜ ,1 1 2 2( ) ( ) ( ) ( ) ( ) ( )= =

leads to the study of the equivalent system

u λα t u v
v λβ t v u
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(1.7)

where N t N t˜ , ˜1 2( ( ) ( )) becomes 1, 1( ) (see the Appendix of [21] for any further details). In (1.7), λ 0> is
regarded as a parameter, while α t 0( ) ⪈ and β t 0( ) ⪈ are T -periodic function coefficients, where T 0> is
their minimal period. The component-wise positive periodic solutions of (1.7) are called (periodic) coexis-
tence states and, obviously, are relevant in population dynamics, as they represent states where none of
the interacting species is driven to extinction by the other.

Among the periodic coexistence states, the subharmonics are of particular interest. Focussing attention
into the simplest prototype model with constant coefficients (1.4), it is folklore since Volterra [7] that all its
positive solutions are periodic and oscillate around the equilibrium P c d a b,0 ( )≡ / / in the counterclockwise
sense, lying on the “energy levels”:

E N N dN c N bN a N k, log log constant ,1 2 1 1 2 2( ) ≔ − + − = =

for k k ,0( )∈ +∞ , where

k E P c c
d

a a
b

1 log 1 log .0 0( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

≔ = − + −

Therefore, P0 is a global center in the open first quadrant. The fact that the period of the orbit at the level k,
τ k( ), is an increasing function of k is a more recent finding of Rothe [22], Shaaf [23], and Waldvogel [24],
where it was also shown that

τ k π
ac

τ τ klim 2 and lim .
k k k

0
0

( ) ( )= ≕ = +∞

↓ ↑∞

Thus, for every T τ0, 0( )∈ , the equilibrium point P0 is the unique T-periodic coexistence state (harmonic
solution), though there are infinitely many nontrivial subharmonic coexistence states corresponding to the
energy levels k for which τ k mT( ) = for sufficiently large m 2≥ . This classical example also illustrates how
subharmonics can be packaged in equivalence classes (two subharmonics are equivalent when they are a
time-shift of the other). This also holds for nonautonomous systems. Indeed, if z t( ) is a nT -periodic solution

Subharmonic solutions for a class of predator-prey models  3



of (1.1), then z t jT( )+ is also a nT -periodic solution for every j n0, 1, , 1.= … − Michalek and Tarantello [2]
referred to the set

z z jT j nΘ : 0, 1, , 1( ) { ( ) }= ⋅+ = … −

as the n� -orbit of z. This set is also usually denoted as the periodicity class of the nT -periodic solution z t( ).
Hence, searching subharmonics in nonautonomous systems is a task fraught with a number of difficulties.
The main goals of this article are as follows:

• finding out nT -periodic solutions having nT as minimal period, namely, subharmonics of order n;
• among the subharmonics having the same order, ascertaining whether, they belong to the same

periodicity class, namely, if they are, or not, a shift in time by an integer multiple of T of another
subharmonic of the same order.

Previous results on the existence and multiplicity of harmonic and subharmonic solutions in periodically
perturbed predator-prey systems have been obtained by Hausrath [25] and Liu [26], as a consequence of the
Moser twist theorem, and by Hausrath and Manásevich [27], Ding and Zanolin [28,29], and Boscaggin [30]
from the Poincaré-Birkhoff fixed point theorem. The latter results have been recently extended by Fonda
and Toader [31] to systems in n2� by means of a (previous) higher-dimensional version of the Poincaré-
Birkhoff theorem due to Fonda and Ureña [32]. More recently, Boscaggin and Muñoz-Hernández [33] have
also analyzed the subharmonic solutions in a class of planar Hamiltonian systems including (1.7) through
the study of the relationship between the winding number of the solutions of a Hamiltonian system and
the Conley-Zehnder index associated to its linearizations at zero and infinity.

López-Gómez et al. [34] and López-Gómez [35, §5] carried out a thorough investigation of the positive
coexistence states for the generalized Lotka-Volterra system with periodic coefficients

N N a t c t N b t N
N N a t b t N c t N
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2 2 2 2 1 2 2
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(1.8)

which includes the presence of logistic terms incorporating to the model setting some interspecific compe-
tition effects. This model has, in addition, semi-trivial coexistence states of the form N tˆ , 01( ( ) ) and N t0, ˆ2( ( )),
where N̂i stands for the (unique) positive T-periodic solution of the logistic equation:

N N a t c t N i, 1, 2.i i i i i( ( ) ( ) )′ = − =

As in the periodic-parabolic counterpart of (1.8), already analyzed by Hess [13] and López-Gómez [14], the
local character of the semitrivial positive solutions plays a crucial role in determining the dynamics of (1.8),
being a challenging task to ascertain the stability, or instability, of the coexistence states.

López-Gómez et al. [34] made the crucial observation that, for the special choice

α t t T T β t t T0, for 2, , 0, for 0, 2 ,( ) [ ] ( ) [ ]≡ ∈ / ≡ ∈ / (1.9)

(1.7) has a (unique) linearly unstable coexistence state, though the system can admit two coexistence states
[34, Rem. 7.5]. This is in strong contrast with some previous one-dimensional uniqueness results available
for the diffusive counterparts of these models (see the detailed discussion of [35]). Actually, this prototype
model has shown to be rather paradigmatic for analyzing the local character and the multiplicity of
harmonic and subharmonic coexistence states. Indeed, setting

A α t t B β t td , d ,
T T

0 0

( ) ( )∫ ∫≔ ≔ (1.10)

it follows from [34, Pr. 7.1] that P 1, 10 ( )≡ is linearly unstable if

λ
AB
2 .> (1.11)

Moreover, by [35, Th. 5.3], the instability of P0 guarantees the existence of three coexistence states for (1.8)
within the appropriate ranges of values of its function coefficients. It turns out that, besides the unique
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(harmonic) coexistence state P0, there are, at least, two additional T2 -periodic coexistence states if (1.11)
holds. After two decades, López-Gómez and Muñoz-Hernández [36] were able to construct nT -periodic
solutions for every n 2≥ , providing simultaneously with a sharp estimate of their minimal cardinals. Figure
1 shows the (minimal) global bifurcation diagram of subharmonics of (1.7) found in [36] for an arbitrary
choice of α t( ) and β t( ) satisfying the orthogonality condition (1.9).

These findings should be also true, at least, when α t( ) and β t( ) are nearly orthogonal, in the sense that
the product αβ is sufficiently small in T0,[ ], and actually they might be also true for very general classes of
weight functions α t( ) and β t( ) far from satisfying (1.9). Thus, it is rather natural to investigate the structure
of the set of subharmonics of (1.7) for more general configurations of α t( ) and β t( ) than those satisfying
(1.9). Besides its intrinsic interest, this analysis might reveal some new important features, based, e.g.,
on the shapes of α t( ) and β t( ), which might be significative in population dynamics. Indeed, as already
discussed by the authors in [21], when β 0≡ , one is considering a seasonal time-interval where predator is
still aggressive with respect to the prey but does not take advantage of the harvest, which may simulate the
difference between the hunting and the gathering period. Analog interpretations may be given for the time-
intervals when α 0≡ .

From the mathematical analysis of (1.7), it becomes apparent that its dynamics might vary according to
the measure of the intersection of the supports of α and β. To differentiate the two extreme cases, we will
name as “degenerate” the case when α βsupp supp 0∣ ∣∩ = , while the case when

α βsupp supp 0∣ ∣∩ >

will be referred to as the “nondegenerate” case. In [21,37], the authors have already shown the applicability
of the Poincaré-Birkhoff theorem in searching subharmonics in both cases (see also the recent refinements
of Boscaggin and Muñoz-Hernández [33]).

As a sharp analysis of (1.7) seems imperative to classify all the possible dynamics associated to a
general predator-prey system with periodic coefficients, throughout this article we will focus our attention
into the simplest prototype model (1.7), with special emphasis towards the problem of analyzing its sub-
harmonic solutions depending on whether, the chosen configuration of α t( ) and β t( ) is degenerate.

Among the various existing approaches in finding out subharmonics in Hamiltonian systems, the most
successful ones are the following:

• variational methods (critical point theory),
• Kolmogorov-Arnold-Moser (KAM) theory, Moser twist theorem, and Poincaré-Birkhoff theorem,
• symbolic dynamics associated to Smale’s horseshoe-type structures, and
• reduction via symmetry and bifurcation theory.

Figure 1: Admissible global bifurcation diagram under (1.9), after [36].
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As we are going to invoke the last three in this article, we will shortly revisit them in the next few
paragraphs.

Variational methods (critical point theory): In this framework, a number of different arguments have
been given to show that the periodic solutions that are critical points of the associated functional are indeed
subharmonics of large period. For instance, Rabinowitz [1] achieves it by analyzing the critical levels of the
functional (see also Fonda and Lazer [38] and Serra et al. [39]), whereas Michalek and Tarantello [2] apply
a combination of estimates on critical levels and p� -index theory. Assuming an additional nondegener-
acy condition on the solutions, Conley and Zhender [40] can get subharmonics through their Morse indices
(see also Abbondandolo [41] and the references therein).

KAM theory, Moser twist theorem, and Poincaré-Birkhoff theorem: In this setting, a typical approach
consists in constructing an annular region enclosed by two curves, Γint and Γout, which are invariant by the
Poincaré map associated to the given planar system. Recall that the Poincaré map is the homeomorphism

Φ ΦT
0= transforming an initial point z0 to ζ T z; 0, 0( ), where ζ z; 0, 0( )⋅ stands for the solution of (1.1) with

z z0 .0( ) = The associated flow is area-preserving when F t zdiv , 0z ( ) ≡ , a condition that is always satisfied
by Hamiltonian systems. Then, introducing a suitable rotation number, nT zrot 0, , 0([ ] ), the Poincaré-Birkhoff
fixed point theorem guarantees the existence of at least two fixed points for Φn in the interior of the annulus
as soon as the following twist condition

nT z
j j z
j j z

rot 0, ,
resp for all Γ ,
resp for all Γ0

0 int

0 out
([ ] )

⎧

⎨
⎩

[ ]

[ ]

< > ∈

> < ∈

(1.12)

holds for some integer j. In such situation, the fixed points of Φn have j as an associated rotation number.
This actually entails the existence of subharmonics of order n if n and j are co-prime integers. Theorems 2.1
and 3.1 of Neumann [42] give some sufficient conditions so that these subharmonic solutions belong
to different periodicity classes.

A typical definition of rotation number can be given by passing to polar coordinates and counting the
number of turns (counterclockwise, or clockwise) that the solution ζ t z; 0, 0( ) makes around the origin in a
given time interval. The choice of the origin as a “pivotal point” is merely conventional, but it fits well for
systems like (1.2), where F t, 0 0( ) ≡ . By adopting this methodology, for any given interval t t,0 1[ ], we will set

t t z δ
π

F t ζ t t z ζ t t z
ζ t t z

trot , , 1
2

, ; , ; ,
; ,

d ,
t

t

0 1 0
0 0 0 0

0 0
2

0

1

([ ] )
( ( )) ( )

( )
∫≔

∧

‖ ‖

(1.13)

where δ 1= ± and ∧ denotes the wedge product, i.e., F F ζ ζ F ζ F ζ, ,1 2 1 2 2 1 1 2( ) ( )∧ = − . Boscaggin [30] and
Boscaggin and Muñoz-Hernández [33] give some other equivalent notions.

Ding [43], Fonda and Ureña [32], Franks [44], Qian and Torres [45], and Rebelo [46] have found some
refinements of the Poincaré-Birkhoff fixed-point theorem adapted to more general settings where the
boundary invariance of the underlying annular region is lost. Dalbono and Rebelo [47] and more recently
Fonda et al. [48] have reviewed a series of results on the applicability of the Poincaré-Birkhoff theorem
in noninvariant annuli.

According to some recent findings of Boscaggin and Muñoz-Hernández [33], there is a link between the
variational approach discussed in the previous paragraph and the rotation number estimates necessary to
apply the Poincaré-Birkhoff theorem based on the Conley-Zehnder-Maslov index (see Abbondandolo [41]
and Long [49]).

Nevertheless, establishing the existence of the invariant curves is a hard task that typically requires to
invoke the KAM theory or some of its variants (see Laederich and Levi [50]), like the Moser twist theorem
[51], as in Dieckerhoff and Zehnder [52] and Levi [53] for the scalar second-order differential equation:

x V x t, 0,x( )″ + =

or as in Hausrath [25] and Liu [26] for the most sophisticated predator-prey system.
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Symbolic dynamics associated with horseshoe-type structures: In connection with the previous dis-
cussion, subharmonics can be also detected by applying to the Poincaré map and its iterates various
methods coming from the theory of dynamical systems, the most paradigmatic being the celebrated
Smale’s horseshoe (see Smale [54,55], Moser [56, Ch. III], and Wiggins [57]). Essentially, it consists of a
toy-diffeomorphism stretching and bending, recursively, a square onto a horseshoe-type domain.

In this article, we will work in a slightly weaker setting entering into the theory of topological horse-
shoes as developed, adapting different perspectives, by Carbinatto et al. [58], Mischaikow and Mrozek [59],
Srzednicki [60], Srzednicki and Wójcik [61], Wójcik and Zgliczyński [62], Zgliczyński [63], and Zgliczyński
and Gidea [64], just to quote some of the most illustrative contributions among a vast literature on this
topic. The theory of topological horseshoes, as discussed by Burns and Weiss [65] and Kennedy and Yorke
[66], consists of a series of methods introduced to extend the classical geometry of the Smale horseshoe to
more general dynamical situations involving topological crossings and, crucially, avoiding any hyperbo-
licity assumptions on the diffeomorphism, as it might be a challenge to verify them in applications.

In particular, in this article, we will benefit of a topological approach developed by Papini and Zanolin
[67,68] and Pascoletti et al. [69], leading to the following notion of chaos in the coin-tossing sense.

Definition 1.1. Let X be a metric space and XΦ : � → be a homeomorphism. It is said that Φ
has a topological horseshoe in the set � if there are 2ℓ ≥ nonempty pairwise disjoint compact sets

, ,0 1� � �… ⊂
ℓ−

such that, for every two-sided sequence of ℓ symbols,

ss Σ 0, , 1 ,i i �
�( ) { }= ∈ ≔ … ℓ −

∈ ℓ

there exists z �∈ such that z zΦi
i

si�( )≔ ∈ for all i �∈ and, whenever si i( ) is a n-periodic sequence, then
z can be chosen so that the sequence of iterates zi i( ) is as well n-periodic. In this case, it is also said that Φ
induces chaotic dynamics on ℓ symbols in .�

Definition 1.1 is inspired in the concept of chaotic dynamics as a situation where a deterministic map
can reproduce, along its iterates, all the possible outcomes of a coin-flipping experiment, as discussed by
Smale [70] (see also Kirchgraber and Stoffer [71]). According to Medio et al. [72], any map Φ inducing
chaotic dynamics on ℓ symbols in � is semi-conjugate to the Bernoulli shift automorphism

σ σ s s i: Σ Σ , for all ,i i i i1 �(( ) ) ( )→ ≔ ∈
ℓ ℓ +

in the sense that there exist a compact subset, Λ i i0, 1� �⊂ ⋃ ⊂
= …ℓ−

, invariant for Φ, whose set of periodic
points, Per Φ, is dense in Λ, and a continuous and surjective map g : Λ Σ→

ℓ
such that:

(i) g σ gΦ∘ = ∘ , and
(ii) for every periodic sequence s Σ∈

ℓ
, the set g s1( )− contains a periodic point of Φ with the same period.

Property (ii) corresponds to the one introduced by Zgliczyński [63, Th. 4.1]. Thus, by adopting Definition 1.1
we are entering into a genuine classical definition of chaotic dynamics of Block-Coppel type, as discussed
by Aulbach and Kieninger [73]. Hence, according to Adler et al. [74], Φ has a positive topological entropy.
The semi-conjugation property provides a weaker form of chaos with respect to the original Smale’s horse-
shoe, where g : Λ Σ→

ℓ
is assumed to be a homeomorphism and, so, Φ Λ∣ is conjugate to the Bernoulli shift.

The conjugation property provides us with a stronger type of chaotic dynamics as, in such case, Φ inherits
on the invariant set Λ all the properties of the automorphism σ. Therefore, all the existing notions of chaos
such as those introduced by Devaney [75], Li and Yorke [76], Aulbach and Kieninger [73], and Kirchgraber and
Stoffer [71] hold simultaneously. Although there are series of results ensuring the conjugation, e.g., the cele-
brated Melnikov theorem, which requires the delicate task of analyzing perturbations of homoclinic, or hetero-
clinic, configurations, or the theory of linked twist maps developed by Devaney [77] and Sturman et al. [78],
except in concrete special examples, it is a challenge to make sure that these sufficient conditions hold.

Clearly, for any map Φ satisfying the requirements of Definition 1.1, one can infer the existence of
periodic points of arbitrary minimal period, and hence subharmonics if Φ is the Poincaré map of an ODE
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with periodic coefficients. For instance, if 2,ℓ = given any periodic sequence in 0, 1{ } of minimal period n,
there is also a periodic point of Φ in � with minimal period n. Similar notions of “chaos” can be given by
means of a number of topological methods, based on the Conley index, fixed point theories, or topological
degree (see, e.g., Carbinatto et al. [58], Mischaikow and Mrozek [59], Srzednicki [60], Srzednicki andWójcik
[61], Wójcik and Zgliczyński [62], Zgliczyński [63], and Zgliczyński and Gidea [64]). Typically, in any setting
entailing Definition 1.1, it is possible to detect a larger number of subharmonics than merely applying
the Poincaré-Birkhoff theorem (see Feltrin [79, Rem. 4.1]).

Among the main advantages of using the theory of topological horseshoes, instead of the methods
discussed in the two previous items, it is worth mentioning that, since the system is not required to inherit
any Hamiltonian structure, there are no constraints on the dimension and, hence, they could be studied
with this theory systems with an odd dimension.

Reduction via symmetry and bifurcation theory: Another successful approach for solving a huge variety
of nonlinear differential equations, both ODEs and partial differential equations (PDEs), relies on the topo-
logical degree through local and global bifurcation theory. Essentially, in the context of bifurcation theory,
the continuation methods in parametric models do substitute the implicit function theorem in the presence
of degenerate solutions, provided that a change of degree occurs as the parameter, λ, crosses some critical
value, λ0. The relevance of bifurcation theory in studying nonlinear differential equations was first under-
stood by Krasnosel’skii [80], who was able to show that any eigenvalue of the linearization at a given state
with an odd (classical) algebraic multiplicity is a nonlinear eigenvalue. By a nonlinear eigenvalue, we mean
a bifurcation value from the given state, regardless the nature of the nonlinear terms of the differential equation.
In other words, nonlinear eigenvalues are those for which the fact that bifurcation occurs is based on the linear
part, as discussed by Chow and Hale [81]. Some years later, Rabinowitz [82,83] established his celebrated global
alternative within the setting of the Krasnosel’skii’s theorem founding global bifurcation theory. According to
the Rabinowitz’s global alternative, the global connected component, C, bifurcating from the given state at an
eigenvalue with an odd (classical) algebraic multiplicity must be unbounded, or it bifurcates from the given
state at, at least, two different values of λ. The relevant fact that ifC is bounded, then the number of bifurcation
points from the given state with an odd algebraic multiplicity must be even as observed by Nirenberg [84].

However, the precise role played by the classical spectral theory in the context of the emerging bifurca-
tion theory remained a real mystery for two decades. The mystery was confirmed by the astonishing
circumstance that the extremely popular transversality condition studied by Crandall and Rabinowitz
[85,86] for bifurcation from simple eigenvalues was not known to entail a change of the Leray-Schauder
degree until Theorem 5.6.2 of López-Gómez [17] could be derived through the generalized algebraic multi-
plicity, χ, of Esquinas and López-Gómez [17,87,88]. The multiplicity χ is far more general that the one
introduced in [85,86] for algebraically simple eigenvalues, and it was used, e.g., by López-Gómez and Mora
Corral [89], to characterize the existence of the Smith canonical form. According to [17, Ch.4], the oddity of
χ characterizes whether, λ0 is a nonlinear eigenvalue of the problem, and this occurs if, and only if, the
local degree changes as λ crosses λ0. And this regardless if we are dealing with the Leray-Schauder degree,
or with the degree for Fredholm operators of Fitzpatrick and Pejsachowicz [90], Fitzpatrick et al. [91], or
Benevieri and Furi [92,93], which are almost equivalent. Therefore, by Corollary 2.5 of López-Gómez and
Mora-Corral [94], the local theorem of Crandall and Rabinowitz [85] is actually global. This important
feature was later rediscovered by Shi and Wang [95] in a much less general context.

Some more specific important information in the context of dynamical bifurcation theory and singu-
larity theory can be found in the textbooks of Guckenheimer and Holmes [96] and Golubitsky and Shaeffer
[97]. Essentially, the singularity theory tries to classify canonically all the possible local structures at the
bifurcation values, while dynamical bifurcation theory focuses attention in bifurcation phenomena not
involving only equilibria.

These abstract developments have tremendously facilitated the mathematical analysis of a huge variety
of nonlinear bvps related to a huge variety of nonlinear differential equations and systems (see, e.g., the
monographs of López-Gómez [17,18], Cantrell and Cosner [98], and Ni [99], as well as their abundant lists of
references). However, the underlying mathematical analysis is more involved when dealing with periodic
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conditions, instead of mixed boundary conditions, especially when searching for branches of subharmonic
solutions bifurcating from a given state. Indeed, although the pioneering strategy for constructing coex-
istence states as bifurcating from the semitrivial solution branches in reaction-diffusion systems of Lotka-
Volterra type was developed by Cushing [10,11] for their classical nondiffusive periodic counterparts, rather
astonishingly, except for certain technicalities inherent to nonlinear PDEs, the level of difficulty in estab-
lishing the existence of the coexistence states in the diffusive prototype models inherits the same order of
magnitude as getting them in their nondiffusive periodic counterparts. Not to talk about finding out
infinitely many subharmonics of large order. Although some additional contributions in this direction
were done by Táboas [100], the analysis of the periodic-parabolic counterparts of these classical models,
extraordinarily facilitated by the pioneering results of Cushing [10,11] for the nonspatial models, was
already ready to be developed by Hess [13] and López-Gómez [14].

Nevertheless, in spite of the huge amount of literature on bifurcation for reaction-diffusion systems in
population dynamics, almost no reference is available about harmonic and subharmonic solutions for
predator-prey systems of Volterra type, except for those already discussed in this section, beginning
with [34] and [35], and continuing, after two decades, with [36], where the weight functions α t( ) and
β t( ) were assumed to have nonoverlapping supports so that the underlying Poincaré map associated
with (1.7) could take a special form to allow solving the periodic problem via a one-dimensional reduction.

As mentioned earlier, the main goal of this article is to analyze the existence, multiplicity, and structure
of subharmonic solutions to planar systems, including the periodic Volterra’s predator-prey model (1.7).
Naturally, as the underlying Poincaré maps play a crucial role in this analysis, we will benefit of a number
of methods and tools among those already described in the previous paragraphs. As a consequence of our
analysis, the richness of the dynamics of (1.7) will become apparent even for the simplest configurations of
α t( ) and β t( ). Some recent applications of the Poincaré-Birkhoff fixed-point theorem to equations directly
related to (1.7) have been given by Boscaggin [30], Ding and Zanolin [28,29], Fonda and Toader [31],
Hausrath and Manásevich [27], and Rebelo [46]. In the more recent papers [21,36,37], the authors have
studied in detail some simple prototype models, nondegenerate and degenerate. Essentially, this article
continues the research program initiated in [21,36,37] trying to understand how the relative position of the
supports of the weight functions α t( ) and β t( ) might influence the dynamics of (1.7) and the global structure
of the set of its subharmonics.

These goals will be achieved in Section 2 for the degenerate case by means of the bifurcation approach
introduced in [36]. Precisely, we will consider the general case of weight functions having multiple non-
overlapping humps as in Figure 2. Then, depending on the mutual distributions of the supports of α t( ) and
β t( ), some sharp estimates on the parameter λ ensuring the existence of nontrivial subharmonics will be
given. These objectives will be accomplished in Theorems 2.1–2.5, to deal with the most general configura-
tion admissible for the validity of these results.

Further, in Section 3, we will analyze some simple prototype models, not previous considered in the
literature, for which the associated Poincaré consists of a superposition of a stretching and a twist produ-
cing a horseshoe-type geometry. The new findings have been collected in Theorems 3.1 and 3.2. As this topic
is more sophisticated technically and not well understood by most of experts in reaction-diffusion systems,
we will begin the proof of Theorem 3.1 by giving a rather direct proof for stepwise-constant functions α t( )

and β t( ) before completing the proof in the general case. At a further step, we will discuss the problem of
the semi-conjugation/conjugation of the Poincaré map to the Bernoulli shift, which, essentially, depends
on the shape of the weight functions. Finally, we will end Section 3 describing in full detail the geometric
horseshoe nature of the Poincaré map associated with the periodic Volterra predator-prey system. This
provides us with a (new) simple mechanism to mimic the Smale’s horseshoe from one of the most para-
digmatic models in population dynamics.

As a byproduct of our mathematical analysis, it becomes apparent how the evolution in seasonal
environments where predator-prey interaction plays a role might be random. To catch the attention of
experts in reaction-diffusion systems and population dynamics, note that, actually, the harmonics and
subharmonics of (1.7) are the nonspatial periodic harmonic and subharmonic solutions of the following
reaction-diffusion periodic-parabolic problem:
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u
t

d Δu λα t u v

v
t

d Δv λβ t v u

u
n

v
n

1 in Ω 0, ,

1 in Ω 0, ,

0 on Ω 0, ,
x x

1

2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( ) ( ) ( )

( ) ( ) ( )

( )

∂

∂

− = − × +∞

∂

∂

− = − + × +∞

∂

∂

=

∂

∂

= ∂ × +∞

(1.14)

where Ω stands for a 2� bounded domain of N� , N 1≥ , nx stands for the outward normal vector-field to Ω on
its boundary, d1 and d2 are two positive constants, and Δ stands for the Laplace’s operator in N� . Therefore,
the findings of this article seem extremely relevant from the point of view of population dynamics. As a
byproduct of our analysis, noncooperative systems in periodic environments can provoke chaotic dynamics.
This cannot occur in cooperative and quasi-cooperative dynamics, as a consequence of the ordering imposed
by the maximum principle. Therefore, it is just the lack of a maximum principle for the predator-prey models
the main mechanism provoking chaos in these models, though this sharper analysis will be accomplished in
a forthcoming paper.

To avoid unnecessary repetitions, throughout this article, we will assume that α β, : 0,� � [ )→ ≔ +∞
+

are continuous andT -periodic functions, though our results are easily extended to the Carathéodory setting
with coefficients measurable and integrable in L T0, , .1 �([ ] )+ In particular, the case of bounded and piece-
wise continuous α β, falls within our functional setting. Hence, piecewise constant coefficients are admis-
sible in Section 3.

2 A bifurcation approach: minimal complexity of subharmonics
for a class of degenerate predator-prey models

We consider the nonautonomous Volterra predator-prey model

u λα t u v
v λβ t v u

1 ,
1 ,

⎧

⎨
⎩

( ) ( )

( ) ( )

′ = −

′ = − +

(2.1)

where λ 0> is regarded as a real parameter, and the intersection of the supports of the nonnegative weight
functions α and β, denoted by

Z α βsupp supp ,≔ ∩

is assumed to have Lebesgue measure zero, Z 0∣ ∣ = . This is the reason why the model (2.1) is said to be
degenerate. In (2.1), given a real number T 0> , α, and β are T -periodic continuous functions such that

A α B β0, 0.
T T

0 0

∫ ∫≔ > ≔ >

These kind of degenerate Volterra predator-prey models were introduced in [34] and [35] and, then, deeply
analyzed in [36]. Actually, these references dealt with the very special, but interesting, case when

α T β T Tsupp 0, 2 , supp 2, ,[ ] [ ]≡ / ≡ /

where we could benefit of the degenerate character of the model to ascertain the global structure of the set
of nT -periodic coexistence states of (2.1). In the nondegenerate case when Z 0∣ ∣ ≠ , the techniques developed
in [36] do not work. In such case, the existence of high-order subharmonics can be established through the
celebrated Poincaré-Birkhoff twist theorem, or appropriate variants of it (see, e.g., [32,101–104], as well as
[21] for a specific application to (2.1)). However, the twist theorem cannot provide us with the global
bifurcation diagram of subharmonics constructed in [36]. The main goal of this section is sharpening
and generalizing as much as possible the main findings of [36].
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Precisely, we analyze the existence of nT -periodic coexistence states of (2.1) for any integer n 1≥ under
the following structural constraints on the weight functions α and β. For some integers k, 1ℓ ≥ , with
k 1∣ ∣− ℓ ≤ , it is assumed the existence of k + ℓ continuous functions in the interval T0,[ ], α 0i ⪈ ,

i k1 ≤ ≤ , and β 0j ⪈ , j1 ≤ ≤ ℓ, such that

α α α α β β β β, ,k1 2 1 2= + +⋯+ = + +⋯+
ℓ

with

α t t β t tsupp , and supp , ,i
i i

j
j j

0 1 2 3[ ] [ ]⊆ ⊆ (2.2)

for some partition of T0,[ ]

t t t t t t t t t t t t T0 k k k k
0
1

1
1

2
1

3
1

0
2

1
2

2
2

3
2

0 1 2 3≤ < ≤ < ≤ < ≤ < ≤⋯≤ < ≤ < ≤

if k = ℓ, or

t t t t t t t t t t T0 k k
0
1

1
1

2
1

3
1

0
2

1
2

2
2

3
2

0 1≤ < ≤ < ≤ < ≤ < ≤⋯≤ < ≤

if k 1= ℓ + . Similarly, we also consider the case when, instead of (2.2),

β t t α t tsupp , and supp , ,j
j j

i
i i

0 1 2 3[ ] [ ]⊆ ⊆ (2.3)

for some partition of T0,[ ]

t t t t t t t t t t t t T0 0
1

1
1

2
1

3
1

0
2

1
2

2
2

3
2

0 1 2 3≤ < ≤ < ≤ < ≤ < ≤⋯≤ < ≤ < ≤
ℓ ℓ ℓ ℓ

if kℓ = , or

t t t t t t t t t t T0 0
1

1
1

2
1

3
1

0
2

1
2

2
2

3
2

0 1≤ < ≤ < ≤ < ≤ < ≤⋯≤ < ≤
ℓ ℓ

if k 1ℓ = + .
Moreover, we refer to an α-interval (resp. β-interval) as a maximal interval, where β 0≡ (resp. α 0≡ ),

and we set

A α B β, .i

T

i j

T

j

0 0

∫ ∫≔ ≔ (2.4)

Figure 2 shows a series of examples satisfying the previous requirements. Note that the support of the αi’s
and the βj’s on each of the intervals t t,r

i
r
i

1[ ]
+

, i k1 ≤ ≤ , and t t,r
j

r
j

1[ ]
+

, j1 ≤ ≤ ℓ, might not be connected.

There are two fundamental aims in this section. The first one is to show that the complexity of the global
bifurcation diagram of subharmonics of (2.1) when k = ℓ depends on the size of k, rather than on the
particular structure of the αi’s and the βj’s on each of the intervals of the partition of T0,[ ]. In fact, all

admissible global bifurcation diagrams when k = ℓ can be constructed systematically, through a certain
algorithm, from the one already found in [36], regardless the particular locations of each of the points of the
partitions, tr

s’s. The second aim of this section is to determine a lower bound for the number of nT -periodic
coexistence states of model (2.1).

It is elementary to show that, for any initial point z u v,0 0 0( )≔ (with u v, 00 0 > ) and each initial time τ0,
there exists a unique solution u t τ z v t τ z; , , ; ,0 0 0 0( ( ) ( )) to system (2.1), which is globally defined in time.
In the sequel, by convention, when studying nT -periodic solutions (for any n 1≥ ), we will be looking for
the fixed and periodic points of the Poincaré map with τ 0,0 = i.e.,

z u v u t z v t z, ; 0, , ; 0, .0 0 0 0 0( ) ( ( ) ( ))= ↦

This does not exclude the possibility of the existence of other fixed points for the Poincaré maps defined
with a different initial point τ0. Typically, the corresponding solutions will be equivalent through an ap-
propriate time translation, and hence, they will be not considered in counting the multiplicity of the
solutions.
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2.1 The case when k 1ℓ= = and α t tsupp ,1 0
1

1
1

⊆ [ ]

Then,

α t t β t tsupp , and supp , ,1 0
1

1
1

1 2
1

3
1[ ] [ ]⊆ ⊆ (2.5)

where

t t t t T0 .0
1

1
1

2
1

3
1

≤ < ≤ < ≤

Figure 3 illustrates this case.

Under condition (2.5), the next result holds.

Theorem 2.1. Assume (2.5). Then, equilibrium 1, 1( ) is the unique T-periodic coexistence state of (2.1). Thus,
(2.1) cannot admit nontrivial T -periodic coexistence states. Moreover, (2.1) possesses exactly two nontrivial
T2 -periodic coexistence states for every

λ
A B
2 ,
1 1

>

where A1 and B1 are those defined in (2.4). Furthermore, in the special case when A B1 1= and u v0 0( ) ( )= ,

for every λ A
2

1
> and n 2≥ , (2.1) has, at least, n nontrivial nT -periodic coexistence states if n is even, and n 1−

if n is odd.

Figure 2: Some admissible examples of weight functions α and β.

Figure 3: α and β satisfying (2.5).
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Proof. Thanks to (2.5), (2.1) can be integrated. Indeed, for any given u v,0 0
2�( ) ∈ , the (unique) solution

of (2.1) such that u v u v0 , 0 ,0 0( ( ) ( )) ( )= is given by

u t u e v t v e t T, , 0, .v λ α s s u T λ β s s
0

1 d
0

1 d
t t

0
0 0( ) ( ) [ ]

( ) ( ) ( ( )) ( )∫ ∫
= = ∈

− − +

Thus, the associated T -time and T2 -time Poincaré maps are defined through

u v u v u T v T u e v e, , , ,v λA u λB
1 1 1 0 0 0

1
0

10 1 1 1�( ) ( ) ( ( ) ( )) ( ) ( )
( )≔ ≔ =

− − +

and

u v u v u v u e v e u e v e, , , , , .v λA u λB v v λA u u λB
2 2 2 0 0 1 1 1 1

1
1

1
0

2
0

21 1 2 1 0 1 1 1 2 1� �( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )≔ = = =

− − + − − − + +

It is apparent that the unique T-periodic coexistence state, i.e., the unique solution of (2.1) such that
u v, 00 0 > and u v u v, ,1 0 0 0 0� ( ) ( )= , is equilibrium (1,1). Similarly, the T2 -periodic coexistence states are
the solutions such that u v, 00 0 > and u v u v, ,2 0 0 0 0� ( ) ( )= , i.e., those solutions satisfying

u v u u u e v v v e, 0, 2 , 2 .v λA u λB
0 0 0 1 0

1
0 1 0

10 1 0 1( ) ( )
> − = = − = =

− − (2.6)

Thus, expressing x v0≡ in terms of u0, setting A B A B, ,1 1( ) ( )≡ , and adapting the corresponding argument
on [36, p. 41], it is easily seen that the T2 -periodic coexistence states are given by the zeroes of the function

φ x x e 1 2.λBe x λA

e x λA
1 1
1 1⎜ ⎟( ) ⎛

⎝

⎞

⎠

( )

( )
= + −

−
−

−
+

This function has been already analyzed in [36, Th. 2.1], where it was established that it possesses exactly
two zeros different from the equilibrium x 1= for every λ

AB
2

> . This proves the first part of the theorem.

By iterating n times, it follows that the nT -time map is defined through

u v u v u v u e v e, , , , .n n n
n n v v v λA u u u n λB

0 0 1 0 0 0 0n n0 1 1 1 2� �( ) ( ) ( ) ( ) ( )
( )≔ = =

− − −⋯− + +⋯+ −
− (2.7)

Hence, due to (2.7), a solution u t v t,( ( ) ( )) of (2.1) provides us with a nT -periodic coexistence state if, and
only if, u 00 > , v 00 > and

n v v v
n u u u

,
.

n
n

0 1 1
0 1 1

⎧

⎨
⎩

= + +⋯+

= + +⋯+

−

−

(2.8)

Thus, assuming that A B= and u v x0 0= = , system (2.8) reduces to one equation (cf. [36, Le. 3.1]). Hence,
setting

E λ x

n x E λ x λA n

x E λ x n λA n
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exp 1
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, , 2 1,
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, 2 ,
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⎠
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∑
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− ∈
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=
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(2.9)

where E λ x, 10( ) = , it follows from [36, Th. 3.3] that, for every n 1≥ ,

φ x φ x xE λ x1 ,n n n1 1( ) ( ) ( )= − +
−

−

and φ 00 ≡ , where these φn’s are the functions whose zeroes provide us with the nT -periodic coexistence
states of (2.1) that were constructed in [36]. Therefore, we are within the setting of [36], where it was inferred
from these features (Sections 2–6 of [36]) the existence of, at least, n nontrivial nT -periodic coexistence
states if n is even and n 1− if n is odd. This concludes the proof. □
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Note that in [36], we dealt with continuous nonnegative weight functions α and β such that

α T β T Tsupp 0,
2

and supp
2

, ,⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

≡ ≡

whereas in Theorem 2.1, the weight functions α and β are two arbitrary nonnegative continuous functions
with disjoint supports. As the set of subharmonics obeys identical equations as in [36], it is apparent that,
much like in [36], also in this more general case, the global bifurcation diagram of the positive subharmo-
nics of (2.1) follows the general patterns sketched in Figure 1, which has been reproduced from [36].
Similarly, at the light of the analysis of [36], Theorem 2.1 establishes that the global topological structure
of the bifurcation diagram sketched in Figure 1 remains invariant regardless the concrete values of t0

1, t1
1, t2

1,
t3

1 and the number and distribution of the components of the supports of the weight functions α t( ) and β t( )

on each of the intervals of the partition of T0,[ ] induced by these values. Naturally, much like in [36],
Figure 1 shows an ideal global bifurcation diagram, for as the local behavior of most of the bifurcations from
1, 1( ) is unknown, except for n 2, 3, 4{ }∈ .

2.2 The case when k 1ℓ= = and β t tsupp ,1 0
1

1
1

⊆ [ ]

Then,

β t t α t tsupp , and supp , ,1 0
1

1
1

1 2
1

3
1[ ] [ ]⊆ ⊆ (2.10)

where

t t t t T0 .0
1

1
1

2
1

3
1

≤ < ≤ < ≤

Figure 4 shows a simple example within this case.

Remark 2.1. On the basis of Theorem 2.1, one can obtain, very easily, solutions of (2.1) satisfying (2.10) in
the interval T0,[ ]. Indeed, if u v,0 0( ) is the initial value to an nT -periodic solution of (2.1) for the weight
distribution (2.5), then a solution with initial values u e v,v A

0
1

00 1( )
( )

− provides us with an nT -periodic solution
of (2.1) for the configuration (2.10). The next section goes further by establishing that, for the distribution
(2.10), there are periodic solutions of (2.5) with initial data on the line u v= by means of similar symmetry
reductions and techniques as in the proof of Theorem 2.1. Equivalently, fixing a time τ t t,0 1

1
2
1( )∈ and setting

α t α t τ β t β t τ˜ , ˜ ,0 0( ) ( ) ( ) ( )≔ + ≔ +

the pair α β˜, ˜( ) lies within the configuration of Figure 3. Thus, Theorem 2.1 applies. Note that this is
equivalent to consider the Poincaré map with τ0 as initial time.

The next result focuses attention into the case when condition (2.10) holds. A genuine situation where
this occurs is represented in Figure 4. As this case was left outside the general scope of [36], it is a nov-
elty here.

Figure 4: α and β satisfying (2.10).
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Theorem 2.2. Under condition (2.10), the equilibrium 1, 1( ) is the uniqueT -periodic coexistence state of (2.1).
Moreover, (2.1) possesses exactly two nontrivial T2 -periodic coexistence states for every

λ
A B
2 .
1 1

> (2.11)

If, in addition, A B1 1= , then problem (2.1) has, for every λ A
2

1
> and n 3≥ , at least n 1− nontrivial nT -periodic

coexistence states with u v0 0= if n is odd, whereas if n is even, then (2.1) possesses, at least, n 2− nontrivial
nT -periodic coexistence states with u v0 0= , and exactly two with u v 20 0+ = .

The main difference between Theorems 2.1 and 2.2 relies on the fact that all the solutions of (2.1) when
A B1 1= and n is even have been constructed to satisfy u v0 0= under condition (2.5), while (2.1) only admits
n 2− solutions with u v0 0= and 2 solutions with u v 20 0+ = when (2.10) holds.

Proof. Since, for every u v,0 0
2�( ) ∈ , the unique solution of (2.1) with u v u v0 , 0 ,0 0( ( ) ( )) ( )= is given through

u t u e v t v e t T, , 0, ,v T λ α s s u λ β s s
0

1 d
0

1 d
t t

0
0

0( ) ( ) [ ]
( ( )) ( ) ( ) ( )∫ ∫

= = ∈

− − +

the T -time and T2 -time Poincaré maps of (2.1) are given by

u v u v u T v T u e v e, , , ,v λA u λB
1 1 1 0 0 0

1
0

11 1 0 1�( ) ( ) ( ( ) ( )) ( ) ( )
( )≔ ≔ =

− − +

and

u v u v u v u e v e u e v e, , , , , .v λA u λB v v λA u u λB
2 2 2 0 0 1 1 1 1

1
1

1
0

2
0

22 1 1 1 1 2 1 0 1 1� �( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )≔ = = =

− − + − − − + +

It is easily seen that u v, 1, 10 0( ) ( )= is the unique fixed point of 1� . Moreover, a solution of (2.1), u t v t,( ( ) ( )),
is a T2 -periodic coexistence state if, and only if, u 00 > , v 00 > and

u v u v u v, , , .2 2 2 0 0 0 0�( ) ( ) ( )= =

In other words,

u v u u u e v v v e, 0, 2 , 2 .v λA u λB
0 0 0 1 0

1
0 1 0

10 1 0 1( ) ( )
> − = = − = =

− − (2.12)

Setting A B A B, ,1 1( ) ( )≡ and arguing as in the proof of Theorem 2.1, it becomes apparent that the nontrivial
T2 -periodic coexistence states of (2.1) are given by the zeroes of the map

ψ x x e 1 2λBe x λA

e x λA
1 1

1 1
⎜ ⎟( ) ⎛

⎝

⎞

⎠

( )

( )
≔ + −

−
−

+
− (2.13)

with x v 10= ≠ . By definition, it is obvious that

ψ x x ψ ψ x x0 for all 0, 1 0, 0 for all 2.( ) ( ) ( )< ≤ = > ≥

Moreover, by differentiating with respect to x, after rearranging terms, yields

ψ x e λ ABx e
e

ψ x e x λ ABe
e

λ ABe
e

λ A Bxe e
e

1 2
1

1,

2
1

4
1

2 1
1

,

λB x λA

x λA

λB x λA

x λA

x λA

x λA

x λA x λA

x λA

2
1

1 2

2 1

1 2

2 2 1

1 2

3 2 1 1 2

1 4

e x λA

e x λA

e x λA

e x λA

1 1

1 1

1 1

1 1
⎜ ⎟

( ) ⎡

⎣⎢ ( )
⎤

⎦⎥

( )
⎡

⎣
⎢

⎛

⎝ ( )
⎞

⎠ ( )

( )

( )

⎤

⎦
⎥

( )

( )

( )

( )

( )

( )

( ) ( )

( )

( )

( )

( )

( )

′ = −

+

+

″ =

+

−

+

+

−

+

−

−

−

−

−

−

− −

−

−
−

+
−

−
−

+
−

for all x 0≥ . In particular,

ψ λ AB1 2
2

.2( )′ = −

Thus, owing to (2.11), ψ 1 0( )′ < . Summarizing, (2.11) implies that

ψ ψ ψ ψ0 2 0, 1 0, 1 0, 2 0.( ) ( ) ( ) ( )= − < = ′ < >
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Hence, the function ψ possesses, at least, one zeroes in each of the intervals 0, 1( ) and 1, 2( ). Therefore, (2.1)
has, at least, two T2 -periodic coexistence states. Moreover, adapting the analysis carried out in [36, Sec. 2],
from the previous value of ψ x( )″ , it is easily seen that any critical point, xc, of ψ satisfies ψ x 0c( )″ < if
x 0, 1c ( )∈ and ψ x 0c( )″ > if x 1, 2c ( )∈ . Consequently, (2.1) possesses exactly two T2 -periodic coexistence
states under condition (2.11). This ends the proof of the first assertion.

Subsequently, we assume that

A B u v x, .0 0= = = (2.14)

In this case, the nT -time map is defined as follows:

u v u v u v u e v e, , , , .n n n
n n v v v λA u u u n λA

0 0 1 0 0 0 0n n1 2 0 2 1� �( ) ( ) ( ) ( ) ( )
( )≔ = =

− − −⋯− + +⋯+ −
−

Thus, u v u v, ,n n 0 0( ) ( )= , i.e., u v,0 0( ) provides us with a subharmonic of order n 1≥ of (2.1), if and only if

n v v v
n u u u

,
.

n
n

0 1 1
0 1 1

⎧

⎨
⎩

= + +⋯+

= + +⋯+

−

−

(2.15)

By adapting the argument of the proof of [36, Lem. 3.1], it is easily seen that the two equations of (2.15)
coincide under condition (2.14). Thus, the solutions of the system (2.15) are the zeroes of the function

ψ x x u x u x n x, 0.n n1 1( ) ( ) ( )≔ + +…+ − >
−

Consequently, the nT -periodic coexistence states of (2.1) are given through ψ 01( )− .
Arguing as in the proof of [36, Prop. 3.2], it becomes apparent that

u v x x xE λ x xE λ x, , , , ,n n n n n2 2 1�( ) ( ) ( ( ) ( ))≔ = − −
−

for all n 1≥ . Hence,

E λ E λ1, 1 1, 1 , 1 , , 1n n n2 2 1�( ) ( ) ( ( ) ( ))= = − −
−

(2.16)

for all n 1≥ . Further, by the proof of [36, Th. 3.3], we find that

ψ λ x x E λ x n ψ x xE λ x, , 1 ,n
j

n

j n n
0

1

1 1( ) ( ) ( ) ( )∑= − − = − + −

=

−

−
−

for all x 0> . Note that ψn also depends on the parameter λ 0> . To make explicit this dependence, we will
subsequently write ψ λ x,n( ), instead of ψ xn( ), for all n 1≥ .

By (2.16), differentiating with respect to x and particularizing at x 1= yields

q λ
ψ
x

λ n E λ, 1 , 1 .n
n

j

n

1

1
( ) ( ) ( )∑≔

∂

∂

= + ′ −

=

−

(2.17)

Adapting the induction argument of the proof of [36, Lemma 4.1], it follows from the definition of the Ej’s
that the function q λn( ) is a polynomial for all n 1≥ .

The next result relates the sequence qn n 1{ }
≥
with the corresponding sequence pn n 1{ }

≥
constructed in [36]

under condition (2.5).

Proposition 2.1. For every n 1≥ ,

q λ p λ q λ
Aλ

p λ
Aλ

,
2 2n n

n n
2 1 2 1

2 2
( ) ( )

( ) ( )
=

+

=

−

− −
(2.18)

and

q λ A q λ q λ2 1 ł .n
n

n n1 2( ) [ ( ) ] ( ) ( )= + − −
− −

(2.19)
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Proof. According to [36, (4.6)], pn is defined as follows:

p λ
φ
x

λ n E λ, 1 , 1 .n
n

j

n

1

1
( ) ( ) ( )∑≔

∂

∂

= + ′

=

−

Thus, by (2.17), q λ p λn n( ) ( )= − . By [36, Cor. 4.7], p λn2 1( )
−

and p λ
Aλ2

n2 ( )

−

are even functions in λ. Hence,

q λ p λ q λ p λ p λ
A λ

Aλ p λ
Aλ

Aλand
2

2
2

2 .n n n n
n n

2 1 2 1 2 2
2 2

( ) ( ) ( ) ( )
( )

( )
( )

( )
( )= = − =

−

− −

+ =

−

+
− −

This concludes the proof of (2.18).
On the other hand, by [36, Th. 4.6], we already know that

p λ Aλ p λ p λ2n n n2 1 2 2 2 3( ) ( ) ( ) ( )= + −
− − −

(2.20)

and

p λ
Aλ

p λ p λ
Aλ2 2

.n
n

n2
2 1

2 2( )
( )

( )

−

= −

−

−

− (2.21)

Therefore, owing to (2.18), (2.20), and (2.21), we find that, for every n 1≥ ,

q λ
Aλ

p λ
Aλ

Aλ p λ
Aλ

p λ
Aλ

q λ q λ
Aλ2 2

2
2 2 2

n n n n
n

n2 1 2 1 2 2 2 3
2 2

2 3( ) ( )
( )

( ) ( )
( )

( )

−

=

−

= +

−

−

−

= −

−

− − − −

−

−

and

q λ
Aλ

p λ
Aλ

p λ p λ
Aλ

q λ q λ
Aλ2 2 2 2

.n n
n

n
n

n2 2
2 1

2 2
2 1

2 2( ) ( )
( )

( )
( )

( )

+

=

−

= −

−

= −

+

−

−

−

−

So, (2.19) holds, and the proof is complete. □

As a direct consequence of (2.18), the corresponding sets of bifurcation points from the curve
λ x λ, , 1( ) ( )= coincide under conditions (2.5) and (2.10) as soon as u v x0 0( )= = and A B= , except for the
bifurcation point λ x A, 2 , 1( ) ( )= / , because

A p q n2 0 0 for all 1.n n2
1

2
1( ) ( )/ ∈ ⧹ ≥

− −

Moreover, also by (2.18), the mathematical analysis carried out in Sections 5 and 6 of [36] applies mutatis
mutandis to cover the case when (2.10) holds, instead of (2.5). As a byproduct, also in the case when (2.10)
holds, all the zeroes of the polynomials q λn( ) are simple. Thus, the Crandall-Rabinowitz theorem [85]
provides us with a local analytic curve of nT -periodic solutions. Moreover, since the generalized algebraic
multiplicity of Esquinas and López-Gómez [87] equals one, according to [17, Th. 6.2.1] and the unilateral
theorem [17, Th. 6.4.3], these local curves of subharmonics can be extended to maximal connected com-
ponents of the set of nT -subharmonics of (2.1). This proves the theorem when u v x0 0= = and A B= ,
regardless the oddity of n 1≥ .

Finally, assume that u v2 0 0= + and A B= . As we already know that a solution u t v t,( ( ) ( )) is T2 -per-
iodic if, and only if,

u v v v v v e2 2 ,u λA
0 0 0 1 0 0

10( )
= + = + = +

−

it becomes apparent that the nontrivial T2 -periodic coexistence states of (2.1) are the zeroes of the function

φ x x e x1 2, 0, 2 1 .x λA
2

1( ) [ ] ( ) { }( )
= + − ∈ ⧹

−

As, according to the proof of Theorem 2.1, φ2 possesses exactly two zeroes, the proof of Theorem 2.2 is
completed. □

Since, according to (2.18), we already know that

r q r n r p r n A0 : 0, 1 0 : 0, 1 2 ,n n
1 1{ ( ) } { ( ) } { }∈ > ≥ = ∈ > ≥ ⧹ /
− −
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the global bifurcation diagram of subharmonics of (2.1) when (2.10), instead of (2.5), holds true, can be
obtained from the global bifurcation diagram plotted in Figure 1 by removing the component of subhar-
monics of order two. However, even the local behavior of the corresponding components of subharmonics
of order n in each of the cases (2.5) and (2.10) might be different, because, in general, φ ψn n≠ for all n 2≥

and, hence, the identity φ ψ0 0n n
1 1( ) ( )=
− − cannot be guaranteed.

By (2.6), v0 10< < if u0 10< < . Similarly, v1 20< < if u1 20< < . Thus, the T2 -periodic coexistence
states of (2.1) under condition (2.5) are localized in the shadowed region of the left plot in Figure 5. More-
over, by (2.12), v1 20< < if u0 10< < , and v0 10< < if u1 20< < . Thus, under condition (2.10), the
T2 -periodic coexistence states of (2.1) lye in the shadowed area of the right plot of Figure 5. This explains
why (2.1) cannot admit a subharmonic of order two if u v0 0= .

2.3 The case when k 2ℓ= ≥

Then, either

α t t β t t j ksupp , and supp , for every 1, 2, ,j
j j

j
j j

0 1 2 3[ ] [ ] { }⊆ ⊆ ∈ … (2.22)

or

β t t α t t j ksupp , and supp , for every 1, 2, , ,j
j j

j
j j

0 1 2 3[ ] [ ] { }⊆ ⊆ ∈ … (2.23)

for some

t t t t t t t t T0 .k k k k
0
1

1
1

2
1

3
1

0 1 2 3≤ < ≤ < ≤⋯≤ < ≤ < ≤

As in Theorems 2.1 and 2.2, to analyze the higher order subharmonics of (2.1), we need to impose the
constraints

A α α β β u v, 0.
T T

k

T T

k1

0

1

0 0

1

0

0 0∫ ∫ ∫ ∫≔ =⋯= = =⋯= = > (2.24)

Even in the simplest case when k 1= ℓ = , it is far from evident that the analysis of [36] will be possible
to refine as to sharpen Theorems 2.1 and 2.2 to cover the general case when

α β.
T T

0 0

∫ ∫≠

Figure 5: The shadowed regions on each of these figures represent the quadrants of the phase-plane containing the initial data
to T2 -periodic coexistence states of (2.1) under the conditions (2.5) (left) and (2.10) (right).
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Essentially, (2.24) reduces the problem of finding out the subharmonics of (2.1) to the problem of getting the
zeroes of a sequence of real functions, instead of vectorial ones, much like in the simplest case when
k 1= ℓ = already covered by Sections 2.1 and 2.2. The next lemma is pivotal in the proof of the main theorem
of this section. We observe that it holds independently of (2.24).

Lemma 2.1. Assume

A α α and B β β .
T T

k

T T

k1

0

1

0

1

0

1

0

∫ ∫ ∫ ∫≔ =⋯= ≔ =⋯=

Then, under condition (2.22) (resp. (2.23)), for any integers n m q r, , , 1≥ such that

nm qr,=

the Poincaré map of (2.1) at time nT for k m= ℓ = , denoted by n
m α β, ,

� (resp. n
m β α, ,

� ), equals the Poincaré map
of (2.1) at time qT for k r= ℓ = ; denoted, naturally, by q

r α β, ,
� (resp. q

r β α, ,
� ).

Proof. Assume (2.22) and k m= ℓ = . Then, integrating in t0, 0
2[ ] yields

u t u e v t v e, ,v t λ α s s u t λ β s s
0

1 d
0

1 d
t t

0
1

0
1 0

2

0
1( ) ( )

( ( )) ( ) ( ( ) ) ( )∫ ∫
= =

− −

for all t t0, 0
2[ ]∈ , because v t v0

1
0( ) = and u t u t0

2
2
1( ) ( )= . Arguing by induction, assume that

u t u e v t v e, ,v t λ α s s u t λ β s s
0

1 d
0

1 dj
m j

t
j j

m j
t

j1
1

0
0 2 0

0
1( ) ( )

( ( )) ( ) ( ( ) ) ( )∫ ∫
= =

∑ ∑− −

=

−

=
−

for all t t0, m
0[ ]∈ . Then, integrating in t T,m

0[ ], it becomes apparent that

u t u e

v t v e

,v t λ α s s

u t λ β s s u t T β s s

0
1 d

0
1 d 1 d

j
m j

t
j

j
m j

t

j

t

m

1 0
0

2 0
0

1 0
1

0

( )

( )

( ( )) ( )

( ( ) ) ( ) ( ( ) ) ( )

∫

∫ ∫

=

=

∑

∑

−

− + + −

=

=
−

for all t T0,[ ]∈ . Thus, iterating n times, we find that, for every t nT0,[ ]∈ ,

u t u e

v t v e

,v t iT λ α s s

u t iT λ β s s u t i T β s s

0
1 d

0
1 d 1 1 d

i
n

j
m j

t
j

i
n

j
m j

t

j

t

m

0
1

1 0
0

0
1

2 0
0

1 0
1

0

⎧

⎨

⎪

⎩
⎪

( )

( )

( ( )) ( )

⎡

⎣
⎢

( ( ) ) ( ) ( ( ( ) ) ) ( ) ⎤

⎦
⎥

∫

∫ ∫

=

=

∑ ∑

∑ ∑

− +

+ − + + + −

=

−

=

=

−

=
−

(2.25)

for all t nT0,[ ]∈ . Moreover, the interval nT0,[ ] can be viewed as an interval consisting of nm pairs of α and
β intervals, instead of made of n copies of T0,[ ]. Thus, setting for every j m1 ≤ ≤ and i n0 1≤ ≤ − ,

t iT j mi u t iT v t iT u v, , , ,j j j
j mi j mi0 0 0( ( ) ( )) ( )+ ≡ + + + ≡
+ +

and

α t α t iT α t β t β t iT β t, ,j j j mi j j j mi( ) ( ) ( ) ( ) ( ) ( )= + ≡ = + ≡
+

+

(2.25) can be equivalently expressed as follows:

u t u e v t v e, ,v λ α s s u λ β s s
0

1 d
0

1 dh
nm

h
t

h h
nm

h
t

h1 0 2
1

0
1( ) ( )

( ) ( ) ( ) ( )∫ ∫
= =

∑ ∑− −

= =

+

−

for all t nT0,[ ]∈ . Thus, it becomes apparent that

u v u nT v nT u e v e, , , .n
m α β nm v λA u nm λB, ,

0 0 0 0h
nm

h h
nm

h
1 1 2

1
1

� ( ) ( ( ) ( )) ⎛

⎝

⎞

⎠

( ) ( )
≔ =

∑ ∑−
−

=
=

+

(2.26)

As in (2.26) n and m are arbitrary integer numbers, it is apparent that

q
r α β

n
m α β, , , ,

� �=

for all integers q r, 1≥ such that nm qr= ,
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Finally, assume (2.23) and k m= ℓ = . Then, arguing as earlier yields

u v u nT v nT u e v e, , ,n
m β α v nm λA nm u λB, ,

0 0 0 0h
nm

h h
nm

h2
1

1 1 1� ( ) ( ( ) ( )) ⎛

⎝

⎞

⎠

( ) ( )
≔ =

∑ ∑− −
=

+

=

and, therefore, taking integers q r, 1≥ such that nm qr= , we find that

.q
r β α

n
m β α, , , ,

� �=

The proof is complete. □

Since q
r α β

n
m α β, , , ,

� �= , their fixed points are the same. Thus, if nm qr= , then the set of positive fixed

points of the Poincaré map of (2.1) at time nT for k m= ℓ = equals the set of positive fixed points of the
Poincaré map of (2.1) at time qT for k r= ℓ = . The main result of this section invokes this feature to estimate
the number of subharmonics of arbitrary order of (2.1) in any of the cases (2.22) and (2.23).

Theorem 2.3. Suppose (2.24), u v 00 0= > , and k m 2= ℓ = ≥ , and set

ν z z if z
z if z

μ z z if z
z if z

2 ,
1 2 1,

2 2 ,
1 2 1.

�

�

�

�
( )

⎧

⎨
⎩

( )
⎧

⎨
⎩

≔

∈

− ∈ +

≔

− ∈

− ∈ +

(2.27)

Then, for every integer n 1≥ and λ A2 1> / , (2.1) has ν nm( ) (resp. μ nm( )) nT -periodic coexistence states under
condition (2.22) (resp. (2.23)).

Proof. Assume (2.22). By the semigroup property of the flow, Lemma 2.1 implies that

.n
α β m

nm
α β

n
m α β1, , 1, , , ,

� � �( ) ≔ =

Thus, the set of positive fixed points of nm
α β1, ,

� , already described by Theorem 2.1, equals the set of positive
fixed points of n

m α β, ,
� . As, due to Theorem 2.1, the map nm

α β1, ,
� has, at least, ν nm( ) positive fixed points,

the map n
m α β, ,

� also admits, at least, ν nm( ) positive fixed points for all λ A2 1> / . When, instead of (2.22),
the condition (2.23) holds, then one should invoke to Theorem 2.2, instead of Theorem 2.1. As the proof
follows the same patterns, we will omit any further technical detail. □

Crucially, since n
m α β

q
r α β, , , ,

� �= , the global bifurcation diagram of the nT -periodic coexistence states for
k m= ℓ = coincides with the global bifurcation diagram of the qT -periodic coexistence states for k r= ℓ = if
nm qr= . For instance, if m 2= , then the set of components of nT -periodic coexistence states provides us
with the set of components of nT2 -periodic coexistence states for m 1= . Thus, for m 2= , the global bifurca-
tion diagram of subharmonics can be obtained by removing from Figure 1 the set of components filled in by
odd order subharmonics. Therefore, the global bifurcation diagram sketched in Figure 1 provides us with all
the global bifurcation diagrams for every k m 2= ℓ = ≥ by choosing the appropriate subharmonic compo-
nents in that diagram.

Finally, the next result ascertains the number of coexistence states with minimal period nT among
those given by Theorem 2.3. By minimal period nT , it is meant that the coexistence states are nT -periodic
but not mT -periodic if m n< . To state that result, we first need to deliver two well-known facts on number
theory. For every integer n 1≥ , the Euler totient function is defined as follows:

n m n n mΦ card 1 gcd , 1 .( ) ({ ∣ ( ) })≔ ≤ ≤ =

According to Gauss [105, p. 21], the Euler totient function satisfies the next identity

n dΦ .
d n

( )
∣

∑= (2.28)

The next result relates, through (2.28), the Euler totient function with a very special class of univariate
polynomials.
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Proposition 2.2. Let X� [ ] be the univariate polynomials ring over a zero characteristic field, � . Then,
for every sequence h Xn n 2 �{ } [ ]⊂

≥
satisfying:

(1) h ndeg 1n( ) = − ,
(2) r h r ncard : 0 1n�{ ( ) }∈ = = − , and
(3) h hn n1 2∣ if, and only if, n n1 2∣ ,

the following identity holds

n r h r and h r if d nΦ card : 0 0 .n d�( ) { ( ) ( ) ∣ }= ∈ = ≠

Proof. Setting

n r h r n r h r h r d ncard : 0 , card : 0 and 0 if ,h n h n d
min� �� �( ) { ( ) } ( ) { ( ) ( ) ∣ }≔ ∈ = ≔ ∈ = ≠

it is apparent that

n n d .h h
d n

d n

h
min

1,

min
� � �( ) ( ) ( )

∣

∑= −

≠

By definition, p pΦh
min

� ( ) ( )= for every prime integer p 2≥ , because p p p 1h h
min

� �( ) ( )= = − . Moreover,
for any given prime integers p p, 21 2 ≥ ,

p p
p p p p p p p p p p
p p p p p p p p

1 Φ Φ if ,
1 Φ if .h

h h h

h h

min
1 2

1 2
min

1
min

2 1 2 1 2 1 2

1 2
min

1 1 2 1 1 2
�

� � �

� �
( )

⎧

⎨
⎩

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
=

− − = − − − ≠

− = − − =

Thus, by (2.28), p p p pΦh
min

1 2 1 2� ( ) ( )= . Now, given i 2≥ , assume as a complete induction hypothesis, that,
for every j i1, 2, ,{ }∈ … ,

p p p p p pΦ .h j j
min

1 2 1 2� ( ) ( )… = … (2.29)

Then, denoting γ p p pj1 2 1≔ …
+
, it follows from (2.29) that

γ γ d γ d γ d1 Φ Φ .h h
d γ

d γ

h
d γ

d γ
d γ
d γ

min

1,

min

1,

� � �( ) ( ) ( ) ( ) ( )
∣ ∣ ∣

∑ ∑ ∑= − = − − = −

≠ ≠ ≠

Therefore, by (2.28), γ γΦh
min

� ( ) ( )= , which concludes the induction. As any integer, n, can be factorized as
a (unique) finite product of prime integers, it becomes apparent that n nΦh

min
� ( ) ( )= . This ends the proof. □

The next theorem is a direct consequence of Proposition 2.2.

Theorem 2.4. Assume (2.24), k m 1= ℓ = ≥ , and either (2.22), or (2.23). Then, (2.1) possesses, at least, nmΦ( )

coexistence states with minimal period nT for all nm 2> .

Proof. First, assume (2.22). Then, by Lemma 4.3 and Theorem 5.2 of [36], the sequence of polynomials pnm
whose positive roots are the bifurcation points to the nT -periodic coexistence states, satisfies the hypothesis
of Proposition 2.2. Thus,

nm nmΦ .p
min

� ( ) ( )=

Subsequently, we denote by

nm r r p r p r d nmcard , 0 : 0 and 0 ifp nm d,
min �� ( ) { ( ) ( ) ∣ }≔ ∈ > = ≠
+

the cardinality of the set of bifurcations points of (2.1) to minimal nT -periodic coexistence states. As, thanks
to [36, Cor. 4.7], we already know that p λ

Aλ2
nm2 ( )

−

and p λnm2 1( )
+

are even polynomials, it is apparent that

nm nmΦ
2

.p,
min

� ( )
( )

=
+
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Thus, as at least two solutions emerge from each positive root, there are, at least, nmΦ( ) coexistence states
with minimal period nT for nm 2> .

Finally, assume (2.23). Then, owing to (2.18),

nm nm nmΦ
2

.q p,
min

,
min

� �( ) ( )
( )

= =
+ +

Therefore, the same conclusion holds. This ends the proof. □

Now we will ascertain, under the assumptions of Theorem 2.4, the classes of periodicity of the sub-
harmonics of (2.1). Recall that, thanks to Lemma 2.1, n

m
nm
1

� �= . Thus, for k m= ℓ = , the nT -periodic
coexistence states of (2.1) are the same as the nmT -periodic coexistence states for k 1= ℓ = . Remember
that, in case k 1= ℓ = , we already know from Lemma 3.1 of [36] that

u v h nmfor all 1, 2, , 1 .h nm h { }= ∈ … −
−

(2.30)

Proposition 2.3. Assume (2.24), k 1= ℓ = , and either (2.22), or (2.23), and let u v,( ) be a minimal nmT-
periodic coexistence state of (2.1) with nm 2> . Then,

u v if and only if nm and h nm2
2

.h h �= ∈ = (2.31)

Therefore:
(1) The nmΦ( ) subharmonics of order nm of (2.1) given by Theorem 2.4 lie in different periodicity classes

if nm 2 1�∈ + , nm 3≥ , and
(2) At least nmΦ 2( )/ of these subharmonics lie in different periodicity classes if nm 2�∈ , nm 2≥ .

Proof. The proof of (2.31) proceeds by contradiction. Assume that u vh h= for some h nm 2≠ / . Then,
by (2.30),

v u v u h nmfor all 1, 2, , 1 ,nm h h h nm h { }= = = ∈ … −
− −

which, in particular, implies that

z u v u v z, , .h h h nm h nm h nm h( ) ( )≔ = ≕
− − −

(2.32)

Note that, by the structure of (2.1),

z z h nmfor all 1, 2, , 2 .h h 1 { }≠ ∈ … −
+

(2.33)

Subsequently, we set

ω h nm h ω h nm h ω ω ωmin , , max , , .min max max min{ } { }≔ − ≔ − ≔ −
∗

Thanks to (2.32), by the T -periodicity of (2.1), we find that, for every k �∈ ,

z z .ω ω kω nmmodmax min ( )=
+

∗

Suppose ω nmgcd , 1( ) =∗ . Then, by the Bézout’s Identity, there exists an integer k 10 ≥ such that k ω10( )+ =
∗

ω nm1 mod( )+
∗ , which contradicts (2.33). Thus, ω nmgcd , 1( ) >∗ and, hence, there exists k nm< such that

kω nm0 mod( )=
∗ . Therefore,

ω kω ω nmmod ,min min ( )+ =
∗

which implies that the solution is kT -periodic with k nm< . This contradicts the minimality of the period
and ends the proof. □

We conclude this section with a quick comparison with the previous results of the authors in [37]
though the Poincaré-Birkhoff theorem. According to [37], if nm 3≥ and n h i3 1= + ≥ for some h 0≥ and
i 0, 1, 2{ }∈ , then there exists λ 0n > such that, for every λ λn> , (2.1) possesses, at least,
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σ n hm im2
3

⎜ ⎟( ) ⎛

⎝

⎡
⎣

⎤
⎦

⎞

⎠
= + (2.34)

nT -periodic solutions. Moreover, setting

γ n j j σ n n j: 1
2

and gcd , 1 ,( )
⎧

⎨
⎩

( )
( )

⎫

⎬
⎭

≔ # ≤ ≤ = (2.35)

it turns out that, for every λ λn> , (2.1) has, at least, γ n2 ( ) periodic solutions with minimal period nT ¹. Next,
we will compare, in some special cases, the lower bounds on the number of independent subharmonics
provided by Proposition 2.3 and Theorem 4 of [37]. Assuming that n and m prime numbers, the Euler totient
function Φ satisfies

nm
n m n m

n n n m
nm n m

Φ
1 1 if ,

1 if ,
1 if 1 and is prime, or vice versa .

( )
⎧

⎨
⎩

( )( )

( )=

− − ≠

− =

− =

Thus, thanks to (2.34) and γ n σ n2 ,( ) ( )≤

nm γ n nm n mΦ 2
3

1,( ) ( )− ≥ − − −

which is positive for sufficiently large n andm. Therefore, within this rank, under the strong assumptions on
the weight functions and on the initial values imposed in this section, Proposition 2.3 is sharper than [37,
Th. 4]. However, in some other circumstances, the previous difference might be negative, being in these
cases deeper [37, Th.4] than Proposition 2.3. It remains an open problem here to find out the eventual
relationships between Φ and γ2 , if any.

In [42] (see also [33, Sec.4.1.2]), where the Poincaré-Birkhoff theorem was improved from several
perspectives, another lower bound, also related to nΦ( ), was given for the number of subharmonics of
order n of (2.1).

2.4 The case when k ℓ≠

Necessarily, either k 1= ℓ + , or k 1ℓ = + . Moreover, setting m kmin ,{ }≔ ℓ , there exist

t t t t t t t t t t T0 ,m m m m m m
0
1

1
1

2
1

3
1

0 1 2 3 1
1

2
1

≤ < ≤ < ≤⋯≤ < ≤ < ≤ < ≤
+ +

such that

α t t β t tsupp , and supp ,i
i i

j
j j

0 1 2 3[ ] [ ]⊆ ⊆ (2.36)

if k 1= ℓ + , whereas

β t t α t tsupp , and supp ,j
j j

i
i i

0 1 2 3[ ] [ ]⊆ ⊆ (2.37)

if k 1ℓ = + .
The next result shows that also in this case, (2.1) has as many subharmonics as in the context of

Theorem 2.3 with k = ℓ.

Theorem 2.5. Assume

A α α α α β β β
T

m

T T

m

T T T

m1

0

1 1

0

2

0 0

1

0

2

0

( )∫ ∫ ∫ ∫ ∫ ∫≔ + = =⋯= = = =⋯=
+

(2.38)

if (2.36) holds, and



1 This provides also a correction to a similar estimate in [37]. See for further details [106, Theorem 3.2.1].
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B β β β β α α α
T

m

T T

m

T T T

m1

0

1 1

0

2

0 0

1

0

2

0

( )∫ ∫ ∫ ∫ ∫ ∫≔ + = =⋯= = = =⋯=
+

(2.39)

under condition (2.37). Then, much like in Theorem 2.3, for every integer n 1≥ and λ A2 1> / , (2.1) has ν nm( )

(resp. μ nm( )) nT -periodic coexistence states under condition (2.36) (resp. (2.37)).

Proof. Assume (2.36) and (2.38), and let denote the Poincaré map in the time interval s s,1 2[ ] by s s
k

,1 2� [ ]
=ℓ if

k = ℓ, and by s s
k

,
1

1 2� [ ]
=ℓ+ if k 1= ℓ + . Then, the value α

T

0 1∫ in case k = ℓ equals α α
T

m0 1 1( )∫ +
+

in case k 1= ℓ + .

Let u v,0 0( ) be a fixed point of nT
k

t
k

0, 0, nm
3

� �[ ] [ ]
=

=ℓ =ℓ . Then, the point u e v,v α
0

1
0

T
m0 0 1( )

( )
∫−

+ is a fixed point of

nT
k

t
k

0,
1

0,
1

nm
1

1� �[ ] [ ]
=

=ℓ+ =ℓ+

+
. Indeed, by the structure of (2.1),

u e v u e v

u e v u v

, ,

, , .

t
k v α v α α

v A
t

k

0,
1 0

1
0 0

1
0

0
1

0 0, 0 0

T
m

T
m

1
1

0
0

1 0
0

1 1

0 1
1
1

�

�

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

( )

[ ]

( ) ( ) ( )

( )
[ ]( )

∫ ∫
=

= =

=ℓ+
− − +

− =ℓ

+ +

Moreover, thanks to (2.38), we also have that t t
k

t t
k

,
1

,nm nm
1
1

3 1
1

3
� �

[ ] [ ]
=

=ℓ+ =ℓ . Thus, since u v,0 0( ) is a fixed point of t
k
0, nm

3
�

[ ]
=ℓ ,

it becomes apparent that

u e v u v, , .t
k v α
0,

1 0
1

0 0 0nm

T
m

3

0
0

1
�

⎛

⎝
⎜

⎞

⎠
⎟ ( )

[ ]

( )∫
=

=ℓ+
−

+

Therefore,

u e v u e v, , ,t
k v α v α
0,

1 0
1

0 0
1

0nm

T
m

T
m

1
1

0
0

1 0
0

1
�

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟[ ]

( ) ( )∫ ∫
=

=ℓ+
− −

+

+ +

i.e., u e v,v α
0

1
0

T
m0 0 1( )

( )
∫−

+ is an nT -periodic coexistence state. This establishes a bijection between the
nT -coexistence states of (2.1) in cases kℓ = and k 1= ℓ + , and shows that (2.1) has ν nm( )nT -periodic
coexistence states under condition (2.36).

As the proof when k 1ℓ = + can be accomplished similarly, we will omit its technical details here. □

Our next result gives some sufficient conditions for nonexistence.

Lemma 2.2. The following nonexistence results hold:

(i) (2.1) cannot admit any nontrivial nT-periodic coexistence state, n �∈ , if k 1+ ℓ = .
(ii) (2.1) cannot admit any nontrivial T-periodic coexistence state if k 3+ ℓ = .

Proof. If k 1+ ℓ = , then either k 1= and 0ℓ = or 1ℓ = and k 0= . Thus, either u or v is constant for all
t T0,[ ]∈ , which ends the proof.

Now, suppose that k 3+ ℓ = . Then, there exist

t t t t t t T0 ,0
1

1
1

2
1

3
1

0
2

1
2

≤ < ≤ < ≤ < ≤

such that either

α t t β t t α t tsupp , , supp , , supp ,1 0
1

1
1

1 2
2

3
1

2 0
2

1
2[ ] [ ] [ ]⊆ ⊆ ⊆

or

β t t α t t β t tsupp , , supp , , supp , ,1 0
1

1
1

1 2
2

3
1

2 0
2

1
2[ ] [ ] [ ]⊆ ⊆ ⊆

as illustrated in Figure 6.
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By the special structure of (2.1), where αβ 0= , the orbit of any solution in the interval T0,[ ] consists of
three lines, two of them parallel in the phase-plane to one of the axis, while the third one is parallel to the
other axis. So, these orbits cannot be closed. Therefore, (2.1) cannot admit any T -periodic solution. □

The next theorem summarizes the results found in the previous four sections. It characterizes the
existence of T -periodic coexistence states, and subharmonics of all orders of (2.1), in terms of the number
of α-intervals and β-intervals in T0,[ ].

Theorem 2.6. The system (2.1) admits, for sufficiently large λ, someT-periodic coexistence state if, and only if,
k 4+ ℓ ≥ . Moreover, for every λ A2 1> / , under the appropriate symmetry properties, (2.1) has subharmonics
of all orders, n 2≥ , if, and only if, k 2+ ℓ ≥ .

2.5 The limiting T -periodic case k 2ℓ= =

According to Theorem 2.6, the condition k 4+ ℓ ≥ is necessary and sufficient so that (2.1) can admit a T -
periodic coexistence state. In this section, we deal with the limiting case when k 2= ℓ = and ascertain the
bifurcation directions to T -periodic coexistence states. Note that when k 2= ℓ ≥ , then there exist

t t t t t t t t T0 .0
1

1
1

2
1

3
1

0
2

1
2

2
2

3
2

≤ < ≤ < ≤ < ≤ < ≤

such that either

Figure 6: Two admissible examples with k 2= , 1ℓ = , and k 1= , 2ℓ = .

Figure 7: Two examples, with k 2= ℓ = , satisfying (2.40) (above) and (2.41) (below).

Subharmonic solutions for a class of predator-prey models  25



α t t β t t α t t β t tsupp , , supp , , supp , , supp ,1 0
1

1
1

1 2
1

3
1

2 0
2

1
2

2 2
2

3
2[ ] [ ] [ ] [ ]⊆ ⊆ ⊆ ⊆ (2.40)

or

β t t α t t β t t α t tsupp , , supp , , supp , , supp , .1 0
1

1
1

1 2
1

3
1

2 0
2

1
2

2 2
2

3
2[ ] [ ] [ ] [ ]⊆ ⊆ ⊆ ⊆ (2.41)

Figure 7 shows two admissible configurations.

Theorem 2.7. Under the assumption (2.40), or (2.41), (2.1) has, at least, two T-periodic coexistence states for
every λ λ0> , where

λ A A B B
A A B B

A α B β i, , , 1, 2.i

α

i i

β

i0
1 2 1 2

1 2 1 2
supp suppi i

( )( )
∫ ∫≔

+ +

≔ ≔ = (2.42)

In general, although λ λ0> is a sufficient condition, it is far from necessary. Actually, regarding λ as the main
bifurcation parameter, λ0 provides with a bifurcation value to T -periodic coexistence states of (2.1) from the
line λ u v λ, , , 1, 1( ) ( )= , and there are some ranges of values of the parameters, Aj, Bj, j 1, 2{ }∈ , for which this
bifurcation is transcritical.

Proof. Assume (2.40). Then, integrating (2.1) yields

u T u e v T v e, .v λA v t λA u t λB u T λB
0

1 1
0

1 10 1 0
2

2 0
2

1 2( ) ( )( ) ( ( )) ( ( )) ( ( ))
= =

− + − − + + − + (2.43)

Thus, a solution u t v t,( ( ) ( )) of (2.1) with initial data u v,0 0( ) is a T -periodic coexistence state if, and only,
if u v, 00 0 > and u v u v, ,1 0 0 0 0� ( ) ( )= , i.e., by (2.43), if, and only, if u v, 00 0 > and

v A v t A u B u t B1 1 , 1 1 ,0 1 0
2

2 0 2 0
2

1( ) ( ( ) ) ( ) ( ( ) )− = − − = −

which, again integrating (2.1), is equivalent to

v A v e A

u B u e B

1 1 ,

1 1 .

u e λB

v λA

0 1 0
1

2

0 2 0
1

1

v λA
0

1 0 1 1

0 1

⎧

⎨
⎩

( )

( ) ( )

( )

( )

( )

( )
− = −

− = −

− +

−

−

(2.44)

Hence, by eliminating u0 from the second equation of (2.44),

u B B
B B e

.v λA0
1 2

2 1
1 0 1( )

=

+

+
−

(2.45)

So, by substituting (2.45) into the first equation of (2.44), it follows that

v A v e A1 1 .
e λB

0 1 0
1

2

B B

B B e v λA
v λA1 2

2 1 1 0 1
1 0 1 1

( ) ( )
⎜ ⎟
⎛

⎝

⎞

⎠
( )

( )

− = −

− +

+

+
−

−

Consequently, naming x v0≡ and setting

x x A e A A AΦ ,λB
2 1 1 2

B e x λA

B e x λA B
2 1 1 1

1 1 1 2
1

( )
⎛

⎝
⎜

⎞

⎠
⎟ ( )

( )

( )
≔ + − +

( )
−

−

−
+ (2.46)

it is apparent that Φ 01( )− provides us with the set ofT -periodic coexistence states of (2.1). As xΦ 0( ) < for all
x 0≤ , its zeroes are always positive. Since

A AΦ 0 0, Φ 1 0,1 2( ) ( ) ( )= − + < =

x x M A AΦ 0 if 1 ,2 1( ) > ≥ ≔ + /

and

A A λ A A B B
B B

Φ 1 ,1 2
2 1 2 1 2

1 2
( )′ = + −

+
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we find that Φ 1 0( )′ < if and only if, λ λ0> (see (2.42)). Therefore, (2.1) possesses twoT -periodic solutions,
λ x,( )

±
, with x0 1< <

−
and x M1 < <

+
. This ends the proof when (2.40) holds. Note that x M0,( )∈

±
.

Assume (2.41). Then, repeating the previous argument, it is apparent that the T -periodic coexistence
states of (2.1) are the zeroes of the map

x x B e B B BΨ .λA
2 1 1 2

A e x λB

A e x λB A
2 1 1 1

1 1 1 2
1

( )
⎛

⎝
⎜

⎞

⎠
⎟ ( )

( )

( )
≔ + − +

( )−
−

−
+ (2.47)

As mentioned earlier, since xΨ 0( ) < for all x 0≤ , its zeroes are always positive. Thus, as xΨ( ) satisfies

B BΨ 0 0, Ψ 1 0,1 2( ) ( ) ( )= − + < =

x x N B BΨ 0 if 1 ,2 1( ) > ≥ ≔ + /

and

B B λ A A B B
A A

Ψ 1 ,1 2
2 1 2 1 2

1 2
( )′ = + −

+

it is apparent that Ψ 1 0( )′ < if λ λ0> . Therefore, in this case, (2.1) admits, at least, two T -periodic coex-
istence states, λ x,( )± , with x0 1< <

+ and x N1 < <
− . Note that x N0,( )∈

± . This concludes the proof that
λ λ0> is sufficient for the existence of, at least, two T -periodic coexistence states.

It remains to determine the bifurcation directions from λ x λ, , 10( ) ( )= in both cases. Now, it is appro-
priate to made explicit the dependence of the functions Φ and Ψ not only on x but also on λ, for as λ will be
though as a bifurcation parameter.

Assume (2.40) and let λ xΦ ,( ) denote the function defined by (2.46). Then, the linearization of this
function at λ, 1( ) is given by

λ
x

λ A A λ A A B B
B B

Φ , 1 .1 2
2 1 2 1 2

1 2
L( ) ( )≔

∂

∂

= + −

+

(2.48)

Thus, using the notations of [17], we find that, by the definition of λ0,

λ
x

λ d
dλ

λΦ , 1 0, .0 0 0 1 0L L L
L

( ) ( ) ( )≔ =

∂

∂

= ≔

We claim that the next algebraic transversality condition holds

N R .1 0 0L L L �( [ ]) [ ]⊕ = (2.49)

Indeed, since 00L = , it is apparent that R 00L[ ] [ ]= and hence, N span 10L �[ ] [ ]= = . Moreover, differen-
tiating with respect to λ (2.48) yields

λ A A B B
B B

2 0.1
0 1 2 1 2

1 2
L = −

+

≠

Therefore, R11 0L L[ ]∉ and (2.49) holds. Consequently, by Theorem 7.1 of Crandall and Rabinowitz [85],
there exist ε 0> and two analytic functions λ x ε ε, : , �( )− → such that, for some λ1 �∈ to be determined,

λ s λ λ s s x s s s s, 1 , as 0,0 1
2 2� �( ) ( ) ( ) ( )= + + = + + →

and λ s x sΦ , 0( ( ) ( )) = for all s ε ε,( )∈ − . Moreover, besides λ, 1( ), these are the unique solutions of (2.1) in
a neighborhood of λ , 10( ).

Setting

φ s λ s x s s εΦ , , ,( ) ( ( ) ( )) ∣ ∣≔ <

it is apparent that

φ s φ φ s φ s s s ε0 0 0 1
2

0 ,2 3�( ) ( ) ( ) ( ) ( ) ∣ ∣= = + ′ + ″ + <
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where ′ stands for differentiation with respect to s. So,

φ φ φ0 0 0 0.( ) ( ) ( )= ′ = ″ =

By construction,

φ λ
x

λ0 0 Φ , 1 0, Φ , 1 0.0 0( ) ( ) ( )= = =

∂

∂

=

Moreover, differentiating (2.46) with respect to λ, it becomes apparent that

λ
λΦ , 1 0.0( )

∂

∂

=

Thus, since λ λ0 1( )′ = ,

φ
λ

λ λ
x

λ0 Φ , 1 Φ , 1 00 1 0( ) ( ) ( )′ =

∂

∂

+

∂

∂

=

does not provide any information on the sign of λ1. So, we must analyze the second-order terms of λ xΦ ,( )

at λ , 10( ). By differentiating Φ, after some straightforward, but tedious, manipulations, we find that

x
λ λ A A B B

B B
B B λ A λ A B λ BΦ , 1 2 2 ,

2

2 0 0
2 1 2 1 2

1 2
2 1 2 0 1 0 1 1 0 2( )

( )
[( )( ) ( )]

∂

∂

=

+

+ − + −

x λ
λ λ A A B B

B B λ
λΦ , 1 2 , Φ , 1 0.

2
0 0

1 2 1 2

1 2

2

2 0( ) ( )
∂

∂ ∂

= −

+

∂

∂

=

Consequently, differentiating and substituting the previous values of the second derivatives, it is ap-
parent that

φ λ
x λ

λ
x

λ λ
λ

λ

λ λ A A B B
B B

λ A A B B
B B

B B λ A λ A B λ B

0 0 2 Φ , 1 Φ , 1 Φ , 1

4 2 2 ,

1
2

0
2

2 0 1
2

2

2 0

1 0
1 2 1 2

1 2
0
2 1 2 1 2

1 2
2 1 2 0 1 0 1 1 0 2⎜ ⎟

( ) ( ) ( ) ( )

⎛

⎝

⎞

⎠ ( )
[( )( ) ( )]

= ″ =

∂

∂ ∂

+

∂

∂

+

∂

∂

= −

+

+

+

+ − + −

and therefore,

λ λ
B B

B B λ A λ A B λ B
4

2 2 .1
0

1 2
1 2 0 1 0 1 1 0 2

( )
[( )( ) ( )]=

+

+ − + − (2.50)

It is clear that (2.50) can reach both positive and negative values depending on the values of the several
parameters A1, A2, B1, and B2, implying the existence of T -periodic coexistence states for values of λ λ0< .
For instance, if

A A B B B
A

2 , 2 , 2
3

3
2

,1 2 2 1
2

1
< < < < (2.51)

then,

λ A A A B B
A B B

A A
A

B
B

A
B

1 1 3
2

4.0
2

1
2 1 2 1 2

2 1 2
1

1

2

2

1

1

2

3
⎜ ⎟⎜ ⎟

( )( ) ⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛
⎝

⎞
⎠

=

+ +

= + + < <

Similarly,

λ B A A B B
A A B

B A
A

B
B

B
A

1 1 3
2

4.0
2

2
2 1 2 1 2

1 2 1
2

1

2

2

1

2

1

3
⎜ ⎟⎜ ⎟

( )( ) ⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛
⎝

⎞
⎠

=

+ +

= + + < <

Hence, in this case, by (2.50), λ 01 < . Since the estimates (2.51) are satisfied, for example, if B A2 1= , B A1 2=

and B B2 2 1< , it becomes apparent that (2.51) holds for wide open ranges of values of the several parameters
involved in the setting of (2.1).
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Now, assume (2.41), instead of (2.40). Then, the T -periodic coexistence states are given by the zeros of
the map λ xΨ ,( ) defined in (2.47). In this case, the linearization of λ xΨ ,( ) at λ, 1( ) is given by

λ
x

λ B B λ A A B B
A A

Ψ , 1 .1 2
2 1 2 1 2

1 2
M( ) ( )≔

∂

∂

= + −

+

Thus, setting

λ
λ

λ0, d
d

,0 0 1 0M M M
M

( ) ( )≔ = ≔

and adapting the argument given earlier, it is apparent that the transversality condition

N R1 0 0M M M �( [ ]) [ ]⊕ =

holds true. Moreover, also

x
λ

λ
λΨ , 1 0 Ψ , 1 .0 0( ) ( )

∂

∂

= =

∂

∂

Hence, to find out the bifurcation direction, we must proceed as in the previous case. A rather straightfor-
ward, but tedious, calculation shows that

x
λ λ A A B B

A A
A A λ B λ A B λ AΨ , 1 2 2 ,

2

2 0 0
2 1 2 1 2

1 2
2 1 2 0 1 0 1 1 0 2( )

( )
[( )( ) ( )]

∂

∂

=

+

+ − − + −

x λ
λ λ A A B B

A A λ
λΨ , 1 2 , Ψ , 1 0.

2
0 0

1 2 1 2

1 2

2

2 0( ) ( )
∂

∂ ∂

= −

+

∂

∂

=

Therefore,

λ λ
A A

B B λ A λ A B λ B
4

2 2 ,1
0

1 2
1 2 0 1 0 1 1 0 2

( )
[ ( )( ) ( )]=

+

− + + + −

which can reach negative values also in this case. Indeed, if

B A B A A, ,2 1 1 1 2< < <

then

λ B A A B B
A A B

B 4,0
2

2
2 1 2 1 2

1 2 1
2

( )( )
=

+ +

<

and consequently λ 01 < . This concludes the proof. □

Note that Theorem 2.7 generalizes Theorems 2.1 and 2.2. Indeed, if A A1 2= and B B1 2= , then
φ x xΦ( ) ( )= and ψ x xΨ( ) ( )= . Thus,

λ
A B
2 ,0
1 1

=

which provides us with Theorems 2.1 and 2.2. Moreover, by Lemma 2.2, Theorem 2.7 holds also for the cases

α t t β t tsupp , and supp ,i
i i

j
j j

0 1 2 3[ ] [ ]⊆ ⊆ (2.52)

and

β t t α t tsupp , and supp , ,i
i i

j
j j

0 1 2 3[ ] [ ]⊆ ⊆ (2.53)

with i 1, 2, 3{ }∈ , j 1, 2{ }∈ and for some,

t t t t t t t t t t T0 .0
1

1
1

2
1

3
1

0
2

1
2

2
2

3
2

0
3

1
3

≤ < ≤ < ≤ < ≤ < ≤ < ≤

If (2.52) holds, then
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λ B B B A A
B B B A A

,0
1 2 3 1 2

2 1 3 1 2

( )( )

( )
=

+ + +

+

while

λ A A A B B
A A A B B0

1 2 3 1 2

2 1 3 1 2

( )( )

( )
=

+ + +

+

if (2.53) holds.

3 Chaotic dynamics

In this section, we consider again the nonautonomous Volterra predator-prey model

u α t u v
v β t v u

1 ,
1 ,

⎧

⎨
⎩

( ) ( )

( ) ( )

′ = −

′ = − +

(3.1)

where α 0⪈ and β 0⪈ are T -periodic continuous functions for some T 0> , with the aim to prove the
presence of chaotic-like dynamics.

As presented in Section 2, attention is focused on the coexistence states, namely, the component-wise
positive solutions of the system (3.1). As already explained in Section 1 (cf. (1.2)), in this kind of systems, it is
natural to perform the change of variables

x u y vlog , log ,= =

which moves the equilibrium point 1, 1( ) to the origin 0, 0( ) of the phase-plane. In the new variables x and
y, the model (3.1) turns into the next equivalent planar Hamiltonian system

x α t e
y β t e

1 ,
1 .

y

x
⎧

⎨
⎩

( )( )

( )( )

′ = − −

′ = −

(3.2)

Thus, in this section, instead of looking for coexistence states of (3.1), we will simply look for solutions
of (3.2).

The existence of complex dynamics for prey-predator equations has been studied since the Eighties,
mostly from a numerical point of view (see Takeuchi and Adachi [107]). Evidence of chaos has been
detected in numerical simulations for three-dimensional (or higher-dimensional) autonomous systems,
for instance, for the interaction of one predator with two preys or the case of a prey, a predator and
a top predator, as well as introducing a nutrient as a third variable.

For the two-dimensional case results have been obtained for discrete models of the Holling type, as,
e.g., those of Agiza et al. [108], which are in line with the classical works of May [109] and Li and Yorke [76],
when proving chaos for discrete single species logistic-type equations. Other examples of chaos for two-
dimensional systems have been numerically produced by adding some delay effects in the equations, as in
the study by Nakaoka et al. [110].

But less results are available in the literature concerning chaotic-like solutions to planar predator-prey
systems with periodic coefficients (see, for instance, Baek and Do [111], Broer et al. [112], Kuznetsov et al.
[113], and Vandermeer et al. [114]). Typical features of these models is to add logistic and/or Holling growth
effects on the prey population and assume that the intraspecific growth rate takes the form r ε ωt1 sin( ( ))+ .
The special choice of the periodic coefficient allows to study numerically the bifurcation diagrams to give
evidence of complex dynamics for some choices of the parameters.

Up to the best of our knowledge, only very few results provide a complete analytic proof of the presence
of chaotic dynamics, without the need of numeric support, for the classical Volterra predator-prey system
with periodic coefficients. In the study by Pireddu and Zanolin [115], the Volterra original system with
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harvesting effects was considered, and it was proved that chaos may arise under special forms of a periodic
harvesting; these authors also considered a case of intermittency in the predation in [116, pp. 221–225]. Also
in the study by Ruiz-Herrera [117], a rigorous analysis of chaos for periodically perturbed planar systems,
was performed for a case in which the Volterra system switches periodically to a new system with logistic
effects and no predation.

It is the aim of this section to show a simple mechanism producing chaotic dynamics for system (3.2),
just assuming that the coefficient α t( ) vanishes on some interval, regardless the length of the vanishing
interval, which might have dramatic consequences from the point of view of the applications. Actually,
we will prove the following main result, which holds for the more general system (cf. (1.2)),

x λα t f y
y λβ t g x

,
,

⎧

⎨
⎩

( ) ( )

( ) ( )

′ = −

′ =

(3.3)

where f g, : � �→ are C1-continuous functions with f g0 0 0,( ) ( )= = f g0 , 0 0( ) ( )′ ′ > and f s s 0,( ) >

g s s 0( ) > for s 0.≠ We also assume that at least one of the two functions is bounded in a neighborhood
of +∞ or .−∞ To be more specific and just to fix a possible case, we will suppose that f is bounded on

, 0 .( ]−∞ In the application to the predator-prey model, we have

f s g s e 1.s( ) ( )= = −

The introduction of the parameter λ 0> in (3.3) is not relevant from the mathematical point of view.
For us, it is convenient to make a comparison to the result about subharmonic solutions obtained by
the authors in [21].

Theorem 3.1. Assume that there exists T T0,0 ( )∈ such that:

(c1) α 0⪈ , β 0⪈ on T0, 0[ ] and there exists t Tˆ 0, 0[ ]∈ with α t β tˆ ˆ 0,( ) ( ) >

(c2) α 0≡ and β 0⪈ on T T, .0[ ]

Then, for every 2,ℓ ≥ there exists λ λ=
∗

ℓ

∗ such that, for each λ λ>
∗, there exists a constant Kλ such that, if

β t t Kd ,
T

T

λ

0

( )∫ > (3.4)

then, the Poincarémap associated with (3.3) induces chaotic dynamics on ℓ-symbols on some compact subset,
� , of the first quadrant.

The proof of Theorem 3.1 is postponed to Section 3.2. From the proof, it will become apparent how
to determine the constants λ∗ and K .λ The assumption that f and g are 1� can be weakened, by assuming,
as in [21], that f and g are locally Lipschitz with

f s
s

f s
s

g s
s

g s
s

0 liminf limsup , 0 liminf limsup .
s s s s0 0 0 0

( ) ( ) ( ) ( )
< ≤ < +∞ < ≤ < +∞

→
→

→
→

(3.5)

Up to the best of our knowledge, this is the most general result available for complex dynamics to the
predator-prey equations with periodic coefficients. In fact, the previous theorems of Pireddu and Zanolin
[115,116] and Ruiz-Herrera [117] required very specific structural assumptions on the coefficients, which
were assumed to be stepwise, in order to transform Volterra equation to a switched system. Nevertheless,
we will also present a less general version of Theorem 3.1, where β constant 0,= > α is a piecewise constant
function vanishing on T T,0[ ], according to c2( ), and f s g s e 1s( ) ( )= = − . This more elementary and special
case is introduced in the following subsection to better explain the geometry and the dynamics associated to
our system. Actually, for expository reasons, this section has been split into three parts. In the first subsection,
we perform a detailed analysis of the equation with a stepwise coefficient. Then, we show how the same
geometrical ideas can be adapted to prove Theorem 3.1. Finally, in the last subsection, we will recall some of
the main features of the Smale’s horseshoe, adapted to our situation here, in order to discuss a possible
further improvement of our results from a numerical point of view.
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3.1 The simplest model of type (3.2) with chaotic dynamics

In this section, we consider a special case of Theorem 3.1 that already exhibits all the significant geometrical
features of the main result. Precisely, for a given T T0,0 ( )∈ , we will consider the T-periodic functions α t( )

and β t( ) defined by

β t
β t T
β t T T

α t t T
t T T

0 if 0, ,
0 if , ,

and 0 if 0, ,
0 if , ,

0 0

1 0

0

0
( )

⎧

⎨
⎩

[ )

[ )
( )

⎧

⎨
⎩

[ )

[ )
≔

> ∈

> ∈

≔

∈

∈

(3.6)

where the positive constants α and β β,0 1 and the exact values of T0 and T are going to be made precise
later. Also, we will setT T T1 0≔ − . Thus, the dynamics of (3.2) on each of the intervals T0, 0[ ] and T T,0[ ] are
those of the associated autonomous Volterra predator-prey systems in the intervals T0, 0[ ] and T0, ,1[ ]

respectively.
Although the function α t( ), and possibly β t( ), has a jump at t T0= , for any given z x y,0 0

2�( )≔ ∈ ,
the Poincaré map associated to the system (3.2) in the interval T0,[ ] is well defined as follows:

z z x T z y T z
Φ :

Φ ; , ; ,
2 2� �

( ) ( ( ) ( ))

→

↦ ≔

where x t z y t z; , ;( ( ) ( )) stands for the unique solution of (3.2) such that u z y z z0; , 0;( ( ) ( )) = , and it is
a diffeomorphism. Under the assumption (3.6), the action of system (3.2) can be regarded as a composition
of the actions of the systems

x α e
y β e

x
y β eI

1
1 II 0

1
y

x x
0 1

⎧

⎨
⎩

( )

( )

⎧

⎨
⎩

( )
( )

′ = −

′ = − −

( )

′ =

′ = − −

(3.7)

on each of the intervals T0, 0[ ] and T T,0[ ], respectively. In this manner, system (3.2) turns out to be a
switched system with a T -periodic switching signal and with (3.7)-(I) and (3.7)-(II) as active subsystems,
according to the terminology adopted by Liberzon [118]. In other words, the Poincaré map Φ is the compo-
sition of the two Poincaré maps associated to each of these systems,

Φ Φ Φ ,T T1 0≔ ∘

where ΦT0 and ΦT1 stand for the Poincaré maps associated to the first and second systems of (3.7) on the
intervals T0, 0[ ] and T0, 1[ ], respectively.

Subsequently, we denote by θ t z,( ) the angular polar coordinate at time t 0≥ of the solution
x t z y t z; , ;( ( ) ( )) for system (3.7)-(I). Then, for any given ϱ 0> , the rotation number of the solution in
the interval 0, ϱ[ ] is defined through

z θ z θ z
π

rot 0, ϱ , ϱ, 0,
2

.([ ] )
( ) ( )

≔

−

It is an algebraic counter, modulo π2 , of the winding number of the solution around the origin. It can be
equivalently expressed using (1.13) on the first subsystem.

3.1.1 Dynamics of (3.2) in the interval T0, 0[ ]

We begin by analyzing the dynamics of (3.2) on T0, 0[ ] under the action of ΦT0, i.e., the dynamics of (3.7)-(I).
It is folklore that the phase-portrait of the (autonomous) system is a global nonlinear center around the
origin, i.e., every solution different from the equilibrium 0, 0( ) is periodic and determines a closed curve
around the origin; the first integral, or energy function, of the system being

x y α e y β e x, .y x
0�( ) ( ) ( )= − + − (3.8)
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Thus, setting

ω β0, 0 min ,0 2
�

� �( )≔ = =

for every ωℓ > , the corresponding level line of the first integral, Γ 1�( ) ( )ℓ = ℓ
− , is a closed orbit of a periodic

solution. Moreover, by simply having a glance at the system, it is easily realized that the solutions run
counterclockwise around the origin.

Subsequently, for every ωℓ > , we will denote by τ( )ℓ the (minimal) period of the orbit Γ( )ℓ . Thanks to
a result of Waldvogel [24], the fundamental period map τ ω: , �( )+∞ → is increasing, and it satisfies

τ π
αβ

τlim 2 , lim .
ω 0

( ) ( )ℓ = ℓ = +∞

ℓ↓ ℓ↑+∞

For the rest of this section, we fix ω1ℓ > and choose

T τ2 .0 1( )≔ ℓ (3.9)

If a solution of the system (3.7)-(I) crosses entirely the third quadrant, then, there exists an interval
t t T, 0,0 1 0[ ] [ ]⊆ , with x t 00( ) < , y t 00( ) = , x t 01( ) = and y t 01( ) < , such that x t 0( ) < and y t 0( ) < for all

t t t,0 1( )∈ . Thus, for every t t t,0 1[ ]∈ , we have that

y t β e s β s β T M

x t α e s α s αT N

1 d d ,

1 d d .

t

t

x s

t

t

t

t

y s

t

t

0 0 0 0

0

0 0

1

1

0

1

∣ ( )∣ ( )

∣ ( )∣ ( )

( )

( )

∫ ∫

∫ ∫

= − ≤ ≤ ≕

= − ≤ ≤ ≕

Hence, if there exists a t T˜ 0, 0[ ]∈ such that

x t y t x t y t M N˜ 0, ˜ 0, ˜ ˜ ,2 2 2 2( ) ( ) ( ) ( )< < + > +

then the solution cannot cross entirely the third quadrant in T0, 0[ ], though, as all the solutions are periodic
around the origin, all must cross the third quadrant in a sufficiently large time. Therefore, given x y,2 2( ) such
that

x y x y M N0, 0,2 2 2
2

2
2 2 2

< < + > +

and setting x y,2 2 2�( )ℓ ≔ (and, without loss of generality, with 2 1ℓ > ℓ ), it becomes apparent that, if
z y0, Γ0 2( ) ( )= ∈ ℓ with y 00 > , then

θ t z π π t T, 2, 3 2 for all 0 ,0( ) [ )∈ / / ≤ ≤

because the orbit through x y,2 2( ), Γ 2( )ℓ , cannot cross the entire third quadrant in the time interval T0, 0[ ].
Consequently, by (3.9), we find that

T z z
T z z y y

rot 0, , 2 if Γ ,
rot 0, , 1 2 if 0, Γ , 0.

0 1

0 0 2 0

⎧

⎨
⎩

([ ] ) ( )

([ ] ) ( ) ( )

= ∈ ℓ

< / = ∈ ℓ >

(3.10)

Subsequently, to analyze the Poincaré map ΦT0, we will focus attention into the annular region, � ,
of the phase-plane enclosed by the orbits Γ 1( )ℓ and Γ 2( )ℓ , where (3.10) holds, which has been represented
in Figure 8, i.e.,

x y x y, : , Γ .2
1 2

1 2

�� �{( ) ( ) } ( )≔ ∈ ℓ ≤ ≤ ℓ = ⋃ ℓ

ℓ ≤ℓ≤ℓ

For graphical purposes, the aspect ratios in Figure 8 have been slightly modified.
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By the dynamical properties of (3.7)-(I), the Poincaré map ΦT0 transforms the portion of � on the
positive y-axis, i.e., the segment

σ y y y y0, : 0 0, 0, : 0, ,0
2

1 2� �� �{( ) } {( ) ( ) ( ) }≔ ∩ ∈ > = ∈ × ∞ ℓ ≤ ≤ ℓ (3.11)

into the spiraling line plotted in Figure 9(left). The unique y0, 1( ) such that y0, 1 1�( ) = ℓ remains invariant by
ΦT0 because T τ20 1( )= ℓ . Thus, y0, 1( ) gives two rounds around the orbit Γ 1( )ℓ as t T0, 0[ ]∈ . Since the period
map τ( )ℓ is increasing with respect to ℓ, the points y σ0, 0( ) ∈ with y y1> close to y1 cannot complete two
rounds around the origin, though close to obtain it. The bigger is taken y y1> , the bigger is the gap

π θ T y4 , 0,π
2 0( ( ))+ − , until y approximates y2, the unique value of y such that y0, 2 2�( ) = ℓ , where,
according to the choice of Γ 2( )ℓ , we already know that θ T y π, 0, 3 20( ( )) < / . Similarly, defining x , 01( ( ) )ℓ

+
as

the intersection of Γ 1( )ℓ with the positive x-axis, Figure 9(right) shows a plot of the parallel (vertical) segment

σ x x y x y0, , 0, : , .1 1 1 1 1 2�� �({ ( )} [ )) {( ( ) ) [ ) ( ( ) ) }≔ ∩ ℓ × ∞ = ℓ ∈ × ∞ ℓ ≤ ℓ ≤ ℓ
+ + +

(3.12)

The curves σΦT i0( ) look like sort of logarithmic spirals with the angular polar coordinate increasing
along their trajectories. As illustrated by Figure 9(right), σΦT 10( ) is a curve looking like σΦT 00( ).

Throughout the rest of this section, we consider the topological square, � , enclosed by the segments σ0
and σ1 in � , i.e.,

Figure 8: The region � enclosed by curves Γ 1( )ℓ and Γ 2( )ℓ with ω 1 2< ℓ < ℓ .

Figure 9: The segments σi and the curves σΦT i0( ) for i 0= (left) and i 1= (right).
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x y x x y, : 0 , 0 .1� �{( ) ( ) }≔ ∈ ≤ ≤ ℓ >
+

The plot of Figure 10 shows ΦT0 �( ), which is the spiral-like region enclosed in the annulus � and bounded
by the curves σΦT 00( ) and σΦ .T 10( ) Subsequently, we will also consider the topological square

x y x x y, : 0 , 0 ,1	 �{( ) ( ) }≔ ∈ ≤ ≤ ℓ <
+

which has been also represented in Figure 10, where ΦT0 � 	( ) ∩ consists of two smaller rectangular
regions, which have been named as 0	 and 1	 .

Remark 3.1. For convenience in the exposition, we have chosen 1ℓ andT0 to satisfy (3.10). But one can adjust
the parameters to haveT jτ0 1( )≥ ℓ for some integer j 2≥ , of course. In this case, we should modify the choice
of 2ℓ in order to obtain the second condition of (3.10). Now, we will have T z jrot 0, ,0([ ] ) ≥ if z Γ 1( )∈ ℓ as first
condition. Indeed, the intersection of ΦT0 �( ) with 	 consists of j 2≥ rectangular regions.

3.1.2 Dynamics of (3.2) in the interval T T,0[ ]

Throughout this paragraph, we recall that since the system is autonomous we can work in the interval T0, 1[ ]

withT T T1 0≔ − and consider the Poincaré map ΦT1. Choosing 0̄ in the interval T T,0[ ], our main goal in this

section is to show that, for sufficiently large β T β t td 0
T

T
1 1

0
( )∫= > , the region 	 is mapped across � by the

Poincaré map Φ .T1 Actually we have that ΦT1 	( ) intersects transversally � . Such a transversality entails
a complex behavior reminiscent of Smale’s horseshoe.

Since α t 0( ) = and β t β1( ) = for all t T0, 1[ ]∈ in (3.7)-(II), we have that

x t x t x t T0 and for all 0, .0 1( ) ( ) [ ]′ = = ∈ (3.13)
Thus,

y T y β e t β e T0 1 d 1 .
T

x x
1

0

1 1 1

1

0 0( ) ( ) ∫ ( ) ( )− = − = − (3.14)

By (3.13) and (3.14), we find that z zΦT1( ) = if z y0, 0 	( )= ∈ , and, hence,

Figure 10: The regions � , 	 , ΦT0 �( ), 0	 and 1	 .
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x y x x y xΦ , : 0 , : 0 .T1 	 	({( ) }) {( ) }∈ = = ∈ =

In other words, the left side of 	 consists of fixed points of ΦT1.
On the other hand, by (3.13), for every z x y,1 	( )= ∈ , with x x0 ,1 1( )< ≤ ℓ

+
we have that x t x1( ) = for all

t T0, 1[ ]∈ , and hence,

y T y β e t β e T0 1 d 1 .
T

x x
1

0

1 1 1

1

1 1( ) ( ) ∫ ( ) ( )− = − = −

Consequently, if we denote by y 02 <
− and y 02 >

+ the unique values of y such that y0, 2 2�( ) = ℓ
± , then, setting

M M y ymax ,2 2 2( ) {∣ ∣ ∣ ∣}= ℓ ≔
∗ ∗ − + and choosing T1 satisfying

T M
β e

x x2
1

, for ,x1
1

1( )
( )

>

−

≔ ℓ

∗

+ +

+

(3.15)

it becomes apparent that y T y M0 21( ) ( )− >
∗. So,

x y x x x yΦ , : , .T 21 	({( ) }) { } ( )∈ = ⊊ × ∞
+ +

+

Therefore, for i 0, 1= , the topological rectangle Φi T i1
 	 �( )≔ ∩ crosses � , transversally, as represented in
the second picture of Figure 11. As (3.15) holds for sufficiently large β 01 > , regardless the size of T1, as a
rather direct consequence of the abstract theory of Papini and Zanolin [67,68], it becomes apparent that, for
every T T0,0 ( )∈ , problem (3.1), with the special choice (3.6), exhibits complex dynamics for sufficiently
large β 01 > . Actually, the geometry of the problem is very similar to the one considered by Pascoletti et al.
[69, Figures 6–8] and Labouriau and Sovrano [119, Def. 3.3], consisting of a twist map acting in an annular
region, composed with a shift map on a strip. The type of chaotic dynamics that occurs is stated in
Definition 1.1, with the semi-conjugation to the Bernoulli shift on two symbols. Actually, we can produce
a semi-conjugation with respect to a larger set of ℓ symbols by suitably adapting the parameters α β β, ,0 1( )

as well as T0 and T1, as already shown in Remark 3.1. This concludes the proof of Theorem 3.1 for stepwise
constant coefficients.

We omit the technical details regarding the application of the results from Papini and Zanolin [67,68]
for the special choice (3.6), since we will present this approach in a more thoroughly manner along the

Figure 11: The topological squares 	 and ΦT1 	( ) (left panel), as well as the squares ΦT0 01
 	 �( )≔ ∩ and ΦT1 11
 	 �( )≔ ∩

(right panel).
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proof of Theorem 3.1. On the other hand, the case of stepwise constant coefficients in (3.6) and (3.7)-(I) and
(II) suggests that, at least from a numerical point of view, we are in a situation where a stronger result about
chaotic dynamics can be obtained, namely, the conjugation to the Bernoulli automorphism, due to the
presence of a Smale horseshoe. Indeed, the geometry that we have described earlier suggests a rather
elementary mechanism to generate complex dynamics, by adopting the original methodology of Smale [54],
as illustrated in the Conley-Moser approach in [56, Ch. III]. In the next subsection, we will prove Theorem
3.1 in its more general form, using the theory of topological horseshoes. Then, we will end this article by
discussing some possible sharper results in the frame of the original horseshoe geometry, by assuming (3.1)
with the special choice of coefficients in (3.6).

3.2 Proof of Theorem 3.1

As already discussed in Section 1, to prove the presence of chaotic dynamics according to Definition 1.1,
there are various different approaches of topological nature, though these results provide a weaker form of
chaos with respect to classical Smale’s horseshoe, because they guarantee the semi-conjugation to the
Bernoulli shift automorphism, instead of the conjugation. However, the approaches based on the so-called
theory of topological horseshoes, guarantee a broader range of applications. Here, we briefly recall some
basic facts from the “stretching along the path method,” by specializing our presentation to planar
homeomorphisms.

Let Φ : 2 2� �→ be a planar homeomorphism and let � be a compact set of the plane, which
is homeomorphic to the unit square. We select two disjoint compact arcs on the boundary of � that
we conventionally denote left�

− and right�
− and call the left and right sides of � . Then, setting

left right� � �≔ ∪
− − − , the pair ,� � �( )≔

− is called an oriented rectangle. Given two oriented rectangles
� and � and a compact set ,� �⊂ we write

if the following property holds

for every path γ : 0, 10 �[ ] → with γ 00( ) and γ 10( ) belonging to different components of �−, there
exists a sub-path γ γ s s1 0 ,0 1∣[ ]≔ such that γ t1 �( ) ∈ for all t s s,0 1[ ]∈ and γ tΦ 1 �( ( )) ∈ with γ sΦ 1 0( ( )) and

γ sΦ 1 1( ( )) belonging to different components of �−.

If � �= , we just write Moreover, for any integer 2ℓ ≥ , we will use the notation

if there are ℓ pairwise disjoint (nonempty) compact sets , ,0 1� �…
ℓ−

in � , such that

In the proof of Theorem 3.1, the following result, adapted from Pascoletti et al. [69] will be used.

Lemma 3.1. Assume that Φ Φ Φ2 1= ∘ and let � and 	 be two oriented rectangles such that
(i) for some 2ℓ ≥ ,

(ii)

Then, Φ induces chaotic dynamics on ℓ symbols in the set � .

We are in position now to prove Theorem 3.1, with Φ1 and Φ2 the Poincaré maps associated to the
system (3.3) in the intervals T0, 0[ ] and T T,0[ ], respectively. Clearly, Φ Φ Φ2 1= ∘ is the Poincaré map on the
interval T0,[ ] and its n-periodic points corresponds to the nT -periodic solutions to the differential system.
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For the sake of simplicity in the exposition, we restrict ourselves to the case of 2ℓ = symbols, con-
ventionally 0, 1 .{ } The case of an arbitrary 2ℓ ≥ can be easily proved via a simple modification of our
argument.

As a first step, we focus our attention in the time-interval T0, 0[ ] where the supports of α and β intersect
nontrivially on a set containing a nondegenerate interval, J , where, without loss of generality, we can
suppose that

α t β t ςmin , 0.
t J 0{ ( ) ( )} ≥ >

∈

In T0, 0[ ], we are precisely in the same situation as the authors in [21, §2]. Accordingly, we just recall some
main facts from [21], which are needed for our proof and send the reader for the technical details to the
original article, if necessary. For a fixed η 0> with f g ηmin 0 , 0 ,{ ( ) ( )}′ ′ > we can find a (small) radius r 00 >

such that

θ T z θ z λης J z z r, 0, for all with0 0 0 0 0 0 0( ) ( ) ∣ ∣− ≥ ‖ ‖ =

(see [21, Formula (13)]). Here, as in Section 3.1, we are denoting by θ t z, 0( ) the angular coordinate associated
with the solution of (3.3) with z 00 ≠ as initial point. Then, for

λ λ π
ης J
7

2
,

0∣ ∣
> ≔

∗ (3.16)

we have that

θ T z π θ z π z r, 4 if 0 0, 2 with .0 0 0 0 0( ) ( )> ≤ ≤ / ‖ ‖ = (3.17)

On the other hand, following the same argument as in the previous steps (3.9) and (3.10) (see also [21, p.
2401]), we can find a (large) radius R r0 0> such that the solutions departing from the first quadrant outside
the disc of radius R0 cannot cross the third quadrant, that is,

θ T z π θ z π z R, 3
2

if 0 0, 2 with .0 0 0 0 0( ) ( )< ≤ ≤ / ‖ ‖ = (3.18)

Suppose now that λ λ>
∗ is fixed. By the continuous dependence of the solutions from initial data (see also

[21, Pr. 1]), there are two radii rλ and Rλ with

r r R R0 λ λ0 0< ≤ < ≤

such that any solution ζ t z; 0( ) of (3.3) with z0 in the first quadrant and r z R0 0 0≤ ‖ ‖ ≤ satisfies
r ζ t z R;λ λ0( )≤ ‖ ‖ ≤ for all t T0, 0[ ]∈ .

Subsequently, we introduce the sets

z x y x r y r z R, : 0 , 0, ,2
0 0 0�� { ( ) }≔ = ∈ ≤ ≤ ≥ ≤ ‖ ‖ ≤

and

C C, ,r Rleft right0 0� � � �≔ ∩ ≔ ∩
− −

where Cρ denotes the circumference of center at the origin and radius ρ 0> , and

z x y x r y r z R, : 0 , 0, ,λ λ λ
2�	 { ( ) }≔ = ∈ ≤ ≤ ≤ ≤ ‖ ‖ ≤

x y x x y x r, : 0 , , : .λleft right	 	 	 	{( ) } {( ) }≔ ∩ = ≔ ∩ =
− −

So that the oriented rectanglesQ and R are defined, too. It is obvious that both � and 	 are homeomorphic
to the unit square. For instance, the map

u v ur v u r, , ϱ ,0
2 2

0
2 1 2( ) ( ( ( ) ) )↦ −

/

with v r v R rϱ ,0 0 0( ) ( )= + − provides a homeomorphism from the unit square 0, 1 2[ ] onto ,� mapping v 0=

to left�
− and v 1= to right�

− and, similarly, the map
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u v ur v u r, , ϱ ,λ λ λ
2 2 2 1 2( ) ( ( ( ) ) )↦ − −

/

with v r v R rϱ ,λ λ λ λ( ) ( )= + − provides a homeomorphism from the unit square onto ,	 mapping u 0= to left	
−

and u 1= to right	
− . Thus, the definition of oriented rectangles is well posed.

We also introduce the pairwise disjoint compact (nonempty) subsets of �

z z π jπ θ T z π jπ j: Φ , 3 2 2 , 2 2 for 0, 1.j1 1 0� � 	{ ( ) ( ) }≔ ∈ ∈ / + ≤ ≤ + =
−

By definition,

Φ .0 1 1
1

� � � 	( )⊔ ⊂ ∩
−

Figure 12 shows a possible hierarchy of the sets 0� and 1� within .�

Let γ : 0, 1 �[ ] → be a continuous map such that γ 0 left�( ) ∈ − and γ 1 right�( ) ∈ − and let us consider

the evolution of γ s( ) through the first Poincaré map Φ .1 The angular coordinate θ T γ s,0( ( )) as a function
of the parameter s 0, 1[ ]∈ is a continuous map, which, according to (3.17) and (3.18) satisfies

θ T γ π θ T γ π, 0 4 , , 1 3 2.0 0( ( )) ( ( ))> ≤ /

Hence, the path s θ T γ s,0( ( ))↦ crosses at least twice the portion of the fourth quadrant betweenCrλ andCRλ,
and therefore it also crosses (at least twice) the region 	 from x 0= to x r .λ=

By an elementary continuity argument, there are two subintervals, s s,0 1[ ] and s s,3 4[ ], with
s s s s0 10 1 3 4< < < < < , such that

θ T γ s π θ T γ s π π π π θ T γ s π s s s, 4 , , 3
2

2 , 3
2

2 , 4 ,0 0 0 1 0 0 1( ( )) ( ( )) ( ( )) [ ]= = + + ≤ ≤ ∀ ∈

and

θ T γ s π θ T γ s π π θ T γ s π s s s, 2 , , 3
2

, 3
2

, 2 , .0 3 0 4 0 3 4( ( )) ( ( )) ( ( )) [ ]= = ≤ ≤ ∀ ∈

Thus, the path s s s θ T γ s, ,0 1 0[ ] ( ( ))∋ ↦ crosses the fourth quadrant, and hence, there is a subinterval

s s s s, ,0 1 0 1[ ] [ ]′ ′ ⊂ such that γ sΦ1 	( ( )) ∈ for all s s s,0 1[ ]∈ ′ ′ with γ sΦ1 0 right	( ( ))′ ∈
− and γ sΦ .1 1 left	( ( ))′ ∈

− By

the definition of 0� , we have that γ s 0�( ) ∈ for all s s s,0 1[ ]∈ ′ ′ . Therefore, we have proved that

Figure 12: The sets 0� and 1� , as well as � and 	 , for the stepwise constant coefficients studied in Section 3.1. Although in this
special situation Φ0 1 1

−1
� � � 	( )⊔ = ∩ , by the choice of T0, in general, Φ1

−1
� 	( )∩ might contain more components.
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In the samemanner, we can find a subinterval s s s s, ,3 4 3 4[ ] [ ]′ ′ ⊂ such that γ sΦ1 	( ( )) ∈ for all s s s, ,3 4[ ]∈ ′ ′ with

γ sΦ1 3 right	( ( ))′ ∈
− and γ sΦ .1 4 left	( ( ))′ ∈

− Therefore, by the definition of 1� , we have that γ s 1�( ) ∈ for all

s s s, ,3 4[ ]∈ ′ ′ thus proving that Then, Φ1 satisfies Lemma 3.1(i) for 2ℓ = .

To have the result for an arbitrary 2,ℓ ≥ we have just to modify the choice of λ∗ in (3.16) to
λ λ π ης J4 1 2 0( ) ( ∣ ∣)> ≔ ℓ − /

∗ and introduce corresponding subsets , ,0 1� �…
ℓ−

of Φ .1
1

� 	( )∩
−

Now, we consider the map Φ2 by studying the equation (3.3) in the interval T T,0[ ], where α 0≡ ,
and hence,

x y x y λg x β t tΦ , , d .
T

T

2 0 0 0 0 0

0

( )
⎛

⎝

⎜
⎜

( ) ( )
⎞

⎠

⎟
⎟

∫= +

Thus, the dynamics is the same as that of (3.2) in the interval T T,0[ ] considered in Section 3.1, modulo
a minor change in the parameters involved. It is clear that the points on left	

− remain stationary, while those
of right	

− move upward at the new position

y λg x β t t R λg x β t td d .λ

T

T

λ λ

T

T

0

0 0

( ) ( ) ( ) ( )∫ ∫+ ≥ − +

Therefore, if

β t t K R
λg x

d 2 ,
T

T

λ
λ

λ
0

( )
( )

∫ > ≔ (3.19)

Φ2 satisfies Lemma 3.1(ii). Indeed, any path in 	 linking the two sides of 	− is stretched to a path crossing
entirely the set � (from left�

− to right�
− ) and remaining inside the strip r0, .λ �[ ] × This concludes the proof

of Theorem 3.1.

Remark 3.2. The chaotic dynamics associated with the Poincaré map Φ Φ Φ2 1= ∘ comes from the compo-
sition of a twist rotation (due to Φ1) with a shearing parallel to the y-axis (due to Φ2). Clearly, if we consider
the Poincaré map of initial timeT0, we will obtain Φ Φ1 2∘ and, by a similar argument, through a symmetric
counterpart of Lemma 3.1 where the order of the two maps is commuted, we may prove the existence
of a horseshoe type structure inside the set .	 Moreover, by using the fact that the shear map moves down-
ward the points with x 0< (in fact, g x 0( ) < for x 0< ), we can also start from a set

z x y r x y r z R, : 0 0, 0,2
0 0 0�� { ( ) }≔ = ∈ ≤ − ≤ ≤ ≤ ≤ ‖ ‖ ≤

and a target set

z x y r x y r z R, : 0, 0, ,λ λ λ
2�	 { ( ) }≔ = ∈ ≤ ≤ ≥ ≤ ‖ ‖ ≤

again reversing the roles of � and 	 by commuting Φ1 with Φ .2
Furthermore, we can obtain a variant of Theorem 3.1 by keeping condition c1( ) and modifying condition

c2( ) to

(c2′) α 0⪈ and β 0≡ on T T, .0[ ]

In this situation, the assumption (3.4) should be replaced by a similar hypothesis involving α.
T

T

0
∫ Under

conditions c c1 2( ) ( )− ′ , the Poincaré maps produce a dynamics where a twist rotation is composed with
a shearing parallel to the x-axis.

Remark 3.3. Hénon proposed in [120], as a model problem, the mapping given by the quadratic equations

x x α y x α y x α y x αcos sin , sin cos ,1
2

1
2( ) ( )= − − = + −
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as a simple example of an area-preserving mapping, which exhibits chaotic dynamics. The mapping in
Hénon’s model splits into a product of a shearing parallel to the y-axis and a rotation. It is interesting that
the typical numerical features observed in the experiments in [120] appear also in Volterra’s equations for
the setting of Theorem 3.1, as shown in Figure 13.

The left picture of Figure 13 shows the first 800 iterations of the Poincaré map for a Volterra system

u λα t u v
v λβ t v u

1 ,
1 ,

⎧

⎨
⎩

( ) ( )

( ) ( )

′ = −

′ = − −

under the general assumptions of Theorem 3.1, starting from different initial points. The numerical experi-
ments reveal the presence of stability regions (invariant curves around the constant coexistence state 1, 1( ),
according to Liu [26]), as well as some more complicated discrete orbits of “chaotic type.” The right figure
highlights some special orbits, in particular, sevenfold island chains (according to Arrowsmith and Place
[121, p. 262]) separated away by heteroclinic connections and including higher order subharmonics.
See also Hénon [120, Figures 4 and 5].

3.2.1 Chaotic dynamics in the degenerate case for system (3.3)

To conclude our analysis, we show now how to adapt the proof of Theorem 3.1 to deal with degenerate
weights in system (3.3). This will be achieved by applying the estimates previously obtained by the authors
in [37], where some results about the existence of periodic solutions for (3.3)were found when the functions
α and β have a common support of zero measure. This case provides also a connection with the theorems
in Section 2.

To fix ideas, we suppose that in the interval T0, 0[ ], there are ℓ positive humps of α separated away by
k = ℓ positive humps of β, as in (2.22), with the corresponding support intervals intersecting on sets of zero
measure. The symmetric case when, instead of (2.22), the condition (2.33) holds, can be treated similarly by
interchanging the roles of α and β and modifying the choice of the initial set � and the target set 	 , as it will
explained in Remark 3.4 below.

Then the following result holds, where, as before, we suppose that f g, : � �→ are C1-functions such
that f g0 0 0( ) ( )= = , f 0 0( )′ > , g 0 0( )′ > , and f s s 0( ) > , g s s 0( ) > for s 0≠ . Moreover, at least one of the
two functions, e.g., f , is bounded on , 0 .( ]−∞

Theorem 3.2. Assume that there exists T T0,0 ( )∈ such that:

(c1′) k 4ℓ = ≥ , with k,ℓ even integers,
(c2) α 0≡ and β 0⪈ on T T, .0[ ]

Figure 13: Some numerical experiments for a periodic Volterra system.
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Then, there exists λ λ=
∗

ℓ

∗ such that, for every λ λ ,>
∗ there exists a constant Kλ for which, whenever

β t t Kd ,
T

T

λ

0

( )∫ > (3.20)

the Poincaré map associated with (3.3) induces chaotic dynamics on 2ℓ/ symbols on some compact set �

contained in the first quadrant.

Proof. For simplicity in the exposition in the proof, we will focus attention in the case k 4ℓ = = , where,
starting on the region � , we obtain two crossings of the region 	 and, as a consequence, a complex
dynamics on two symbols.

We will follow the same argument as in the proof of Theorem 3.1, just emphasizing the necessary
modifications. As a first step, we will focus our attention in the time-interval T0, 0[ ].

As the supports of α and β do not overlap, the associated dynamics is a composition of shear maps of
the following form. If α 0⪈ , β 0≡ and y 0> (resp. y 0< ), the points are moved parallel to the x-axis from
right to left (resp. from left to right). Similarly, when α 0≡ , β 0⪈ and x 0< (resp. x 0> ), then the points are
moved parallel to the y-axis in a decreasing (resp. increasing) sense. Once passed two positive humps of α
and an intermediate positive hump of β, the points in the first quadrant with y δ0 0≥ end in the fourth
quadrant for sufficiently large λ 0> . Thus, after another interval where β 0,⪈ we come back to the first
quadrant and can repeat the process, as described in detail by the authors in [37]. Since the points on
the x-axis (resp. the y-axis) do not move when β 0≡ (resp. when α 0≡ ), in the proof of this theorem,
it is convenient to slightly modify the choice of � and 	 as follows:

z x y x r y r z R, : 0 , 0, ,2
1 0 0�� { ( ) }≔ = ∈ ≤ ≤ ≥ ≤ ‖ ‖ ≤

for r r0 ,1 0< < and

C C, .r Rleft right0 0� � � �≔ ∩ ≔ ∩
− −

In this manner, there is y r rˆ 00 0
2

1
2 1 2( )≔ − >

/ such that y ŷ0≥ for all x y, .�( ) ∈ According to Lemmas 1 and 2
and Theorem 3 of [37], for that choice, there exists λ∗ such that the condition (3.17) is reestablished for every
(fixed) λ λ>

∗, i.e.,

θ T z π z C, 4 if .r0 0 0 0�( ) > ∈ ∪ (3.21)
On the other hand, exactly as explained earlier in the proof of Theorem 3.1 when obtaining (3.18), for
sufficiently large R r0 0> , the solutions departing from the first quadrant outside the disc of radius R0 cannot
cross the third quadrant, that is,

θ T z π z C, 3
2

if .R0 0 0 0�( ) < ∈ ∪ (3.22)

By continuous dependence, once fixed a λ λ>
∗, one can find two radii rλ and Rλ, with

r r R R0 ,λ λ1 0< ≤ < ≤

such that any solution ζ t z; 0( ) of (3.3) with z0 �∈ lies in the set

z x y x r y r z R, : 0 , 0, ,λ λ λ
2�	 { ( ) }≔ = ∈ ≤ ≤ ≤ ≤ ‖ ‖ ≤

for all t T0, .0[ ]∈

Thus, much like in the proof of Theorem 3.1, we can also define

x y x x y x r, : 0 , , : .λleft right	 	 	 	{( ) } {( ) }≔ ∩ = ≔ ∩ =
− −

From now on, we have just to repeat the proof of Theorem 3.1 without any significant change in order to
show that The verification that proceeds exactly as earlier. Therefore,
according to Lemma 3.1, we obtain the chaotic dynamics for Φ Φ Φ2 1= ∘ on two symbols.
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Note that, to produce a semi-conjugation on m-symbols, we need to make at least m-turns around
origin, starting at � , in the time-interval T0, .0[ ] This can be achieved, for sufficiently large λ, if both α and β
are assumed to have, at least, m2 positive humps. The proof is complete. □

Remark 3.4. If, instead of (2.22), the condition (2.23) holds, then we can assume c2( )′ , instead of c2( ), and
take � and 	 to be adjacent to the x-axis and opposite with respect to the y-axis.

3.2.2 Chaotic dynamics when α t β t 0( ) ( ) > for all t T0,∈ [ ]

So far, in this section, we have studied the system (3.3) by assuming that either α 0≡ and β 0⪈ , or β 0≡

and α 0⪈ , on some time-interval. In both these cases, the dynamics is spanned by the superposition of a
twist rotation with a shear map. In this section, we would like to stress the fact that a rich dynamics can be
also produced, through a different mechanism, when α and β are throughout positive and appropriately
separated away from each other, in a sense to be specified below. To analyze the simplest geometry,
we restrict ourselves to consider the system (3.2) with stepwise constant function coefficients, α t( ) and
β t( ), as shown in Section 3.1. More precisely, we assume that T T T0 1= + and

β t
β t T
β t T T

α t α t T
α t T T

0 if 0, ,
0 if , ,

0 if 0, ,
0 if , ,

0 0

1 0

0 0

1 0
( )

⎧

⎨
⎩

[ )

[ )
( )

⎧

⎨
⎩

[ )

[ )
≔

> ∈

> ∈

≔

> ∈

> ∈

(3.23)

where the positive constants α0, α1, β0, β1 and the exact values ofT0 andT1 will be made precise later. In this
case, the dynamical behaviors of (3.2) on each of the intervals T0, 0[ ] and T T,0[ ] are those of the associated
autonomous Volterra-type systems

x α e
y β e

x α e
y β eI

1 ,
1 , II

1 ,
1 ,

y

x

y

x
0

0

1

1

⎧

⎨
⎩

( )

( )

⎧

⎨
⎩

( )

( )
( )

′ = −

′ = − −

( )

′ = −

′ = − −

(3.24)

respectively. Note that the systems (3.24)-(I) and (3.24)-(II) have the same equilibrium point (the origin),
and both describe a global center. However, for different choices of the pairs α β,0 0( ) and α β,1 1( ), the shape
of the level lines of the Hamiltonian may change. Geometrically, this situation is reminiscent to that already
studied by Takeuchi et al. in [122], where a predator-prey model with randomly varying coefficients was
considered.

Figure 14: Two linked annuli 0� and 1� filled in by the periodic orbits of (3.24)-(I) and (3.24)-(II), respectively, and crossing to
each other into four rectangular regions.
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Now, making a choice so that

β
α

β
α

,1

1

0

0
> (3.25)

or the converse inequality, it is possible to find level lines of the two systems crossing to each other.
From this, we can construct two annular domains 0� and 1� , filled by periodic orbits of (3.24)-(I) and

(3.24)-(II), respectively, in such a manner that the annuli intersect into four rectangular regions, as illu-
strated in Figure 14, where the annulus 0� is obtained for α β 10 0= = and the level lines passing through
the initial points 0, 0.8( ) and 0, 1.5( ), whereas 2� is obtained for α β0.1, 51 1= = and the level lines passing
through the initial points 0, 1.7( ) and 0, 2.5( ). From a numerical point of view, the larger is the gap in
condition (3.25), the wider are the linked annuli which can be constructed.

In general, to describe in a precise manner the construction of the two linked annuli, we denote by i�

the energy functions for the pair α β,i i( ) (i 0, 1= ), so that

x y c x y d, : , ,i i i i
2�� �{( ) ( ) }≔ ∈ ≤ ≤

for

d c α βmin 0, 0 .i i i i i i� � ( )> > = = +

We also denote by x x0i i( ) ( )ℓ < < ℓ
− + the abscissas of the intersection points of the level line c d,i i i� [ ]= ℓ ∈

with the x-axis and, symmetrically, by y y0i i( ) ( )ℓ < < ℓ
− + the ordinates of the intersection points of the level

line c d,i i i� [ ]= ℓ ∈ with the y-axis. Then 0� and 1� are linked provided that

x c x d x d x c y c y d y d y c; , ; .0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )< < < <
− − + + − − + +

This definition corresponds to that considered by Margheri et al. [123] (see also Papini et al. [124, Def. 3.2]).
The regions obtained as intersections of the two annuli are the four components of

x y c x y d c x y d, : , and , ,2
0 0 0 1 1 1� � �{( ) ( ) ( ) }∈ ≤ ≤ ≤ ≤

each one lying in a different quadrant. They are all homeomorphic to the unit square. Now, if we denote by
� and 	 any pair chosen among these four intersections, we define the following orientations:

x y x y c x y x y d, : , , : , ,0 0 0 0� � � � �{( ) ( ) } {( ) ( ) }≔ ∈ = ∪ ∈ =
−

x y x y c x y x y d, : , , : , ,1 1 1 1	 	 � 	 �{( ) ( ) } {( ) ( ) }≔ ∈ = ∪ ∈ =
−

not being relevant the order in which the names “left” and “right” in these components of [ ]⋅ − are assigned.
Finally, if we denote by Φ1 and Φ2 the Poincaré maps associated with (3.24)-(I) and (3.24)-(II), respectively,
by the monotonicity of the period map (already exploited as, for instance, in Remark 3.1), we can prove that

Φ1 �( ) crosses ℓ-times 	 or, more precisely, provided that T0 is sufficiently large. Similarly,

one can prove that for sufficiently large T1. Thus, a chaotic dynamics on mℓ × symbols is

produced for the map Φ in the set .� Equivalently, instead of taking sufficiently largeT0 andT1, one can put
a parameter λ in front of α and β, withT0 andT1 fixed, to obtain complex dynamics on mℓ × symbols for all

λ λ>
∗, where λ∗ depends on m,( )ℓ and on the several coefficients of the equation.
Here, the geometrical configuration is the same as that considered by Burra and Zanolin [125], and later

generalized by Margheri et al. [123] and Papini et al. [124]. The reader is sent to these references for any
further technical details.

3.3 Ideal horseshoe dynamics for weights (3.6)

In this section, we will perform a schematic construction of the Smale’s horseshoe inspired on the numer-
ical simulations of model (3.2) with a stepwise configuration of α and β as in (3.6). These simulations show

44  Julián López-Gómez et al.



that there is transversal intersection between the sets ,0 1� � and Φ , Φ0 1� �( ) ( ) in the sense that, for
i j, 0, 1{ }∈ , the intersection

Φi j� �( )∩

is a unique connected set. Assuming that this is the behavior for all forward and backward iterates of the
Poincaré map Φ, it follows that Φ is conjugated to the Bernoulli shift. Notice that in the previous sections, it
has been proved (also for the general case of Theorem 3.1) that Φ is semi-conjugated to the Bernoulli shift.
Figures 19–21 give evidence of these facts.

We will assume that there are two disjoint proper horizontal topological squares, 0� , 1� �⊊ , such that

iΦ for 0, 1 .i i� 
( ) { }≔ ∈ (3.26)

By horizontal, we mean that the lateral sides of 0� and 1� lie on the lateral sides of the square � , as
sketched in Figure 15. In this figure, as in the remaining figures of this section, we will represent any
topological square as an homeomorphic square quadrangle. In order to have (3.26), it is assumed that

ΦT 0 10 � 	 	 	( ) ∩ = ∪

and, by setting

iΦ , 0, 1 ,i T i1
 	 �( ) { }≔ ∩ ∈

it follows that

Φ Φ Φ .T T T 0 1 0 11 0 1� 	 � 	 	 � 
 
( ) ( )( )∩ ∩ = ∪ ∩ = ∪

By simply having a look at Figure 15, it is easily realized that, for every i 0, 1{ }∈ , Φi T i
1
1


 
( )≔
− is

a vertical sub-square of i	 ; vertical in the sense that it is a portion of i	 linking the upper and lower sides
of i	 . It turns out that ΦT0 sends i i	 
⧹ outside � . Since

iΦ Φ Φ Φ , 0, 1 ,i T i T T i i
1 1 1 1
0 0 1

� 
 
 
( ) ( ) ( ) { }( )≔ = = ∈
− − − −

it is apparent that, for every i 0, 1{ }∈ , Φ establishes an homeomorphism between i� and i
 . In particular,

iΦ and Φ for each 0, 1 .i i i i
1� 
 
 �( ) ( ) { }= = ∈
−

Figure 15: Φ establishes an homeomorphism between i� and i
 , i 0, 1{ }∈ .
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This feature is pivotal in the next construction. The intersection (in �) of the vertical squares i
 with the
horizontal squares j� , i j, 0, 1{ }∈ , generates 2 42

= topological squares in � , namely,

i j, , 0, 1 ,i j i j,� 
 � { }( ) ≔ ∩ ∈

which have been represented in Figure 16.

Subsequently, we will denote Φ0 the identity map. By construction, for every s s, 0, 11 0 { }∈
−

and

z ,s s s s,1 0 1 0� 
 �( )∈ = ∩
− −

we have that

z z zΦ and Φ Φ .s s s
0 1 1

0 1 1� 
 �( ) ( ) ( )= ∈ ∈ =
− −

− −

(3.27)

In other words,

Φ , Φ .s s s s s s s s
0

, ,
1

,1 0 1 0 0 1 0 1� � � � �( ) ( ) ( )( ) ( )= ⊂ ⊂
−

− − − −

(3.28)

Naturally, the previous duplication process can be repeated for each of the topological squares i
 , i 0, 1{ }∈ .
Much like � , for each i 0, 1{ }∈ , the upper and lower sides of i
 consist of two arcs of trajectory of Γ 2( )ℓ and
Γ 1( )ℓ , respectively. Thus, replacing � by i
 , we can generate the four vertical topological squares

i jΦ , , 0, 1 .i j i j,
 
 
( ) { }( ) ≔ ∩ ∈ (3.29)

Then, as in � , 0
 , and 1
 , for every i j, 0, 1{ }∈ , i j,
( ) provides us with a vertical topological square linking
Γ 1( )ℓ to Γ 2( )ℓ ; vertical in the sense that their upper and lower sides consist of certain arcs of trajectory of Γ 2( )ℓ

and Γ 1( )ℓ , respectively. According to (3.29), it becomes apparent that, for every i j, 0, 1{ }∈ ,

Φ Φ Φ Φ ,
Φ Φ Φ Φ Φ Φ .

i j i j j j

i j i j i i i

1
,

1 1

2
,

2 2 1


 
 
 
 �


 
 
 
 
 �

( ) ( ( ) ) ( )

( ) ( ( ) ) ( ( )) ( )

( )

( )

= ∩ ⊊ =

= ∩ ⊊ = =

− − −

− − − −

(3.30)

Similarly, we can duplicate the horizontal squares by setting

i jΦ , , 0, 1 .i j j i,
1� � �( ) { }( ) ≔ ∩ ∈
− (3.31)

By construction, for every i j, 0, 1{ }∈ , i j,� ( ) is an horizontal topological square connecting the lateral sides
of � , i.e., linking x y x, : 0�{( ) }∈ = to x y x x, : 1�{( ) }∈ = . By (3.31), we have that, for every i j, 0, 1{ }∈ ,

Φ Φ ,
Φ Φ Φ Φ Φ .

i j i j j i i

i j j i j j

0
, ,

1

,
1 1

� � � � �

� � � � �

( ) ( )

( ) ( ( ) ) ( ( ))

( ) ( )

( )

= = ∩ ⊊

= ∩ ⊊ =

−

− −

(3.32)

Therefore, we can consider the 2 164
= topological squares in � defined as follows:

Figure 16: The invariant squares i j,�( ), i j, 0, 1{ }∈ .
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s s s s, , , , 0, 1 .s s s s s s s s, , , , , 2 1 0 12 1 0 1 2 1 0 1� 
 � { }( ) ( ) ( )≔ ∩ ∈
− −

− − − −
(3.33)

We claim that, for every s s s s, , , 0, 12 1 0 1 { }∈
− −

,

κΦ , 2, 1, 0, 1 .κ
s s s s s, , , κ2 1 0 1� � { }( )( ) ⊊ ∈ − −
− −

(3.34)

Indeed, by (3.33) and (3.32), we have that

Φ Φ .s s s s s s s, , , ,2 1 0 1 0 1 1� � �( ) ( )( ) ( )⊊ ⊊
− −

Thus, (3.34) holds for κ 1= . Moreover, by (3.33) and (3.31),

Φ ,s s s s s s s s s s s
0

, , , , , , ,2 1 0 1 2 1 0 1 0 1 0� � � �( ) ( ) ( )( ) = ⊂ ⊂
− − − − −

which establishes (3.34) for κ 0= . Similarly, according to (3.33) and (3.30)

Φ Φ ,s s s s s s s
1

, , ,
1

,2 1 0 1 2 1 1� 
 �( ) ( )( ) ( )⊊ ⊊
− −

− − − − −

and

Φ Φ ,s s s s s s s
2

, , ,
2

,2 1 0 1 2 1 2� 
 �( ) ( )( ) ( )⊊ ⊊
− −

− − − − −

which shows (3.34) for κ 1, 2= − − , which ends the proof of (3.34).
The first picture of Figure 17 represents the 16 topological squares s s s s, , ,2 1 0 1�( )

− −

, s 0, 1i { }∈ , i 2, 1, 0, 1{ }∈ − − ,
as defined by (3.33), while the second one provides a magnification of 0,0�( ), where the dyadic fractal behavior
of this process can be appreciated.

Iterating m times the previous process, it turns out that we can generate 2m vertical rectangles. Namely,
for v s s s, , , 0, 1m m

m
2 1( ) { }≔ … ∈

− − −
,

Φ Φ Φ .v s s s
m

s s, , 2 1m m m m2 1 1
 
 
 
 
 
 
( )( ) ( ( ( ) ) )≔ ∩ = ⋯ ∩ ⋯ ∩ ∩
… − −

− − − − − +

Thus, by definition, for κ m1, 2, ,{ }∈ − − … − ,

Φ Φ .κ
v s s

1
m κ κ
 
 �( ) ( )⊊ =

− (3.35)

Similarly, there exists 2m horizontal rectangles such that for h s s s, , , 0, 1m m
m

0 1 1( ) { }= … ∈
−

,

Φ Φ Φ .h s s s
m

s s s s, ,
1 1 1

m m m m1 1 0 1 2 1 0� � � � � � �( )( ) ( ( ( ) ) )≔ ∩ = ⋯ ∩ ⋯ ∩ ∩
…

−
−

−

− − −

and, hence, for κ m0, 1, , 1{ }∈ … − ,

Figure 17: The squares s s s s, , ,−2 −1 0 1�( ) (left) and a zoom of 0,0�( ) (right).
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Φ .κ
h sm κ� �( ) ⊊ (3.36)

Figure 18 shows the steps m 2= and m 3= of this process for both the vertical and horizontal squares.

Then, setting

,v hΣm m m� 
 �≔ ∩

where

v h s s s sΣ , , , , , , 0, 1 ,m m m m m
m

1 0 1
2( ) ( ) { }≔ = … … ∈

− − −

it becomes apparent that, by (3.35) and (3.36), for every integer κ m m, 1[ ]∈ − − ,

Φ .κ
sΣm κ� �( ) ⊂

As we have constructed two sequences of nonempty compact, connected nested topological squares, vm
 ,

hm� , by the Cantor principle,

lim and lims
m

v s
m

hv m h m
 
 � �≔ ≔

→+∞ →+∞

are two nonempty continue with

s s s s s s, , 0, 1 , , , 0, 1 .v h2 1 0 1
� �( ) { } ( ) { }= … ∈ = … ∈

− −

Moreover, by the transversality assumptions, the intersection s sv h
 �∩ is a point and s s, 0, 1v h
�( ) { }∈ .

Furthermore,

Λ
s s

s s
, 0,1v h

v h
�


 �

{ }

≔ ⋃ ∩

∈

is the invariant set of Φ. Therefore, thanks to the choice of the labels sv and sh that we have done, it becomes
apparent that Φ is conjugated to the Bernoulli full shift in two symbols.

Figure 18: Dyadic fragmentation in horizontal and vertical lines.
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We conclude this section with some geometrical and numerical schemes illustrating the actual occur-
rence of the theoretical horseshoe framework described earlier. To simplify the exposition, we consider the
case of an annular region under the effect of the composition of a twist map with a vertical shear map. Even
if the geometry of the level lines associated with the predator-prey system does not consist of circumfer-
ences, nonetheless, this can be assumed as a reasonable approximation if we consider small orbits around
the equilibrium point (as in [26]) or we supposed to have performed an action-angle transformation,
leading to an equivalent planar system where the radial component is constant.

The following pictures describe the geometric effect of the composition of a twist map ΦT0 and a vertical
shear map ΦT1 on a domain in the first quadrant, which is defined like the set � in Section 3.1, and denoted
again by � . Actually, we describe the effect of the maps and their compositionΦ Φ ΦT T1 0= ∘ , with respect to

the homeomorphic unit square 0, 1 2[ ] , considered as a reference domain, where we can transfer the geo-
metry. Figure 19 shows � , its image through a twist map (with a sufficiently large twist, corresponding to a
sufficiently large time T0) and the effect on the unit square. More precisely, if we denote by η η η,1 2( )= the
homeomorphism from the unit square to � , the two bands in the third panel of Figure 19 represent the sets

η η0, 1 ˆ Φ 0, 1T
2 1 1 2

0[ ] ([ ] )( )∩ ∘ ∘
− − , where η η ηˆ ,1 2( )= − is the homeomorphism from the unit square to 	 ,

which is the target set in the fourth quadrant symmetric to � . As a next step, Figure 20 shows the effect on

Figure 20: The region in the fourth quadrant (symmetric to � ) and its transformation by a vertical shear map as in Section 3.1
(left panel). The right panel put in evidence, with respect to the homeomorphic unit square, the part of the region that arrives
to � .

Figure 19: Example of an annular region under the action of a twist map. From left to right: a rectangular domain � in the first
quadrant, its evolution by a twist map, the part of the unit square (homeomorphic to � ), which is mapped to the region in the
fourth quadrant, which is symmetric to � .
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the vertical shear mapping on the set 	 and we also show the set of points in the unit square, which are
mapped into � , that is η η0, 1 Φ ˆ 0, 1T

2 1 1 2
1[ ] ([ ] )( )∩ ∘ ∘

− − .
Finally, Figure 21 puts in evidence the set of points of � , represented in the unit square, which come

back to � after Φ Φ ΦT T1 0= ∘ , that is, η η0, 1 Φ 0, 1 .2 1 1 2[ ] ( ) ([ ] )∩ ∘ ∘
− − Obviously, this is a subset of the two

bands domain appearing in the third panel of Figure 19.

If we consider the inverse homeomorphism Φ Φ ΦT T
1 1 1

0 1
= ∘

− − − and look for the sets of points of � ,
which remain in the domain after the first iteration, we can repeat symmetrically the same argument
as earlier. As a first step, passing to the unit square, we will consider the set of the points w 0, 1 2[ ]∈

such that η η wˆ Φ 0, 1T
1 1 2

1
( ) [ ]( )∘ ∘ ∈

− − , which clearly equals η η0, 1 Φ ˆ 0, 1T
2 1 1 2

1[ ] ([ ] )( )∩ ∘ ∘
− − , that is,

the blue set appearing in the second panel of Figure 20. Next we will consider the set of points of 	 ,
which belong to � after the action of the inverse twist ΦT

1
0
− , which transferred to the unit square is

η η0, 1 Φ ˆ 0, 1T
2 1 1 1 2

0
[ ] ([ ] )( )∩ ∘ ∘

− − − . This is exactly the set described in the third panel of Figure 19. At the

end, the set η η0, 1 Φ 0, 12 1 1 1 2[ ] ( ) ([ ] )∩ ∘ ∘
− − − will be made by two narrow bands inside the rectangular

region in the second panel of Figure 20.
From these numerical outcomes, it is apparent that the “real dynamics” follows precisely the abstract

scheme of the Smale’s horseshoe map.
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Figure 21: The final effect of the twist map and the vertical shear map, as viewed from the unit square. The larger horizontal
bands represent the set of points in � , which are moved to 	 under the action of the twist map. The narrow darker bands
represent the set of points, which come back to � after the application of the vertical shear map.
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