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Abstract
Data availability is a big concern in the field of document analysis, especially when working on tasks that require a high degree
of precision when it comes to the definition of the ground truths on which to train deep learning models. A notable example
is represented by the task of document layout analysis in handwritten documents, which requires pixel-precise segmentation
maps to highlight the different layout components of each document page. These segmentation maps are typically very time-
consuming and require a high degree of domain knowledge to be defined, as they are intrinsically characterized by the content
of the text. For this reason in the present work, we explore the effects of different initialization strategies for deep learning
models employed for this type of task by relying on both in-domain and cross-domain datasets for their pre-training. To test
the employed models we use two publicly available datasets with heterogeneous characteristics both regarding their structure
as well as the languages of the contained documents. We show how a combination of cross-domain and in-domain transfer
learning approaches leads to the best overall performance of the models, as well as speeding up their convergence process.

Keywords Document analysis · Layout segmentation · Semantic segmentation · Transfer learning

1 Introduction

Document layout analysis refers to the task of identifying
the different semantically meaningful regions of a document
page and grouping them based on a set of pre-defined classes
such as text, decorations, and titles. Being able to understand
the layout of a document’s page is of paramount importance
for both humanities scholars and computer scientists, as it
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represents the first step towards the extraction and further
analysis of their contents, making it easier to perform other
tasks such as optical character recognition [1], automatic text
transcription [2], writer identification [3] and text-line seg-
mentation [4–6]. In recent years, there has been an increasing
effort to try to automate this process; however, unlike printed,
well-structured, documents for which very promising results
have been obtained, performing this task on heavily edited,
handwritten documents has proven to be particularly chal-
lenging, especially when it comes to ancient manuscripts.
These are characterized by various degrees of degradation,
inconsistent conditions in the capture of the instances of
datasets, and large amounts of additions and corrections that
are heavily intertwined with the main text. These character-
istics make it nearly impossible to rely on the most popular
techniques adopted for printed documents, which typically
rely on bounding boxes to group together the different ele-
ments of the page layout [7].

The alternative is represented by the adoption of pixel-
level segmentation maps that allow for the higher degree
of precision needed to overcome this problem. However,
compared to typical segmentation tasks in a natural environ-
ment, the areas representing the different regions of ancient
manuscript layouts are typically characterized by very small
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regionswith jagged edges thatmake it really time-consuming
to produce the corresponding segmentation maps [8]. Fur-
thermore, an understanding of the content of the pages is
typically needed to make sure that the different regions are
classified correctly, meaning that the segmentation process
must be supervised by an individual with appropriate domain
knowledge. Both of these requirements lead to a scarcity in
the availability of data for this type of task, with the majority
of available datasets providing atmost a couple dozen images
as the corresponding training set. Some examples of such
datasets are represented by Diva-HisDB [9], Bukhari [10]
and the very recent U-DIADS-BiB [11].

In the past few years, this problem has been tackled
by various authors [12–14], who developed a set of few-
shot-learning-oriented frameworks specifically aiming at
leveraging the small amount of data available to generate
more and more accurate predictions for the task at hand,
producing results that are on par or even surpass previously
available state-of-the-art approaches that relied on much
more data.

In the present paper, we tackle the problem from another
point of view by exploring different transfer learning
approaches as a way to make good use of alternative data
sources to pre-train our models. In particular, we analyze
the effectiveness of different initialization approaches for
the encoder component of a selected semantic segmenta-
tion model, such as training from scratch, in-domain transfer
learning, cross-domain transfer learning, and a combination
of these last two. Specifically:

• we provide a thorough analysis of the effects of differ-
ent initialization and transfer learning strategies on the
performance of the segmentation network, particularly
when working in a low data setting,

• we show how the features learned from pre-training on
large-sized general-purpose datasets are generally not
effectively transferable to the specific domain of doc-
ument image analysis.

• we show, on the contrary, how relying on domain-specific
data for pre-training, even in a small amount, leads to a
substantial improvement in the performance on the down-
stream task, especially when working with few training
instances on the target dataset.

The rest of the paper is organized as follows: in Sect. 2 a
review of the related works in this field of research is pro-
vided, an overview of the methodology adopted is provided
in Sect. 3 and a discussion of the experimental setup and the
corresponding results is reported in Sect. 4. Finally, in Sect. 5
we summarize our findings and propose a direction for future
works.

2 Related works

The scarcity of extensively labeled data in the field of
ancient manuscript analysis can be attributed to the special-
ized knowledge and substantial time and financial resources
required for its creation, particularly when dealing with doc-
uments featuring intricate layouts. Consequently, a logical
progression involves the development of systems capable of
delivering commendable performancewith limited annotated
data. Nevertheless, the literature currently provides only a
limited number of works showcasing such systems.

In [15], a few-shot learning technique named deep and
syntax, designed for segmenting historical handwritten reg-
isters, is presented. Few-shot learning, a paradigm enabling
models to generalize from a limited number of examples,
proves beneficial in scenarios with restricted annotated data.
The suggested method utilizes a hybrid system that relies
on recurrent patterns to delineate individual records. This
hybrid system integrates U-shaped neural networks, typi-
cally employed in image segmentation tasks, with logical
rules such as filtering and text alignment.

Another example of a few-shot learning strategy for docu-
ment layout segmentation has been introduced in [16]. In this
approach, only two ground truth images per manuscript are
employed to train the segmentation model, yielding results
comparable to supervised models that currently represent
the state-of-the-art for this task. The proposed framework
combines a novel data augmentation method, with a segmen-
tation refinement module employing a traditional computer
vision approach for local thresholding. This integration fully
exploits the limited dataset available while still achiev-
ing competitive performance compared to other supervised
methods, as highlighted in their in-depth and analytical
work [12].

A further, more recent approach is the one presented
in [14], where a one-shot learning approach is introduced
for the layout segmentation of ancient Arabic documents.
In this paper, the authors introduce an efficient framework
that, despite being trained on only one labeled page per
manuscript, achieves state-of-the-art performance compared
to other approaches tested on a challenging dataset of ancient
Arabic manuscripts. This method consists of three main
components, a semantic segmentation backbone, a dynamic
instance generation module, and a segmentation refinement
module, and aims to overcome the limitation of requir-
ing extensive manual labeling for training machine learning
models in this field.

Finally, in [13] the authors tackle the challenge of lim-
ited ground truth availability by proposing an unsupervised
deep learning approach for page segmentation. Their method
involves the use of a Siamese neural network to differenti-
ate between patches based on quantifiable properties, with
a specific emphasis on the count of foreground pixels. The
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goal is to ensure that spatially adjacent patches demonstrate
similarities in their measurable characteristics. Following the
training of the network, the acquired features are then utilized
for the task of page segmentation.

Transfer learning approach Transfer learning pre-trained
deep networks is an approach to derive advantages from
the representations learned on a large and general-purpose
database while having relatively few examples to train a
model [17, 18]. In the literature, numerous works employ
transfer learning techniques as they have wide application
in many domains, such as in the medical [19, 20], biomet-
ric [21], agricultural [22], industrial [23] and robotic [24]
fields. Conversely, in the field of ancient document layout
analysis, the effectiveness of transfer learning techniques has
not been extensively explored, as there are only a few works
in the literature addressing this topic.

In an investigation conducted in [25], it was determined
that the outcomes of the semantic segmentation problem,
whether employing training from scratch or cross-domain
learning from a pre-existing model, are contingent upon the
specific characteristics of the test dataset. The accuracy of
segmentation varies significantly across datasets, irrespective
of themodel architecture or trainingmethodology employed.
To arrive at these findings, the researchers initiated their
model’s encoder with pre-trained weights from ImageNet
and systematically compared its performance with models
trained from scratch using an ancient document dataset.

In the most recent study [26], the authors present an
overview of domain-specific transfer learning for docu-
ment layout segmentation. They demonstrate that utilizing
document-related images for pre-training yields consistently
enhanced performance and faster convergence compared to
training from scratch or relying on a large, general-purpose
dataset like ImageNet.

One limitation common to both of these works, however,
is that they explore only the use of ImageNet as a potential
out-of-domain dataset for pre-training, which focuses on the
classification of instances at an image level instead of a pixel
one.

In this paper,we extend the examination of the efficacy and
potential advantages of employing different transfer learning
strategies for the layout analysis of ancient manuscripts in
contrast to training the model from the ground up. Specifi-
cally, we provide a more in-depth analysis of what kind of
data represents the best for the pre-training process in the
context of document layout segmentation. For this reason,
we introduce the use of an additional cross-domain dataset,
namely MS-COCO, specifically tailored towards semantic
segmentation in images, and we also expand the analysis to
hybrid strategies involving the combination of both cross-
domain and in-domain data for pre-training our model.

3 Methods

3.1 Segmentation architecture

As the semantic segmentation model for our experiments,
we opted for the popular DeepLabv3 [27] architecture.
DeepLabv3 is a ResNet-based architecture that employs
atrous (dilated) convolutions in cascade or in parallel with
different dilation levels. This approach allows for retaining
a larger spatial resolution for the feature maps throughout
the network architecture compared to models relying heav-
ily on striding and pooling layers. The key aspect that makes
atrous convolutions effective in the context of semantic seg-
mentation tasks is that they allow for the creation of deeper
neural network architectures, while at the same time pro-
viding output feature maps that are larger than those of a
traditional deep CNN architecture and without any increase
in the amount of computation needed. While we are aware
there are more recent and sophisticated models for seman-
tic segmentation, the focus of this work is not on obtaining
the best possible results or on setting a new state-of-the-art
but on providing a better understanding of which transfer
learning strategies lead to the best results when all the other
conditions are kept as consistent as possible. For this reason,
we chose DeepLabv3 as it represents a well-tested, reliable,
and easily accessible architecture, which makes it easier to
reproduce our results.

3.2 Transfer learning strategies

Transfer learning is referred to as the process through which
the knowledge learned from a task (upstream) is re-used to
boost performance on a related task (downstream). In this
work, we explore three different pre-training strategies char-
acterized by the different types of upstream data employed
to initialize the segmentation model. Furthermore, we stud-
ied the effects of two transfer learning pipelines to adapt the
trained models to the target data. An overview of the whole
setup is provided in Fig. 1.

3.2.1 Upstream data sources

Cross-domain transfer learning As previously mentioned,
in our analysis, we explore three different pre-training
strategies. The first one is represented by cross-domain pre-
training,meaning that the dataset characterizing the upstream
task is substantially different from the one characterizing
the downstream task, either by content, objective, or both.
This has been one of the most popular approaches for trans-
fer learning since the release of large-scale general-purpose
datasets such as ImageNet1K, and it has proven to be very
effective in a wide variety of application fields. The main
advantage of this strategy is that this type of dataset is
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Fig. 1 Visual representation of the different training strategies we
explored in this study. a represents the traditional training from scratch
approach which we used as our baseline, b shows a transfer-learning
approach in which the feature extractor component of the network is
frozen during the training process on the target downstream task and
finally c shows a further transfer-learning strategy in which the entire
model is fine-tuned on the downstream task dataset. For both (b) and
(c) we explored the use of in-domain and cross-domain data to pre-train
the selected model as well as a combination of the two

very easily available in an already structured format nowa-
days. Furthermore, deep learning models pre-trained on this
kind of dataset are provided by many open-source libraries,
making them easily accessible. However, when working on
downstream tasks characterized by data not belonging to the
domain of natural images, it becomes harder to learn effec-
tively transferable features through this approach.A common
example is represented by the medical imaging field [28].

In-domain transfer learningThe second pre-training strat-
egy we analyze is the in-domain one, meaning that, for the
pre-training of ourmodel, we employ a dataset that shares the
same domain as the one we will use for the downstream task
we are interested in, even though the specific instances are
different. While the features learned through this approach
are typically more applicable to the downstream task, mak-
ing it more reliable for domain-specific applications, the data
needed is not always easily available, as their limited scope

is a deterrent to the very time-consuming task of building a
specific dataset for this purpose.

Combining cross-domain and in-domain transfer learning
The final strategy we explore is represented by the combi-
nation of cross-domain and in-domain pre-training. The way
we combine the two previously described approaches is by
performing an initial training of our model on large-scale
cross-domain datasets to learn a general set of features. As
a second step, we perform a fine-tuning process on the in-
domain dataset, in our case U-DIADS-Bib, to learn a set
of domain-specific features. During this second phase, we
don’t freeze any of the model’s weights allowing the feature-
extractor to be tailored to the specific nature of the features
characterizing the in-domain dataset. Other than the potential
improvement in performance that this approach could lead
to, we believe it could also represent a way to reduce the
amount of domain-specific data needed compared to relying
exclusively on an in-domain transfer learning strategy.

3.2.2 Transfer learning pipelines

The two transfer learning pipelines we studied are shown in
Fig. 1b, c and differ by the way the feature extraction module
of the pre-trained model is employed. In (b), this module is
frozen when performing the training process on the down-
stream task, while in (c), it’s fine-tuned on the target data,
allowing it to learn its peculiarities and therefore improve its
effectiveness on the target task at the cost of a higher compu-
tational effort during the training process. An important thing
to notice is that in both pipelines, the weights of the decoder
and classifier modules of the model are initialized randomly
before the training step on the downstream task.When work-
ing with either cross-domain or in-domain data individually
as the input to pre-train our model, we explore the effects of
both pipelines to better understand their respective effects on
the final performance. When combining both types of data,
we perform a first pre-training step on the cross-domain data
following pipeline (a), then fine-tune the entire model on the
in-domain data of the upstream task following pipeline (c)
and, finally, we perform the transfer learning step on the tar-
get downstream data by once again exploring the effects of
either freezing the feature extractor or fine-tuning the whole
model.

Table 1 provides a schematic overview of all the dataset
presented in this section.

3.3 Pre-training datasets

In this section, we will give a brief description of the three
datasets employed to perform the pre-training of the selected
model architecture. We decided to analyze the effective-
ness of the features learned through training on datasets
with different characteristics. In particular, we selected two
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Table 1 Compact overview of
key information regarding the
datasets used for our analysis

Dataset # Images # Classes #Images type Task Role

ImageNet1K 1.281.167 1000 Natural Classification Out-domain source

COCO ∼200.000 80 Natural Segmentation Out-domain source

U-DIADS-Bib 200 6 Documents Segmentation In-domain source

DIVA-HisDB 150 4 Documents Segmentation Target

Bukhari 32 3 Documents Segmentation Target

large cross-domain datasets, namely ImageNet-1K [29] and
COCO [30] which are employed, respectively, for classifi-
cation and semantic segmentation tasks, and represent our
cross-domain data sources, as well as a small, recently
published in-domain dataset that focuses on semantic seg-
mentation specifically applied to the layout analysis of
ancient manuscripts, called U-DIADS-Bib [11].

3.3.1 ImageNet-1k

ImageNet-1k is a hierarchically structured dataset consist-
ing of 1.281.167 natural images focused on the classification
task, with its instances being organized into 1000 different
categories. This dataset represents probably themost popular
resource for pre-training computer vision models, and it has
been successfully employed in a wide variety of application
fields since its release in 2012.

3.3.2 COCO

The COCO (Common Objects in Context) dataset, intro-
duced in 2014, contains over 200k labeled images covering
80 different object categories, which appear in around 1.5
million individual instances in the dataset images. While
this dataset is much smaller than the previously presented
ImageNet-1k, its main advantage is that it focuses mainly
on the tasks of object detection and semantic segmentation,
making it more relatable to the downstream task, we are ana-
lyzing in this work.

3.3.3 U-DIADS-Bib

U-DIADS-Bib1[11] is a recently published dataset focus-
ing specifically on the layout segmentation of ancient
manuscripts. It consists of a total of 200 images, representing
the pages of 4 different manuscripts written either in Latin
or Syriac. Each of the dataset instances can contain up to 6
different segmentation classes, namely: the main text of the
manuscript, decorations, titles, chapter headings, additional
paratexts, and finally the background of the pages. The key
characteristics of this dataset are the improved precision in

1 https://ai4ch.uniud.it/udiadsbib.

the definition of the ground truths compared to previously
available ones as well as its heterogeneity, which made it an
ideal candidate for our analysis of in-domain transfer learn-
ing. In fact, the instances of this dataset are characterized by
high variability in the layout structure, and significant inter-
class similarity,which forces the segmentationmodel to learn
subtle differences between the different layout components
defining the 6 layout classes and a combination of textual
information and pictures, allowing the model to generalize
to learn a set of features that is not exclusively focused on
textual structures. Fig. 2a shows a sample page of 2 of the
documents characterizing the dataset, together with the cor-
responding segmentation maps, highlighting its key features.

3.4 Evaluation datasets

In the following section, we present the two datasets selected
to evaluate the different initialization strategies for our seg-
mentation model.We relied on the twomost popular datasets
for layout analysis of handwritten documents, which are the
DIVA-HisDB dataset [9] and the Bukhari dataset [10].

3.4.1 DIVA-HisDB

The first dataset selected to evaluate our model on is the
DIVA-HisDB dataset [9], a historical document dataset con-
sisting of a total of 150, high-resolution, pixel-annotated
pages coming from three different medieval manuscripts,
identified as CSG18, CSG863, and CB55 and characterized
by complex and heterogeneous layouts as well as differ-
ent levels of degradation. Each of the pages can contain up
to four different segmentation classes, categorized as main
text, comments, decorations, and background. For each of
the documents, 20 images are typically reserved for train-
ing, 10 for validation, and 20 more for the testing process.
Like U-DIADS-Bib, the Diva-HisDB dataset also consists
of both textual and graphical layout components, allowing
us to understand if the model correctly learns to distinguish
between the two as well as discriminating between the three
different textual classes. Furthermore, compared with the U-
DIADS-bib dataset, it is characterized by very intertwined
layout components, with paratexts that heavily overlap with
the main text sections of the document (Fig. 2b). This spe-
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Fig. 2 Samples of a set of selected instanced coming from both the source in-domain dataset U-Diads-Bib (a) as well as the two target evaluation
datasets Diva-HisDB (b) and Bukhari (c) together with the respective ground truth segmentation maps

cific aspect makes it necessary for the model to provide
precise segmentation to avoid misclassification between the
two classes..

3.4.2 Bukhari dataset

The second dataset we selected for the evaluation process
in this paper is the one presented by Bukhari et al. [10],
which represents the most popular one for the task of docu-
ment layout segmentation on historical Arabic manuscripts.
It consists of 32 images, each representing a page from one
of three different Arabic historical manuscripts. Out of all the
samples, 24 are typically used for the training process, while
the remaining 8 are used for testing. A peculiar characteristic
of this dataset is that the text presents different orientations
within the page on which it is written (Fig. 2c), thus allowing
us to test our model robustness in this type of edge scenario,
which could represent an important feature for tasks where
this is a common occurrence, such as text de-wrapping [31,
32].

4 Experiments

4.1 Training setup

As previously stated for all our experiments we relied on the
DeepLabv3 architecture for semantic segmentation which
was trained following one of the three pipelines reported in
Fig. 1. The training process on the target datasets was per-
formed on a total of 200 epochs, using the Adam optimizer
with a learning rate of 1e−3 with a batch size of 20. Fur-
thermore, an early stop condition was introduced after the
first 50 epochs in case the model loss on the validation set
didn’t decrease over the last 20 epochs. All the instances of
the employed datasets were resized to 672 × 1008, keeping
the aspect ratio of the original images intact to avoid artifacts.

Losses The loss we adopted to train our models is a com-
bination of the dice loss and the weighted cross-entropy loss,
where the weight of each class is represented by the square
root of the inverse frequency of that class in the instances
belonging to the corresponding document, as proposed in
[12] to account for the substantial class imbalance character-
izing all the document datasets, detailed in Table 3.
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Table 3 Classes distribution (%) at pixel level for each manuscript class of the three datasets employed for the analysis

Dataset Document class BG Paratext Decor. Main text Title Chapter headings Total

U-DIADS-Bib Lat 2 92.80 0.10 1.50 4.70 0.40 0.50 100

Lat 14,396 89.20 0.10 2.00 7.60 0.50 0.60 100

Lat 16,746 88.00 0.30 3.00 7.80 0.10 0.80 100

Syr 341 85.10 0.20 2.80 11.90 0.10 0 100

Diva- CB55 82.41 8.36 0.55 8.68 – – 100

HisDB

CS18 85.16 6.78 1.47 6.59 – – 100

CS863 77.82 6.35 1.83 14.00 – – 100

Bukhari Bukhari 86.07 4.71 – 9.22 – – 100

4.2 Metrics

To evaluate the different initialization strategies we relied on
4 popular metrics in the field of document layout segmenta-
tion, namely precision, recall, Intersection over Union (IoU)
and F1-Score, which are defined as follows:

Precision = TP

TP + FP
(1)

Recall = TP

TP + FN
(2)

IoU = TP

TP + FP + FN
(3)

F1-score = 2 × Precision × Recall

Precision + Recall
(4)

each metric was calculated individually for each document
class of the two target datasets. Furthermore, a macro aver-
age of the scores obtained for the different segmentation
classes was performed, to ensure that each of them con-
tributes equally to the final score.

4.3 Results

4.3.1 Transferability of the learned features

Table 2 shows the performances, in terms of the four selected
evaluation metrics, obtained by our model when initial-
ized employing different strategies and trained on the target
dataset following each of the three aforementioned pipelines.
In this table, the best and second-best performing systems for
each transfer learning pipeline are highlighted in bold and
underlined, respectively. Furthermore, we mark in red the
scores achieved by pre-trained models that don’t improve
over the random initialization baseline. From this analysis,
we can observe that, pre-training on out-of-domain datasets
with no further fine-tuning of the encoder module, consis-
tently leads to a drop in performance compared to random
initialization, meaning that the features learned during the

training on the upstream task have no real overlap with the
ones needed to perform the downstream task. In contrast,
pre-training on U-DIADS-Bib, representing the in-domain
source dataset, consistently leads to an increase in perfor-
mance compared to the baseline, with improvements in the
scores for the selected metrics going from 1 to 6% for all
the classes of the target datasets. The only exception is rep-
resented by the score obtained on the recall metric for the
CSG18 document class of the DIVA-HisDB dataset. On the
other hand, when fine-tuning the whole model on the down-
stream task data, every pre-training strategy consistently
leads to an improvement over the baseline approach. This
implies that even if the source and target datasets belong to
very different domains, pre-training on the former still leads
to a better starting point for the training of the latter compared
to random initialization.

Furthermore, we can clearly observe how combining the
cross-domain and in-domain initialization strategies con-
sistently leads to the best overall results, with the setup
represented by pre-training on COCO and fine-tuning on the
DIVA-HisDB dataset outperforming all the other initializa-
tion strategies on all the selected metrics, regardless of the
way the encoder weights are treated during the final training
step,with the only exception of the recall for theCSG18class.
It is interesting to observe how, even though pre-training
on natural image datasets doesn’t provide any real bene-
fit over random initialization when used individually while
freezing the feature extractor module of the segmentation
model, it actually represents a valid strategy when combined
with a fine-tuning step on an in-domain dataset such as U-
DIADS-Bib, especially when using COCO as the source
dataset. In fact, we can observe how the hybrid strategy
involving the combination of the COCO and U-DIADS-
Bib datasets consistently achieves better results compared
to relying exclusively on the latter. This means that, even in
this scenario, the pre-training on COCO still leads to a more
robust initialization than a randomone.On the other hand, the
results obtained by combining ImageNet1K and U-DIADS-
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Fig. 3 Learning curves representing the evolution of the IoU scores for the four target document classes using different initialization strategies and
keeping the encoder frozen at the time of fine-tuning on the target data

Bib are overall comparable to the simple in-domain transfer
learning strategy, with only slight improvements on some of
the metrics.

We can also observe how, regardless of the pre-training
strategy employed, fine-tuning the whole model on the tar-
get dataset consistently leads to better performance compared
to training only the decoder and segmentation modules
while keeping the encoder module frozen. This behavior
is expected as the model can more effectively learn a set
of bespoke features on the target dataset following this
approach.

4.3.2 Impact on convergence time

As a further result, we show in Figs. 3 and 4 the learn-
ing curves representing the evolution of the Intersection
over Union (IoU) on the validation set throughout the 200

training epochs for pipeline Fig. 1b, c respectively. As we
can observe, in both scenarios, all the strategies involving
the use of an in-domain dataset, both on its own or com-
bined with a pre-training step on a natural image dataset,
lead to faster convergence of the model on all the docu-
ment classes characterizing the target datasets, compared to
both random initialization and pre-training exclusively on
out-of-domain datasets. Additionally, in-domain and hybrid
pre-training strategies consistently allow for a much more
stable learning process, drastically reducing the performance
spike characterizing the other strategies. On the other hand,
when pre-training exclusively on the cross-domain datasets
and freezing the encoder module, the convergence time is
comparable to that of the model trained from scratch, with
the downside of the final IoU being higher. While fine-
tuning the whole model on the target data, we can observe
a marked instability of the training process during the first
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Fig. 4 Learning curves representing the evolution of the IoU scores for the four target document classes using different initialization strategies and
fine-tuning the entire model on the target data

50 to 75 epochs for the models pre-trained exclusively on
cross-domain or in-domain data, but after that point they sub-
stantially stabilize, leading to a higher final IoU compared to
the model trained from scratch. As previously mentioned,
this phenomenon does not occur in cases where a mixed
pre-training strategy is employed. The validation loss curves
characterizing them are very stable throughout the training
process and consistently lead to the best overall performance
compared to all the other approaches.

4.3.3 Performance in low-data regimes

Finally, we provide an analysis of the performance achieved
through the different initialization strategies when artificially
limiting the amount of data available from the target datasets
to train the model. In particular, in Fig. 5 we show the results

obtained by our models when trained only on 20%, 40%,
60%, and 80% of the training sets for the downstream tasks,
with a frozen encoder module. From this analysis, it becomes
even more evident how, in this scenario, pre-training exclu-
sively on out-of-domain data sources doesn’t lead to any real
benefit compared to training our model from scratch, even
when the amount of data available for training on the target
task is very small (in the 20% setting, we have around four
images available per document class). On the other hand, in-
domain and cross-domain pre-training strategies allow for
substantially improved performance both when working in
high-data and especially in low-data regimes. In particular,
we can see how the model resulting from the most effective
initialization strategy, namely the hybrid strategy relying on
COCO and U-DIADS-Bib as the source datasets, achieves
better performance when trained on the 20% of the training
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Fig. 5 Performance (IoU) of the segmentation model on the test set of
the 4 document classes when initialized with different strategies while
relying on increasing percentages of the available data for the training.

Only the decoder and classifier modules of the model where trained on
the target data, while the feature-extractor was kept frozen

data compared to the randomly initialized model trained on
the entire training set for all the document classes except for
CSG863. In Fig. 6, we show the same curves for the scenario
in which the whole model is fine-tuned on the downstream
task dataset. In this case, we can observe how all the pre-
training strategies lead to an improvement in performance
over training from scratch, regardless of the amount of data
available for the fine-tuning process. In particular, we can see
how, in this case, both the in-domain and mixed pre-training
strategies, even when fine-tuned on a small portion of the tar-
get dataset, consistently outperform the model trained from
scratch on the whole dataset on all four of the considered
document classes.

4.3.4 Qualitative results

For completeness in Fig. 7 we provide a sample of the
segmentationmaps resulting from each training strategy con-
sidered in this analysis. As we can observe, consistently with

the previously presented quantitative results, when freez-
ing the encoder module of the segmentation model during
the fine-tuning step on the target dataset, the segmentation
maps obtained by relying on Imagenet and coco as pre-
training datasets are much worse than the ones obtained
with the other strategies, including training from scratch. In
particular, the corresponding segmentation maps are com-
pletely missing large portions of the textual information
while at the same time misclassifying other regions. When
it comes to the remaining strategies, the visual difference
between the generated segmentation maps are less obvious,
but still characterized by sparse misclassifications especially
involving the less frequent layout classes. Furthermore, the
best-performing approaches, which are the ones involving
the use of U-DIADS-Bib in the pre-training step, present
segmentation maps characterized by a higher precision in
the identification of the different layout components.
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Fig. 6 Performance (Iou) of the segmentation model on the test set of the four document classes when initialized with different strategies while
relying on increasing percentages of the available data for the training. The model was fine-tuned entirely on the target data, with no frozen modules

4.3.5 Discussion

The previously presented results are very eloquent regarding
the big impact on performance that the adoption of differ-
ent transfer learning strategies, as well as different source
datasets for pre-training, have when it comes to the task of
document layout analysis. Differently from other application
fields, the features learned exclusively from general-purpose
datasets, such as ImageNet and COCO, don’t seem to be
directly transferable to the domain-specific task at hand. This
behavior, which has already been observed in other appli-
cation fields where the downstream task focuses on data
that is substantially different from natural images, such as
medical imaging, is likely to be attributed to the fact that
natural images are typically characterized by larger struc-
tural components and a higher degree of inter-class similarity
compared to document images, leading the pre-trainedmodel
to learn features, especially the high-level ones extracted by
the deeper layers of the network, that don’t capture the fine
detail needed to work on document analysis tasks.

On the other hand, pre-training on natural images still pro-
vides a better starting point compared to random initialization
when it comes tofine-tuning themodel on the target data. This
is particularly true when COCO is used as the pre-training
dataset, which led to the second-best overall performance
across all the considered initialization strategies. The reason
why ImageNet is not as effective as a choice for pre-training
is that, by being structured around a classification task, it
leads the encoder module of the model to focus more on the
general context of the images instead of on the fine details
they contain, which is less suitable for segmentation tasks,
particularly when working on document images.

We have further shown, how introducing a pre-training
step focusing on a domain-specific dataset, even of a very
small size such as the U-DIADS-Bib one employed in this
study, greatly improves the transferability of the learned fea-
tures to the downstream task. In particular, pre-training a
segmentationmodel on document images, either exclusively,
or in combination with a preliminary training step on natural
images, not only consistently leads to improved performance
on the downstream task but also positively affects the con-
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Fig. 7 Qualitative comparison of the segmentation maps obtained by employing the different training strategies considered in the anlaysis

vergence time and stability of the training process. More so,
the combination of COCO andU-DIADS-Bib as pre-training
data sources allows for a substantial reduction in the amount
of data needed to effectively tackle the downstream task, with
the pre-trained model achieving a better IoU score than the
model trained from scratch while relying on as little as five
times less data for the fine-tuning process.

5 Conclusions

In this work, we compared four different initialization
approaches: random initialization, cross-domain initializa-
tion through the popular ImageNet1K and COCO datasets,
in-domain initialization through the U-DIADS-Bib dataset,
and hybrid initialization combining the pre-training of both
the ImageNet1K and COCO datasets with a fine-tuning
step on the in-domain one. Furthermore, we explored two
different fine-tuning strategies involving, respectively, the
training of the whole model and the training of exclusively
the decoder and segmentation modules on the downstream
task datasets. We tested the different approaches on two
publicly available target datasets for document layout analy-
sis, the DIVA-HisDB and the Bukhari one. We found out
that, differently from other application areas, pre-training

on large-scale, general-purpose datasets consisting of nat-
ural images doesn’t bring any real benefit and is actually
detrimental when working with downstream tasks revolving
around document layout segmentation, both in terms of con-
vergence speed as well as in terms of the overall performance
of the model on the target dataset, unless the entire model is
fine-tuned on the target data, leading to the intuition that the
features learned from cross-domain data are not transferable
directly to the domain ofmanuscript analysis.However, these
learned features still represent a better starting point com-
pared to the random initialization of the model weights. On
the other hand, transfer learning strategies revolving around
the use of in-domain source data, as well as hybrid strategies
that make use of both in-domain and out-of-domain data,
consistently lead to increased effectiveness and efficiency, in
terms of the amount of data needed, on the downstream seg-
mentation task, regardless of the training strategy employed
on the target dataset.

In particular, we have shown how pre-training on the
COCO dataset, followed by a fine-tuning process on U-
DIADS-Bib, led to the best overall performance on the target
task while at the same time substantially speeding up the
convergence time of the model and, leading to a much more
stable training process. Furthermore,we have shownhow this
approach allows for much more efficient use of the available
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data, achieving better performance than the randomly ini-
tialized model even when trained on only 20% of the data,
compared to the latter when trained on the entire dataset
available for the downstream task.

To summarize our findings:

1. we provided a detailed overview of different transfer
learning strategies in the context of document layout seg-
mentation.

2. we identified the best initialization approach for transfer
learning when working on document images, namely a
hybrid initialization relying on a pre-training step on the
COCO dataset followed by a fine-tuning step on the U-
DIADS-Bib dataset.

3. we have also shown how by following this approach we
are able to obtain increased stability during the training
process on the target dataset, while also reducing the con-
vergence time.

4. Finally, we showed how this approach allows for a much
more efficient fine-tuning of the selected segmentation
model on the downstream task data, allowing it to rely
on as little to one-fifth of the data to achieve the same
performance as the model trained from scratch.

To conclude, while we focused on the specific task of
document layout segmentation, we believe our findings are
likely applicable to other tasks involving the analysis of docu-
ments, both in printed and handwritten form,making it easier
to tackle those problems where the scarcity of data has a big
impact on the performance of the employed models. As a
future effort, we plan to expand our analysis in this direc-
tion, to gain a deeper insight into the effect of in-domain
transfer learning strategies across different tasks.
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