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1. Introduction

Recently several finite simple groups, such as 3-transposition groups and many of the 
sporadic groups including the Monster, have been realised as automorphism groups of 
axial algebras of Monster type (α, β). In fact, the originating example of an axial algebra 
is the Griess algebra, which has the Monster sporadic simple group as its automorphism 
group. The Griess algebra turns out to be an axial algebra of Monster type (1

4 , 
1
32 ). 

Almost all Jordan algebras are axial algebras of Monster type and Matsuo algebras, 
which are related to 3-transposition groups, are also examples. There is a hope that a 
full classification of these algebras will lead to a more unified approach to (a large portion 
of) finite simple groups, including the sporadics.

As for many algebraic structures (semisimple Lie algebras being one notable example), 
a full classification of the 2-generated objects is a key step for the development of the 
general theory and its applications. This is made evident by the key role played by the 
classification of the primitive 2-generated axial algebras of Monster type (1

4 , 
1
32 ) (called 

Norton-Sakuma algebras) in the theory of Majorana representations [9,2,11]. Norton-
Sakuma algebras were first classified by Ivanov, Pasechnik, Seress, and Shpectorov in [10], 
extending earlier work of Norton [17] (for the Griess algebra) and Sakuma [20] (for certain 
types of OZ-type vertex operator algebras of central charge 1/2).

It was Rehren in [18,19] who first introduced the generalisation to Monster type (α, β)
and began a systematic study of the 2-generated algebras. He concentrated on the sym-
metric algebras – those which admit an automorphism switching the two generators. He 
generalised the eight non-trivial Norton-Sakuma algebras to eight families of examples. 
Implicit in his analysis is a case division into a generic case and two critical cases α = 2β
and α = 4β – this is made explicit by Franchi, Mainardis and Shpectorov in [5]. Joshi 
introduced some new families of Monster type (2β, β) (the critical case α = 2β) in [12,7]. 
In an unexpected development, Franchi, Mainardis, and Shpectorov in [4], and indepen-
dently Yabe in [23], found the infinite-dimensional 2-generated Highwater algebra H, 
which is of Monster type (2, 12 ) (and falls into the other critical case).

A major breakthrough came from Yabe, who gave in [23] an almost complete clas-
sification of the symmetric 2-generated primitive axial algebras of Monster type in 
characteristic other than 5. The remaining case was considered by Franchi and Mainardis 
in [3], who introduced a characteristic 5 cover Ĥ of the Highwater algebra and showed 
that all the cases not included in Yabe’s classification are factors of Ĥ. Putting these all 
together we have the following:

Theorem 1.1. [23,3] A symmetric 2-generated primitive axial algebra of Monster type 
(α, β) is isomorphic to one of the following:

1. a 2-generated primitive axial algebra of Jordan type α, or β;
2. a quotient of H, or Ĥ in characteristic 5;
3. one of the algebras in a family listed in [23, Table 2].
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The 2-generated primitive axial algebras of Jordan type were classified by Hall, Rehren 
and Shpectorov in [8] and are of dimension at most 3. Every algebra in case (3) above is 
known and of dimension at most 8. In contrast, the Highwater algebra H and its cover 
Ĥ have infinite dimension.

In this paper, we complete the last step of the classification of the symmetric case by 
classifying all the quotients of the Highwater algebra H and of its characteristic 5 cover 
Ĥ. Moreover, we give explicit bases for the ideals and so also the quotients.

This is important as a full understanding of the symmetric case, including the quo-
tients of the Highwater algebra, is crucial for completing the classification in the non-
symmetric case. Indeed, a 2-generated non-symmetric algebra 〈 〈a, b〉 〉 is an amalgam of 
two symmetric subalgebras 〈 〈a, aτb〉 〉 and 〈 〈b, bτa〉 〉, where τa and τb are the Miyamoto au-
tomorphisms associated to a and b (see below). This approach is successfully employed 
by Franchi, Mainardis and Shpectorov in [6] to complete the critical case α = 2β. We 
expect the classification in the generic and other critical case to also follow using this 
technique.

Before discussing our results, we briefly recall some definitions (details can be found 
in Section 2). An axial algebra is a commutative non-associative algebra A generated by 
a set X of axes. These axes are primitive semisimple idempotents, whose eigenvectors 
multiply according to a so-called fusion law F . When the fusion law is C2-graded (which 
the Monster fusion law M(α, β) is), then we have an algebra automorphism τa called a 
Miyamoto involution, associated to each axis a ∈ X. The group generated by all these 
automorphisms is called the Miyamoto group.

In order to give a unified proof of our main result for the Highwater algebra and its 
characteristic 5 cover, we introduce a new algebra Ĥ which is a cover of the Highwater 
algebra in all odd characteristics.1 By Theorem 1.1, in characteristics other than 5, this 
cannot be an axial algebra of Monster type (α, β). In fact, we show that Ĥ has a new 
fusion law F with entries {1, 0, 52 , 2, 

1
2} (note that in characteristic 5, 52 = 0). This algebra 

has a basis given by axes ai, i ∈ Z, and additional elements sj and pr,j , for j ∈ N and 
r = 1, 2. For the multiplication, see the full definition in Definition 3.2.

In Remark 4.8 we shall see that, in characteristic 3, H is neither of Monster type nor 
2-generated. Therefore, for the rest of this section, we shall assume that the characteristic 
of the ground field is strictly higher than 3.

Theorem 1.2. The algebra Ĥ is a symmetric 2-generated primitive axial algebra with 
fusion law given in Table 1.

In Proposition 3.8, we show that the full automorphism group Aut(Ĥ) of Ĥ is isomor-
phic to D∞ and it acts naturally on the indices of the set of axes X = {ai : i ∈ Z}. In 
particular, there is an automorphism τ1/2 which switches the two generating axes a0 and 

1 Note that H does not exist in characteristic 2 (more generally, axial algebras of Monster type in char-
acteristic 2 are associative, see [22] or [4, Lemma 2.1]).
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Table 1
The fusion law F for Ĥ.
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a1 and so Ĥ is indeed symmetric. The Miyamoto group Miy(Ĥ) = 〈τi : i ∈ Z〉 ∼= D∞
has index 2 in Aut(Ĥ).

The algebra Ĥ has a distinguished ideal J given by the subspace 〈pr,j : j ∈ N, r =
1, 2〉.

Theorem 1.3. J is an ideal of Ĥ and the quotient Ĥ/J is isomorphic to the Highwater al-
gebra H. In characteristic 5, Ĥ coincides with the characteristic 5 cover of the Highwater 
algebra defined in [3].

So our algebra Ĥ is indeed a cover of the Highwater algebra as claimed. Thus clas-
sifying the ideals, whence the quotients, of Ĥ will simultaneously classify the quotients 
of the Highwater algebra and its characteristic 5 cover. By [13], every ideal in an axial 
algebra is invariant under the action of the Miyamoto group. In fact, we show a stronger 
result for Ĥ which will prove crucial in classifying the ideals.

Theorem 1.4. All ideals of Ĥ are Aut(Ĥ)-invariant. In particular, every quotient of Ĥ
and so also every quotient of H is symmetric.

Using a sort of Euclidean division algorithm on Ĥ, we show the following.

Theorem 1.5. Every ideal of Ĥ is principal.

This has the following important consequence which highlights the distinguished na-
ture of the ideal J . Note that, by definition, J has infinite codimension.

Corollary 1.6. An ideal I � Ĥ has finite codimension if and only if it is not contained in 
the ideal J . Every non-trivial ideal which is contained in J has finite codimension in J .

Based on this, we split our ideals into two classes, those which are contained in J and 
those which are not.

Consider first an ideal I which is not contained in J ; this has finite codimension in Ĥ. 
In particular, the images of the axes in Ĥ/I span a subspace of some finite dimension D
and so we say that I has axial codimension D. Using the fact that I is Aut(Ĥ)-invariant, 
we show that there exists x =

∑D
i=0 αiai ∈ I, for some αi ∈ F where α0 �= 0 �= αD. 
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Moreover, x generates an ideal of axial codimension D. Since any ideal containing x can 
be recovered by finding the corresponding ideal of the finite-dimensional quotient Ĥ/(x), 
we restrict ourselves to classifying the minimal ideals of axial codimension D.

For such an ideal I = (x), we find two key observations which characterise the tuple 
of elements (α0, . . . , αD). For the first, we show in Proposition 3.10, that Ĥ is a baric 
algebra. That is, there is an algebra homomorphism λ : Ĥ → F which is given by λ(ai) =
1 and λ(sj) = 0 = λ(pr,j). This immediately gives a (Frobenius) symmetric bilinear form 
(·, ·) : Ĥ×Ĥ → F defined by (y, z) = λ(y)λ(z). Using standard results from [13], we show 
that any proper ideal I of Ĥ lies in the radical Ĥ⊥ = ker(λ) of the form (·, ·). Thus if

∑
αiai +

∑
βjsj +

∑
γr,kpr,k

is an element of I, then 
∑

αi = 0. In particular this has to hold for the coefficients of 
x. This is our first key observation. For our second key observation, we use a minimality 
argument and the Aut(Ĥ)-invariance of I to see that there exists ε = ±1 such that 
αi = εαD−i, for all i = 0, . . . , D. We say that x and the tuple (α0, . . . , αD) are of ε-type.

In fact, these two key observations are the only two restrictions on the generator 
x =

∑D
i=0 αiai of such an ideal I. We define a tuple (α0, . . . , αD) ∈ FD+1 to be of 

ideal-type if α0 �= 0 �= αD, 
∑D

i=0 αi = 0, and (α0, . . . , αD) is of ε-type, for ε = ±1.

Theorem 1.7. For every D ∈ N, there is a bijection between the set of ideal-type (D +
1)-tuples (α0, . . . , αD) ∈ FD+1, up to scalars, and the set of minimal ideals of axial 
codimension D of Ĥ given by

(α0, . . . , αD) �→
(

D∑
i=0

αiai

)
.

Moreover, in Theorem 9.6, we give an explicit basis for each such ideal I and hence 
all the maximal quotients of Ĥ.

Since the Highwater algebra H is isomorphic to Ĥ/J , no non-trivial ideal of the 
Highwater algebra corresponds to an ideal contained in J and so the above results ex-
plicitly describe all the quotients of H with maximal axial codimension. To complete 
the classification of the symmetric 2-generated primitive algebras of Monster type, we 
now turn to classifying the ideals of our algebra Ĥ which are contained in J . Recall that 
J = 〈pr,j : j ∈ N, r = 1, 2〉.

Theorem 1.8. There is a bijection between the set of tuples (β3, . . . , β3k) ∈ Fk, for k ∈ N, 
up to scalars, and the ideals I ⊆ J of Ĥ, given by

(β3, . . . , β3k) �→

⎛⎝ k∑
j=1

β3jp1,3j

⎞⎠ .
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Again, in Theorem 7.2, we give an explicit basis for each such ideal I contained in J .
We end the paper by describing all isomorphisms between quotients of Ĥ (and hence 

also of the Highwater algebra H) and other symmetric 2-generated algebras of Monster 
type (those in cases (1) and (3) of Theorem 1.1).

Theorem 1.9. The only isomorphisms between quotients of Ĥ and M(2, 12 )-axial algebras 
in cases (1) and (3) of Theorem 1.1 are with 3C(2), S(2)◦, Ŝ(2)◦, IY3(2, 12 , μ), for μ ∈ F , 
IY5(2, 12 ) and 6A(2, 12 ) in characteristic 5, (and their quotients).

(See Section 11 for the explicit ideals for each isomorphism.) All the above isomor-
phisms are with algebras A which are M(2, 12)-axial algebras. The other possibility is if 
the quotient of Ĥ also has a grading with respect to the eigenvalue 2 ∈ F and if A is a 
M(1

2 , 2)-axial algebra. In Theorem 11.9, we determine all such examples and find that 
the only possibilities for such isomorphisms are with 3C(2), 6Y(1

2 , 2), or IY3(2, 12 , 1) and 
the quotient must be a quotient of the Highwater algebra H.

The paper is organised as follows. In Section 2, we give a brief overview of axial 
algebras. Our main actor Ĥ is introduced in Section 3, where we show that it is a cover 
of the Highwater algebra and determine its automorphism group. In Section 4, we prove 
that Ĥ has the fusion law given in Table 1 and hence is an axial algebra. We give its 
Frobenius form and some preliminary results on ideals in the brief Section 5. We show 
in Section 6 that ideals of Ĥ are Aut(Ĥ)-invariant. Ideals contained in J are classified 
in Section 7, showing also that they are principal. Principality of the remaining ideals is 
shown in Section 8. Ideals which are not contained in J are classified in Section 9, where 
we also give explicit bases for them. Two important families of examples are given in 
Section 10 which allows us to show our exceptional isomorphisms in Section 11.

2. Background

For an algebra A over a field F and X ⊆ A, we will denote by 〈X〉 the linear span of 
the set X and by 〈 〈X〉 〉 the subalgebra generated by X.

For an element a ∈ A, denote by Aλ(a) = {v : av = λv} the λ-eigenspace for the 
adjoint ada. For ease of notation, for N ⊆ F , define

AN (a) :=
⊕
λ∈N

Aλ(a).

A fusion law is a pair F = (F , �) where F is a non-empty set and � : F × F → 2F
is a symmetric map. It will be convenient to extend the map � to subsets of F in the 
obvious way.

Given a non-associative algebra A over F and a fusion law F ⊆ F , an F-axis (or 
simply an axis when there no ambiguity in the choice of F) is an idempotent element a
of A such that
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(Ax1) ada : v �→ av is a semisimple endomorphism of A with spectrum contained in F ;
(Ax2) for every λ, μ ∈ F ,

Aλ(a)Aμ(a) ⊆ Aλ�μ(a) =
⊕

ν∈λ�μ

Aν

Furthermore, a is called primitive if

(Ax3) the 1-eigenspace of ada is 〈a〉.

An axial algebra over F with a fusion law F is a commutative non-associative F -
algebra A generated by a set X of F-axes. If all the elements of X are primitive, A is 
called primitive.

For an abelian group T , a T -grading of the fusion law F is a map gr : F → T such 
that, for every λ, μ in F

gr(λ � μ) ⊆ {gr(λ)gr(μ)}.

A T -grading of F is a finest grading if every other grading of F factors through the 
grading T . By [1, Proposition 3.2], every fusion law admits a unique finest grading. A 
T -grading gr is adequate if the image gr(F) generates T . So we may always assume 
that our grading is adequate. We are most interested in the case where T = Z2. Taking 
Z2 = {+, −}, for a Z2-grading gr, denote by F+ and F− the full preimages via gr of +
and − respectively. For every axis a of A, a grading on the fusion law induces a grading 
on the algebra: for ε ∈ {+, −}, we set

Aε(a) := AFε
(a).

A straightforward computation shows that the map that negates A−(a) and induces 
the identity on A+(a) is an involutory algebra automorphism called the Miyamoto invo-
lution associated to the axis a (see [16,10]). The group generated by all the Miyamoto 
involutions associated to the axes in X is called the Miyamoto group Miy(X) (see [13]). 
Note that the Miyamoto group is not always the full automorphism group of the algebra, 
as is the case for the algebra Ĥ considered in this paper.

An axial algebra A is 2-generated if there are two axes a and b in A such that A =
〈 〈a, b〉 〉. Further, we say that A is symmetric if there exists an involutory automorphism 
f of A (which might or might not be in the Miyamoto group) that switches the two 
generating axes a and b.

The fusion law M(α, β) in Table 2 is called the Monster fusion law (in the table, we 
omit the set symbols for the entries λ � μ and so in particular empty entries correspond 
to the empty set). Manifestly, this fusion law is Z2-graded, with F+ = {1, 0, α} and 
F− = {β}. We say an axial algebra A is of Monster type (α, β) if it has the Monster 
fusion law M(α, β).
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Table 2
Fusion law M(α, β).

1 0 α β

1 1 α β
0 0 α β
α α α 1, 0 β
β β β β 1, 0, α

A Frobenius form on an F -algebra A is a non-zero symmetric bilinear form

κ : A×A → F

that associates with every element of A, that is, for every x, y, z in A,

κ(x, yz) = κ(xy, z).

From the above formula it follows immediately that the radical of a Frobenius form on 
A is a (two-sided) ideal.

3. The algebra Ĥ

In this section, we will define the main actor in this paper, the algebra Ĥ which will 
be a cover of the Highwater algebra in all characteristics. We first give a definition in 
the style of the characteristic 5 cover of the Highwater algebra as given in [3] and we 
then introduce a second definition with respect to a different basis. This new basis will 
be more useful for us throughout the rest of the paper, simplifying many arguments. We 
will show that in characteristic other than 3, the two definitions are equivalent. (Since 
the Highwater algebra is not 2-generated in characteristic 3, this will not matter for our 
goal.)

Throughout the paper, we adopt the following notation. Let F be a field of charac-
teristic not 2. For r ∈ Z, we denote by r ∈ Z3 the congruence class r + 3Z.

Define δ : Z3 → F by δ(0) = 0, δ(1) = 1 and δ(2) = −1.

Definition 3.1. Let Ĥ be an algebra over F with basis {ai : i ∈ Z} ∪ {s0,j : j ∈
N} ∪ {s1,3j , s2,3j : j ∈ N}. We set s0,0 = 0 and sr,j = s0,j when j /∈ 3N. Define 
the multiplication on Ĥ by

1. aiaj := 1
2 (ai + aj) + sı,|i−j|

2. aisr,j := −3
4ai + 3

8 (ai−j + ai+j) + 3
2sr,j + δ(ı− r)(sr−1,j − sr+1,j)

3. sr,jst,k := 3
4 (sr,j + st,k) − 1

8
∑

x=0,1,2(sx̄,|j−k| + sx̄,j+k), if {i, j} � 3N
4. sa,3jsb,3k := 3

4
∑

h=j,k(sa,3h + sb,3h − s−(a+b),3h) − 3
8
∑

h=|j−k|,j+k(sa,3h + sb,3h −
s−(a+b),3h)

Note that if {a, b, c} = {0, 1, 2}, then −(a + b) = c, but if b = a, then −(a + b) = a.
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It is clear that if char(F) = 5, then Ĥ is precisely the cover of the Highwater algebra 
as defined by Franchi and Mainardis in [3]. They showed that there is an ideal J =
〈s0,j − s2,j , s1,j − s0,j : j ∈ 3N〉 and Ĥ/J ∼= H. So in characteristic 5, the differences of 
the sr,j span J and thus play a fundamental role in Ĥ. We mirror this by defining some 
new elements of Ĥ in any characteristic other than 3.

sj := 1
3

∑
r∈Z3

sr,j

pr,j := 1
3
(
sr−1,j − sr+1,j

)
zr,j := pr+1,j − pr−1,j

Note that if j /∈ 3N, then sj = s0,j , pr,j = 0 and so zr,j = 0. Also 
∑

r∈Z3
pr,j = 0 and 

so 
∑

r∈Z3
zr,j = 0 also.

We now give our second definition which has a more natural basis.

Definition 3.2. Let Ĥ be an algebra over F with basis

B := {ai : i ∈ Z} ∪ {sj : j ∈ N} ∪ {pr,k : r ∈ {1, 2} and k ∈ 3N}

We set s0 = 0, pr,j = 0 for all r ∈ Z3 if j /∈ 3N, p0,j := −p1,j − p2,j and zr,j =
pr+1,j − pr−1,j (note that zr,j = 0 whenever j /∈ 3N). Define the multiplication on Ĥ by

H1 aiaj := 1
2 (ai + aj) + s|i−j| + zı,|i−j|

H2 aisj := −3
4ai + 3

8 (ai−j + ai+j) + 3
2sj − zı,j

H3 aipr,j := 3
2pr,j − p−(ı+r),j

H4 sjsl := 3
4 (sj + sl) − 3

8(s|j−l| + sj+l)
H5 sjpr,k := 3

4 (pr,j + pr,k) − 3
8 (pr,|j−k| + pr,j+k)

H6 pr,hpt,k := 1
4(z−(r+t),h + z−(r+t),k) − 1

8 (z−(r+t),|h−k| + z−(r+t),h+k)

where i ∈ Z, j, l ∈ N, h, k ∈ 3N and r, t ∈ Z3.

Note that, as pr−1,j + pr,j + pr+1,j = 0, we have 3pr,j = zr−1,j − zr+1,j . We now 
immediately justify our use of the same letter Ĥ for both algebras.

Lemma 3.3. Suppose that char(F) �= 3, then the algebras in Definitions 3.2 and 3.1 are 
isomorphic. The isomorphism is given by

ai �→ ai, sj �→ 1
3

∑
r∈Z3

sr,j , pr,j �→ 1
3 (sr−1,j − sr+1,j).

Note that the inverse maps ai �→ ai and sr,j �→ sj + zr,j.

Proof. This is immediate from checking the multiplication. �
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Where we do not rule out characteristic 3 going forward, we will use the second 
definition.

For all characteristics Ĥ is a cover of the Highwater algebra, extending the definition 
in [3].

Lemma 3.4. Let J be the subspace 〈p1,j , p2,j : j ∈ N〉 of Ĥ. Then J is an ideal of Ĥ and 
the quotient Ĥ/J is isomorphic to the Highwater algebra H.

Proof. From H3, H5, and H6 it is clear that AJ ⊆ J and so J is an ideal. It is now 
straightforward to see that Ĥ/J ∼= H from the definition of H (see [4, Section 2]). �

We begin by determining the automorphism group of Ĥ. For k ∈ 1
2Z, let τk : Z → Z

be the reflection in k given by i �→ 2k − i. Then D := 〈τ0, τ1/2〉 is the infinite dihedral 
group acting naturally on Z. Let sgn: D → Z× be the sign representation of D. That 
is, sgn(ρ) = −1 if ρ is a reflection and sgn(ρ) = 1 if ρ is a translation.

Definition 3.5. For ρ ∈ D, define ϕρ : Ĥ → Ĥ to be the linear map given by

ai
ϕρ = aiρ , sj

ϕρ = sj , pr,k
ϕρ = (sgn ρ)prρ,k

Note that we have zϕρ

r,k = zrρ,k.

Proposition 3.6. For every ρ ∈ D, ϕρ is an automorphism of Ĥ and the map ρ �→ ϕρ

defines a faithful representation of D as a subgroup of automorphisms of Ĥ.

Proof. By the above formulas, the products H2-H6 are preserved by ϕρ. For H1, observe 
that the action of D on Z preserves distance, whence |i − j| = |iρ − jρ| for all i, j ∈ Z. It 
is then clear that ϕ is an injective group homomorphism since every ϕρ acts non-trivially 
on {ai : i ∈ Z} if ρ �= 1. �

By an abuse of notation, from now on we identify ϕρ with ρ, in particular τi ∈ Aut(Ĥ). 
To determine the automorphism group of Ĥ we use the following fact.

Lemma 3.7. If char(F) �= 3, then the only non-trivial idempotents in Ĥ are the ai’s, 
i ∈ Z.

Proof. The proof is analogous to that of [4, Lemma 2.3]. �
Proposition 3.8. If char(F) �= 3, then Aut(Ĥ) ∼= D.

Proof. The proof is a modified version of [4, Proposition 2.4], which we sketch here. Since 
char(F) �= 3, we may use Definition 3.1. By Lemma 3.7, Aut(Ĥ) permutes the non-trivial 
idempotents {ai : i ∈ Z} and so it permutes the set of sr,j = aiaj − 1 (ai + aj). For the 
2
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pair (r, k), where r ∈ Z3 and k ∈ N, we define a graph Γ(r,k) with vertices {ai : i ∈ Z}
and an edge between ai and aj if and only if sr,k = aiaj − 1

2 (ai + aj). It is easy to see 
that if k /∈ 3Z, then Γ(r,k) has exactly k connected components, while if k ∈ 3Z, Γ(r,k)
has k

3 connected components. Since two graphs Γ(r,k) and Γ(t̄,l) are isomorphic if and 
only if k = l ∈ 3Z, it follows that Aut(Ĥ) fixes every sr,k, if k /∈ 3Z and permutes the 
set {s0,k, s1,k, s2,k} when k ∈ 3Z. �

In Theorem 1.2 we will show that, for every i ∈ Z \ {0}, ai is an axis and the 
Miyamoto involution τai

associated to ai coincides with the reflection τi. Similarly, the 
automorphism swapping a0 with a1 (usually denoted by f in the context of symmetric 
axial algebras of Monster type) is τ 1

2
. We let θj , for j ∈ Z, be the automorphism of Ĥ

induced by the translation on Z by j.
We record in the next lemma the products with zr,j which will be useful later.

Lemma 3.9. For i ∈ Z, j ∈ N, h, k ∈ 3N and {r, t} ⊆ Z3, we have the following.

1. aizr,j = 3
2zr,j + z−(ı+r),j

2. sjzr,k = 3
4 (zr,j + zr,k) − 3

8 (zr,|j−k| + zr,j+k)
3. pr,hzt,k = 3

4(p−(r+t),h + p−(r+t),k) − 3
8 (p−(r+t),|h−k| + p−(r+t),h+k)

4. zr,hzt,k = −3
4(z−(r+t),h + z−(r+t),k) + 3

8 (z−(r+t),|h−k| + z−(r+t),h+k)

Proof. These follow immediately from the multiplication in Ĥ. �
We close this section with the following observation. Define λ : Ĥ → F by λ(ai) = 1

and λ(sj) = 0 = λ(pr,k) and extend linearly.

Proposition 3.10. The map λ is an algebra homomorphism and so Ĥ is a baric algebra.

Proof. This follows from the definition of the multiplication in Definition 3.2. �
As an immediate consequence, the map (·, ·) : Ĥ×Ĥ → F , defined by (x, y) = λ(x)λ(y), 

is a Frobenius form.

4. The fusion law

Let F be the fusion law on the set {1, 0, 52 , 2, 
1
2} ⊆ F described in Table 1 on page 

435. In this section we prove Theorem 1.2.

Theorem 1.2. If char(F) �= 2, 3, then Ĥ is a symmetric 2-generated primitive axial algebra 
with fusion law F given in Table 1.
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We begin by showing that a0 is an F-axis. By the action of Aut(Ĥ), this implies that, 
for all i ∈ Z, ai is an F-axis. Similarly to [4] and [3], we consider an ‘i-slice’ of the 
algebra. Let

U i := 〈a0, a−i, ai, si, p1,i, p2,i〉

Note that, if i /∈ 3N, then pr,i = 0 and U i is 4-dimensional. Otherwise, if i ∈ 3N, then U i

is 6-dimensional. Since ada0 preserves U i, for all i ∈ N, and Ĥ =
∑

i∈N U i, we restrict 
to U i to find the eigenvectors of ada0 . For i /∈ 3N, the analysis is the same as in [4] and 
ada0 is semisimple with eigenvalues 1, 0, 2 and 1

2 . So let i ∈ 3N. Then the action of ada0

on U i, with respect to the basis (a0, a−i, ai, si, p1,i, p2,i), is represented by the following 
matrix ⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1
2

1
2 0 1 1 −1

1
2 0 1

2 1 1 −1
−3

4
3
8

3
8

3
2 −1 1

0 0 0 0 3
2 −1

0 0 0 0 −1 3
2

⎞⎟⎟⎟⎟⎟⎟⎠
which has eigenspaces

1. U i
1 = 〈a0〉, U i

0 = 〈ui〉, U i
2 = 〈vi〉, U i

5
2

= 〈zi〉 and U i
1
2

= 〈wi, w̃i〉, if F has characteristic 
other than 3 and 5;

2. U i
1 = 〈a0, zi〉, U i

0 = 〈ui〉, U i
2 = 〈vi〉, and U i

1
2

= 〈wi, w̃i〉, if F has characteristic 3 (since 
5
2 = 1);

3. U i
1 = 〈a0〉, U i

0 = 〈ui, zi〉, U i
2 = 〈vi〉, and U i

1
2

= 〈wi, w̃i〉, if F has characteristic 5;

where

ui := 6a0 − 3(a−i + ai) + 4si + 4z0,i

vi := 2a0 − (a−i + ai) − 4si − 4z0,i

wi := a−i − ai

zi := p1,i − p2,i = z0,i

w̃i := p1,i + p2,i = −p0,i

Notice that, in any characteristic other than 2, if i ∈ 3N, (a0, ui, vi, wi, zi, w̃i) is a basis 
for U i. On the other hand, when i /∈ 3N, since p1,i = p2,i = 0, zi and w̃i are zero and 
(a0, ui, vi, wi) is a basis for U i. We set Ĥ1 := 〈a0〉, Ĥu := 〈ui | i ∈ N〉, Ĥz := 〈zi | i ∈ N〉, 
Ĥv := 〈vi | i ∈ N〉 and Ĥw := 〈wi, w̃i | i ∈ N〉. Moreover, define Ĥ+ := Ĥ1⊕Ĥu⊕Ĥz⊕Ĥv

and Ĥ− := Ĥw. Finally, it will be convenient to set u0 := v0 := w0 := z0 := w̃0 := 0. We 
immediately have the following.
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Lemma 4.1. With the above notation, Ĥ = Ĥ1 ⊕ Ĥu ⊕ Ĥz ⊕ Ĥv ⊕ Ĥw = Ĥ+ ⊕ Ĥ−.

Lemma 4.2. The involution τ0 acts as the identity on Ĥ+ and as minus identity on Ĥ−. 
In particular, Ĥ+ is the fixed subalgebra of τ0, Ĥ+Ĥ− ⊆ Ĥ− and Ĥ−Ĥ− ⊆ Ĥ+.

Proof. This follows immediately from the definition of ϕτ0 (Definition 3.5), since ϕτ0 is 
an algebra automorphism. �

Recall from Proposition 3.10, that Ĥ is baric with respect to the algebra homomor-
phism λ : Ĥ → F defined by λ(ai) = 1 and λ(sj) = 0 = λ(pr,k). We can use this to refine 
the condition that Ĥ−Ĥ− ⊆ Ĥ+.

Lemma 4.3. We have Ĥ−Ĥ− ⊆ Ĥu ⊕ Ĥz ⊕ Ĥv.

Proof. It is immediate to see that, for every η ∈ {u, v, z, w} and x ∈ Ĥη, λ(x) = 0, 
whereas λ(Ĥ1) = 1. Since λ is an algebra homomorphism and Ĥ−Ĥ− ⊆ Ĥ+, the result 
follows immediately. �

To calculate the fusion law, it will be convenient to use different elements, which 
generalise those in [3]. We set c0 := 0 and, for i ∈ N, we define

ci := 2a0 − (a−i + ai)

which allows us to rewrite ui and vi as

ui = 3ci + 4si + 4zi
vi = ci − 4si − 4zi.

In order to calculate the products of such elements, we also introduce the following. For 
i, j ∈ N we define

ci,j := −2(ci + cj) + c|i−j| + ci+j

ti,j := −2(si + sj) + s|i−j| + si+j

ui,j := −2(ui + uj) + u|i−j| + ui+j

vi,j := −2(vi + vj) + v|i−j| + vi+j

zi,j := −2(zi + zj) + z|i−j| + zi+j .

Firstly, note that all the above expressions are symmetric in i and j. Secondly, ui,j ∈
Ĥu, vi,j ∈ Ĥv and zi,j ∈ Ĥz. To calculate the products of our basis vectors, we begin by 
computing the products with our new elements.

Lemma 4.4. For all i, j ∈ N, we have
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1. cicj =
{

2ti,j + 2zi,j if i ∈ 3N
2ti,j + 2zi,j − 3(z|i−j| + zi+j) otherwise

2. cisj =
{

3
8ci,j if i ∈ 3N
3
8ci,j − 3zj otherwise

3. cizj =
{

0 if i ∈ 3N
3zj otherwise

Proof. A straightforward computation gives:

cicj = (2a0 − (a−i + ai))(2a0 − (a−j + aj))

= 4a0 − 2
[1

2(a−i + a0) + si + z0,i + 1
2 (ai + a0) + si + z0,i

]
− 2

[1
2(a0 + a−j) + sj + z0,j + 1

2 (a0 + aj) + sj + z0,j
]

+
[1

2 (a−i + a−j) + s|i−j| + z−ı,|i−j| + 1
2 (ai + a−j) + si+j + zı,i+j

+1
2 (a−i + aj) + si+j + z−ı,i+j + 1

2(ai + aj) + s|i−j| + zı,|i−j|
]

= −4(si + sj) + 2(s|i−j| + si+j) − 4(z0,i + z0,j)

+ zı,|i−j| + z−ı,|i−j| + zı,i+j + z−ı,i+j

= 2ti,j + 2zi,j − 2(z0,|i−j| + z0,i+j) + zı,|i−j| + z−ı,|i−j| + zı,i+j + z−ı,i+j .

Since z0,j + zı,j + z−ı,j = 0 if i /∈ 3N, the result follows. For the second assertion we have

cisj = [2a0 − (a−i + ai)]sj
= 2

[
−3

4a0 + 3
8(a−j + aj) + 3

2sj − z0,j
]

−
[
−3

4a−i + 3
8 (a−i−j + a−i+j) + 3

2sj − z−ı,j

]
−
[
−3

4ai + 3
8 (ai−j + ai+j) + 3

2sj − zı,j
]

= −3
4ci −

3
4cj + 3

8c|i−j| + 3
8ci+j − 2z0,j + zı,j + z−ı,j .

As above, the result follows. For the third assertion we have

cizj = [2a0 − (a−i + ai)]z0,j =

= 2
(3

2z0,j + z0,j
)
−
( 3

2z0,j + zı,j
)
−

( 3
2z0,j + z−ı,j

)
= 2z0,j − zı,j − z−ı,j

and the result follows as in the previous case. �
We can also express the products of the sj ’s and zj ’s in a compact form using our 

new elements.

Lemma 4.5. For all i, j ∈ N, h, k ∈ 3N we have
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1. sisj = −3
8 ti,j

2. zhzk = 3
8zh,k

3. sizh = −3
8zi,h.

Proof. This is immediate from the definition of ti,j and H4 and the definition of zi,j and 
Lemma 3.9. �

We now use our new elements to rewrite ui,j and vi,j .

Lemma 4.6. For all i, j ∈ N, we have

1. ui,j = 3ci,j + 4ti,j + 4zi,j ,
2. vi,j = ci,j − 4ti,j − 4zi,j.

Proof. By the definition of our basis elements we have

ui,j = −2(3ci + 4si + 4zi) − 2(3cj + 4sj + 4zj)

+ (3c|i−j| + 4s|i−j| + 4z|i−j|) + (3ci+j + 4si+j + 4zi+j)

= 3ci,j + 4ti,j + 4zi,j ,

and similarly for vi,j . �
We may now determine the fusion law, by finding the products between the elements 

which span the different parts.

Lemma 4.7. For all i, j ∈ N, we have

1. uiuj =
{

3ui,j if ij ∈ 3N
3ui,j − 21zi,j otherwise

2. uivj =
{
−3vi,j if ij ∈ 3N
−3vi,j − 15zi,j otherwise

3. vivj =
{
−ui,j if ij ∈ 3N
−ui,j + 3zi,j otherwise

4. uizj =
{

0 if i ∈ 3N
12zj otherwise

5. vizj = 0

Proof. By the definition of ui and Lemmas 4.4 and 4.5, we have

uiuj = (3ci + 4si + 4zi)(3cj + 4sj + 4zj)
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= 9cicj + 12 (ci(sj + zj) + cj(si + zi))

+ 16(sisj + sizj + sjzi + zizj)

= 9ci,j − 6ti,j + 9cicj + 16(sizj + sjzi + zizj)

If i, j /∈ 3N, then zi = 0 = zj and (z|i−j|+zi+j) = zi,j . By Lemma 4.4, ci,j = 2ti,j+2zi,j−
3(z|i−j| +zi+j) = 2ti,j −zi,j and hence uiuj = 9ci,j −6ti,j +18ti,j −9zi,j = 3ui,j −21zi,j . 
Now suppose that i ∈ 3N and j /∈ 3N (by symmetry the case where i /∈ 3N and j ∈ 3N
is equal to this). By Lemma 4.4 and Lemma 4.5, we get uiuj = 9ci,j − 6ti,j + 18ti,j +
18zi,j − 6zi,j = 3ui,j . Finally, if i, j ∈ 3N, we get uiuj = 9ci,j − 6ti,j + 18ti,j + 18zi,j −
6zi,j − 6zi,j + 6zi,j = 3ui,j .

For the second and third formulas we have

uivj = (3ci + 4si + 4zi)(cj − 4sj − 4zj)

= 3cicj − 12ci(sj + zj) + 4cj(si + zi) − 16sisj − 16sizj
− 16sjzi − 16zizj

= 6ti,j − 3ci,j + 3cicj − 16(sizj + sjzi + zizj)

and

vivj = (ci − 4si − 4zi)(cj − 4sj − 4zj)

= cicj − 4 (ci(sj + zi) + cj(si + zi))

+ 16(sisj + sizj + sjzi + zizj)

= −3ci,j−6ti,j + cicj + 16(sizj + sjzi + zizj)

and the result follows from Lemma 4.4 and Lemma 4.5 as in the previous case. The last 
two claims follow in a similar way. �

We may now prove the main result of this section.

Proof of Theorem 1.2. It is clear from the multiplication that a0 is an idempotent and, 
by Lemma 4.1, ada0 is semisimple with eigenvalues 1, 5

2 , 0, 2 and 1
2 . The fusion law 

follows from Lemmas 4.3, 4.7 and 3.9 and so a0 is an F-axis. By Proposition 3.6, using 
the action of D∞ (which is Aut(Ĥ) if char(F) �= 3), ai is an F-axis, for all i ∈ Z. 
Therefore Ĥ is a primitive axial algebra with the fusion law given in Table 1.

Observe that, for every i ∈ Z, the map τi is precisely the Miyamoto involution as-
sociated to the axis ai. The fact that Ĥ is 2-generated and symmetric follows in a 
similar way to [4, Theorem 2.1] and [3, Theorem 6], but is more involved. Since τ0 maps 
a1 to a−1, 〈 〈a0, a1〉 〉 = 〈 〈a0, a1, a−1〉 〉. Now 〈 〈a0, a1, a−1〉 〉 is invariant under τ 1

2
, whence 

〈 〈a0, a1〉 〉 is invariant under Aut(Ĥ) = 〈τ0, τ 1
2
〉. However, Aut(Ĥ) acts transitively on 

the ai, so ai ∈ 〈 〈a0, a1〉 〉, for all i ∈ Z. By H1, sj + zr,j ∈ 〈 〈a0, a1〉 〉, for all j ∈ N, 
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Table 3
The fusion law for Ĥ when 
char(F) = 3.

� 1 0 1
2

1 1 1
2

0 1, 1
2

1
2

1
2 1, 1

2 0, 1, 1
2

r ∈ Z3. As 
∑

r∈Z3
zr,j = 0 and char(F) �= 3, we may take linear combinations to 

get sj , zr,j ∈ 〈 〈a0, a1〉 〉, for all j ∈ N, r ∈ Z3. Finally, taking linear combinations of 
z0,j = p1,j − p2,j and z1,j = p2,j − p0,j = p1,j + 2p2,j , we get p1,j , p2,j ∈ 〈 〈a0, a1〉 〉 for all 
j ∈ N. �
Remark 4.8. Finally, we consider the case where char(F) = 3; then 5

2 = 1 and 2 = 1
2 . 

However, the five part decomposition and the multiplication between those parts remains 
true, so Ĥ, with respect to the set of axes {ai | i ∈ Z}, is an axial decomposition algebra 
as defined in [1]. One can show that it is also a (non-primitive) axial algebra with the 
fusion law in Table 3. Unlike the Highwater algebra, the idempotents ai do not satisfy the 
Jordan type fusion law, so Ĥ is not a Jordan algebra (see [21, p. 33]). Moreover, every pair 
of axes ai, aj generates a 3-dimensional Jordan algebra 〈ai, aj , s|i−j| + zı,|i−j|〉, which is 
isomorphic to the algebra Ŝ(2)◦ using the notation from [14] (this was called Cl00(F , b2)
in [8, Theorem (1.1)]). In particular, Ĥ is not 2-generated anymore – it is not even finitely 
generated.

Hence for the remainder of the paper we will assume that char(F) �= 2, 3.

5. The Frobenius form and the radical

In this short section, we prove some preliminary results about ideals of Ĥ. Recall 
from the end of Section 3 that Ĥ has a Frobenius form (·, ·) defined by (x, y) = λ(x)λ(y). 
Hence we may apply some general results from [13] about ideals in axial algebras with a 
Frobenius form to Ĥ.

We can split ideals into two classes: those which do not contain any axes and those 
which do. The radical is the unique largest ideal which does not contain any axes.

Lemma 5.1. The radical of Ĥ is a codimension 1 ideal spanned by the set {ai−aj , sk, pr,k :
i, j ∈ Z, k ∈ N, r ∈ Z3}.

Proof. Since (·, ·) is a Frobenius form on Ĥ such that (a, a) �= 0 for each axis a, by [13, 
Theorem 4.9], the radical equals the radical of the Frobenius form. �

Ideals which contain an axis are controlled by the projection graph.
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Lemma 5.2. The projection graph for Ĥ is connected.

Proof. We have (a, b) = λ(a)λ(b) = 1 for all axes a and b. So, by [13, Lemma 4.17], the 
projection graph is undirected and connected. �
Corollary 5.3. Every proper ideal of Ĥ is contained in the radical, in particular no proper 
ideal of Ĥ contains any axes.

Since every proper ideal I is contained in the radical, we have the following result 
which we will use frequently.

Corollary 5.4. Let I be an ideal of Ĥ, v ∈ I. If we write v as a linear combination of the 
basis B of Definition 3.2, then the sum of the coefficients of the ai’s is 0.

We finish this section by noting two results which will be important for us. Firstly, 
by [13, Corollary 3.11], ideals of an axial algebra are invariant under the Miyamoto group, 
so we get the following.

Lemma 5.5. Every ideal of Ĥ is τi-invariant, for every i ∈ Z.

Secondly, the decomposition of the algebra into eigenspaces induces a decomposition 
of an ideal I into a sum of eigenspaces.

Lemma 5.6. Let I � A be an ideal of an F-axial algebra A and a ∈ A be an axis. Then 
I =

⊕
λ∈F Iλ, where Iλ = Iλ(a) = I ∩Aλ(a) for all λ ∈ F .

6. Invariance of ideals under automorphisms

As we have seen, in an axial algebra, every ideal is invariant under the action of 
the Miyamoto group. For Ĥ, the Miyamoto group is an index 2 subgroup of the full 
automorphism group. In this section, we show that ideals of Ĥ are in fact invariant 
under the full automorphism group.

Theorem 6.1. If char(F) �= 2, 3, then all ideals of Ĥ are Aut(Ĥ)-invariant.

Corollary 6.2. If char(F) �= 2, 3, then every quotient of Ĥ is a symmetric 2-generated 
axial algebra.

Proof. Let I � Ĥ. By Corollary 5.3, no axis is contained in J . So the quotient Ĥ/I is 
generated by the images ā0 = a0 + I and ā1 = a1 + I. Since Iτ1/2 ⊆ I, τ1/2 induces an 
automorphism of Ĥ/I which switches the two generators. �

We will prove Theorem 6.1 via a series of lemmas using the following strategy. Let I
be a proper ideal of Ĥ. We must show that Iσ ⊆ I for all σ ∈ Aut(Ĥ). By Lemma 5.6, 
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I =
⊕

λ∈F Iλ, where Iλ := I ∩ Ĥλ(a0). So, since an automorphism is a linear map, it 
suffices to show that Iλσ ⊆ I for all λ ∈ F . In fact, by Corollary 5.3, no non-trivial ideal 
contains an axis, so I1 = 0 and we only need to consider λ ∈ F \ {1}.

Recall that 〈Miy(X), τ1/2〉 = Aut(Ĥ). Since ideals are invariant under the action of 
the Miyamoto group, it is enough to show that Iλσ ⊆ I, for some element σ ∈ Aut(Ĥ)
such that 〈Miy(X), σ〉 = Aut(Ĥ). For some values of λ the most convenient choice for σ
is τ1/2 itself. However, for other values, it is more convenient to use τ3/2 = τ1/2

τ1 instead. 
(This is because, for j ∈ N, τ3/2 fixes z0,j and swaps z1,j and z2,j .)

For each λ ∈ F \ {1, 12}, we will show that for all x ∈ Ĥλ,

xσ = Fλ(x)

where Fλ is contained in the subalgebra of EndF (Ĥ) generated by the adjoint maps and 
the elements of the Miyamoto group. Since these map I, and hence Iλ, into I, the result 
follows. When λ = 1

2 , the argument is similar except that we further split Ĥ1/2 into two 
direct summands and treat each summand separately.

Finally, since Fλ is linear, it suffices to show that xσ = Fλ(x) holds for x in a basis of 
Ĥλ. We must pay special attention to the characteristics where any of 5

2 , 0, 2, 
1
2 coincide. 

In particular, since we already assumed char(F) �= 2, 3, the only possibility is in charac-
teristic 5, where 5

2 = 0, in which case the 0-eigenspace is generated by the ui’s and the 
zi’s.

From the definitions we immediately have the following.

Lemma 6.3. For every i ∈ N we have

1. zi
τ3/2 = zi

2. w̃
τ3/2

i = −w̃i.

Corollary 6.4. If char(F) �= 5, I5/2
Aut(Ĥ) ⊆ I.

Proof. Since char(F) �= 5, we have Ĥ5/2 = Ĥz and the result follows from Lem-
ma 6.3(1). �

We now compute the action of τ3/2 on the ui and vi eigenvectors for a0.

Lemma 6.5. For every i ∈ N,

1. ui
τ3/2 = 6a3 − 3(a3−i + a3+i) + 4si + 4z0,i,

2. vi
τ3/2 = 2a3 − (a3−i + a3+i) − 4si − 4z0,i,

3. c3,i = 1
3 (−2ui + ui

τ3/2 + ui
τ3/2τ0) = −2vi + vi

τ3/2 + vi
τ3/2τ0 .

Proof. The first two formulas follow immediately from the definitions of ui, vi and τ3/2. 
For the last formula, assume first that i > 3. Then |3 − i| = 3 − i and we have
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c3,i = −2(c3 + ci) + ci−3 + ci+3

= −2ci − 2(2a0 − (a−3 + a3))

+ 2a0 − (a3−i + ai−3) + 2a0 − (a−3−i + ai+3)

= −2ci + 2a3 − (a3−i + a3+i) + 2a−3 − (a−3−i + a−3+i)

= −2ci + ci
τ3/2 + ci

τ3/2τ0 .

A similar argument holds for i = 1, 2, 3. Since si and z0,i are invariant under τ3/2 and τ0
and ci = 1

3 (ui − 4si − 4z0,i) = vi + 4si + 4z0,i, we get the last claim. �
We may now write identities for ui

τ3/2 and viτ3/2 , giving us the endomorphisms F0 and 
F2.

Lemma 6.6. For every i ∈ N we have

1. ui
τ3/2 = ui − 5

4a3ui + 3
4a−3ui + s3ui + z3ui,

2. vi
τ3/2 = 7

12a3vi − 1
12a−3vi + 1

3s3vi + 1
3z3vi.

Proof. For the first claim, multiply ui by a3 and use Lemmas 3.9 and 6.5, to get

a3ui = a3
(
3ci + 4si + 4z0,i

)
= 3

2ci + 6s3 + 6z0,3 − 3(s|i−3| + z3̄,|i−3| + si+3 + z3̄,i+3)

− 3a3 + 3
2 (a3−i + a3+i) + 6si + 6z0,i

= 1
2 (3ci + 4si + 4z0,i) − 1

2(6a3 − 3(a3−i + a3+i) + 4si + 4z0,i)

+ 6(s3 + si) − 3(s|i−3| + si+3) + 6(z0,3 + z0,i) − 3(z0,|i−3| + z0,i+3)

= 1
2 (ui − ui

τ3/2) − 3(t3,i + z3,i).

Apply the map τ0 to the above equality (noting that t3,iτ0 = t3,i and z3,i
τ0 = z3,i) and 

sum this with the above equality to get

a3ui + a−3ui = ui − 1
2 (ui

τ3/2 + ui
τ3/2τ0) − 6(t3,i + z3,i). (1)

Similarly, multiply ui by s3 + z3 using Lemmas 3.9, 4.4, and 6.5, and we get

(s3 + z3)ui = (s3 + z3)
(
3ci + 4si + 4z0,i

)
= 9

8c3,i −
3
2 (t3,i + z3,i)

= −3
4ui + 3

8(uτ3/2

i + u
τ3/2τ0
i ) − 3

2 (t3,i + z3,i).

We sum this last equation with 3 of Equation (1) to obtain
4
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t3,i + z3,i = −1
6s0,3ui − 1

8 (a3ui + a−3ui). (2)

Finally, the result for ui follows by substituting this expression for t3,i + z3,i in the 
expression for a3ui and rearranging. The proof for vi is obtained analogously, by taking 
a suitable linear combination of the expressions for a3vi, (a3vi)τ0 and s3vi. �
Corollary 6.7. I2Aut(Ĥ) ⊆ I.

Proof. Since Ĥ2 = Ĥv, the result follows from Lemma 6.6(2). �
We now consider the case where λ = 0. If char(F) �= 5, then I0

Aut(Ĥ) ⊆ I follows 
immediately from the Lemma 6.6(1). However if char(F) = 5, then 5/2 = 0, so the 
0-eigenspace is Ĥu ⊕ Ĥz and has basis given by the ui’s and the zi’s.

Lemma 6.8. If char(F) = 5, then, for all x ∈ Ĥu ⊕ Ĥz,

xτ3/2 = x + 2a−3x + s3x + z3x.

Proof. If x ∈ Ĥu, the result follows immediately by Lemma 6.6 (note that 3
4 = 2 in 

characteristic 5). Whereas for Ĥz, we have a−3zi = (a0zi)τ−3/2 = 0, so, by Lemma 4.5
and Lemma 6.3, zi + 2a−3zi + s3zi + z3zi = zi

τ3/2 + 0 + 0 + 0 = zi
τ3/2 . �

Corollary 6.9. I0Aut(Ĥ) ⊆ I.

Proof. If char(F) �= 5, then I0 = I ∩ Ĥu and the result follows by Lemma 6.6(1). If 
char(F) = 5, the result follows by Lemma 6.8. �

It now remains to consider the case where λ = 1
2 . Here, the 1

2 -eigenspace Ĥw has 
a basis given by two different types of vectors, wi = a−i − ai, for i ∈ N, and w̃j =
p1,j + p2,j = −p0,j , where j ∈ 3N. We first compute wi

τ1/2 (here in fact it is more 
convenient to use τ1/2, rather than τ3/2).

Lemma 6.10. For every i ∈ N we have

wi
τ1/2 = 4

3a0(a1wi) − 4
3s1wi − 4

3wi − 2(a1wi − 1
2wi) + 4

3(a1wi − 1
2wi)τ2−τ2τ1 .

Proof. We begin by calculating

s1wi = s1(a−i − ai)

= −3
4wi + 3

8 (a−i−1 + a−i+1 − ai−1 − ai+1)

Now, noting that τ1/2 acts on indices of the aj ’s by j �→ 1 −j and τ1/2τ0 acts by translation 
by −1, we have wi

τ1/2 = ai+1 − a−i+1 and wi
τ1/2τ0 = a−i−1 − ai−1. So the above is 

s1wi = −3wi + 3 (wi
τ1/2τ0 − wi

τ1/2).
4 8
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Also by calculation a1wi = 1
2wi + si+1− s|i−1| + z1,i+1− z1,|i−1| = 1

2wi + si+1− si−1 +
z1,i+1 − z1,i−1, as i ≥ 1. Multiplying by a0, we get

a0(a1wi) = 1
2a0wi + a0(si+1 − si−1 + z1,i+1 − z1,i−1)

= 1
4wi + 3

8(a−i−1 + ai+1 − a−i+1 − ai−1) + 3
2 (si+1 − si−1)

− z0,i+1 + z0,i−1 + 3
2z1,i+1 + z2,i+1 − 3

2z1,i−1 − z2,i−1

= 1
4wi + 3

8(wi
τ1/2τ0 + wi

τ1/2) + 3
2 (si+1 − si−1)

+ 3
2 (z1,i+1 − z1,i−1) − (z0,i+1 − z0,i−1 − z2,i+1 + z2,i−1)

Note that si+1−si−1 +z0,i+1−z0,i−1 = (si+1−si−1 +z1,i+1−z1,i−1)τ2 = (a1wi− 1
2wi)τ2

and similarly, si+1 − si−1 + z2,i+1 − z2,i−1 = (a1wi − 1
2wi)τ2τ1 , so that z0,i+1 − z0,i−1 −

z2,i+1 + z2,i−1 = (a1wi − 1
2wi)τ2 − (a1wi − 1

2wi)τ2τ1 . We can now combine these two 
expressions with those for s1wi and a0(a1wi) to get the result. �

When char(F) = 5, the formula in Lemma 6.10 holds also for the w̃i’s:

Lemma 6.11. Suppose that char(F) = 5. Then, for every i ∈ N, we have

w̃
τ1/2

i = 4
3a0(a1w̃i) − 4

3s1w̃i − 4
3 w̃i − 2(a1w̃i − 1

2 w̃i) + 4
3 (a1w̃i − 1

2 w̃i)τ2−τ2τ1 .

Proof. Since w̃i = −p0,i, by H3, we have

a1w̃i = −a1p0,i = −3
2p0,i + p2,i = −5

2p0,i − p1,i = −p1,i = −w̃
τ1/2

i

and hence

a0(a1w̃i) = −a0w̃
τ1/2

i = −(a1w̃i)τ1/2 = −(−w̃
τ1/2

i )τ1/2 = w̃i

By H5, we get s1w̃i = −s1p0,i = −3
4p0,i + 3

8 (0) = 3
4 w̃i.

Now observe that τ2 and τ1/2 have the same action on Si := 〈si, p1,i, p2,i〉. Hence τ2τ1
and τ1/2τ1 = τ0τ1/2 also have the same action on Si. In particular, noting that w̃τ1/2

i = p1,i
and so w̃τ1

i = −pτ10,i = p2,i = w̃i − w̃
τ1/2

i , we have

(a1w̃i − 1
2 w̃i)τ2−τ2τ1 = (−w̃

τ1/2

i − 1
2 w̃i)τ1/2 − (−w̃

τ1/2

i − 1
2 w̃i)τ1/2τ1

= −w̃i − 1
2 w̃

τ1/2

i − (−w̃τ1
i − 1

2 w̃
τ0τ1/2

i )

= −w̃i − 1
2 w̃

τ1/2

i − (−w̃i + w̃
τ1/2

i + 1
2 w̃

τ1/2

i )

= −2w̃τ1/2

i

Thus, the right hand side of the required expression is

4a0(a1w̃i) − 4s1w̃i − 4 w̃i − 2(a1w̃i − 1 w̃i) + 4 (a1w̃i − 1 w̃i)τ2−τ2τ1

3 3 3 2 3 2
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= 4
3 w̃i − w̃i − 4

3 w̃i − 2(−w̃
τ1/2

i − 1
2 w̃i) − 8

3 w̃
τ1/2

i

= (2 − 8
3 )w̃τ1/2

i = w̃
τ1/2

i . �
Corollary 6.12. If char(F) = 5, then I 1

2

AutĤ ⊆ I.

Proof. The result follows from Lemma 6.10 and Lemma 6.11. �
When the characteristic is not 5, we will show that we can in fact further decompose 

I 1
2

as I 1
2

= Iw ⊕ Iw̃, where Iw := I ∩ 〈wi : i ∈ N〉 and Iw̃ := I ∩ 〈w̃j : j ∈ 3N〉. Recall 
that, for k ∈ Z, θk = (τ0τ1/2)k and θk maps ai to ai+k for all i ∈ Z, fixes sj and maps 
pr,j to pr+k,j , for all j ∈ N and r ∈ Z3. In particular, θ2k = θkθk ∈ Miy(X).

Lemma 6.13. For every i ∈ N, j ∈ 3N, k ∈ N \ 3N we have

1. w̃j + w̃θ2
j + w̃θ4

j = 0;
2. if i /∈ 3N, siw̃j = 3

4 w̃j;
3. skwi = −3

4wi + (wθk
i + w

θ−k

i ).

Proof. This is immediate from the definitions. �
Lemma 6.14. If char(F) �= 5, then I 1

2
= Iw ⊕ Iw̃.

Proof. Let x ∈ I 1
2

and write x = w + w̃, where w ∈ 〈wi : i ∈ N〉 and w̃ ∈ 〈w̃j : j ∈ 3N〉. 
We must show that w, w̃ ∈ I. By Lemma 6.13, we have

xθ2 + xθ−2 + xθ4 + xθ−4 = wθ2 + wθ−2 + wθ4 + wθ−4

+ w̃θ2 + w̃θ−2 + w̃θ4 + w̃θ−4

= 3
2w + (s2 + s4)w − 2w̃

= 3
2w + (s2 + s4)(w + w̃) − 3

2 w̃ − 2w̃

= (s2 + s4)(w + w̃) + 3
2w − 7

2 w̃

Since I is invariant under the Miyamoto group and θ2k ∈ Miy(X), for k ∈ Z, we have 
xθ2 +xθ−2 +xθ4 +xθ−4 −(s2+s4)x = 3

2w− 7
2 w̃ ∈ I. Hence, 5w = 3

2w− 7
2 w̃+ 7

2(w+w̃) ∈ I. 
Therefore, since the characteristic is not 5, w and hence w̃ are both in I. �
Corollary 6.15. If char(F) �= 5, then IAutĤ

1
2

⊆ I.

Proof. By Lemma 6.14, we may decompose I 1
2

as Iw ⊕ Iw̃. By Lemmas 6.10 and 6.3(2), 
IAutĤ
w and IAutĤ

w̃ are both in I. �
Proof of Theorem 6.1. The result follows from Corollaries 6.4, 6.7, 6.9, 6.12, and 
6.15. �
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7. Ideals in J

In this section, we characterise ideals contained in J . Recall from Lemma 3.4 that 
J = 〈p1,j , p2,j : j ∈ N〉. Every element x ∈ J can be written in a unique way as

x =
3k∑
j=1

r∈{1,2}

βr,jpr,j

with βr,j ∈ F and βr,3k �= 0 for some r ∈ {1, 2}. We define the p-level of x to be 
lp(x) := 3k and β1,3kp1,3k + β2,3kp2,3k to be the tail of x. Furthermore, for x ∈ J of 
p-level 3k we define the J-degree of x as

degJ(x) := 3k +
∑

r∈{1,2}
βr,3k �=0

r
4

so degJ(p1,3k) = 3k + 1/4, degJ(p2,3k) = 3k + 1/2, and degJ(p1,3k + p2,3k) = 3k + 3/4. In 
particular, lp(x) = �degJ (x)�, for x ∈ J .

Note that the J-degree induces a total order on the set {pr,j : j ∈ 3N, r ∈ {1, 2}}.

Theorem 7.1. There is a bijection between the set of tuples (β3, . . . , β3k) ∈ Fk, for k ∈ N, 
up to scalar multiples, and the ideals I ⊆ J , given by

(β3, . . . , β3k) �→ (x), where x :=
k∑

j=1
β3jp1,3j

and the inverse is given by taking the tuple of coefficients of an element of minimal 
J-degree. In particular, all ideals I ⊆ J are principal.

This theorem will follow from the next theorem.

Theorem 7.2. Let x :=
∑k

j=1 β3jp1,3j. Then I = (x) has basis given by

x, xτ0 , six, (six)τ0

for all i ∈ 3N.

Note that, after scaling, x has tail p1,3k, xτ0 has tail p2,3k, six has tail p1,3k+i and 
(six)τ0 has tail p2,3k+i, for i ∈ 3N. So we have an immediate corollary.

Corollary 7.3. Let I be a non-zero ideal of Ĥ contained in J and let x be a non-zero 
element of minimal J-degree in I. Then I has codimension 2(k− 1) in J , where lp(x) =
3k.
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Proof. By Theorem 7.1, I is generated by x, which we may assume has tail p1,3k and 
now by Theorem 7.2, the image of {p1,3h, p2,3h : 1 ≤ h ≤ k − 1} is a basis for J/I. �

We now prove the above two theorems via a series of lemmas, beginning with Theo-
rem 7.2.

It is clear from the definition of the J-degree that in every ideal I ⊆ J , there is a 
unique element x, up to scaling, of minimal J-degree.

Lemma 7.4. Let x be an element of minimal J-degree in I ⊆ J . Then, x =
∑3k

j=3 βjp1,j
for some βj ∈ F .

Proof. We may write x =
∑3k

j=1, r∈{1,2} βr,jpr,j , for some βr,j ∈ F . First, we claim 
that, for the tail, β2,3k = 0. For a contradiction suppose not. If β1,3k = 0, then xτ0

has tail −β2,3kp1,3k and so has lower J-degree than x, a contradiction. So suppose that 
β1,3k and β2,3k are both non-zero. Then xτ1 has tail −β1,3kp1,3k + β2,3k(p1,3k + p2,3k) =
(β2,3k−β1,3k)p1,3k+β2,3kp2,3k and so β−1

2,3k(x +xτ1) has tail p1,3k+2p2,3k. Hence β−1
2,3k(x +

xτ1) + 2β−1
2,3k(x + xτ1)τ3/2 has tail −3p1,3k, a contradiction as above. So β2,3k = 0.

Now suppose there exists j ∈ 3N such that β2,j �= 0. Then, xτ1 has tail −β1,kp1,k, 
and, similarly to above, its level j part is (β2,j − β1,j)p1,j + β2,jp2,j . So 0 �= x + xτ1 ∈ I

has J-degree strictly less than x, a contradiction. �
Before proving the theorem, we need the following lemma.

Lemma 7.5. For all i, j, k ∈ 3N, a, b ∈ Z3, we have

sk(sjpa,i) = (sksj)pa,i
pb,k(sjpa,i) = (pb,ksj)pa,i

Proof. We prove the second of these. The first follows from an analogous, but easier 
argument. Let c = −(a + b). By H5, we have

82

3 pb,k(sjpa,i) = 8pb,k
[
2(pa,i + pa,j) − (pa,|i−j| + pa,i+j)

]
= 2

[
8pb,kpa,i + 2(zc,k + zc,j) − (zc,|j−k| + zc,j+k)

]
−

[
2(zc,k + zc,|i−j|) − (zc,||i−j|−k| + zc,|i−j|+k)

+2(zc,k + zc,i+j) − (zc,|i+j−k| + zc,i+j+k)
]

= 2
[
8pb,kpa,i + 2(zc,j + zc,i) − (zc,|i−j| + zc,i+j)

]
−

[
2(zc,|j−k| + zc,i) + 2(zc,j+k + zc,i)

−(zc,||i−j|−k| + zc,|i−j|+k + zc,|i+j−k| + zc,i+j+k)
]

= 8
(
2(pb,k + pb,j)

)
pa,i −

[
2(zc,|j−k| + zc,i) + 2(zc,j+k + zc,i)
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−(zc,||i−j|−k| + zc,|i−j|+k + zc,|i+j−k| + zc,i+j+k)
]

If the sum in the square brackets is equal to 8(pb,|j−k| + pb,j+k)pa,i, then the above is 
equal to 8 

(
2(pb,k + pb,j) − pb,|j−k| + pb,j+k

)
pa,i and hence the result follows. This is 

equivalent to the two sets A := {||i − j| − k|, |i − j| + k, |i + j − k|, i + j + k} and 
B := {||j−k| − i|, |j−k| + i, |j+k− i|, j+k+ i} being equal. Since sjpa,i is symmetric in 
i and j, without loss of generality we may assume that i − j ≥ 0. The result now follows 
after a case analysis on the parity of j − k. �
Proof of Theorem 7.2. Let B = {x, xτ0 , s3ix, (s3ix)τ0 : i ∈ N}. First, note that by H5, 
s3ix has J-degree 3(i + k) + 1/4 and so (s3ix)τ0 has J-degree 3(i + k) + 1/2. So it is clear 
that B is a linearly independent set. Moreover, since by Theorem 6.1 ideals of Ĥ are 
invariant under Aut(Ĥ), it is clear that B ⊆ (x).

So to show that B ⊆ (x), it suffices to show that 〈B〉 is closed under multiplication 
by Ĥ and so is an ideal. Since 〈B〉 is clearly invariant under the action of Aut(Ĥ), it is 
enough to show that ajx, skx, pr,kx, aj(s3ix), sk(s3ix) and pr,k(s3ix) are in 〈B〉, for all 
j ∈ Z, i, k ∈ N, r ∈ {1, 2}. By H2, for l ∈ 3N, we have

ajp1,l = 3
2p1,l − p−1−j,l = 3

2p1,l + p
τj
1,l

and hence ajx = 3
2x + xτj ∈ 〈B〉. Similarly, aj(s3ix) = 3

2(s3ix) + (s3ix)τj ∈ 〈B〉. For 
sk, note that if k /∈ 3N, then by H5, skx = 3

4x ∈ 〈B〉. Again similarly, sk(s3ix) =
3
4(s3ix) ∈ 〈B〉. If k ∈ 3N, then by definition, skx ∈ 〈B〉. By Lemma 7.5, s3k(s3ix) =
(s3ks3i)x ∈ 〈B〉, for all k ∈ N. Now we consider pr,k. For l ∈ 3N, note that z−(r+1),l =
p−r,l − p1−r,l = −p

τ(1−r)/2−τ(2−r)/2

1,l . Now, by H6, for k, l ∈ 3N, we have

pr,kp1,l = 1
4 (z−(r+1),k + z−(r+1),l) − 1

8 (z−(r+1),|k−l| + z−(r+1),k+l)

= −1
3 (skp1,l)τ(1−r)/2−τ(2−r)/2

Hence, pr,kx = −1
3 (skx)τ(1−r)/2−τ(2−r)/2 ∈ 〈B〉. Finally, by Lemma 7.5, pr,k(s3ix) =

(pr,ks3i)x, for all k ∈ 3N, which is in 〈B〉 by H5 and the above results. Therefore, 〈B〉
is closed under multiplication by Ĥ and hence B is a basis for the ideal (x). �

We can now complete the proof of the remaining theorem.

Proof of Theorem 7.1. Let I ⊆ J . Then I contains an element x of minimal J-degree 
which is unique up to scaling. It is clear that (x) ⊆ I, so we must show that I = (x). 
Suppose for a contradiction 0 �= y ∈ I \ (x). By Lemma 7.4, x =

∑k
j=1 β3jp1,3j , for 

some β3j ∈ F , and we may scale so that β3k = 1. Since x has minimal J-degree 
in I, y has J-degree strictly greater than x. Now, by Theorem 7.2, (x) has a basis 
B := {x, xτ0 , s3ix, (s3ix)τ0 : i ∈ N}. Note that the tails of the elements in B are 
p1,3k, p2,3k, p1,3(k+i), p2,3(k+i), respectively. So by taking a suitable linear combination 
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b of elements of B, we obtain an element z := y − b ∈ I with J-degree strictly less than 
that of x. Since y /∈ (x), z �= 0, which is a contradiction. Hence I = (x) as claimed. �

We close this section with an observation which will be used in Section 8.

Lemma 7.6. Let I be a non-zero ideal of Ĥ contained in J and let x be a non-zero element 
of minimal J-degree in I. Then I = (x′) for every element x′ of I with the same p-level 
as x.

Proof. Suppose that x has tail β1,3kp1,3k and let x′ be an element of I of p-level 3k. 
By arguing as in the proof of Lemma 7.4, we see that (x′) contains an element x′′ with 
tail β1,3kp1,3k. Then x − x′′ has p-level at most 3(k− 1) and the minimality of x implies 
x = x′′, whence I = (x) = (x′′) ⊆ (x′) ⊆ I. �
8. Ideals are principal

Our goal for this section is to prove the following.

Theorem 8.1. Every ideal in Ĥ is principal.

We already showed in the previous section that ideals that are contained in J are 
principal. So for the remainder of this section, let I be an ideal of Ĥ which is not 
contained in J .

We will choose a nice candidate y for a generator of the ideal I and then use a sort 
of Euclidean division algorithm to show that every other element x ∈ I is in fact in (y).

We begin by defining a partial order on Ĥ, which we will use to define our candidate 
y. Every element x ∈ Ĥ can be written in a unique way as

x = xa + xs + xp

where xa ∈ 〈ai | i ∈ Z〉, xs ∈ 〈si | i ∈ N〉, and xp ∈ 〈pr,i | i ∈ 3N, r ∈ {1, 2}〉. We call xa

the a-part of x, xs the s-part of x, and xp the p-part of x. Finally, we call xs + xp the 
a′-part of x. We define the a-length, or just length, of x to be la(x) = m − l + 1, where 
xa =

∑m
i=l αiai and αl �= 0 �= αm. Similarly, if

xs :=
k∑

j=1
βjsj , xp :=

l∑
j=1,r=1,2

βr,3jpr,3j (3)

we define the s-level of x to be ls(x) := max{j ∈ N : βj �= 0} and we have already 
defined the p-level of x to be lp(x) := max{j ∈ N : βr,j �= 0, for some r = 1, 2}. If 
n = max{ls(x), lp(x)}, then we call
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βnsn + β1,np1,n + β2,np2,n

the tail of x.
We can now define a partial order on Ĥ by setting

x ≤ y ⇐⇒ (la(x), ls(x), lp(x)) ≤ (la(y), ls(y), lp(y))

with respect to the lexicographic order on Z ×Z ×Z. The following lemma is immediate.

Lemma 8.2. la, ls, lp and so ≤ are invariant under the action of Aut(Ĥ).

A minimal element of I is a non-zero element of I minimal with respect to the order 
≤. An element is called a-minimal if its a-part is non-trivial and it is minimal (with 
respect to ≤) with this property. An element is called as-minimal if its a-part and s-
part are both non-trivial and it is minimal with this property. An element is called pure 
a-minimal if it has non-trivial a-part, trivial a′-part and it is minimal with this property. 
Note that, by the above Lemma 8.2, being minimal, or (pure) a-minimal, or as-minimal 
is Aut(Ĥ)-invariant.

We will now see that I contains elements with non-trivial a-part and so, in particular, 
a-minimal elements of I exist.

Lemma 8.3. Every ideal I of Ĥ not contained in J contains an element with non-zero 
a-part and trivial a′-part.

Proof. Let us show first that I contains an element with non-trivial a-part. Let x ∈ I \J . 
If x has non-trivial a-part, we are done. Otherwise x = xs + xp, where xs �= 0 as x /∈ J . 
So, x + xθ1 + xθ2 = 3xs ∈ I. Now, by H2, we see that y := a0xs ∈ I has non-trivial 
a-part. Since θ3 fixes the s-part and the p-part of y and maps ai to ai+3, for all i ∈ Z, 
y − yθ3 ∈ I has non-trivial a-part and trivial s-part and p-part. �

We now want to see that as-minimal elements exist. To do this we prove the Folding 
Lemma which will also be useful in later sections. Here and from now on we adopt the 
following useful notation.

Notation: Where we have a sum of elements xa =
∑m

i=l αiai, for example, we may 
ease notation and write xa =

∑
i∈Z αiai instead by adopting the convention that αi := 0

for i < l and i > m. We also do this for sums of sj, or pr,j . Note however that any sum 
is still always finite.

Lemma 8.4 (Folding Lemma). Let x =
∑

i∈Z αiai. For k ∈ Z, we have

akx− 1
2x =

∑
i∈Z

αi(s|i−k| + zk,|i−k|) =
∑
i∈N

(αk−i + αk+i)(si + zk,i)

and so
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(akx− 1
2x)1+θ1+θ2 = 3

∑
i∈N

(αk−i + αk+i)si

(akx− 1
2x)θ−1−θ1 = 3

∑
i∈N

(αk−i + αk+i)pk,i

Proof. By Lemma 5.4, 
∑

i∈Z αi = 0 and so, by H1, we get

akx− 1
2x =

∑
i∈Z

αi(s|i−k| + zk,|i−k|)

=
∑
i<k

αi(sk−i + zk,k−i) +
∑
i>k

αi(si−k + zk,i−k)

=
∑
j∈N

αk−j(sj + zk,j) +
∑
j∈N

αk+j(sj + zk,j)

=
∑
j∈N

(αk−j + αk+j)(sj + zk,j).

Recall that sj is fixed by the action of Aut(Ĥ). Now, since zr,j1+θ1+θ2 = zr,j + zr+1,j +
zr+2,j = 0 and zr,jθ−1−θ1 = zr−1,j − zr+1,j = 3pr,j , the results follow. �

So by Lemmas 8.3 and 8.4, there exist elements x ∈ I with non-trivial a- and s-parts 
and hence I contains as-minimal elements. Also by the above two lemmas, note that 
I ∩ J �= 0.

Lemma 8.5. Let y be an as-minimal element of I. If x ∈ I has non-zero a-part, then 
la(x) ≥ la(y).

Proof. Suppose that y is an as-minimal element and la(x) < la(y). By the as-minimality 
of y, xs = 0. Let y =

∑m
i=l αiai + ys + yp. Since I is Aut(Ĥ)-invariant, we may assume 

that x =
∑n

i=0 βiai + xp. Then y − αm

βn
xθm−n has non-trivial a-part with length strictly 

less that la(y) and non-trivial s-part (equal to ys), a contradiction. �
So every as-minimal element is a-minimal. In fact, the coefficients of the a-part of 

an a-minimal element satisfy precise conditions. The following is an adaptation of [23, 
Lemma 2.2].

Lemma 8.6. Let y ∈ I be a-minimal (pure a-minimal), where la(y) = D + 1.

1. If x ∈ I is another a-minimal (pure a-minimal) element, then up to scaling and the 
action of Aut(Ĥ), xa and ya are equal.

2. Suppose ya :=
∑D

i=0 αiai. Then there exists ε = ±1 such that, for all i ∈ {0, . . . , D}, 
αi = εαD−i.
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Proof. We prove the case where y is an a-minimal element; the pure a-minimal case 
follows similarly. To prove the first claim, by scaling and using the action of Aut(Ĥ), we 
may assume that ya :=

∑D
i=0 αiai and xa =

∑D
i=0 βiai, where αD = βD. Now x − y has 

length strictly less than D + 1. So by minimality, xa − ya = 0 and the result follows.
Let k := D+1

2 ; then τk is the reflection in Aut(Ĥ) that maps a0 to aD. So yτk =∑D
i=0 αD−iai + yτka′ is also an element of I with length D + 1 and thus, by the first part 

of the lemma, its a-part is a multiple of xa. So there exists ε ∈ F such that αi = εαD−i

for all i = 0, . . . , D. Hence α0 = εαD = ε2α0 and ε = ±1 as required. �
For an a-minimal (resp. pure a-minimal) y, with ya =

∑m
i=l αiai, define σ = σ(y) :=

τ(m − l)/2. We can reword Lemma 8.6 as saying that there exists ε = ±1 such that yσa = εya. 
In this case, we say that y is of ε-type. Since every a-minimal y is of ε-type for the same 
value of ε, we make the following definition.

Definition 8.7. We say I is of ε-type if y is of ε-type, for any a-minimal element y ∈ I.

Let y be as-minimal in I; we now consider the p-part of y. By Lemma 8.4, I ∩ J �= 0
and by Theorem 7.1, I ∩ J is principal. Hence I ∩ J = (e) where e = ep has p-level 3h, 
for some h ∈ N. Note that, by Theorem 7.2, for all z ∈ I ∩ J , lp(z) ≥ 3h.

Lemma 8.8. Let y ∈ I be as-minimal. Then lp(y) < 3h.

Proof. By Theorem 7.2, for every j ∈ 3N such that j ≥ 3h, there exist elements in 
(e) = I∩J with tail pr,j , for all r ∈ {1, 2}. It follows that lp(y) < 3h by as-minimality. �
Corollary 8.9. Let y ∈ I be an a-minimal ε-type element. Then yσp = εyp. Furthermore, 
if ε = −1, then ys ∈ I.

Proof. By Lemma 8.6, yσa = εya. Define z := y − εyσ. Since yσs = ys, z = ys − εys +
yp − εyσp ∈ I. If ε = 1, then z = yp − yσp ∈ I ∩ J . By Lemma 8.8, lp(z) ≤ lp(yp) < 3h. So 
z = 0 and hence yσp = yp. If ε = −1, then z = 2ys + yp + yσp . Since pr,3j + pθ1r,3j + pθ2r,3j =
p0,3j + p1,3j + p2,3j = 0, for every j ∈ N and r ∈ {1, 2}, we have 6ys = z + zθ1 + zθ2 ∈ I. 
Hence ys ∈ I and yp + yσp ∈ I ∩ J . A similar argument as above on the p-level gives 
yσp = −yp as required. �

By Lemmas 7.6 and 8.2, I ∩ J is generated by eg for any g ∈ Aut(Ĥ). In particular, 
given an as-minimal element y and setting σ = σ(y), we can always choose e ∈ I ∩ J so 
that eσ �= εe.

Definition 8.10. An element ȳ ∈ I is good, if ȳ = y + e, where y ∈ I is as-minimal and 
(e) = I ∩ J such that eσ(y) �= εe.
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Note that ȳa = ya, ȳs = ys and, as ȳ is still a-minimal, σ(ȳ) = σ(y). Moreover, 
every ideal I not contained in J contains a good element since it contains an as-minimal 
element. We will show that ȳ generates I. We begin with the following.

Lemma 8.11. Let ȳ = y + e ∈ I be good, with y as-minimal and (e) = I ∩ J such that 
eσ(y) �= εe. Then e, y ∈ (ȳ).

Proof. Let I be of ε-type. Define z := ȳ − εȳσ ∈ (ȳ). By Corollary 8.9, yp = εyp, so 
z = ys − εys + e − εeσ. If ε = 1, then z = e − eσ ∈ (ȳ) ∩ J , which is non-zero by choice, 
and so z generates I ∩ J by Lemma 7.6. Hence e ∈ (ȳ) and so y = ȳ − e ∈ (ȳ) also. If 
ε = −1, then z = 2ys + e + eσ ∈ (ȳ). By Corollary 8.9, ys = ȳs ∈ (ȳ) and hence by a 
similar argument to before we get e, y ∈ (ȳ). �

We now explore those elements of ideals which have non-trivial s-part.

Lemma 8.12. Let x ∈ Ĥ with xs �= 0 and ls(x) = k. Then, for each j ∈ N such that 
j ≥ k, (x) contains an element x′ such that ls(x′) = j. Moreover, if x has trivial a-part, 
then x′ does too.

Proof. Decompose x = xa + xs + xp and define x′ = sj−kx. If (x) = Ĥ, then the 
claim follows immediately. So assume that (x) �= Ĥ; now by Corollary 5.4, the sum of 
the coefficients of xa is zero. Hence by H2, sj−kxa has no s-part and as J is an ideal 
sj−kxp has no s-part. Then it is clear by H3 that sj−kxs has s-level j. Note that, as 
〈si, pr,j : i ∈ N, j ∈ 3N, r ∈ {1, 2}〉 is a subalgebra of Ĥ, if x has trivial a-part, then x′

does too. �
We can now prove a first version of our Euclidean algorithm with respect to the s-level.

Proposition 8.13. Let y ∈ Ĥ such that ys �= 0. Then, for every x ∈ Ĥ, there exist q ∈ (y)
and r ∈ Ĥ such that x = q + r and ls(r) < ls(y).

Proof. We proceed by induction on ls(x). If ls(x) < ls(y) �= 0, the claim is true with 
q = 0 and r = x. So suppose ls(x) ≥ ls(y). By Lemma 8.12, there exists y′ ∈ (y) such 
that l(y′s) = ls(x). So there exists λ ∈ F such that ls(x − λy′) < ls(x). Hence, by the 
inductive hypothesis, there exist q ∈ (y) and r ∈ Ĥ with ls(r) < ls(y) such that

x− λy′ = q + r.

Now we see that x = (q + λy′) + r and q + λy′ ∈ (y) as required. �
With the above, we can now show another version of a Euclidean algorithm with 

respect to the a-length and the s-level.



C. Franchi et al. / Journal of Algebra 640 (2024) 432–476 463
Proposition 8.14. Let y be an element with non-trivial a-part and non-trivial s-part. 
Then, for every x ∈ Ĥ, there exist q ∈ (y) and r ∈ Ĥ such that x = q + r, la(r) < la(y), 
and ls(r) < ls(y).

Proof. Suppose first that ls(x) < ls(y). We proceed by induction on la(x). If la(x) <
la(y), then the result is trivially true with q = 0 and r = x. So for the inductive step, 
assume that la(x) ≥ la(y) and that the result is true for a-length strictly less that la(x). 
Suppose that ya =

∑m
i=l αiai and xa =

∑n
i=k βiai, where αl, αm, βk, βn �= 0. Since 

a
θm−n
m = an, there exists λ ∈ F , so that la(x − λy) < la(x). Hence, by the inductive 

hypothesis, there exist q′ ∈ (y) and r ∈ Ĥ such that

x− λy = q′ + r

and la(r) < la(y), ls(r) < ls(y). Therefore the claim holds with q = q′ + λy and r = r.
Finally, suppose that ls(x) ≥ ls(y). By Proposition 8.13, there exist q′ ∈ (y) and 

r′ ∈ Ĥ such that x = q′ + r′ and ls(r′) < ls(y). Now, by the first part of the proof, there 
exist q′′ ∈ (y) and r ∈ Ĥ such that r′ = q′′ + r and the result holds with q = q′ + q′′ and 
r = r. �

The following proposition now completes the proof of Theorem 8.1.

Proposition 8.15. Any good element of a non-trivial proper ideal I not contained in J
generates I.

Proof. Suppose ȳ is a good element in I, where y is an as-minimal element and (e) =
I ∩ J , and let x ∈ I. By Lemma 8.11, e, y ∈ (ȳ).

By Proposition 8.14, there exists q ∈ (y) and r ∈ Ĥ such that x = q+r, where la(r) <
la(y) and ls(r) < ls(y). Then r = x − q ∈ I. As y is as-minimal, by Lemma 8.5, la(r) = 0
and so r has trivial a-part. If ls(r) �= 0, then by Lemma 8.12, there exists r′ ∈ (r) ⊆ I

such that ls(x′) = ls(y). Moreover, as r has trivial a-part, so does r′. Then some linear 
combination of y and r′ has minimal a-length, but s-level strictly less than that of y, 
contradicting the as-minimality of y. So ls(r) = 0 and hence r ∈ I ∩J = (e) ⊂ (y). Since 
r ∈ (y), we have x = q + r ∈ (y) ⊆ (ȳ) as required. �
Corollary 8.16. Let I be an ideal of Ĥ. Then I has finite codimension if and only if it is 
not contained in J .

Proof. Since J has infinite codimension, it is clear that every ideal contained in it also 
has infinite codimension. For the converse, let I be a proper ideal of Ĥ not contained 
in J . By Proposition 8.15, I is generated by a good element ȳ = y + e, where y is an 
as-minimal element and (e) = I ∩ J . Let x ∈ Ĥ. By Lemma 8.14, x = q + r, where 
q ∈ I, la(r) < la(y), and ls(r) < ls(y). By Theorem 7.2, there exists r′ ∈ I ∩ J such 
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that lp(r − r′) < lp(e). Setting x′ = r − r′, we see that x + I = x′ + I and the result 
follows. �
9. Ideals not contained in J

In Section 7, we got a complete characterization of ideals contained in J . To get a 
similar characterization for ideals not contained in J is much more difficult, since the 
picture is more complicated. Hence, in this section we classify ideals not contained in J
satisfying a certain minimality condition and also give an explicit basis for such ideals.

Let I be an ideal of Ĥ. We define the axial codimension of I as the (possibly infinite) 
dimension of the subspace of Ĥ/I generated by the images of the ai’s (note that this is 
precisely the axial dimension of Ĥ/I defined in [23, Section 2.2]).

If I is not contained in J , then, by Theorem 8.16, I has finite codimension and so it 
has finite axial codimension. Conversely, since J has infinite axial codimension, if I is 
contained in J , then I has also infinite axial codimension. Hence an ideal has finite axial 
codimension if and only if it is not contained in J .

Lemma 9.1. Let I be an ideal of Ĥ and assume I contains an element x :=
∑D

i=0 αiai. 
Then I has axial codimension at most D.

Proof. Since I is Aut(Ĥ)-invariant, 
∑D

i=0 αiai+j ∈ I for all j ∈ Z. So, for all k ∈ Z, 
there exists an element ak −

∑D
i=1 βiai ∈ I for some βi ∈ F . Hence, the images of the 

axes in Ĥ/I span a subspace of dimension at most D. �
Corollary 9.2. Let I be an ideal of axial codimension D, then I contains a pure a-minimal 
element x =

∑D
i=0 αiai with α0 �= 0 �= αD.

Proof. By assumption, the images of a0, . . . , aD in Ĥ/I are linearly dependent, i.e. I
contains a non zero element x =

∑D
i=0 αiai. If either α0, or αD were zero, then x would 

have a-length strictly less than D and so, by Lemma 9.1, I would have axial codimension 
strictly less than D, a contradiction. �
Definition 9.3. Let I be an ideal of finite axial codimension D in Ĥ and let x =∑D

i=0 αiai ∈ I, where α0 �= 0 �= αD, be pure a-minimal. Then we say I has pattern
(α0, . . . , αD).

Such a pure a-minimal element x in I is of ε-type, for some ε = ±1 (cf. Lemma 8.6). 
It also satisfies 

∑D
i=0 αi = 0.

Definition 9.4. A tuple (α0, . . . , αD) ∈ FD+1 is said to be of ideal type if α0 �= 0 �= αD, ∑D
i=0 αi = 0 and (α0, . . . , αD) is of ε-type, for ε = ±1.
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Since any ideal I with pattern (α0, . . . , αD) contains x :=
∑D

i=0 αiai, it must contain 
the ideal (x) generated by x. In other words, (x) is the unique minimal ideal with pattern 
(α0, . . . , αD). Hence we have the following theorem.

Theorem 9.5. For every D ∈ N, there is a bijection between the set of ideal-type (D +
1)-tuples (α0, . . . , αD) ∈ FD+1, up to scalars, and the set of minimal ideals of axial 
codimension D of Ĥ given by

(α0, . . . , αD) �→
(

D∑
i=0

αiai

)
.

If I ′ is a (non-minimal) ideal of pattern (α0, . . . , αD), it contains some minimal ideal I
with the same pattern. In particular, I ′ corresponds to an ideal of the finite-dimensional 
algebra Ĥ/I.

We now give an explicit basis for a minimal ideal with pattern (α0, . . . , αD), but first 
we introduce some notation. If α := (α0, . . . , αD) is an ideal-type tuple, for r ∈ Z3, we 
define

αr :=
∑

i∈Z, ı=r

αi =
∑
ı=r

αi

Since 
∑

i∈Z αi = 0, we have α0 + α1 + α2 = 0.

Theorem 9.6. Let I be a minimal ideal of Ĥ with pattern (α0, . . . , αD) and x :=∑D
i=0 αiai.

1. If α1 = α2 = 0, then I is spanned by

xk := xθk =
∑
i∈Z

αiai+k for k ∈ Z

yk :=
∑
i∈N

(αk−i + αk+i)si for k ≤
⌊
D
2
⌋

pk(r) :=
∑
i∈N

(αk−i + αk+i)pr,i for k ≤
⌊
D
2
⌋
, r ∈ {1, 2}

2. Otherwise, J ⊂ I and so I is spanned by the above xk and yk and all p1,j , p2,j, for 
j ∈ 3N.

The set of the elements listed above which are different from zero constitute a basis.

Note that if I is an ideal with pattern (α0, . . . , αD) where α1 = α2 = 0, then we could 
still have that J ⊂ I. We have the following immediate corollary.
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Corollary 9.7. Let I be a minimal ideal of axial codimension D. Then Ĥ/I has dimension 
at most D +

⌊
D
2
⌋

+ 2 
⌊
D
6
⌋
.

Proof. Let k =
⌊
D
2
⌋
. By Theorem 9.6, Ĥ/I is spanned by the images of a1, . . . , aD,

s1, . . . , sk, pr,3, . . . , pr,k, for r = 1, 2. �
We prove Theorem 9.6 via a series of lemmas. We will first show that all the above 

elements are indeed contained in the ideal generated by x, then we will show that the 
subspace spanned by them is an ideal.

Firstly, since I is Aut(Ĥ)-invariant, it is immediate that xk = xθk is in I, for k ∈ Z. 
Secondly, by Lemma 8.4, I contains yk, pk(1) and pk(2) for all k ∈ Z. It remains to see 
when J ⊂ I.

Lemma 9.8. For all j ∈ N, we have

sjx + 3
4x− 3

8 (x−j + xj) = −3α2p1,j + 3α1p2,j .

Proof. By H2 and as 
∑

i∈Z αi = 0, we get

sjx = −3
4x + 3

8

∑
i∈Z

αi(ai−j + ai+j) −
∑
i∈Z

αizı,j

= −3
4x + 3

8 (x−j + xj) −
∑
ı∈Z3

αızı,j .

Now, by the definition of zı,j and since α0 + α1 + α2 = 0, we get 
∑

ı∈Z3
αızı,j =

3α2p1,j − 3α1p2,j . �
Corollary 9.9. If either α1, or α2 is non-zero, then J ⊂ I.

Proof. By Lemma 9.8, as char(F) �= 3, α2p1,j − α1p2,j is a non-zero element of I for all 
j ∈ 3N. Then, Lemma 7.6 implies J ⊂ I. �

So all the elements listed in Theorem 9.6 are contained in I. We now show that these 
elements span a subspace Y which is closed under multiplication by Ĥ and hence I is 
indeed equal to Y .

Proof of Theorem 9.6. First note that the subspace Y is closed under the action of 
Aut(Ĥ) since its generating set is. Secondly, as αi = εαD−i for all i ∈ Z, we have 
yk = εyD−k and pk(r) = εpD−k(r), and hence these are in Y for all k ∈ Z.

We begin by considering the products with the elements xk. Since aixk = aix
θk =

(ai−kx)θk , sjxk = (sjx)θk , and pr,jxk = (pr−k,jx)θk by the Aut(Ĥ)-invariance of Y we 
just need to consider the products with x. By Lemma 8.4, ajx = 1

2x + yj + pj(j) ∈ Y

for all j ∈ Z. By Lemma 9.8 and Corollary 9.9, sjx ∈ Y for all j ∈ N. For pr,j , by H3, 
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pr,jx = − 
∑

i∈Z αip−(ı+r),j = − 
∑

ı∈Z3
αıp−(ı+r),j which is zero if α0 = α1 = α2 = 0. 

Hence, in all cases, pr,jx ∈ Y .
We now consider the products with yk =

∑
i∈N(αk−i + αk+i)si. For products aiyk, 

again using the Aut(Ĥ)-invariance of Y , it suffices to just consider a0yk. By H2, we have

a0yk = −3
4

∑
i∈N

(αk−i + αk+i)a0 + 3
8

∑
i∈N

(αk−i + αk+i)(a−i + ai)

+ 3
2yk −

∑
i∈N

(αk−i + αk+i)z0,i.

As 
∑

i∈Z αi = 0, we have 
∑

i∈N(αk−i + αk+i) =
∑

j �=k αj = −αk. So, for the a-part of 
the above, we have

2αka0 +
∑
i∈N

(αk−i + αk+i)(a−i + ai)

= 2αka0 +
∑
i<0

αk+i(ai + a−i) +
∑
i>0

αk+i(a−i + ai)

=
∑
i∈Z

αk+i(a−i + ai)

=
∑
j∈Z

αj(ak−j + a−k+j).

Noting that x−k
τ0 =

∑
i∈Z αiak−i, we obtain

a0yk = 3
8 (x−k

τ0 + x−k) + 3
2yk −

(
pk(1) − pk(2)

)
which is in Y . For the products sjyk, we have

8
3sjyk = 8

3sj
∑
i∈N

(αk−i + αk+i)si

=
∑
i∈N

(αk−i + αk+i)(2sj + 2si − s|j−i| − sj+i)

= −2αksj + 2yk −
∑
i∈N

(αk−i + αk+i)s|j−i| −
∑
i∈N

(αk−i + αk+i)sj+i

where we again use that 
∑

i∈N(αk−i + αk+i) = −αk. Now we rewrite the last two sums 
by taking l to be |j − i| and j + i

8
3sjyk = −2αksj + 2yk −

j−1∑
l=1

(αk−j+l + αk+j−l)sl

−
∑

(αk−j−l + αk+j+l)sl −
∑

(αk+j−l + αk−j+l)sl

l∈N l>j
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= 2yk −
∑
l∈N

(αk−j−l + αk−j+l + αk+j−l + αk+j+l)sl

= 2yk − yk−j − yk+j

which is in Y . Replacing sj by pr,j , the same argument proves that pr,jyk ∈ Y for all 
j ∈ N, r ∈ {1, 2}.

We are left with the products with pk(r) =
∑

i∈N(αk−i + αk+i)pr,i. For the products 
aipk(r), as above, by the Aut(Ĥ)-invariance of Y , it suffices to consider a0pk(r). By H3, 
a0pk(r) = 3

2pk(r) −
1
2pk(−(ı + r)) ∈ Y . Since by H5, sjpr,i = sipr,j , it follows that 

sjpk(r) = pr,kyj ∈ Y . Finally, setting s = −(r + t), an analogous argument to that for 
sjyk and pr,jyk shows that

8pt,jpk(r) = 2
(
pk(s + 1) − pk(s− 1)

)
−

(
pk−j(s + 1) − pk−j(s− 1)

)
−

(
pk+j(s + 1) − pk+j(s + 1)

)
∈ Y.

Finally, as ls(yk) = D − k = lp(pk(r)), it is clear that the set of the elements given in 
the theorem which are non zero constitutes a basis. �
10. Two families of quotients

In this section, we detail two families of ideals and their quotients in Ĥ.
Firstly, suppose that Ĥ/I is a quotient with finitely many axes. If Ĥ/I has n axes, 

then a0−an ∈ I. In particular, In := (a0−an) is the minimal ideal such that the quotient 
has n axes.

Corollary 10.1.

1. If 3 � n, then J ⊂ In and In has a basis given by

ai − ai+n for i ∈ Z

sj − sj+n, sjn for j ∈ N

sj − sn−j for 1 ≤ j <
⌈
n
2
⌉

and a basis for J .
2. If 3 | n, then In has basis given by the above elements and

pr,3j − pr,3j+n, pr,jn for j ∈ N, r = 1, 2

pr,3j − pr,n−3j for 1 ≤ j <
⌈
n
6
⌉
, r = 1, 2

Proof. The ideal In has pattern (α0, . . . , αn) = (1, 0, . . . , 0, −1). So α1 = α2 = 0 if 
and only if 3|n. By Theorem 9.6, J ⊂ I if 3 � n. In both cases we have basis elements 
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xk = ak−ak+n for k ∈ Z and yk. If k < 0, then yk = s|k|−sn−|k|, if k = 0, then y0 = sn, 
and if 1 ≤ k ≤

⌊
n
2
⌋
, then yk = sk − sn−k. Note that yk = 0 if and only if n is even 

and k = n
2 , hence we must exclude this case. Similarly, in the case where 3|n, we get the 

corresponding expressions for the pk(r)’s. �
Define Ĥn := Ĥ/In and Hn := Ĥ/(J + In). Then Hn is isomorphic to a quotient of 

Ĥn and, since Ĥ/J ∼= H, it is also isomorphic to a quotient of H.

Corollary 10.2. For every n ∈ N, Hn is a primitive 2-generated axial algebra of Monster 
type (2, 12 ) of dimension n +

⌊
n
2
⌋
. If additionally 3|n and char(F) = 5, then Ĥn is a 

primitive 2-generated axial algebra of Monster type (2, 12) of dimension n +
⌊
n
2
⌋
+ 2 

⌊
n
6
⌋
.

Note that In is generated by a −1-type element x. We now give an example of an 
ideal of 1-type. Let Ln be the ideal generated by 2a0 − (a−n + an).

Corollary 10.3.

1. If 3 � n, then J ⊂ Ln and Ln has a basis given by

2ai − (ai−n + ai+n) for i ∈ Z

sj − 2sj+n + sj+2n, sjn for j ∈ N

sj − 2sn−j + s2n−j for 1 ≤ j < n

and a basis for J .
2. If 3 | n, then Ln has basis given by the above elements and

pr,j − 2pr,3j+n + pr,3j+2n, pr,jn for j ∈ N, r = 1, 2

pr,3j − 2pr,n−3j + pr,2n−3j for 1 ≤ j < n, r = 1, 2

Proof. The proof is obtained using Theorem 9.6 in an analogous way to Corol-
lary 10.1. �

We also set L̂n := Ĥ/Ln and Ln := Ĥ/(J +Ln). Similarly to the previous case, Ln is 
isomorphic to a quotient of L̂n and also to a quotient of H.

Corollary 10.4. For every n ∈ N, Ln is a 2-generated primitive axial algebra of Monster 
type (2, 12 ) of dimension 3n − 1. If additionally 3|n and char(F) = 5, then L̂n is a 
primitive 2-generated axial algebra of Monster type (2, 12) of dimension 3n −1 +2 

⌊
n−1

3
⌋
.

Note that, according to the characteristic of F , Ln and L̂n may have finitely or in-
finitely many axes. In fact, if char(F) = 0, they both have infinitely many axes, whereas 
if char(F) = p, one can show that they both have pn axes.
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11. Exceptional isomorphisms

In [23], Yabe classifies symmetric 2-generated primitive axial algebras of Monster type 
(α, β) in characteristic not 5 (the characteristic 5 case was completed by Franchi and 
Mainardis in [3]).

Theorem 11.1. [23,3] A symmetric 2-generated primitive axial algebra of Monster type 
(α, β) is isomorphic to one of the following:

1. a 2-generated primitive axial algebra of Jordan type α, or β;
2. a quotient of H, or Ĥ in characteristic 5;
3. one of the algebras listed in [23, Table 2].

We wish to know which quotients of H, or Ĥ, are actually isomorphic to one of the 
algebras in cases 1, or 3 above. Clearly, we must have (α, β) = (2, 12 ). A direct check 
of [23, Table 2] gives the following list of the symmetric 2-generated primitive axial 
algebras of Monster type (2, 12) (we use the notation from [14]):

1. 3C(2);
2. one of the Jordan algebras (of Jordan type 1

2 ) S(δ), for δ �= 2, S(2)◦, or Ŝ(2)◦;2
3. IY3(2, 12 , μ), for μ ∈ F , and the quotient IY3(2, 12 , 1)×;3
4. IY5(2, 12 ) and the quotient IY5(2, 12 )×;4
5. in characteristic 7, 4A(2, 12) and its quotient 4A(2, 12)×;
6. in characteristic 5, 6A(2, 12).

Note that, since every ideal I of Ĥ is contained in the radical which is the kernel of 
the map λ, we have an induced weight function λ̄ on Ĥ/I and Ĥ/I must be baric. So, the 
only algebras in the list above which can be isomorphic to a quotient of Ĥ are ones which 
are also baric. By [14, Proposition 5.5], S(δ) is simple if δ �= ±2, so it cannot be baric. 
Also by [14, Proposition 5.5], S(−2) has precisely two codimension 1 ideals, but in both 
cases, one of the generators is contained in a codimension 1 ideal. Since in a quotient 
of Ĥ neither generator is contained in the kernel of λ̄, S(−2) cannot be isomorphic to 
any quotient of Ĥ. The remaining possibilities and their quotients do indeed all occur as 
quotients of Ĥ.

Theorem 11.2. The algebras 3C(2), S(2)◦, Ŝ(2)◦, IY3(2, 12 , μ), for μ ∈ F , IY5(2, 12 ) and 
6A(2, 12 ) in characteristic 5, (and their quotients) are all quotients of Ĥ.

2 These algebras were written ClJ (F2, b), Cl0(F2, b) and Cl00(F2, b), respectively, in [8]. Note also that 
3C( 1

2 ) ∼= S(−1).
3 These are the algebras III(2, 12 , −2μ − 1) and the quotient III(2, 12 , −3)× in [23, Table 2]. Note also that 

3A(2, 12 ) = IY3(2, 12 , − 1
2 ).

4 These are V2(2, 12 ) and V2(2, 12 )× in [23, Table 2]. Note that the algebra V1(2, 12 ) is defined in charac-
teristic 5 and it coincides with V2(2, 12 ).
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In fact we will see below that all the algebras except 6A(2, 12) are quotients of the 
Highwater algebra H. The algebra 6A(2, 12) in characteristic 5 is not a quotient of the 
Highwater algebra H, but is a quotient of the cover Ĥ.

We will prove this theorem via a series of lemmas. Since the algebras in the statement 
are finite-dimensional, their axes satisfy a non-trivial linear relation. For each algebra A, 
we will exhibit an element x ∈ Ĥ so that Ĥ/(x) ∼= A. In fact, in all but two cases, x has 
trivial s-part. For v ∈ Ĥ, we will write v̄ for the image of v in Ĥ/I. For the proof we will 
require some details about each of the target algebras. We do not give those here, but 
they can be found in [14] and [23].

Lemma 11.3. We have Ĥ2 = H2 ∼= 3C(2) and L̂1 = L1 ∼= S(2)◦.

Proof. By Corollary 10.1, Ĥ2 = H2 has basis ā0, ̄a1, ̄s1. Since a−i− ai ∈ I2 for all i ∈ N, 
the 1

2 -eigenspace for adā0 is trivial and so Ĥ2 is a primitive 2-generated axial algebra of 
Jordan type 2. Hence, by [8, Theorem 1.1], it is isomorphic to 3C(2).

Similarly, by Corollary 10.4, L̂1 = L1 = 〈ā0, ̄a1〉 is 2-dimensional. Since a−1−a1 /∈ L1, 
τ0 induces a non-trivial automorphism on L1, so L1 is a primitive 2-dimensional axial 
algebra of Jordan type 1

2 and therefore must be isomorphic to S(2)◦ by [8, Theorem 
1.1]. �

We note that (1, 0, −1) and (−1, 2, −1) are the only two ideal tuples of length 3 up to 
scaling (cf. Theorem 9.5).

The following gives a positive answer to an open question in [15, Question 4.5].

Lemma 11.4. Let Iδ := (a0 + δa1 − δa2 − a3) for δ ∈ F . Then the quotient Ĥ/Iδ is 
isomorphic to IY3(2, 12 , μ), where δ = −2μ − 1.

Proof. By Theorem 9.6, (1 − δ)s1 − s2, sj + δsj+1 − δsj+2 − sj+3 and pr,3j are in Iδ, 
for all j ≥ 0 and r = 1, 2. Hence ā−1, ̄a0, ̄a1, ̄s1 is a basis for A := Ĥ/Iδ. (In particular, 
J ⊂ Iδ, even if δ = 0). Define q := −3

4 ((δ + 1)a0 + a−1 + a1) + s1 and hence s1 =
q + 3

4 ((δ + 1)a0 + a−1 + a1). We claim that ā−1, ̄a0, ̄a1, q̄ satisfy the same products as 
given by Yabe in [23, Section 3.2].

It is immediate that āiāi+1 = 1
2 (āi+āi+1) +s̄1 = 1

2 (āi+āi+1) +q̄+ 3
4 ((δ+1)ā0+ā−1+ā1), 

where i = 0, −1, and ā−1ā1 = 1
2 (ā−1 + ā1) + s̄2 = 1

2 (ā−1 + ā1) +(1 −δ)s̄1 = 1
2 (ā−1 + ā1) +

(1 − δ)(q̄ + 3
4 ((δ + 1)ā0 + ā−1 + ā1)) as required. It is a straightforward, but somewhat 

long calculation to show that q̄x̄ = 3
4 (δ + 3)x̄ for all x̄ ∈ A. �

Recall from Section 4, that v1 = 2a0 − (a−1 + a1) − 4s1 ∈ A2(a0).

Corollary 11.5. We have Ĥ/(v1) ∼= Ŝ(2)◦.

Proof. Observe that vτ1/2

1 = 2a1− (a2 +a0) −4s1 and so v
τ1/2

1 −v1 = a−1−3a0 +3a1−a2. 
Hence (v1) ≤ (a0 − 3a1 + 3a2 − a3) = I−3 and so, by Lemma 11.4, Ĥ/(v1) is a quotient 
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of B := IY3(2, 12 , 1). Note that the image v̄1 of v1 in B is non-trivial and so it is a 2-
eigenvector for ā0 in B. Since the eigenvalues of ā0 in the 4-dimensional B are known to 
be 1, 0, 2, 12 , B2(ā0) is 1-dimensional and hence is spanned by v̄1. Since v

τ1/2

1 −v1 ∈ I−3, we 
have v̄1 = v̄

τ1/2

1 in B. However, 〈v̄τ1/2

1 〉 = 〈v̄1〉τ1/2 = B2(ā0)τ1/2 = B2(ā1). Therefore, as B is 
generated by ā0 and ā1, (v̄1) is a 1-dimensional ideal in B. Therefore, Ĥ/(v1) ∼= B/(v̄1)
is a 3-dimensional primitive axial algebra of Jordan type 1

2 . From our list, the only 
possibility of dimension 3 is Ŝ(2)◦ (and s̄1 is the nilpotent element). �

From [23, Section 3.6], IY5(2, 12 ) has basis (â−2, ̂a−1, ̂a0, ̂a1, ̂a2, p̂1) and the axes satisfy 
the relation â−2 − 5â−1 + 10â0 − 10â1 + 5â2 − â3 = 0.

Lemma 11.6. Let y := a−2 − 4a−1 + 6a0 − 4a1 + a2 and y1 := y − 16s1 + 4s2. Then 
(y1) ⊆ (y), Ĥ/(y1) ∼= IY5(2, 12 ) and Ĥ/(y) ∼= IY5(2, 12 )×.

Proof. We just sketch the proof as it is similar to those above. Note that, by Theorem 9.6, 
(y) contains the element −8s1 + 2s2 and hence y1. Moreover x := y1 − y

τ1/2

1 = a−2 −
5a−1 + 10a0 − 10a1 + 5a2 − a3 ∈ (y1). By Theorem 9.6, Ĥ/(x) is 7-dimensional with 
basis given by ā−2, . . . , ̄a2, ̄s1, ̄s2. One can now check that ȳ1v ∈ 〈ȳ1〉 in Ĥ/(x) for every 
v ∈ {ā−2, . . . , ̄a2, ̄s1, ̄s2} and so Ĥ/(y1) is 6-dimensional. Another calculation shows that 
the linear map from Ĥ/(y1) to IY5(2, 12 ), sending āi to âi and s̄1 to p̂1 is an isomorphism. 
Finally, by [23, Section 3.6], IY5(2, 12 )× = IY5(2, 12 )/(â−2 − 4â−1 + 6â0 − 4â1 + â2) and 
the result follows. �

We now consider the two exceptional cases in finite characteristic.

Lemma 11.7. Let F have characteristic 7. The algebras 4A(2, 12) and 4A(2, 12 )× are not 
quotients of Ĥ.

Proof. Suppose for a contradiction that 4A(2, 14), or 4A(2, 12 )×, is a quotient of Ĥ. In both 
cases, the algebra has a closed set of four axes and so must be isomorphic to some quotient 
Ĥ4/I of Ĥ4. Also in both algebras, 〈 〈ai, ai+2〉 〉 ∼= 2B. So in Ĥ4, ā0ā2 = 1

2 (ā0+ā2) +s̄2 ∈ I. 
Now

ā0(ā0ā2) = 1
2 ā0 + 1

2 (1
2(ā0 + ā2) + s̄2) − 3

4 ā0 + 3
8 (ā−2 + ā2) + 3

2 s̄2

= ā2 + 2s̄2

is in I and hence ā0 = 2ā0ā2 − ā0(ā0ā2) ∈ I. By Theorem 6.1, ā1 ∈ I and so I = Ĥ4, a 
contradiction. �

Finally, we consider 6A(2, 12) in characteristic 5 (see also [3, p. 208]). In [14, Table 1], 
we see that 6A(2, 12 ) has basis â0, . . . , ̂a5, ̂c, ̂z and 〈 〈âi, ̂ai+3〉 〉 ∼= 3C(2) with the third axis 
equal to ĉ, for every i modulo 6.
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Lemma 11.8. Let F have characteristic 5. Then, Ĥ/(a0 −a1 +a3 −a4 +p2,3) ∼= 6A(2, 12).

Proof. Set x := a0 − a1 + a3 − a4 + p2,3. By Corollary 10.1, Ĥ6 is 11-dimensional with 
basis ā0, . . . , ̄a5, s̄1, s̄2, s̄3, p̄1,3 and p̄2,3. One can check that the linear map from Ĥ6 to 
6A(2, 12 ) defined by

āi �→ âi for i ∈ {0, . . . , 5},

s̄1 �→
5∑

i=0
âi − ĉ− ẑ, s̄2 �→ ẑ, s̄3 �→

5∑
i=0

âi − ĉ,

p̄1,3 �→ â0 − â2 + â3 − â5, p̄2,3 �→ −â0 + â1 − â3 + â4,

is a surjective algebra homomorphism and x̄ belongs to the kernel I of this map. Hence 
x̄2 = s̄1 + s̄2 − s̄3 ∈ I and, by Theorem 6.1, also xθ1 ∈ I. Since x̄, x̄2, and x̄θ1 are 
linearly independent, (x̄) has dimension at least 3. As I has dimension 3, we get I = (x̄), 
whence Ĥ/(a0 − a6, x) ∼= 6A(2, 12 ). Finally, note that a0 − a6 = x − xτ3 + xθ1 and hence 
(a0 − a6, x) = (x). �

This completes the proof of Theorem 11.2.

There are however other possibilities for isomorphisms with algebras on Yabe’s list, 
namely if the quotient is isomorphic to an M(1

2 , 2)-axial algebra. Such a quotient A of 
Ĥ would have a fusion law which admits a C2-grading with respect to both 1

2 and 2.

Theorem 11.9. Let A be a non-trivial quotient of Ĥ with fusion law FA naturally induced 
from F . Suppose that gr: FA → T is a finest adequate grading of FA such that gr(2) �=
1T . Then A is isomorphic to a quotient of one of

1. Ĥ2 ∼= 3C(2),
2. Ĥ/(a−1 − a0 − a1 + a2 + 2s2) ∼= 6Y(1

2 , 2),
3. Ĥ/I−3 ∼= IY3(2, 12 , 1), or
4. Ĥ/(3(a−1 − a0 − a1 + a2) − 2s2), a 5-dimensional algebra.

In particular, A is a quotient of the Highwater algebra H.

Proof. Let A = 〈 〈ā0, ̄a1〉 〉 = Ĥ/I. By Corollary 6.2, A is symmetric and hence adā0 and 
adā1 have the same eigenvalues. Since FA is induced from F , we have FA ⊆ {1, 52 , 0, 2, 

1
2}, 

with λ �FA
μ ⊆ λ �F μ, but this containment may be proper in some cases. By hypothesis, 

2 ∈ FA and so A2 �= 0. In particular, A is not a quotient of Ŝ(2)◦ ∼= Ĥ/(v1), where ā0
has trivial 2-eigenspace. Hence v1 /∈ I.

If 1
2 /∈ FA, then A 1

2
(ā0) = 0. In particular, w1 ∈ I and so A is a quotient of Ĥ/(a−1 −

a1) = Ĥ2 ∼= 3C(2), by Lemma 11.3. Hence from now on, we assume that 1
2 ∈ FA and 

w̄1 �= 0. By Lemma 4.2, F has a C2-grading where 1 is graded non-trivially and so FA
2
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also has a grading where 1
2 is graded non-trivially. Moreover, as every grading factors 

through the finest grading, g1/2 := gr(1
2 ) �= 1T (however g1/2 may have infinite order, or 

any order divisible by 2).
Observe that if λ ∈ λ �FA

μ for λ, μ ∈ F , then gr(λ) = gr(λ)gr(μ) and so gr(μ) = 1. 
In particular, if 1

2 ∈ 2 �FA

1
2 , then g2 := gr(2) = 1T , a contradiction. Hence 2 �FA

1
2 = ∅

and so w̄1v̄1 = 0 in A. Since

w1v1 = (a−1 − a1)(2a0 − (a−1 + a1) − 4s1)

= (a−1 − a1) − (a−1 − a1) − 4
(
−3

4 (a−1 − a1) + 3
8 (a−2 + a0 − a0 − a2)

)
= −3

2 (a−2 − 2a−1 + 2a1 − a2) ,

we must have r := a−2 − 2a−1 + 2a1 − a2 ∈ I. By Theorem 9.6, J ⊂ (r) ⊆ I, 
and so A5/2(ā0) = ∅. Moreover, −s1 − 2s2 + s3 and sj − 2sj+1 + 2sj+3 − sj+4 are in 
(r) ⊆ I for all j ≥ 0. Hence, Ĥ/(r) is 6-dimensional with basis given by the images of 
a−1, a0, a1, a2, s1, s2. We will work inside Ĥ/(r): for v ∈ Ĥ, we denote by ṽ its image in 
Ĥ/(r). Note that ũ2 and ṽ2 are both non-zero.

We split now into two cases: either 2 ∈ 1
2 �FA

1
2 , or not. We have

w2
1 = (a−1 − a1)2

= a−1 + a1 − (a−1 + a1) − 2s2 (4)

= −2s2 = −1
8(u2 − 3v2).

Assume first that 2 /∈ 1
2 �FA

1
2 . Then w̄2

1 ∈ A0(ā0) and hence Equation (4) implies 
v2 ∈ I. We claim that ṽτ1/2

2 = ṽ2. We have c̃
τ1/2

2 = (2ã0−(ã−2+ã2))τ1/2 = 2ã1−(ã3+ã−1) =
2ã1 − (ã−1 − 2ã0 + 2ã2 + ã−1) = 2ã0 − ((2ã−1 − 2ã1 + ã2) + ã2) = 2ã0 − (ã−2 + ã2) = c̃2. 
Hence ṽ

τ1/2

2 = ṽ2 in Ĥ/(r) as claimed. Since ṽ2 is invariant under τ0 and τ1/2, it is fixed by 
the action of every automorphism induced by Aut(Ĥ) on Ĥ/(r). Hence ṽ2 is a common 
2-eigenvector for all axes ãi. As Ĥ/(r) is generated by ã0 and ã1, (ṽ2) is a 1-dimensional 
ideal. So Ĥ/(r, v2) is 5-dimensional. Note that −1

2 (v2+r) = a−1−a0−a1+a2+2s2 =: x. 
Conversely, xθ−1 − x = r and −xθ−1 − x = v2 and so (x) = (r, v2).

We claim that Ĥ/(x) ∼= 6Y(1
2 , 2). Let ȳ now denote the image of y ∈ Ĥ in Ĥ/(x). Set 

b0 := ā0, b2 := 1
4(3ā0 + 2ā1 − ā2 − s̄1), b4 := 1

4(ā−1 + ā0 + 3ā1 − ā2), d := a1 − b4 =
1
4 (−ā−1− ā0 + ā1 + ā2) and z := 1

4 s̄2 = 1
8 (−ā−1 + ā0 + ā1− ā2). A calculation shows that 

(b0, b2, b4, d, z) is a basis for Ĥ/(x) that satisfies the multiplication table for 6Y(1
2 , 2) as 

given in [14] (and b1 = ā1). One can check that the fusion law here is C2 × C2-graded 
with generators g1/2 and g2.

Assume now that 2 ∈ 1
2�FA

1
2 . We have two subcases depending on whether 0 ∈ 1

2�FA

1
2 . 

If 0 is in 1
2 �FA

1
2 , then g0 := gr(0) = g2 �= 1T . So, as we observed above, 0 /∈ 0 �FA

0, 
whence 0 �FA

0 = ∅. Hence, by Lemma 4.7, we have u2
1 = 3(−4u1 + u2) ∈ I. Setting 

y := −4u1 + u2, we have y − yθ1 = 3(−a−2 + 5a−1 − 10a0 + 10a1 − 5a2 + a3) ∈ I and 
so 1 (y − yθ1) + r + rθ1 = 4(a−1 − 3a0 + 3a1 − a2) ∈ I. Let x := a−1 − 3a0 + 3a1 − a2. 
3
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We claim that (x) = (r, y). Clearly (x) ⊆ (r, y). Conversely, we have x + xθ−1 = r. 
By Theorem 9.6, −4s1 + s2 ∈ (x) and so y = 3(x − xθ−1) − 4(4s1 − s2) ∈ (x). Hence 
(x) = (r, y) as claimed. By Lemma 11.4, (x) = I−3, so Ĥ/(x) ∼= IY3(2, 12 , 1) and A is 
isomorphic to a quotient of IY3(2, 12 , 1). One can check that, apart from 12 �FA

1
2 = {0, 2}, 

we have λ �FA
μ = ∅ for all λ, μ �= 1. So the fusion law for IY3(2, 12 , 1) is Z-graded, with 

〈g1/2〉 ∼= Z and g0 = g2 = g2
1/2.

Finally, if 0 is not in 1
2 �FA

1
2 , then w̄2

1 ∈ A2(ā0) and hence, by Equation (4), u2 ∈ I. 
Recall from above that c̃τ1/2

2 = c̃2 in Ĥ/(r). Hence, similarly to ṽ2, ũ
τ1/2

2 = ũ2 and so (ũ2)
is a 1-dimensional ideal of Ĥ/(r). Let x := 3(a−1−a0−a1 +a2) −2s2 = −1

2(u2 +3r). So 
clearly (x) ⊆ (r, u2). Since x −xθ−1 = −3r and u2 = −2x −3r, we have (x) = (r, u2) and 
hence Ĥ/(x) is 5-dimensional. When A = Ĥ/(x), since 1

2 �FA

1
2 = {2}, 2 �FA

2 = {0}, 
and 0 �FA

0 = {0}, we observe that the fusion law is C4-graded, with 〈g1/2〉 ∼= C4 and 
g2 = g2

1/2. �
Note that the above algebras are graded by C2, C2 ×C2, Z and C4, respectively. For 

Ĥ2 ∼= 3C(2), the set of three axes ā0, ā1 and ā0 + ā1 − ā0ā1 is closed under to the action 
of the Miyamoto group (with respect to the grading C2 on the 2-part).

The fusion law for 6Y(1
2 , 2) is (C2 × C2)-graded. Specifically, for an axis a, there are 

three distinct non-trivial Miyamoto involutions associated to a (and belonging to the 
axis subgroup corresponding to a; see [13, Definition 3.2]): the map τa(2) inverting the 
2-part and fixing the remaining eigenspaces, the map τa(1

2) inverting the 1
2 -part and 

fixing the remaining eigenspaces and the product of these two. As 6Y(1
2 , 2) ∼= Ĥ/(a−1 −

a0−a1+a2+2s2), we see that X = {āi : i ∈ Z} is generically an infinite set of axes closed 
under the action of the infinite dihedral group 〈τ0(1

2 ), τ1(1
2)〉 (both these can be finite in 

finite characteristic). Hence taking only the C2-grading with respect to the 12 -eigenspace, 
6Y(1

2 , 2) is a 2-generated M(2, 12) axial algebra with infinitely many axes.
However, taking just the C2-grading with respect to the 2-eigenspace, 6Y(1

2 , 2) is a 
2-generated M(1

2 , 2)-axial algebra [23]. Its Miyamoto group is 〈τ0(2), τ1(2)〉 ∼= S3 and the 
closure under the Miyamoto group of the generating set {ā0, ̄a1} has size 6 [14, Section 
7.2] (the 6 in the name 6Y(1

2 , 2) gives the number of axes in a closed set of generators). 
Note that in this case, it does not appear that the closure of {ā0, ̄a1} is a subset of X. 
Taking the full C2 ×C2 grading we would get a much larger set of axes closed under the 
action of the Miyamoto group.

For the third and fourth cases above, we need to take a field with sufficiently many 
roots of unity in order to exhibit the full Miyamoto group. Recall from [13, Section 3]
that for each axis a and character χ ∈ T ∗, we get a Miyamoto automorphism τa(χ)
defined by v �→ χ(t)v where v is an eigenvector in a t-graded part. The axis subgroup 
Ta := 〈τa(χ) : χ ∈ T ∗〉 ∼= T ∗ is isomorphic to a quotient group of T depending on the 
field. The fourth case Ĥ/(3(a−1 − a0 − a1 + a2) − 2s2) is C4-graded, so taking a field 
which contains 4th roots of unity, we get the axis subgroup Ta

∼= C4 and the Miyamoto 
group is as ‘large’ as possible. To exhibit the full Miyamoto group for the third case, 
IY3(2, 1 , 1), in characteristic 0, we need to work over C.
2
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