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Abstract. We introduce a general system of ordinary differential equations

that includes some classical and recent models for the epidemic spread in a

closed population without vital dynamic in a finite time horizon. The model is
vectorial, in the sense that it accounts for a vector valued state function whose

components represent various kinds of exposed/infected subpopulations, with
a corresponding vector of control functions possibly different for any subpop-

ulation. In the general setting, we prove well-posedness and positivity of the

initial value problem for the system of state equations and the existence of
solutions to the optimal control problem of the coefficients of the nonlinear

part of the system, under a very general cost functional. We also prove the

uniqueness of the optimal solution for a small time horizon when the cost is
superlinear in all control variables with possibly different exponents in the in-

terval (1, 2]. We consider then a linear cost in the control variables and study

the singular arcs. Full details are given in the case n = 1 and the results are
illustrated by the aid of some numerical simulations.

1. Introduction. Since the introduction of the first compartmental epidemic mo-
del by Kermack and McKendrick [22] and the subsequent extensions and general-
izations ([1, 8, 19, 18]), optimal control problems for such models have been studied
in order to reduce the economics, social and treatment costs of the epidemic spread
([10, 2, 15, 32, 12, 31, 24, 17, 26, 13]). Most of these works aimed to control the coef-
ficients of the linear part of the differential equations to model isolation, quarantine
and vaccination effects. Control problems of the transmission coefficients, that is of
the nonlinear part of the differential equations, have been considered mainly after
the SARS-CoV epidemic of 2003 ([9, 21, 28, 3]) and a recent renewed interest is
due to the SARS-CoV-2 pandemic of 2019-2020 ([14, 23, 25, 30]). The transmission
rate can be, indeed, reduced by means of social distance policies.

In this paper we introduce a general setting that includes many of the mentioned
models and possibly other different kind of epidemics in a closed population without
vital dynamic in a finite time horizon I := [0, tf ]. It is given by a set of ordinary
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differential equations of the form
ṡ(t) = −s(t)β(t) · x(t) + ρr(t)

ẋ(t) = s(t)β(t) · x(t)e1 +Mx(t)

ṙ(t) = σ · x(t)− ρr(t)
ḋ(t) = µ · x(t)

where M = (mij) is a quasimonotone (or Metzler) lower triangular matrix, that is a
lower triangular square matrix whose elements out of the diagonal are nonnegative.

As usual, · denotes the scalar product, e1 = (1, 0, . . . 0) is the first vector of the
canonical basis of Rn and Mx denotes the usual row-by-column multiplication of
the matrix M with the column vector x. To model the evolution of an epidemic

• s is the scalar density of the susceptible population, x is the n-vector of the
densities of various kind of infected populations (exposed, asimptomatic, in-
fected, etc.) and r and p are the scalars of recovered and deceased individuals,
respectively;

• β ∈ L∞(I; [0, 1]n), σ, µ ∈ [0, 1]n, ρ ∈ [0, 1], M ∈ [0, 1]n×n, are prescribed
coefficients with various epidemiological meanings. Namely, β is the vector-
function of transmission coefficients, σ and µ are constant vectors representing
the fraction of recovered and dead individuals for any subpopulation, respec-
tively, ρ represents the fraction of recovered population that become suscep-
tible again and M represents the fraction of individuals that pass from a
subpopulation to another after a certain time (for instance the exposed that
becomes sintomatic).

A specific feature of the model is that it is vectorial, in the sense that it accounts
for a vector valued state function x whose components represent various kinds of
exposed/infected subpopulations, with a corresponding vector of control functions
possibly different for any subpopulation. Our general setting includes several clas-
sical models, like

• SIR, SIRS, SIRD in the case n = 1,
• SEIR, SEIRS in the case n = 2.

Besides these classical ones, many other models fall in the general setting; among
the most recent we have for instance:

• a model for COVID-19 epidemic given in [14], s = S, x = (I,D,A,R, T ) (that
is there are n = 5 subpopulations of exposed/infected individuals), r = H,
p = E, β1 = α, β2 = β, β3 = γ, β4 = δ, β5 = 0, ρ = 0, σ1 = λ, σ2 = ρ,
σ3 = κ, σ4 = ξ, σ5 = σ, µ1 = µ2 = µ3 = µ4 = 0, µ5 = τ and

M =


−(ε+ ζ + λ) 0 0 0 0

ε −(η + ρ) 0 0 0
ζ 0 −(θ + µ+ κ) 0 0
0 η θ −(ν + ξ) 0
0 0 µ ν −(σ + τ)


• a model for the optimal control of COVID-19 outbreak given in [30], where
x = (e, a, i) (that is there are n = 3 subpopulations of exposed/infected
individuals), β1 = 0, β2 = αa/N , β3 = αi/N , ρ = γ, σ1 = 0, σ2 = ρ, σ3 = β,
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µ1 = µ2 = 0, µ3 = µ and

M =

−t−1
latent 0 0

t−1
latent −(κ+ ρ) 0

0 κ −(β + µ)


• a model for the optimal control of influenza given in [25] where, in the ba-

sic formulation, x = (e, i, a) (that is there are n = 3 subpopulations of ex-
posed/infected individuals), β1 = ε, β2 = 1 − q, β3 = δ, ρ = 0, σ1 = 0,
σ2 = fα, σ3 = η, µ1 = 0, µ2 = f , µ3 = 0, and

M =

 −κ 0 0
pκ −α 0

(1− p)κ 0 −η

 .

In our analysis we assume that the time t belongs to a finite time horizon I :=
[0, tf ] where the final time tf > 0 is given. In the general setting, we prove the
well-posedness of the initial value problem for the system of state equations. The
existence of solutions to the optimal control problem under a very general cost
functional is a standard matter. On the contrary, the problem of uniqueness of
the optimal solution has received much less attention. In 1998 Fister [10] proved
the uniqueness of the solution for a control problem of the chemotherapy in HIV
for a sufficiently small time horizon and a cost funtional that is quadratic in the
control variable. Our general problem does not fall into the same setting, so that
Fister’s result cannot be directly applicated. Nevertheless, the idea can be fruitfully
used also in our framework leading to the same kind of uniqueness result which,
on the other hand, can be extended to the case in which the cost is superlinear
in all control variables with possibly different exponents in the interval (1, 2]; this
allows to capture a nonlinear growth of costs due to overcrowding in healthcare
facilities and to gradually higher level of slowdown of the economy, with different
degrees of nonlinearity associated to different distance and slowdown policies that
are simultaneously actuated. It is important to remark that this uniqueness result
for a small time horizon cannot be iterated in order to obtain a uniqueness result
for every tf (see Remark 5): this problem is still open.

In the last section of the paper we consider a linear cost in the control variables
and study the singular arcs. Full details are given in the case n = 1 together with
a few numerical simulations made by using the package Bocop [29, 4].

2. Well-posedness of the initial value problem. Let us remark that, under
differentiability of the population densities, the total population is preserved if and
only if

0 = ṡ+

n∑
i=1

ẋi + ṙ + ḋ

=

n∑
h=1

( n∑
i=1

mih + σh + µh
)
xh.

For this reason we assume that the coefficients of the system satisfy the closed
population assumption

n∑
i=1

mih + σh + µh = 0 for h = 1, ..., n. (1)
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With this hypothesys and under initial conditions satisfying the requirement

s(0) +

n∑
i=1

xi(0) + r(0) + d(0) = 1

then we have

s(t) +

n∑
i=1

xi(t) + r(t) + d(t) = 1 ∀ t ∈ I.

The closed population assumption is a condition on the coefficients of the system
(hence independent of the evolution of any subpopulation) that is sufficient to ensure
that the total population is preserved. Physically, it represents a mass conservation
property. It is satisfied by the epidemic models [14], [25] and [30] mentioned in the
introduction.

Under the closed population assumption, by the previous equation, the evolution
of d(t) can be directly deduced by those of the other subpopulations. Then, the
fourth equation can be eliminated from the system and we deal with the following
reduced initial value problem:

ṡ(t) = −s(t)β(t) · x(t) + ρr(t)

ẋ(t) = s(t)β(t) · x(t)e1 +Mx(t)

ṙ(t) = σ · x(t)− ρr(t)
s(0) = s0, x(0) = x0, r(0) = r0.

(2)

Since x is a vector then, of course, x0 = (x01, . . . , x0n). To be consistent with
the epidemiological character of the model, we make the following initial condition
assumption

s0, r0 ∈ [0, 1], x0 ∈ [0, 1]n,

s0 +

n∑
i=1

x0i + r0 ≤ 1, (3)

x01 > 0.

Theorem 2.1. Let us assume that β ∈ L∞(I; [0, 1]), ρ ∈ [0, 1], M ∈ [0, 1]n×n be a
lower triangular quasimonotone matrix and σ, µ ∈ [0, 1]n satisfy the closed popula-
tion assumption (1) and the initial condition assumption (3). Then the system (2)
admits a unique solution (s, x, r) such that

1. the solution is Lipschitz continuous on the interval I and taking values x(t) ∈
[0, 1]n and s(t), r(t) ∈ [0, 1] for every t ∈ I,

2. if s0 > 0 then s(t) > 0 for every t ∈ I,
3. if r0 > 0 then r(t) > 0 for every t ∈ I,
4. if x0i > 0 then xi(t) > 0 for every t ∈ I, i = 1, . . . , n.

Proof. Since the dynamic is locally Lipschitz, then it is classical that we have local
existence and uniqueness of an absolutely continuous solution (see for instance [16,
I.3]). Let [0, τ), τ ≤ tf , be an interval in which the solution exists. By continuity
of x1 and since x1(0) > 0 we can also assume that x1 > 0 in [0, τ).

Since M is lower triangular, then

ẋ2 = m21x1 +m22x2

and since m21 ≥ 0 then

ẋ2 ≥ m22x2 on [0, τ).
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This readily implies that x2 ≥ 0 on [0, τ) (strictly positive if x02 > 0). Iterating
the procedure and using the properties of M , we have that xi ≥ 0 on [0, τ) (strictly
positive if x0i > 0) for i = 1, . . . , n.

Then we have
ṙ ≥ −ρr

which implies r ≥ 0 on [0, τ) (strictly positive if r0 > 0).
Finally, by integration,

s(t) = e−
∫ t
0
β(ξ)·x(ξ) dξ

(∫ t

0

e
∫ ξ
0
β(τ)·x(τ) dτρr(ξ) dξ + s0

)
which implies that s(t) ≥ 0 in [0, τ) (strictly positive if s0 > 0).

Since the assumptions on the coefficients ensure that the total population is
preserved, then we immediately have that s(t), r(t) ∈ [0, 1], and xi(t) ∈ [0, 1]n

for i = 1, . . . , n, for every t ∈ [0, τ). Hence the solution can be continued and
we have global existence of an absolutely continuous solution on I satisfying 2-4.
Consequently, by the equations of the system we have that also the derivatives are
bounded implying the Lipschitz continuity of the solution.

Remark 1. The proof works also if I = [0,+∞).

3. Optimal control. We aim here to study the optimal control of the system of
ODEs under social distance. That is, we take

β(t) := β̄ − u(t)

where u is a vectorial control variable. Since it is introduced to reduce the trans-
mission rates, then it is natural to require that u belong to a space of bounded
functions, like the space L∞(I;K) of (equivalence classes of) Lebesgue measurable
functions defined on I and taking values in K up to a set of measure zero, with

K =

n∏
i=1

[0, ūi], ūi ∈ (0, β̄], β̄ ∈ (0, 1).

Here β̄ represents the vector of transmission coefficients without any control. The
role of the control vector variable u is then to reduce the transmission rates by
various levels of social distance, slowdown of the economy, isolation and quarantine
measures. The value of ū depends on the distance policies that can be put into
being. The choice of ū = β̄ means that we are able to impose rules that completely
stop transmission, and this is compatible only with isolation strategies, but could
be unrealistic for other kind of measures.

The optimal control problem consists in minimizing a cost functional of the form

J(x, u) =

∫ tf

0

f0(t, x, u) dt (4)

where f0 is a given running cost, under the set of state equations
ṡ(t) = −s(t)

(
β̄ − u(t)

)
· x(t) + ρr(t)

ẋ(t) = s(t)
(
β̄ − u(t)

)
· x(t)e1+Mx(t)

ṙ(t) = σ · x(t)− ρr(t)
s(0) = s0, x(0) = x0, r(0) = r0

(5)

satisfying the initial condition assumption (3) and the closed population assumption
(1). The cost functional J represents the cost of treatments and hospitalization for
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the populations x of exposed/infected individuals and its dependence on u allows to
capture the economic and social cost of slowdown, isolation, quarantine and social
distance measures in general.

3.1. Existence of an optimal solution. An optimal solution to the control prob-
lem (4)-(5) is a vector function (u, s, x, r) ∈ L∞(I;K)×W 1,∞(I)×W 1,∞(I;Rn)×
W 1,∞(I) that minimizes the cost J and satisfies the set of state equations.

In the definition above, W 1,∞(I) denotes the usual Sobolev space of functions
that are essentially bounded together with the first distributional derivative, while
W 1,∞(I;Rn) :=

(
W 1,∞(I)

)n
.

The following existence theorem for a very general cost functional holds.

Theorem 3.1. If f0 : (0, tf ) × Rn × Rn → [0,+∞) is a normal convex integrand,
that is it is measurable with respect to the Lebesgue σ-algebra in (0, tf ) and the Borel
σ-algebra in Rn×Rn and there exists a subset N of (0, tf ) of Lebesgue measure zero
such that

1. f0(t, ·, ·) is lower semicontinuous for every t ∈ (0, tf ) \N ,
2. f0(t, x, ·) is convex for every t ∈ (0, tf ) \N and x ∈ Rn,

then there exists an optimal solution (u, s, x, r) to the control problem (4)-(5).

To prove the existence of an optimal solution we could invoke some very general
theorems, like Theorem 23.11 of [7], that can be applied to a lot of other situations.
To be self contained and since it will become useful in the sequel, we prefer to
sketch here a direct proof based on the observation that it is equivalent to prove
the existence of a minimizer of the functional

F (u, s, x, r) := J(x, u) + χΛ(u, s, x, r) (6)

where Λ is the set of admissible pairs, that is all state-control vectors (u, s, x, r)
that satisfy the initial value problem (5), while χΛ denotes the indicator function
of Λ that takes the value 0 on Λ and +∞ otherwise.

Proof. On the domain of F , that is the space L∞(I;K)×W 1,∞(I)×W 1,∞(I;Rn)×
W 1,∞(I) we consider the topology given by the product of the weak* topologies of
the four spaces and aim to prove sequential lower semicontinuity and coercivity of
the functional F with respect to this topology. By the Direct Method of the Calculus
of Variations, these properties imply the existence of a solution to the minimum
problem. They are direct consequences of the fact that the space of control is
weakly* compact, that the assumptions on f0 imply that the cost functional J is
weakly* lower semicontinuous (which is a particular case of De Giorgi and Ioffe’s
Theorem; see for instance [11, Theorem 7.5]) and the fact that Λ is closed with
respect to the weak* convergence.

Remark 2. The requirement on f0 = f0(t, x, u) to be a normal convex integrand is
satisfied, in particular, if it is a piecewise continuous function of t, continuous in x
and convex in u. Assumptions of this kind are usually satisfied in the applications.

4. Optimality conditions. To write necessary conditions of optimality we require
that f0 satisfies the classical regularity assumption f0 ∈ C1([0, tf ]× [0, 1]n × [0, β̄])
and be nonnegative. Let us introduce the adjoint variables p0 ≥ 0, ps ∈ R, px =
(px1

, ..., pxn) ∈ Rn and the Hamiltonian

H(t, u, s, x, r, p0, ps, px) = p0f0 + psfs + px · fx + pr · fr
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where fs = −s (β̄ − u) · x + ρr, fx = s (β̄ − u) · x e1 + Mx, fr = σ · x − ρr are the
dynamics of the state equations. After some manipulations, the Hamiltonian turns
out to be

H(t, u, s, x, r, p0, ps, px, pr) =

= p0f0(t, x, u) + (px1 − ps)s(β̄ − u) · x+ ρ(ps − pr)r + px ·Mx+ pr σ · x.
By Pontryagin’s theorem (see for instance [7, Section IV.22], [27, Section 2.2.2]),
given an optimal solution (u, s, x, r), there exist a nonnegative constant p0 and
absolutely continuous adjoint (or conjugate) state functions (or costates) ps, px and
pr that satisfy the non-degeneration property(

p0, ps(t), px(t), pr(t)) 6= 0 ∀ t ∈ [0, tf ] (7)

and such that

H
(
t, u(t), s(t), x(t), r(t), p0, ps(t), px(t), pr(t)

)
=

= inf
u∈K

H
(
t, u, x(t), r(t), p0, ps(t), px(t), pr(t)

)
for almost every t ∈ [0, tf ]. This is a minimum problem for a continuous function
of n real variables on a compact set. To solve it explicitly we should prescribe the
running cost f0.

The adjoint states ps, px and pr must solve the adjoint (or conjugate) equations
ṗs = −∂H

∂s

ṗx = −∂H
∂x

ṗr = −∂H
∂r

where ∂
∂x := ( ∂

∂xi
)i=1,...,n, that is

ṗs = −(px1 − ps)(β̄ − u) · x

ṗx = −p0
∂f0

∂x
(t, x, u)− (px1

− ps)s(β̄ − u)−MT px − prσ
ṗr = ρ(ps − pr)

and have to satisfy the transversality conditions

ps(tf ) = pxi(tf ) = pr(tf ) = 0 (8)

coming from the fact the final states are free.

Remark 3. By the non-degeneration property (7), the transversality conditions
ps(tf ) = pxi(tf ) = pr(tf ) = 0 imply that p0 > 0. Thus, without loss of generality,
we can assume from now on that p0 = 1.

Remark 4. Since f0 is C1, then ∂f0
∂x is continuous and hence bounded on [0, tf ]. By

the adjoint equation it then follows that the adjoint states are Lipschitz continuous.

If the integrand f0 is time independent, that is f0 = f0(x, u), then also the
Hamiltonian is time independent and therefore it is constant along the optimal
solutions, that is, there exists a constant k such that

f0(x, u) +
(
px1
− ps

)
s
(
β̄ − u

)
· x+ γ

(
ps − pr

)
r + px ·Mx+ prσ · x = k

on the interval [0, tf ].



208 LORENZO FREDDI

In the next sections we consider particular cost functionals in which the state and
control variables are separated. From the point of view of the solutions, the optimal
control problem exhibits very different behaviors depending on how the cost grow
with the control variable.

5. Cost with a superlinear growth in the control variable. Let us consider
now the case of a running cost of the form

f0(t, x, u) = ν(t, x) +

n∑
i=1

Ciu
qi
i (9)

where ν ∈ C1([0, tf ] × [0, 1]n) is a non negative function, Ci are strictly positive
constants and qi > 1 for i = 1, . . . , n. A remarkable particular case is the quadratic
one, in which qi = 2 for every i.

These assumptions allow to capture a nonlinear growth of costs due to over-
crowding in healthcare facilities and to gradually higher level of slowdown of the
economy, with various degrees of nonlinearity. The different constants and differ-
ent exponents allow to prescribe different costs to different distance and slowdown
policies that are simultaneosly actuated.

The Hamiltonian is

H(t, u, s, x, r, ps, px, pr) =

= ν(t, x) +

n∑
i=1

Ciu
qi
i + (px1 − ps)s(β̄ − u) · x+ ρ(ps − pr)r + px ·Mx+ pr σ · x.

The minum problem for the function

u 7→ H(t, u, s, x, r, ps, px, pr)

on the compact set K =
∏n
i=1[0, ūi] is easy to solve. The critical interior points

must satisfy

∂H

∂ui
= Ciqiu

qi−1
i − (px1 − ps)sxi = 0 ⇐⇒ uqi−1

i =
1

qiCi
(px1 − ps)sxi .

Hence, setting

ψi(t) :=
1

qiCi

(
px1

(t)− ps(t)
)
s(t)xi(t),

the optimal control is characterized by the following componentwise conditions

ui(t) = min{ψ+
i (t)

1
qi−1 , ūi}

=


0 if ψi(t) ≤ 0,

ψi(t)
1

qi−1 if ψi(t) ∈ (0, ūqi−1
i ),

ūi if ψi(t) ≥ ūqi−1
i

(10)

where ψ+
i (t) := max{ψi(t), 0}.

Proposition 1. Any optimal control u is Lipschitz continuous on [0, tf ] and satis-
fies the final condition u(tf ) = 0.

Proof. It follows by the previous characterization of the optimal control and by
the fact that the states and the costates are Lipschitz continuous functions. The
final condition follows by the fact that the transversality conditions imply that
ψi(tf ) = 0, i = 1, . . . , n.
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The adjoint states ps, px and pr must solve the adjoint equations and transver-
sality conditions

ṗs = −η(β̄ − u) · x

ṗx = −∂ν
∂x

(t, x)− (px1
− ps)s(β̄ − u)−MT px − prσ

ṗr = ρ(ps − pr)

ps(tf ) = pxi(tf ) = pr(tf ) = 0.

(11)

5.1. Uniqueness of the optimal solution. The problem of uniqueness of the
optimal solution is of great importance in applications and nevertheless it is not
a trivial question because of the nonlinearity of the state equations that lead to a
lack of convexity of the functional F = J + χΛ (see (6)) even if the cost is strictly
convex.

Nevertheless, we are able to prove the uniqueness of the solution when the cost is
superlinear in all control variables with exponents qi ∈ (1, 2]. Moreover, the result
holds only for a sufficiently small time horizon. The basic idea of the proof is due
to Fister [10] where, on the other hand, only the case qi = 2 is considered and for a
control problem (for the chemotherapy in HIV) that does not fall into our abstract
setting.

Using the previuos discussion, we have that any optimal solution must solve the
optimality system given by the boundary value problems for the state and adjoint
equations, and the characterization of the optimal control, that is

ṡ = −s (β̄ − u) · x+ ρr

ẋ = s (β̄ − u) · xe1 +Mx

ṙ = σ · x− ρr
ṗs = −(px1

− ps)(β̄ − u) · x

ṗx = −∂ν
∂x
− (px1

− ps)s(β̄ − u)−MT px − prσ
ṗr = ρ(ps − pr)
s(0) = s0, x(0) = x0, r(0) = r0

ps(tf ) = pxi(tf ) = pr(tf ) = 0

ui(t) = min
{

max{ (px1
(t)− ps(t))s(t)xi(t)

qiCi
, 0}

1
qi−1 , ūi

}
, i = 1, . . . , n.

(12)

Using the optimality system we can prove the following uniqueness result.

Theorem 5.1. Let the running cost take the form (9) with qi ∈ (1, 2] for i =
1, . . . , n and ν ∈ C1([0, tf ] × [0, 1]n) non negative and with Lipschitz continuous
partial derivatives with respect to x with a t-independent Lischitz constant, that is,
there exists L ≥ 0 such that

|∂ν
∂x

(t, y)− ∂ν

∂x
(t, z)| ≤ L|y − z| ∀x, y ∈ [0, 1]n, t ∈ [0, tf ]. (13)

If tf is small enough than the optimal solution is unique.

Proof. Let us assume that (u, s, x, r) and (ũ, s̃, x̃, r̃) are two optimal solutions of
the control problem. Then (u, s, x, r, ps, px, pr) and (ũ, s̃, x̃, r̃, p̃s, p̃x, p̃r) are two
solutions of the optimality system (12).

To be more contained, it will be useful in the sequel of the proof to go back to

the shorter notation β = β̄ − u and β̃ = β̄ − ũ.
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Inspired by [10], let us introduce for any λ ≥ 0 the functions

sλ := e−λts, xλ := e−λtx, rλ := e−λtr,

pλs := eλtps, pλx := eλtpx, pλr := eλtpr,

and the analogous ones with the˜variables.
Substituting in the optimality system we obtain the family of equivalent systems

(one for every λ)

ṡλ + λsλ = −eλtsλ β · xλ + ρrλ

ẋλ + λxλ = eλtsλ β · xλe1 +Mxλ

ṙλ + λrλ = σ · xλ − ρrλ

ṗλs − λpλs = −eλt(pλx1
− pλs )β · xλ

ṗλx − λpλx = −eλt ∂ν
∂x − eλt(pλx1

− pλs )sλβ −MT pλx − pλrσ
ṗλr − λpλr = ρ(pλs − pλr )

sλ(0) = s0, x
λ(0) = x0, r

λ(0) = r0

pλs (tf ) = pλxi(tf ) = pλr (tf ) = 0

and the analogous one with the˜variables. We start by considering the equations
corresponding to the state x and its conjugate px, that is

ẋλ + λxλ = eλtsλ β · xλ e1 +Mxλ

ṗλx − λpλx = −eλt ∂ν
∂x − eλt(pλx1

− pλs )sλβ −MT pλx − pλrσ
sλ(0) = s0, x

λ(0) = x0, r
λ(0) = r0

pλs (tf ) = pλxi(tf ) = pλr (tf ) = 0.

Subtracting side by side, scalarly multiplying the first equation by xλ− x̃λ and the
second by pλx − p̃λx, and integrating with the usage of the boundary conditions, we
obtain∣∣xλ(tf )− x̃λ(tf )

∣∣2
2

+ λ

∫ tf

0

|xλ − x̃λ|2dt =

=

∫ tf

0

eλt(xλ1 − x̃λ1 )(sλβ · xλ − s̃λβ̃ · x̃λ) + (xλ − x̃λ) ·M(xλ − x̃λ) dt,

∣∣pλx(0)− p̃λx(0)
∣∣2

2
+ λ

∫ tf

0

|pλx − p̃λx|2dt =

=

∫ tf

0

eλt(pλx − p̃λx) ·
(∂ν
∂x

(x)− ∂ν

∂x
(x̃)
)
dt

+

∫ tf

0

eλt(pλx − p̃λx) ·
(

(pλx1
− pλs )sλβ − (p̃λx1

− p̃λs )s̃λβ̃
)
dt

+

∫ tf

0

(pλx − p̃λx) ·MT (pλx − p̃λx)− (pλx − p̃λx) · (pλr − p̃λr )σ dt

Let us now estimate the right hand sides. Concerning the first equation, since

sλβ · xλ − s̃λβ̃ · x̃λ = (sλ − s̃λ)β · xλ + s̃λ(β − β̃) · xλ + s̃λβ̃ · (xλ − x̃λ)

and since the states, the costates and the controls are bounded (see Remark 4), then
by triangular and Young inequalities we have that there exists a positive constant
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D11 such that

∣∣∣ ∫ tf

0

eλt(xλ1 − x̃λ1 )(sλβ · xλ − s̃λβ̃ · x̃λ) dt
∣∣∣ ≤

≤ D11eλtf
(∫ tf

0

|xλ − x̃λ|2 + |sλ − s̃λ|2 + |u− ũ|2 dt
)

where we used also the fact that β − β̃ = u − ũ. On the other hand, using the
characterization of the optimal control we get

∫ tf

0

|u− ũ|2 dt ≤
n∑
i=1

∫ tf

0

|ψ+
i (t)

1
qi−1 − ψ̃+

i (t)
1

qi−1 |2 dt

≤ D12

n∑
i=1

∫ tf

0

|ψ+
i (t)− ψ̃+

i (t)|2 dt

≤ D12

n∑
i=1

∫ tf

0

|ψi(t)− ψ̃i(t)|2 dt

≤ D12

∫ tf

0

|pλx − p̃λx|2 + |pλs − p̃λs |2 + |xλ − x̃λ|2 + |sλ − s̃λ|2 dt

for a suitable positive constant D12 (possibly changing line by line). We used here

the assumption qi ≤ 2 and the local Lipschitz continuity of the power function y
1

qi−1

(y ≥ 0) together with the boundedness of states and costates.
Putting together with the previuos one and estimating the other term of the

equation in an analogous way, we end up with the existence of a positive constant
D1 such that

∣∣xλ(tf )− x̃λ(tf )
∣∣2

2
+ λ

∫ tf

0

|xλ − x̃λ|2dt

≤ D1eλtf
(∫ tf

0

|pλx − p̃λx|2 + |pλs − p̃λs |2 + |xλ − x̃λ|2 + |sλ − s̃λ|2 dt
)
.

To estimate the right hand side of the second equation we use assumption (13) and
obtain that there exist positive constants D2 and E2 such that

∣∣pλx(0)− p̃λx(0)
∣∣2

2
+ λ

∫ tf

0

|pλx − p̃λx|2dt ≤

≤ D2eλtf
∫ tf

0

|pλx − p̃λx|2 + |xλ − x̃λ|2 + |pλs − p̃λs |2 + |sλ − s̃λ|2 dt

+E2

∫ tf

0

|pλr − p̃λr |2dt.
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Doing analogous estimates with the other two couples of state/costate equations,
and summing up, we get

1

2

∣∣sλ(tf )− s̃λ(tf )
∣∣2 +

1

2

∣∣xλ(tf )− x̃λ(tf )
∣∣2 +

1

2

∣∣rλ(tf )− r̃λ(tf )
∣∣2

+
1

2

∣∣pλs (0)− p̃λs (0)
∣∣2 +

1

2

∣∣pλx(0)− p̃λx(0)
∣∣2 +

1

2

∣∣pλr (0)− p̃λr (0)
∣∣2

+λ
(∫ tf

0

|sλ − s̃λ|2 + |xλ − x̃λ|2 + |rλ − r̃λ|2 +

+|pλs − p̃λs |2 + |pλx − p̃λx|2 + |pλr − p̃λr |2dt
)

≤ (Deλtf + E) ·
(∫ tf

0

|sλ − s̃λ|2 + |xλ − x̃λ|2 + |rλ − r̃λ|2

+|pλs − p̃λs |2 + |pλx − p̃λx|2 + |pλr − p̃λr |2dt
)

for suitable positive constants D and E. This implies that

(λ−Deλtf − E)
(∫ tf

0

|sλ − s̃λ|2 + |xλ − x̃λ|2 + |rλ − r̃λ|2

+|pλs − p̃λs |2 + |pλx − p̃λx|2 + |pλr − p̃λr |2dt
)
≤ 0

for every λ ≥ 0. By choosing λ such that λ ≥ D + E and

tf <
1

λ
ln
(λ− E

D

)
we obtain that λ − Deλtf − E > 0 and this implies that the integral is zero and
therefore the two solutions are equal.

Remark 5. It is important to remark that this is not a local uniqueness result, but
a global result that holds for a small tf . Indeed, the proof essentially relies on the
transversality boundary conditions ps(tf ) = px(tf ) = pr(tf ) = 0. If the integration
would be performed in an interval [0, T ] with T 6= tf then the proof was not work
because, in general, the costates do not vanish in T . This makes impossible to
extend the result besides the time tf by proving it in [0, T ] and using the values of
states and costates in T to iterate the procedure. The uniqueness of the solution
for every tf is still an open problem. On the other hand, however, uniqueness is
quite secondary with respect to having a global optimal solution.

6. The case of a linear cost in the control variable. Let us consider the case
in which the running cost is linear in the control variable, that is

f0 = ν(t, x) + C · u

where ν ∈ C1([0, tf ]× [0, 1]n) is a nonnegative function, and C is a vector of strictly
positive constants. It is, in fact, like that of the previous section but with qi = 1,
i = 1, . . . , n.

The Hamiltonian is

H(t, u, s, x, r, ps, px, pr) = ν(t, x) +
[
C − (px1

− ps)sx
]
· u+

+(px1 − ps)sβ̄ · x+ ρ(ps − pr)r + px ·Mx+ pr σ · x .
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Being linear with respect to u with a coefficient with an unknown sign, the minimum
value on K =

∏n
i=1[0, ūi] is achieved when ui ∈ {0, ūi}, i = 1, . . . , n. Hence, setting

the switching function
ψ := (px1

− ps)sx
the optimal controls have to satisfy

ui(t) =

{
0 if ψi(t) < Ci,

ūi if ψi(t) > Ci.
(14)

Since, by Pontryagin’s theorem, ψ is a (absolutely) continuous function, then we
have that

• if |{t ∈ I : ψi(t) = Ci}| = 0 then the optimal control ui is bang-bang, that is
it takes essentially only the maximum and minimum values,

• if, on the contrary, |{t ∈ I : ψi(t) = Ci}| > 0 then there could exist
an interval (t1, t2), with 0 ≤ t1 < t2 ≤ tf such that ψ(t) = Ci for every
t ∈ (t1, t2) and the control is called singular and it is known that they may
or may not be minimizing (see [6, Chapter 8]). In principle, the existence of
such an interval (t1, t2) is not guaranteed because of the existence of compact
sets of positive Lebesgue measure and empty interior; if K ⊂ [0, tf ] is such a
set, then, letting ψ(t) the Euclidean distance between t and K we have that
the Lipschitz continuous function ψ is zero on K and strictly positive outside.

The adjoint variables ps, px and pr must satisfy the same adjoint equations and
transversality conditions (11) of the previous case.

Remark 6. Let us remark that, by the transversality conditions, ψ(tf ) = 0. This
fact, together with Ci > 0 and the continuity of ψ implies that ψi(t) < Ci in a left
neighborhood of tf (i = 1, . . . , n) and hence u(t) = 0 in this neighborhood. The
optimal strategy towards the end of the epidemic horizon is then to disactivate the
control policy.

6.1. Study of the singular arcs. In the intervals in which ψi = Ci, the control
ui disappears from the expression of the Hamiltonian. Hence, the application of
Pontryagin’s theorem does not give, in such intervals, any information on the op-
timal control that, nevertheless, is elsewhere characterized by (14). The study of
singular arcs, that is of what happens in such intervals, is essential to understand
the structure of the solutions. The reader interested into a general theory is referred
to the monographs [27, Section 2.8], [6, Chapter 8], [5].

To avoid technicalities we assume from now on to be under strictly positive initial
conditions, so that by Theorem 2.1 we have that the optimal solutions are strictly
positive in the whole of [0, tf ]. To perfom computations it is convenient to denote
by Mi and M j the i-th row and the j-th column of the matrix M , respectively.

Along a singular arc, that is for t ∈ (t0, t1) we have ψ(t) = C, hence ψ̇(t) = 0.
Denoting by

η := px1 − ps
and using ψ = ηsx then we get

ψ̇ = η̇sx+ ηṡx+ ηsẋ

= η̇sx+ η
(
− s (β̄ − u) · x+ ρr

)
x+ ηs

(
s (β̄ − u) · xe1 +Mx

)
Since

η̇ = ṗx1 − ṗs = − ∂ν

∂x1
− ηs(β̄1 − u1)−M1 · px − prσ1 + η(β̄ − u) · x (15)
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then, substituting,

ψ̇ =
(
− ∂ν

∂x1
− ηs(β̄1− u1)−M1 · px− prσ1

)
sx+ ηρrx+ ηs

(
s (β̄ − u) · xe1 +Mx

)
.

In components we have

ψ̇1 = −
( ∂ν
∂x1

+M1 · px − prσ1

)
sx1 + ηρrx1 + ηsM1 · x+ ηs2

n∑
j=2

(β̄j − uj)xj ,

ψ̇i = −
( ∂ν
∂x1

+ ηs(β̄1 − u1) +M1 · px + prσ1

)
sxi + ηρrxi + ηsMi · x, i = 2, . . . , n .

We observe that u1 explicitly appears only in the expression of ψ̇i, i = 2, . . . , n,
while the other controls appear only in the espression of ψ̇1.

The case n ≥ 2. Along the singular arcs we have η 6= 0 (since ψ 6= 0). Since it

is continuous then it takes a constant sign. Then we can solve the equations ψ̇i = 0
for i = 2, . . . , n with respect to β̄1 − u1 and obtain the feedback control laws

β̄1 − u1 =
−
(
∂ν
∂x1

+M1 · px + prσ1

)
sxi + ηρrxi + ηsMi · x

ηs2xi
(16)

which imply that u1 is continuous in (t1, t2). In the particular case n = 2 we can
say something more.

The case n = 2. In this case

ψ̇1 = −
( ∂ν
∂x1

+M1 · px − prσ1

)
sx1 + ηρrx1 + ηsM1 · x+ ηs2(β̄2 − u2)x2

and the equation ψ̇1 = 0 gives the feedback control law

β̄2 − u2 =

(
∂ν
∂x1

+M1 · px − prσ1

)
sx1 − ηρrx1 − ηsM1 · x

ηs2x2
.

Together with (16) for i = 2, that is the analogous law for u1, it implies that u1 and
u2 are continuous in (t1, t2). Troughout the optimality system, this immediately
implies more regularity also for states and costates. If ν is more regular then also
the regularity of u increases. Actually, we have that if ν ∈ Ck([0, tf ] × [0, 1]) then
u ∈ Ck−1(t1, t2). The two feedback laws can also be used to study the continuity
of u in the switching points between regions where it is constant and the singular
arcs. We will do this in details in the case n = 1.

The case n = 1. It is the case of a SIRS model (SIR if ρ = 0). Dropping the
indication of the index one and setting M = −γ < 0, the optimality system writes

ṡ = −s (β̄ − u)x+ ρr

ẋ = s (β̄ − u)x− γx
ṙ = σx− ρr
ṗs = −η(β̄ − u)x

ṗx = −∂ν∂x − ηs(β̄ − u) + γpx − σpr
ṗr = ρ(ps − pr)
s(0) = s0, x(0) = x0, r(0) = r0

ps(tf ) = pxi(tf ) = pr(tf ) = 0
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Let us recall that x0 > 0 and s0 > 0 so that any solution satisfies x(t) > 0 and
s(t) > 0 for every t ∈ [0, tf ]. We have

ψ̇ =
[(
− ∂ν

∂x
+ γps + σpr

)
s+ ρηr

]
x

where the control does not explicitly appear. Since x > 0, than the equation ψ̇ = 0
is equivalent to (

− ∂ν

∂x
+ γps + σpr

)
s+ ρηr = 0 in (t1, t2). (17)

Assuming that ν be regular enough, differentiating (17) and putting β̄ − u into
evidence, we get

0 = (β̄ − u)
[
− ∂2ν

∂x2
s2x− γηsx+ ρηr(2x− s)

]
+
(
γ
∂2ν

∂x2
x− ∂

∂t

∂ν

∂x
+ ρσ(ps − pr)

)
s+ ρ

(
γ(px + ps)− 2

∂ν

∂x

)
r + ρη(σx− ρr).

SIR epidemic. This espression becomes simpler in the case ρ = 0, that is for
an SIR epidemic with immunization,

(β̄ − u)x
(
s
∂2ν

∂x2
+ γη

)
= γx

∂2ν

∂x2
− ∂

∂t

∂ν

∂x
. (18)

Theorem 6.1. If ν ∈ C2([0, tf ]× [0, 1]) and

γx
∂2ν

∂x2
(t, x)− ∂2ν

∂t∂x
(t, x) > 0 (19)

for every t ∈ [0, tf ] and x ∈ [0, 1], then the following feedback control law holds

u(t) = β̄ −
γx(t)

∂2ν

∂x2
(t, x(t))− ∂2ν

∂t∂x
(t, x(t))

x(t)
(
s(t)

∂2ν

∂x2
(t, x(t)) + γη(t)

) (20)

for every t ∈ (t1, t2). Moreover,

1. u is continuous in (t1, t2) and there exist, and are finite, the right and the left
limits of u in t1 and t2, respectively;

2. let k ∈ N ∪ {∞}, k ≥ 2; if ν ∈ Ck([0, tf ]× [0, 1]) then u ∈ Ck−2(t1, t2).

Proof. Since the right hand side of (18) is strictly positive, and since β̄ − u ≥ 0,
this means that

β̄ − u > 0 and x
(
s
∂2ν

∂x2
+ γη

)
> 0 in (t1, t2).

Solving for u we find (20). 1. follows from the continuity in [0, tf ] of the states, the
costates and the second derivatives of ν. This proves also 2. in the case k = 2 and
the optimality system implies that states and costates belongs to C1(t1, t2).

2. follows by induction on k observing that if ν ∈ Ck+1 and states and costates
are Ck−1(t1, t2) then (20) implies u ∈ Ck−1(t1, t2).
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Remark 7. Assumption (19) is clearly satisfied if ν is strictly convex and indepen-
dent of t and, in such case, the feedback law takes the even simpler form

u(t) = β̄ −
γ
∂2ν

∂x2

(
x(t)

)
s(t)

∂2ν

∂x2

(
x(t)

)
+ γη(t)

, t ∈ (t1, t2). (21)

Remark 8. The feedback law is a necessary condition for the existence of a singular
arc. A case in which it cannot be satisfied is when ν is linear and t-independent.
Indeed, in such a case we have that the second derivatives identically vanish in (21)
and the law gives u = β̄. If ū < β̄ then it cannot be satisfied and singular arcs
do not exist. If ū = β̄ then we have u = ū in (t1, t2) and the optimal control is
piecewise constant. It has been proved in [23] that when ν is linear the optimal
control must be quasi-concave (that is first increasing and then decreasing), then
we can conclude that it is piecewise constant and can switch in at most two points
(according to Propositions 6 of [23]). See Figure 5.

Remark 9. Under the assumptions of Theorem 6.1, at the switching points between
a region in which the control is constant and a singular arc there exist the right and
left limits of u. The control turns out to be continuous if and only if these limits
match the constant values of the control outside the singular arc.

SIR epidemic with an autonomous cost functional. When ν is independent
of time then the Hamiltonian is constant along the optimal solutions, that is, there
exists a constant k such that

ν(x) + Cu+ ηs(β̄ − u)x− γpxx = k (22)

on the whole interval [0, tf ]. Computing in tf , using the transversality conditions
and since, as already observed, u(tf ) = η(tf ) = 0, then we have

k = ν(x(tf )).

Equation (22) can be used, together with the adjoint equations that give (see (15))

η̇ = −∂ν
∂x

(x) + η(β̄ − u)(x− s) + γpx − σpr,

to find another differential equation for η. Indeed, by (22) we have

η(β̄ − u)s =
ν(x(tf ))− ν(x)− Cu

x
+ γpx

and substituting into the expression of η̇ we get

η̇ = η(β̄ − u)x+
ν(x) + Cu− ν(x(tf ))− ν′(x)x

x
. (23)

The usage of η is quite natural. Nevertheless, the idea that two adjoint variables
can be summarized into a single new variable is already in [2] and used also in [23]
where the following proposition is proved under assumption 2.

Proposition 2. For every t ∈ [0, tf ] we have

1. if ν is nondecreasing then η(t) ≥ 0,
2. if ν is strictly increasing then η(t) > 0.

Proof. Arguing by contradiction, let us suppose that there exists t ∈ [0, tf ] such
that corresponding to the two cases of the statement,
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1. η(t) < 0,
2. η(t) ≤ 0.

Since the switching function ψ = ηsx takes the same sign as η, and since C > 0,
in both cases we have ψ(t) < C, hence u(t) = 0. On the other hand, since ψ is
continuous, then ψ < C, and hence u = 0, in a neighborhood of t. Using (23) and
the fact that ν is increasing and convex, repeating the argument of [23], in this
neighborhood we have

η̇ = ηβ̄x+
ν(x)− ν(x(tf ))− ν′(x)x

x

≤ ηβ̄x+
ν(i)− ν(x(tf ))− ν′(x)x+ ν′(x)x(tf )

x

= ηβ̄x+
ν(x)− ν(x(tf ))− ν′(x)(x− x(tf ))

x
≤ ηβ̄x,

and the strict inequality holds if ν is strictly increasing since, in this case, we have
ν′(x)x(tf ) > 0.

In both cases then we have
η̇(t) < 0.

This would imply that η(s) < 0 for every s > t, which contradicts the fact that
η(tf ) = 0.

Proposition 2 has consequences regarding the effectiveness of the control policies.

Proposition 3. Let ν be of class C2.

1. If ν is convex and nondecreasing then, along the singular arcs, the population
of infected individuals weakly decreases.

2. Let ū < β̄. If ν is strictly convex and strictly increasing then, along the
singular arcs, the population of infected individuals strictly decreases.

Proof. By (17), in the autonomous case with ρ = 0, we have

−ν′(x) + γps = 0 in (t1, t2).

Computing the first derivative and using the adjoint equation ṗs = −η(β̄− u)x, we
have

ν′′(x)ẋ = −γη(β̄ − u)x in (t1, t2).

Since moreover γx > 0, then

• under assumption 1. we have η ≥ 0, ν′′ ≥ 0 and β̄ − u ≥ 0; hence ẋ ≤ 0 and
x is nonincreasing;

• under assumption 2. we have η > 0, ν′′ > 0 and β̄ − u ≥ 0; hence ẋ < 0 and
x is strictly decreasing.

Remark 10. The proof of Proposition 2 works also for a running cost of the form
f0 = ν(x)+Cuq with q > 1 like in Section 5, leading, in the case of a nondecreasing
ν, to ψ = 1

qC ηsx ≥ 0 and, hence, to the following simpler characterization of the

optimal control
u(t) = min{ψ(t), ū}. (24)

See Figure 1. A case in which ψ(t) ≤ ū for every t is shown in Figure 2.
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Remark 11 (Behavior at the switching points). We have already remarked that
if ν ∈ C2 is convex and independent of t then the assumptions of Theorem 6.1 are
satisfied. Then, at the switching points between a region in which the control is
constant and a singular arc, the control turns out to be continuous if and only if
the right and left limits at the extrema of the interval (t1, t2) match the constant
values of the control outside the interval. If, for instance, t1 is a switching point
between an interval in which u is the constant 0 and the singular arc then, in the
strictly convex autonomous case, the continuity condition is

s(t1) =
γ

β̄
− γη(t1)

∂2ν
∂x2 (x(t1))

,

which implies

s(t1) <
γ

β̄
.

Let us remark that γ/β̄ is the number of susceptible individuals that corresponds
to the uncontrolled epidemic peak. Since it is convenient to activate the control
before the peak time (if it not identically zero and since otherwise a translation of
the control function would provide a better performance) then we expect to have
always a discontinuity at the first switching time like in Figure 3 and 4. If, instead,
t1 is a switching point between an interval in which u is the constant ū and the
singular arc, then the continuity condition is

β̄ − ū =
γ
∂2ν

∂x2

(
x(t1)

)
s
∂2ν

∂x2

(
x(t1)

)
+ γη(t1)

.

We deduce that, if ū = β̄ then, in the strictly convex autonomous case, the opti-
mal control is always discontinuous in this kind of switching points. Such kind of
discontinuites occur in Figure 3 and 4 .

7. Bocop simulations. To conclude, we present some numeric simulations done
by using the Bocop package, [29, 4]. We do not aim here to perform numerical
analysis, but just use them as examples to explain some results. For this reason,
and for simplicity, the simulations are made on the SIR epidemic model

ṡ = −s (β̄ − u)x

ẋ = s (β̄ − u)x− γx
s(0) = s0, x(0) = x0 .

We consider the following three cost functionals with different growths in the state
and control variables that are paradigmatic of the analysis performed in Section 5
and 6:

• JQQ(x, u) =

∫ tf

0

(
x2 + u2

)
dt, quadratic in state and control;

• JQL(x, u) =

∫ tf

0

(
30x2 + u

)
dt, quadratic in state and linear in the control;

• JLL(x, u) =

∫ tf

0

(
2x+ u

)
dt, linear in state and control.

The first functional falls in the theory devoloped in Section 5, while the others refer
to Section 6.
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The Bocop package implements a local optimization method. The optimal control
problem is approximated by a finite dimensional optimization problem (NLP) using
a time discretization (the direct transcription approach). The NLP problem is
solved by the well known software Ipopt, using sparse exact derivatives computed
by CppAD. The default list of discretization formulas proposed by the package
includes: Euler, Midpoint, Gauss II and Lobatto III C. Among them, we have
chosen to use Lobatto III C for its numerical stability. Indeed, it is well known
that it is an excellent method for stiff problems (see [20]) like the computation of
singular arcs. Using it, we have avoided some numerical instabilities developed by
the other methods in such kind of computations.

We consider a time horizon tf of 360 days. The choice of the coefficients β̄ = 0.16,
γ = 0.06 and of the initial conditions i0 = 0.001, s0 = 0.999, has been done
according to [23]. The coefficients in front of the state in the cost functionals
are choosen in a way to balance the contributions of the two terms and ensure
convergence of the computations.

In Figure 1 and 2 the cost is quadratic both in the state and in the control
variables. In the second, the maximum value of the control would exceed the upper
bound ū and then it is truncated according to Remark 10 and equation (24).

optimal control u state x (infected)

Figure 1. JQQ with ū = 0.08

optimal control u state x (infected)

Figure 2. JQQ with ū = 0.04
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In Figure 3 and 4 the cost is quadratic in the state but linear in the control and
therefore singular arcs can be expected. In fact, Figure 3 shows a bang-singular-
bang control structure, while a bang-bang-singular-bang control appears in Figure
4. Note that all discontinuities at the switching points are predicted in Remark
11. Moreover it can be observed that the population of infected individuals strictly
decreases along the singular arcs as predicted by Proposition 3.

optimal control u state x (infected)

Figure 3. JQL with ū = 0.1

optimal control u state x (infected)

Figure 4. JQL with ū = 0.08

In Figure 5 the cost is linear in both the state and the control variables. In
this case only bang-bang controls with at most two switching points are permitted
according to Remark 8.
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optimal control u

state x (infected)

Figure 5. JLL with ū = 0.1

8. Conclusions and perspectives. We introduced a general system of ordinary
differential equations that accounts for a vector valued state function whose com-
ponents represent various kinds of exposed/infected subpopulations, with a cor-
responding vector of control functions possibly different for any subpopulations.
It includes some classical and recent models for the epidemic spread in a closed
population without vital dynamic in a finite time horizon.

In the general setting, we proved well-posedness and positivity of the initial
value problem for the system of state equations and the existence of solutions to
the optimal control problem of the coefficients of the nonlinear part of the system,
under a very general cost functional. We also proved the uniqueness of the optimal
solution for a small time horizon when the cost is superlinear in all control variables
with possibly different exponents in the interval (1, 2].

In a second part of the paper we studied necessary optimality conditions. In the
case of a linear cost in the control variables, in which singular arcs are expected, we
derived feedback control laws that allow for the study of qualitative properties of
the optimal solutions like monotonicity (Proposition 3) and regularity. In particu-
lar, in the quadratic case the optimal control turns out to be a Lipschitz continuous
function (Proposition 1). On the contrary, when the control appears linearly dis-
continuities are expected to occur between regions in which the control is constant
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and the singular arcs, according to the analysis developed in Section 6. Finally, the
results are illustrated by the aid of some numerical simulations.

For simplicity, the analysis done in Section 6 has been mainly limited to the case
of a SIR model and can be further developed by considering some different or more
general situations. Also the introduction of general spatial terms (reaction-diffusion
like) in the state equations could be an interesting development direction.
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