
Towards Learning an Optimal Metric for
Fingerprint-based Localisation

Nicola Saccomanno
University of Udine, Italy

nicola.saccomanno@uniud.it

Andrea Brunello
University of Udine, Italy
andrea.brunello@uniud.it

Angelo Montanari
University of Udine, Italy
angelo.montanari@uniud.it

ABSTRACT
Fingerprinting is a common localisation approach that of-
ten estimates a device’s position by comparing an observed 
vector to a set of prior vectors labelled with a ground truth 
location, typically using methods like k-NN. In Wi-Fi finger-
printing, these vectors represent visible access points and 
their signal strength. Thus, the choice of metric to compare 
the fingerprints is crucial. In this work, we discuss our main 
findings regarding the extent to which metrics in the finger-
print vector space preserve relationships among locations 
in the 2D/3D geometric/real world. In summary, traditional 
metrics are not optimal on their own, and while combining 
them into a learned meta-metric offers slight improvements, 
deep metric learning, i.e., learning similarities in an end-to-
end fashion with deep neural networks, appears much more 
effective. However, this approach has its challenges given 
that in the literature the problem has only been formulated 
for binary similarities rather than continuous ones.
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1 INTRODUCTION
Wi-Fi fingerprinting is the prevalent method for indoor po-
sitioning due to the ubiquity of Wi-Fi access points (APs) 
and the fact that specialized equipment is not needed. Only 
the Received Signal Strength (RSS) from APs, not their exact 
locations, is necessary for accurate position information.

In fingerprinting, a training set of 𝑛 examples is definable 
as a collection of (fingerprint, location) pairs P  =  {(x, y )𝑖 |  1  ≤ 
𝑖 ≤ 𝑛, x ∈ R𝑚, y ∈ R𝑝 }, where 𝑚 is the number of available
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APs and 𝑝 is the number of dimensions used to represent the
locations (e.g., 𝑝 = 3 in a 3D-based modelling). Each vector
in R𝑚 contains the RSSs of all the APs that are visible at
the specific location. We can define the localisation task as
a (learnable) function 𝑙\ : R𝑚 → R𝑝 . The goal is to find the
parameters \ that allow to obtain the best possible solution
of the problem, also generalisable to newly observed finger-
prints. Classical deterministic algorithms, like (k-)Nearest
Neighbour, match a new fingerprint to previously collected
ones, estimating its position based on the most similar in-
stances’ coordinates, according to a given metric.

Existing literature has largely emphasized the importance
of metric choice in achieving accurate positioning (e.g., [7]).
However, the focus has almost entirely been on the rela-
tionships between the metrics and the resulting position
estimation error. Moreover, in practice, the Euclidean dis-
tance is frequently used as fingerprinting metric, although
empirically recognised as sub-optimal in several scenarios.

2 FINGERPRINT SPACE PROPERTIES
The perspectivewe followed in ourwork is radically different,
as we aim to investigate the degree to which classical metrics
(working in R𝑚) capture the spatial relationships (in R𝑝 )
among the locations associated with the fingerprints. Thus,
we treat the problem separately from position estimation.

Indeed, path loss models allow to estimate the distance
from a single AP in a Line-Of-Sight (LOS) scenario. However,
when dealing with fingerprinting the situation is radically
different because: (𝑖) it is unrealistic to assume LOS in indoor
settings; (𝑖𝑖) the fingerprint is composed ofmultiple APs; and,
(𝑖𝑖𝑖) the exact position of each AP is not known. All these
elements contribute to the impossibility of deriving a precise
mathematical formulation of ametric for fingerprinting. Also,
the high dimensionality and the sparsity of the problem
(scenarios with 500 or 1000 detectable APs are common, i.e.,
𝑚 = 500 or𝑚 = 1000) intrinsically makes classical metric
less meaningful due to the curse of dimensionality.
Thus, a systematic analysis was performed in [4] to as-

sess the ability of individual metrics, when applied in the
fingerprint vector space, to characterise real-world geomet-
ric distances. The study considered 16 datasets, multiple
metrics, fingerprint normalisation strategies, and problem
granularities (i.e., restricting to individual floors/buildings
or considering the entire premises). Precisely, the aim was
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Figure 1: Meta-metric learning via GP ([1], ©Elsevier).

to establish the extent of the correlation between fingerprint
and real-world location distances. It emerged that all the met-
rics had a performance far from the optimal case in all the
considered scenarios. Nevertheless, it was also observed that
some (e.g., cosine distance) possess better properties than
others, and that the metric behaviours are heterogeneous
and seemingly linked with the environment.

3 META-METRIC LEARNING
Inspired by the heterogeneous behaviours of metrics, a key
question emerged: is it possible to combine classical metrics
to leverage their unique strengths and characteristics?
To such an extent, in [1], an approach to learn a meta-

metric, i.e., a function whose inputs are the classical metrics’
outputs for a given pair of fingerprints, is proposed. The
problem is framed as a symbolic regression one, where both
the model structure as well as the parameters are learned, so
to have maximum flexibility at the expense of a larger search
space. The solution is achieved through genetic program-
ming (GP), which is very often employed to solve symbolic
regression tasks. The objective of the algorithm is to max-
imise the correlation at the centre of the previous study.
Figure 1 reports the learning schema and the meta-metric.
The outcome is that the meta-metric, when learned on a

single dataset and tested on all the other 15 ones, proved to be
extremely generalisable. The analyses were done following
the same protocol as the previous study, and resulted in a
statistical improvement, although marginal and still far from
the optimal scenario. Still, the meta-metric, when used in
conjunction with k-NN to solve a positioning estimation
task, resulted to be in par with or superior to all the single
metrics taken in isolation, also on the datasets not considered
at training time. Such an extremely positive and unexpected
result led to two considerations. First, it appears that trying to
maximise the correlation between distances measured in the
fingerprint space and those in the real-world one is a good
proxy task to obtain, in the end, a function that works well
also for position estimation (note that the two objectives are
radically different). Second, the meta-metric could represent
an off-the-shelf solution for position estimation. For example,
it could act as a universal baseline for indoor positioning,
removing the need to determine the most suitable metric in
each considered setting.

Original feature space Deep metric learning model using a siamase network Resulting latent space embeddings

Figure 2: DML general workflow (adapted from [2]).

4 DEEP METRIC LEARNING
A limitation of the previously described study is that the
ability to solve the target task is likely to be constrained
by the considered representation, i.e., by working with the
output of individual metrics instead of on the fingerprints
directly. Richer representations could be obtained relying
on deep metric learning (DML), which produces similarity
metrics in an end-to-end fashion with deep neural networks.
In its easiest, binary formulation, the idea behind DML

(intuition in Figure 2) is to learn an embedding function 𝜙\ :
X → Z from the feature space (X) to a new latent one (Z) in
such away that elements deemed similar according to a given
similarity function (often evaluated over X’s labels Y), i.e.,
belonging to the same class (positive pair), are mapped closer
inZ than those considered to be dissimilar, i.e., belonging
to two different classes (negative pairs). Note that, although
there might be multiple classes, the semantic of the similarity
over the labels is binary, as the aim is to distinguish whether
two (or more) objects are the same or not. A well-known and
widely adopted loss function for DML is the triplet loss [5].

In principle, such a technique can be employed to cap-
ture any kind of semantic similarity between labels, deliv-
ering great results in many different applications, such as
face recognition, person re-identification, zero-shot and self-
supervised learning. However, most of the literature has been
focusing on computer vision and binary labels over pairs of
elements, simply assessing whether they are similar or not
[3]. The main reason is that, if continuous labels are instead
considered, the semantics associated with their similarities is
far more complex, as it involves both the concepts of ranking
and proportionality. In such a scenario, when comparing
elements in the latent space, a good approach should (i) pre-
serve their relative ordering, and (ii) produce distance values
that resemble some properties observed among distances
computed in the label space. Moreover, the problem is differ-
ent when compared to the binary case, as, e.g., the notions of
negative and positive elements for tuples construction do not
apply anymore. Defining a threshold for binarisation is, in
principle, an approach to reduce the continuous case to the
binary one, but such a definition is domain and application-
dependent, thus complex and often rather ineffective.

Focusing on fingerprinting, the goal is to obtain distances
in the latent space that are proportional to those calculated
among the labels, i.e., on the real-world locations. A solution
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(a) Correlation performance (b) Distance functions behav. at 3 granularities
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Figure 3: Preliminary results of proportional DML: canonical metrics vs learned one.

to achieve this is to rely on distance ratios, requiring that:
𝑠 (y𝑖 , y𝑗 )
𝑠 (y𝑘 , yℎ)

= 𝑐 ·
∥ 𝜙\ (x𝑖 ) − 𝜙\ (x𝑗 ) ∥22
∥ 𝜙\ (x𝑘 ) − 𝜙\ (xℎ) ∥22

,

where 𝑠 : R𝑝 ×R𝑝 → R calculates the distance (or similarity)
between pairs of elements 𝑖, 𝑗 by looking at their labels y𝑖
and y𝑗 (e.g., for fingerprinting, the Euclidean distance), 𝜙\
is a parameterized neural network 𝜙\ : R𝑚 → R𝑧 (R𝑧 is the
latent space), 𝑐 is a scaling factor, and 𝑖, 𝑗, 𝑘, ℎ ∈ {1, . . . , 𝑛}.

In Figure 3, we report some preliminary results applied to
the UJIIndoorLoc dataset’s test set [6], following the same
evaluation protocol as the previous two experiments. We can
see that there is an overall improvement in the quantitative
outcomes, with an average Pearson correlation higher than
the classical metrics (Figure 3a). This result is also confirmed
qualitatively by Figure 3b, where the points lie in a line fol-
lowing the optimal case scenario. However, there is still a
major challenge to be addressed. Looking closely at both
Figure 3c and Figure 3d (resp., rank and linear correlation),
it can be seen that the performances for short distances, i.e.,
the left-hand side of the figures, are lower than those of
the contenders. Other than making Figure 3a and Figure 3b
overoptimistic, this shortcoming must be solved to learn an
optimal metric, as short distances are the most informative
from the positioning point of view. The causes of this phe-
nomenon are probably diverse and still under investigation.
Explanations include: an uneven distribution of the training
samples used to train the deep learning model; and, an in-
herent difficulty of capturing distance relationships among
fingerprints that are very close, both with respect to their po-
sition labels as well as their original feature representations,
thus proportionally more affected by signal perturbations.

5 USEFULNESS OF AN OPTIMAL METRIC
We conclude by pointing out why being able to learn an
optimal metric for fingerprinting matters. It is well-known
that the performance of fingerprinting is linked with the

sampled points for which the ground truth is known (com-
posing the so called radio-map). The higher the number
of points, the finer the sampling granularity, the lower the
chance of committing a large positioning error. However,
it is well recognised that collecting a radio-map is a time
and money-consuming task. Also, radio-maps need to be
periodically maintained, sampling and labelling new points
over time, even after the deployment, to cope with environ-
mental changes. An optimal metric would allow to reduce
the number of fingerprints needed to build the radio-map,
thanks to the better distance estimation.Moreover, additional
cost savings may come by framing the meta-metric learning
task as a weakly/semi-supervised one: indeed, learning a
metric in our setting requires knowing just the spatial dis-
tance between two fingerprints. Thus, instead of relying on
a professionally built radio-map, a crowdsourcing approach
could be used to assemble the required training dataset: each
user simply walks around a building and, meanwhile, its de-
vice periodically collects RSS data together with the inertial
measurement unit recordings between them, so to obtain
coarse spatial distances directly. Finally, we highlight that
the approach for learning on continuous similarities is rather
general and thus may be interesting per se for the machine
learning community, beyond the fingerprinting domain.
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