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Aberrant activation of the RET proto-oncogene is implicated in a plethora of

cancers. RET gain-of-function point mutations are driver events in multiple

endocrine neoplasia 2 (MEN2) syndrome and in sporadic medullary thyroid

cancer, while RET rearrangements are driver events in several non-medullary

thyroid cancers. Drugs able to inhibit RET have been used to treat RET-mutated

cancers. Multikinase inhibitors were initially used, though they showed modest

efficacy and significant toxicity. However, new RET selective inhibitors, such as

selpercatinib and pralsetinib, have recently been tested and have shown good

efficacy and tolerability, even if no direct comparison is yet available between

multikinase and selective inhibitors. The advent of high-throughput technology

has identified cancers with rare RET alterations beyond point mutations and

fusions, including RET deletions, raising questions about whether these

alterations have a functional effect and can be targeted by RET inhibitors. In

this mini review, we focus on tumors with RET deletions, including deletions/

insertions (indels), and their response to RET inhibitors.

KEYWORDS

RET deletions, RET indels, acquired resistance, medullary thyroid cancer (MTC), RET-
mutated cancers, pralsetinib, selpercatinib
Introduction

The RET proto-oncogene encodes for a transmembrane glycoprotein receptor with

tyrosine kinase activity. It is involved in several cell processes during embryogenesis,

including proliferation, differentiation, motility, and survival (1). RET gene mutations

and fusions are known to be gain-of-function driver events in many cancer

types (Figure 1).

RET germline gain-of-function mutations cause predisposition to multiple endocrine

neoplasia 2 (MEN2) syndrome, while somatic RETmutations have been found in 40-65%
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of sporadic medullary thyroid cancers (MTCs) (2–5). RET

mutations carry out their oncogenic effect through two

mechanisms. Mutations located in the extracellular cysteine-

rich domain can lead to RET receptor constitutive dimerization

and activation regardless of the presence of ligands, while

mutations in the tyrosine kinase domains can cause a

conformational change in the intracellular tyrosine kinase

binding pocket, which allows constitutive kinase activation and

altered substrate binding (1, 6–9) (Figure 1A).

Sanger sequencing is preferentially used for the detection of

germline mutations in MEN2 syndrome; however, in evaluating

the presence of somatic mutations, it may generate false negative

results since it is not able to detect mutations below 15-20% of

allele frequency. Alternatively, quantitative polymerase chain

reaction (qPCR) or digital PCR can be used for the screening of

somatic hotspot mutations, reaching a limit of detection of

around 1% of allelic frequency or, in the case of digital PCR,

less than 1% (10). The advent of high-throughput technologies,

such as next-generation sequencing (NGS), has allowed

hundreds to thousands of genes to be simultaneously analyzed,

thus increasing the detection of novel or rare variants with a

high sensitivity.

RET rearrangements occur in 10–20% of papillary thyroid

carcinomas (PTCs), 1–2% of non-small cell lung cancers

(NSCLCs), and in <1% of other cancers (e.g., colorectal cancer,

breast cancer, chronic myelomonocytic leukemia, ovarian and

salivary gland cancers, etc.) (11). RET rearrangements produce

chimeras formed by the juxtaposition of an N-terminal partner

to the RET C-terminal portion, including its catalytic domain.

This leads to aberrant RET overexpression, ligand-independent

dimerization, and kinase activation (Figure 1B). Notably, the
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RET fusion partner may influence the oncogenic potential of the

chimeric RET protein affecting the intracellular location of the

RET kinase (consequently the activated signaling pathways), and

its expression levels (12). In addition, the altered function of the

fusion partner may also have a role in the neoplastic

transformation (13, 14).

Fluorescent in situ hybridization (FISH) is considered the

standard used for the detection of RET rearrangements and has

good sensitivity and specificity (10, 15). However, it may not be

adequately informative regarding the specific RET fusion unless

a specific fusion partner probe can be used (10, 15). Moreover,

FISH results are difficult to interpret in many circumstances,

such as in presence of pericentric fusions, deletions, and when

possible partner genes are in close proximity to the RET gene

(10). Reverse transcription-polymerase chain reaction (RT-PCR)

can identify specific known RET fusion partners, but since it uses

preselected primers, it is not able to detect novel fusion partners.

Thus, it could underestimate the presence of RET

rearrangements. Since this methodology is not ideal for the

degraded and poor RNA quality isolated from formalin-fixed

paraffin-embedded tissues, it is generally used together with

other methodologies, such as immunohistochemistry (IHC) and

FISH (10, 15). IHC is currently not indicated for the screening of

RET alterations due to the high false positive and negative rates

(15). Although DNA-based NGS can be designed for gene fusion

detection, it doesn’t achieve high sensitivity and an RNA-based

NGS is preferred (10).

The comprehensive genetic profiling of tumors made

possible by novel detection technologies has resulted in the

identification of multiple cancers with rare RET alterations

beyond point mutations and fusions (16, 17), including a
BA

FIGURE 1

Molecular mechanisms of RET activation: mutations (Panel A) and fusions (Panel B). CRD, cysteine-rich domain; TKD, tyrosine kinase domain;
sMTC, sporadic medullary thyroid cancer; PTC, papillary thyroid cancer; NSCLC, non-small cell lung cancer; PDTC, poorly differentiated thyroid
cancer; SCLC, small cell lung cancer.
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nonnegligible number of RET deletions. In this review, RET

deletions also include deletions/insertions (indels).
Ret deletions in cancers

RET deletions are not frequently found in MTC. They have

been reported in 5% of all RET-mutated sporadic MTCs, as

reported in the Catalogue of Somatic Mutations in Cancer

(COSMIC database: https://cancer.sanger.ac.uk/cosmic,

accessed June 2022), and they represent around 3.5% of all

germlines RET alterations found in MEN2 patients, as reported

in the ARUP database (https://arup.utah.edu/database/MEN2/

MEN2_display.php accessed June 2022). In non-MTC cancers,

their frequency is very low, ranging from 0.03% (COSMIC

database) to 0.2% (cBioPortal for Cancer Genomics public

databases; https://www.cbioportal.org/, accessed June 2022).
Ret in-frame deletions

Overall, 37 RET deletions have been described in MTC

patients and almost all of them (36/37, 97%) are in-frame.

Seven are germline deletions and are mainly located in the

cysteine-rich domain, at exons 11 and 10 (18–24), and two are

in the cadherin-like coding regions, at exons 6 and 7 (25, 26).

Most RET deletions have been found in the tumor tissue of

sporadic MTCs, mainly at exons 11 and 15 (3, 4, 25, 27–49), and

to a lesser extent at exons 10 and 8 (30, 45, 49–51). Although

only a few deletions have been reported in non-”hotspot” exons

(i.e., exons 6 and 7), we cannot exclude that their frequency may

be higher since those exons are not routinely studied. The

prognostic role of the RET deletions (including indels) has not

been clearly proved due to the few available data. However, in a

recent paper, Elisei R. et al. observed that MTC harboring RET

indels, show a more aggressive phenotype with a high prevalence

of advanced cases at diagnosis (45).

RET in-frame deletions have also been described in other

cancer types, as reported in the COSMIC and cBioPortal

databases (52, 53). Fifteen in-frame RET deletions have been

found in 30 oncologic patients. Interestingly, 6/30 patients (20%)

are affected by pheochromocytoma (PHEO) and carry deletions

in common with MTCs, mapping at RET exons 11 and 15. This

is not surprising since both MTC and PHEO can be induced by

activating RET alterations. The remaining in-frame RET

deletions have been observed in breast, large intestine, gastric,

pancreatic, kidney, and lung cancers.
Ret frameshift deletions

Only one RET frameshift deletion, p. Gln681Argfs*50, has

been reported in an MTC patient. However, it was found in
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copresence with the RET p.A680T point mutation and its

func t iona l e ff ec t has not ye t been demonst ra ted

(36). Conversely, a greater number of RET frameshift deletions

has been described in other cancers, as reported in COSMIC and

cBioPortal public databases (52, 53). These deletions are spread

out along the gene, including the hotspot exons.

Frameshift deletions are commonly loss-of-function

alterations since they result in a shift of the reading frame

used for protein translation, leading to a completely different

sequence of the polypeptide. They often introduce an early stop

codon resulting in a truncated protein. However, the major

mechanism explaining the loss of function is nonsense-

mediated mRNA decay, by which mutated mRNA is

degraded (54).

It has yet to be proven whether RET in-frame and

frameshift deletions in non-MTC and non-PHEO cancers

are pathogenic.
Ret-targeted therapies

The identification of key driver oncogenes as targetable

activated kinases has allowed clinicians to explore new

treatment options. Therefore, multikinase inhibitors (MKIs)

that target multiple tyrosine kinase receptors, including RET

and those involved in angiogenesis, such as VEGFRs and

PDGFRs, were initially used to treat advanced RET-mutated

MTC and subsequently other RET-altered cancers (55, 56).

Given their multi-target inhibition, it is not clear whether their

observed antitumor activity is due to RET inhibition or the

inhibition of other kinase targets (57, 58) (Table 1).

Cabozantinib and vandetanib have been approved for first-

line treatment in MTC regardless of RETmutational status, even

if the presence of RET mutations, particularly the RET p.M918T

mutation, seems to be associated with a better response to

cabozantinib in terms of overall response rate and

progression-free survival (62, 63). Similarly, M918T mutation-

positive patients also showed a higher response to vandetanib

(64). Vandetanib showed a higher median progression-free

survival (mPFS) than placebo (30.5 vs 19.3 months) in the

ZETA trial (64), as had cabozantinib in the EXAM trial (11.2

vs 4.0 months) (65). The clinical effectiveness of vandetanib and

cabozantinib in advanced MTC patients was also confirmed

from real-world data, showing a mPFS up to 47 months for

vandetanib (66–68) and up to 4 months for cabozantinib (66).

The median overall survival (OS) for vandetanib and

cabozantinib was 53 months and 24 months, respectively, in

the German real-world multicenter cohort (66).

MKI treatment of RET-rearranged NSCLC showed a modest

clinical benefit that was lower than that observed with EGFR,

ALK, and ROS1 inhibitors (61) (Table 1). Moreover, MKI

response can differ depending on the fusion partner. For
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TABLE 1 Drugs targeting medullary thyroid cancers and RET-mutated NSCLC with relevant clinical trial data.

MTC-targeting agents IC50
(nM) for
RET
(11)

Targets Study
phase

Mutations ORR mPFS* mOS* NCT

Multitarget kinase inhibitors

Vandetanib 0.13 VEGFR2-3,
EGFR, RET

III RET+RAS+unknown 45 30.5 NR NCT00410761

Cabozantinib 5.2 VEGFR2, KIT,
FLT-3, RET,
MET

III RET+RAS+ unknown 28 11.2 26.6 NCT00704730

M918T negative 20 20.2 5.7

M918T 34 13.9 44.3

Sorafenib 5.9 BRAF, KIT, FLT-
3, VEGFR2,
PDGFR

II Not assessed 25 NR NR NCT02114658

Lenvatinib 1.5 VEGFR1-3,
FGFR1-4,
PDGFRa, KIT,
RET

II RET+RAS 36 9 16.6 NCT00784303

Anlotinib VEGFR1-3,
FGFR1-4, KIT
FGFR

II Not assessed 48.4 22.4 50.4 NCT02586350

Sunitinib 5 PDGFR, KIT
VEGFR1-3, FLT-
3, RET

II Not assessed 38.5 16.5 29.4 NCT00510640

Investigational

Regorafenib 1.5 BRAF, VAGFR1-
3 PDGFRa/b,
RET, KIT,
FGFR1-2

II - - - - NCT02657551

Selective RET-targeting inhibitors

Pralsetinib 0.4 RET, VEGFR2 I/II RET/previous TKI 60 NR NR NCT03037385

RET/TKI naïve 71 NR NR

Selpercatinib 0.4 RET, VEGFR2 I/II RET/Previous TKI 69 NR (1-
year PFS
82%)

NR NCT03157128

RET/TKI Naïve 73 NR (1-
year PFS
92%)

NR

Investigational

TPX-0046 RET I/II RET alterations - - - NCT04161391

TAS0953/HM06 RET I/II RET alterations – – – NCT04683250

BOS172738 RET I RET alterations - - - NCT03780517

SL-1001# RET – – – – – –

RET-mutated NSLC-targeting agents

Selpercatinib (first line) 0.4 RET, VEGFR2 I/II RET fusion-positive 85 NR − NCT03157128

Selpercatinib (previously received at least
platinum-based chemotherapy)

I/II RET fusion-positive 64 16.5 − NCT03157128

Selpercatinib II RET fusion-positive − − − NCT04268550

Selpercatinib vs. carboplatin/
cisplatin + pemetrexed ± pembrolizumab

III RET fusion-positive − − − NCT04194944

Pralsetinib (first line) 0.4 RET, VEGFR2 I/II RET fusion-positive 70 9.1 NR NCT03037385

Pralsetinib (previously received platinum-
based chemotherapy)

I/II RET fusion-positive 61 17.1 NR NCT03037385

Pralsetinib vs. carboplatin/
cisplatin + pemetrexed ± pembrolizumab or

III RET fusion-positive − − − NCT04222972

(Continued)
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example, vandetanib showed a greater effect in CCDC6-RET

fusion tumors compared with KIF5B-RET (57). However, the

adverse effects of non-selective RET inhibitors observed in all

treated tumors due to their off-target side effects are responsible

for high discontinuation and dose reduction rates (e.g., 12% and

35% for vandetanib and 16% and 79% for cabozantinib when

used as thyroid cancer treatments, respectively) (57).

In the last years, small and highly selective RET inhibitors

have been designed to overcome the treatment-related toxicities

of non-selective RET inhibitors and acquired resistance to them

(57). The new selective RET inhibitors pralsetinib (LOXO-292)

and selpercatinib (BLU-667) have demonstrated both good

efficacy and tolerability: in phase I/II trials, the mPFS was not

reached, and the overall response rate was 71% and 73% (first line

treatment), and 60% and 69% (second line treatment),

respectively (Table 1). Currently, both drugs have been

approved by the Food and Drug Administration (FDA) for the

treatment of patients more than 12 years of age with: i) advanced

or metastatic RET-mutant MTC; ii) RET fusion-positive

metastatic NSCLC, and iii) advanced or metastatic RET fusion-

positive thyroid cancer patients who require systemic therapy

and who are radioactive iodine refractory. These drugs also show

robust activity in other RET alteration-positive solid tumors (69).

Interestingly, both drugs seem to be effective regardless of

p r e v i ou s MKI o r immune che ckpo in t t h e r ap i e s

(57). Selpercatinib is also reported to be effective on CNS

metastases (70) and uncommon metastatic sites, such as

choroidal metastases (71). Common side effects of selpercatinib

include dry mouth, hypertension, fatigue, increased aspartate
Frontiers in Oncology 05
aminotransferase level (AST), increased alanine aminotransferase

level (ALT), increased glucose levels, and hypocalcemia, while

pralsetinib additionally caused pain, constipation, and

hematological toxicities such as decreased lymphocytes,

neutrophils, and hemoglobin. Interstitial pneumonia is also

reported for pralsetinib. The discontinuation and dose

reduction rates in phase I/II trials were 2% and 30% for

selpercatinib (72), and 4% and 44% for pralsetinib (73).

Given the availability of these drugs, the screening for and

detection of RET driver alterations is now crucial in clinical

practice since it provides more targeted treatment options.

Unlike multitarget inhibitors, pralsetinib and selpercatinib

have a selective nanomolar potency against RET and a diverse

set of RET fusions and mutations. Head-to-head studies directly

comparing efficacy and safety of selective RET inhibitors with

MKI are currently ongoing (NCT04760288, NCT04211337);

results are not yet available.
Specific mutations and
acquired resistance

Some specific mutations are expected to cause acquired

resistance to MKI treatments (12). Preclinical studies have

shown that acquired gatekeeper mutation V804L is associated

with MKI resistance (12). The emergence of a V804M mutation

was reported in a patient with RET-mutant, sporadic MTC

treated previously with multiple MKIs (74). Emergent V804L

and S904F mutations were reported in patients with RET fusion-
TABLE 1 Continued

MTC-targeting agents IC50
(nM) for
RET
(11)

Targets Study
phase

Mutations ORR mPFS* mOS* NCT

carboplatin/cisplatin Gemcitabine
(squamous histology)

Vandetanib 0.13 VEGFR2-3,
EGFR, RET

II RET fusion-positive 18 4.5 11.6 NCT01823068

Cabozantinib 5.2 VEGFR2, KIT,
FLT-3, RET,
MET

II RET, ROS1, NTRK fusions or
increased MET or AXL activity

28 5.5 9.9 NCT01639508

II RET fusion-positive − − − NCT04131543

CPI (nivolumab or pembrolizumab) - - RS# at least one oncogenic driver
alteration (KRAS, EGFR, BRAF,
MET, HER2, ALK, RET, ROS1)

25 2.1 21.3 (59)#

Platinum-pemetrexed (first line) - - RS# RET fusion-positive 50 9.2 26.4 (60)#

TAS0953/HM06 RET I/II RET alterations − − − NCT04683250

BOS172738 RET I RET alterations − − − NCT03780517

TPX-0046 RET I/II RET alterations − − − NCT04161391
f

ORR, objective response rate; OS, overall survival; PFS, progression-free survival; NR, not reached; RS, retrospective study; *months; # clinical trials still not available. Adapted from (58)
and (61).
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positive NSCLC during treatment with vandetanib (75, 76). The

frequency, prognostic role, and clinical actionability of these

mutations are not entirely clear (75). Some preclinical models

identified other resistance mutations, including the V804E,

G810A/S/R, I788N, 730I, E732K, V871I, V738A, A807V,

F998V and Y806N (13, 77, 78).

Selpercatinib has a specific binding modality: both front and

back pockets of RET are occupied without being affected by

V804 mutations (unlike other tyrosine kinase inhibitors) (11).

Selpercatinib was developed to be effective in RETV804L and

RETV804M gatekeeper mutations and was found to be 60–1300

fold more effective than multitarget inhibitors against cell lines

engineered with KIF5B-RETV804L/M gatekeeper mutations (74).

Conversely, RETmutations at the C-lobe solvent front (RET

p.G810C/S/R), hinge (RETY p.806C/N), and b2 strand (RET

p.V738A, only identified in cell lines) cause acquired resistance

to selpercatinib (61, 79–81). Structural modeling showed that

selpercatinib binding to the kinase ATP/selpercatinib binding

site can be hindered if the glycine residue at position 810 in the

RET solvent front is substituted with charged or polar residues

(79, 80). In vitro experiments using BaF3/KIF5B-RET cells

showed that pralsetinib and selpercatinib bind to RET in a

similar mode and both are resistant to the same mutations

(80), although some mutations (i.e., L730V/I) seem to be

resistant only to pralsetinib (82).
New selective inhibitors in
clinical development

New selective RET inhibitors are under development

(Table 1). TPX-0046 is a dual RET/SRC kinase inhibitor, with

activity in drug-resistant and naïve RET-driven cancer models. It

is in phase I/II clinical trials for advanced solid tumors harboring

RET fusions or mutations (NCT04161391). TAS0953 (HM06) is

undergoing a phase I/II study in patients with advanced solid

tumors with RET gene abnormalities (NCT04683250). SYHA1815

has an approximately 20-fold selectivity for RET over VEGFR2

and is being studied in a phase I trial in China (83). Other

potential drug compounds, such as LOX-18228, LOX-19260,

BOS172738 (DS-5010), and SL-1001 (84–86), are still in the

preclinical stage. There are also research efforts to obtain

mutant-selective inhibitors that may offer clinical advantages.
Clinical response in patients with
ret deletions

Despite efforts to develop super-selective inhibitors, data

available on the response of cancers harboring RET deletions to

selective RET inhibitors are scarce and concern only MTCs. A
Frontiers in Oncology 06
RET p.D378_G385delinsE MTC was treated with selpercatinib

and achieved partial response, with a maximum tumor reduction

of 86% (87). The treatment of two RET p.L629_D631delinsH

MTCs, one with cabozantinib and the other with a combination

of sorafenib and tipifarnib, showed a partial response, with a

tumor reduction of 48% and 46%, respectively (43, 44). Two

MTCs with RET p.E632_636del and p.L633_A639del were

treated with vandetanib and cabozantinib, respectively,

showing stable disease (25, 43). In one case, disease

progression was observed after seven months of treatment

(22). Recently, two MTC patients with the p.E632_L633del

and p.D631_L633delinsS RET deletion, respectively, who were

previously treated with cabozantinib and/or vandetanib,

experienced a treatment benefit with selpercatinib, with a

rapid biochemical response. In particular, the first patient

showed a partial response in the target lesions and stable

disease in non-target lesions, while the second patient showed

stable disease and a partial response in target and non-target

lesions, respectively (45). An in vitro study provided evidence

that the p.C630del RET alteration is sensitive to pralsetinib (23).

A RET p.D898_E901del MTC was treated with cabozantinib,

showing stable disease (43). Lastly, Zhao et al. used mutant-

transformed Ba/F3 cells to demonstrate that p.D898_E901del is

sensitive to selpercatinib and pralsetinib (88).
Discussion

The advancement of sequencing technologies has allowed

comprehensive genetic profiling of tumors and the identification

of new RET alterations, including deletions. Although the

reported tumors with RET deletions are few, we cannot

exclude that their real prevalence may be higher. Indeed, in

clinical practice, RET deletions are usually not investigated

through the gene.

Data on RET deletions as driver alterations in cancer are still

scarce. In MTC and PHEO, only RET in-frame deletions have

been reported, supporting their possible gain-of-function role.

For a few of them, their oncogenic potential has been

demonstrated through in vitro experiments (21, 23, 26, 49, 88–

90). Conversely, frameshift deletions have been observed in a

wide range of tumor types, except MTC and PHEO, though

their functional role as driver alterations has not yet

been demonstrated.

To date, limited information about the response of tumors

with RET deletions to RET inhibitors is available and only

concerns MTC patients. In those patients, treatment efficacy

seems to be comparable to MTCs with RET point mutations.

Considering the potential benefit of treating tumors with RET

inhibitors, it is crucial to understand the real impact of these
frontiersin.org
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deletions in cancer development and progression and their

response to RET targeted therapies.
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