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Radiomics-guided prediction of overall survival (OS) in brain gliomas is seen as a
significant problem in Neuro-oncology. The ultimate goal is to develop a robust MRI-
based approach (i.e., a radiomics model) that can accurately classify a novel subject
as a short-term survivor, a medium-term survivor, or a long-term survivor. The BraTS
2020 challenge provides radiological imaging and clinical data (178 subjects) to develop
and validate radiomics-based methods for OS classification in brain gliomas. In this
study, we empirically evaluated the efficacy of four multiregional radiomic models, for
OS classification, and quantified the robustness of predictions to variations in automatic
segmentation of brain tumor volume. More specifically, we evaluated four radiomic
models, namely, the Whole Tumor (WT ) radiomics model, the 3-subregions radiomics
model, the 6-subregions radiomics model, and the 21-subregions radiomics model.
The 3-subregions radiomics model is based on a physiological segmentation of whole
tumor volume (WT) into three non-overlapping subregions. The 6-subregions and 21-
subregions radiomic models are based on an anatomical segmentation of the brain
tumor into 6 and 21 anatomical regions, respectively. Moreover, we employed six
segmentation schemes – five CNNs and one STAPLE-fusion method – to quantify
the robustness of radiomic models. Our experiments revealed that the 3-subregions
radiomics model had the best predictive performance (mean AUC = 0.73) but poor
robustness (RSD = 1.99) and the 6-subregions and 21-subregions radiomics models
were more robust (RSD 1.39) with lower predictive performance (mean AUC 0.71).
The poor robustness of the 3-subregions radiomics model was associated with highly
variable and inferior segmentation of tumor core and active tumor subregions as
quantified by the Hausdorff distance metric (4.4− 6.5 mm) across six segmentation
schemes. Failure analysis revealed that the WT radiomics model, the 6-subregions
radiomics model, and the 21-subregions radiomics model failed for the same subjects
which is attributed to the common requirement of accurate segmentation of the WT
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volume. Moreover, short-term survivors were largely misclassified by the radiomic
models and had large segmentation errors (average Hausdorff distance of 7.09 mm).
Lastly, we concluded that while STAPLE-fusion can reduce segmentation errors, it is
not a solution to learning accurate and robust radiomic models.

Keywords: glioblastoma, radiomics, brain tumor segmentation, survival prediction, machine learning, deep
learning, MRI

INTRODUCTION

Gliomas are brain tumors that originate in the glial cells
of the brain (Cha, 2006). They constitute 80% of malignant
brain tumors (Goodenberger and Jenkins, 2012). Based on the
aggressiveness of the tumor, World Health Organization (WHO)
classified them into four grades (Louis et al., 2016): WHO Grade
I and Grade II gliomas are called low-grade gliomas (LGGs) and
WHO Grade III and Grade IV gliomas are called high-grade
gliomas (HGGs). Compared to LGGs, HGGs are more aggressive
and malignant with a median survival of less than 2 years
(Ohgaki and Kleihues, 2005; Louis et al., 2007; Bi and Beroukhim,
2014). Diagnostic and prognostic evaluations of these tumors are
employed using magnetic resonance imaging (MRI) techniques.
MRI is a noninvasive imaging modality that is routinely used
for three-dimensional spatial localization of brain tumors. Unlike
x-ray and CT imaging, MRI provides high-resolution images,
with superior soft-tissue contrast without employing ionizing
radiation (Banerjee et al., 2020). For diagnosis of brain gliomas,
four MRI sequences are routinely acquired, namely, T1-weighted,
T1-weighted contrast-enhanced (T1ce), T2 weighted, and Fluid
attenuated inversion recovery (FLAIR).

In the management of HGGs, overall survival (OS) plays
a critical role in treatment and surgical planning (Puybareau
et al., 2018; Sanghani et al., 2018; Feng et al., 2020). OS
is usually defined as the number of days a patient survives
post-surgery (Macyszyn et al., 2015). In the BraTS challenges
(2017 − 2020) (Bakas et al., 2018; Crimi and Bakas, 2020,
2021), OS prediction in HGGs is formulated as a classification
task, and competitors are asked to develop machine learning
methodologies as applied to brain MRIs and estimate the
OS for each patient. The BraTS challenge defined three
survival classes namely, short-term (< 10 months), medium-
term (10− 15 months), and long-term (> 15 months) survivors
(Bakas et al., 2018).

In the last few years, several machine learning approaches have
appeared that predict OS in brain gliomas by directly utilizing
information from MRI scans. Among these machine learning
methods, the majority are based on radiomic strategies. The
publicly available BraTS dataset (Menze et al., 2014; Bakas et al.,
2017a,b,c, 2018) that becomes a status quo for brain tumor
segmentation and OS classification eases rigorous comparisons of
available methods and leads to substantial advances in this field.

Brief Literature on BraTS
Puybareau et al. (2018) used a 2D fully convolutional
neural network (FCNN), based on VGG-16 architecture,
for segmentation of brain tumors into three non-overlapping

subregions including peritumoral edema (PTE), non-enhancing
core (NEC), and enhancing core (ENC). Ten volumetric features
were extracted from subjects, with Gross Tumor Resection
(GTR) status, using ground truth segmentation maps on the
training cohort and the obtained multi-regional segmentation
maps on the validation and challenge cohorts. The extracted
features were normalized with principal component analysis and
used to train 50 random forest classifiers. The final prediction
(of survival class) was obtained by a majority vote on the 50
predictions from trained classifiers. The authors reported an
accuracy of 37.9% on the validation cohort and 61% on the
challenge cohort.

Feng et al. (2020) used an ensemble of six 3D U-Net
architectures for the segmentation of brain tumors into three
non-overlapping subregions (PTE, NEC, and ENC). A linear
regression model was trained with six volumetric features,
extracted using multi-regional segmentation maps and clinical
features. The study reported an accuracy of 32.1% in the
validation cohort and 61% in the challenge cohort. Pei et al.
(2020) proposed a 3D self-ensemble ResU-Net architecture for
the segmentation of brain tumors into three non-overlapping
subregions (PTE, NEC, and ENC). A total of 34 shape-features
were extracted from the obtained multi-regional segmentation
maps and ranked based on the feature importance attribute of
a random forest classifier. The most predictive features were
used to train a random forest regressor. The authors reported
an accuracy of 55.2% on the validation cohort and 43% on the
challenge cohort.

Kao et al. (2018) utilized an ensemble of 26 neural network
architectures (19 variants of Deep-Medic (Kamnitsas et al.,
2017) and seven variants of 3D U-Net (Çiçek et al., 2016)
with random initialization, data augmentation, normalization,
and loss function) for segmentation of brain tumor into three
non-overlapping subregions (PTE, NEC, and ENC). From the
obtained multi-regional segmentation maps, they extracted
19 morphological, 19 volumetric, 78 volumetric spatial, and
116 tractography features from 59 subjects with gross tumor
resection (GTR) status. Discriminatory features were selected
by recursive feature elimination and used to train an SVM
classifier with a linear kernel. Compared to morphological,
spatial, and volumetric features, tractography features achieved
a high accuracy of 69.7% in the training cohort but a low
accuracy of 35.7% in the validation cohort and 41.6% in the
challenge cohort. Islam et al. (2018) employed PixelNet (Islam
and Ren, 2017) for segmentation of brain tumors into three
non-overlapping subregions followed by extraction of radiomic
features including shape, volumetric, and first order features.
A subset of 50 most predictive features was selected using
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cross-validation and used to train an artificial neural network for
prediction. The authors reported an accuracy of 46.8% on the
challenge cohort.

McKinley et al. (2020) utilized a 3D-to-2D FCNN for the
segmentation of brain tumor into three overlapping subregions,
i.e., whole tumor (WT), tumor core (TC), and active tumor (EC).
Three features – number of distinct tumor components, number
of tumor cores, and age – were used to train a fusion of linear
regression and random forest classifiers. The study reported an
accuracy of 61.7% on the challenge cohort. Bommineni (2020)
used an ensemble of four 3D U-Nets, called Piece-Net, for
the segmentation of brain tumors into three non-overlapping
subregions. Radiomic and clinical features including volume,
surface area, spatial location, and age were used to train a linear
regression model. The study reported an accuracy of 37.9% in the
validation cohort and 58.9% in the challenge cohort.

Marti Asenjo and Martinez-Larraz Solís (2020) used an
ensemble of four U-Net networks (three 2D U-Nets and one 3D
U-Net) for the segmentation of brain tumors into three non-
overlapping regions. The obtained multi-regional segmentation
maps were used to extract a diverse set of radiomic features
including first-order, shape, texture, and spatial features. Three
models were independently learned for the OS classification
task: (1) the RUSboosted decision tree classifier was trained
using a subset of 24 predictive features obtained with a chi-
square test, (2) the SVM classifier with a quadratic kernel
was trained using a subset of 10 predictive features obtained
with MRMR method, and (3) regression tree was trained
using a subset of 29 predictive features obtained with F-test.
Discrete label predictions were replaced with (continuous)
survival days as follows: 150 days for short-term survivors,
376 days for medium-term survivors, and 796 days for long-
term survivors. The final prediction was obtained by taking
a mean of the continuous values (survival days) of the three
trained models. The study reported an accuracy of 61.7% on the
challenge cohort.

Is Deep Learning Falling Short for Overall
Survival Prediction?
Although deep learning methods have achieved state-of-the-art
results in numerous applications in clinical and translational
imaging, their efficacy in the OS classification task of brain
gliomas is yet to be established. Numerous studies have
shown that, in comparison to classification models trained
with handcrafted (radiomic) features, deep models reported
poor predictive performance on BraTS validation and challenge
cohorts (Suter et al., 2018; Guo et al., 2019; Starke et al., 2019;
Akbar et al., 2020). For instance, Akbar et al. (2020) extracted
deep features from 2D multi-parametric MRI scans by employing
the modified versions of MobileNet V1 (Howard et al., 2017)
and MobileNet V2 (Sandler et al., 2018) architectures. Deep
features, augmented with a clinical feature (Age in years), were
subsequently fed to a deep learning prediction module called the
survival prediction model (SPM). The study reported an accuracy
of 31% in the validation cohort and 40.2% in the challenge cohort.
Recently, two studies demonstrated the strong performance of

deep models for the OS classification task: Zhao et al. (2020) used
a deep learning framework, called Segmentation then Prediction
(STP), based on 3D U-Net. The STP framework is composed
of a segmentation module, which segments the brain tumor
volume into overlapping subregions (i.e., WT, TC, EC), a local
branch, which extracts features from the whole tumor only, and
a global branch which extracts features from the last layer of the
segmentation module. Features from global and local branches
are fused together to generate survival predictions. The study
reported an accuracy of 65.5% in the validation cohort and 44.9%
in the challenge cohort. Carmo et al. (2020) employed a 3D
U-Net with self-attention blocks for segmentation of brain tumor
volume into overlapping subregions followed by prediction of OS
class. The study reported an accuracy of 55.2% in the validation
cohort and 46.7% in the challenge cohort. It is important to
note that the generalizability of deep models varied significantly
between validation and challenge cohorts.

Suter et al. (2020) attributed the unsatisfactory performance
of deep models, on OS classification tasks, to the poor
robustness of deep features. In their extensive empirical study,
they studied the robustness of various feature categories
using 125 perturbations including varying image resolution, k-
space subsampling, additive noise, bin width for gray values
etc. The study showed that, for the OS classification task,
shape features are most robust, with Intraclass Correlation
Coefficient ICC ∈ [0.97, 0.99], followed by first order features,
with ICC ∈ [0.48, 0.92], texture features such as GLSZM with
ICC ∈ [0.28, 0.83], GLCM with ICC ∈ [0.32, 0.82], GLRLM
with ICC ∈ [0.30, 0.80], GLDM with ICC ∈ [0.31, 0.78], and
deep features with ICC ∈ [0.48, 0.86]. Radiomic signature
learned with shape features only have already demonstrated
strong performance in the OS classification task (Pérez-Beteta
et al., 2017; Puybareau et al., 2018; Agravat and Raval,
2020; Bommineni, 2020; Feng et al., 2020; Pei et al., 2020;
Parmar, 2021).

Summary of Our Contributions
In this study, we used the BraTS 2020 dataset (Menze et al., 2014;
Bakas et al., 2017a,b,c, 2018) to reach the following goals:

• Quantitatively evaluate the impact of five state-of-the-
art deep segmentation networks on radiomics-based
prediction of OS in HGGs.
• Explore the efficacy of the 6-subregions and 21-subregions

radiomic models, in the OS classification task, obtained
using an anatomy-guided multi-regional segmentation of
brain tumor volume.
• Quantitatively evaluate the efficacy of multi-region

segmentation maps, obtained with the STAPLE-fusion
method, on radiomics-based prediction of OS in HGGs.
• Provide a failure analysis of multi-regional radiomic models

for the OS classification task.

To the best of our knowledge, this is the first study that
extensively studied the influence of segmentation methods on
radiomics-guided prediction of OS in brain gliomas.
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MATERIALS AND METHODS

Dataset and Preprocessing
In this study, we made use of the publicly available BraTS
2020 dataset (Menze et al., 2014; Bakas et al., 2017a,b,c,
2018). The training cohort consists of 369 subjects with
preoperative 3D multiparametric MRI scans (including T1, T2,
T1ce, and FLAIR sequences). Manual segmentation of tumor
subregions (including peritumoral edema, non-enhancing core,
and enhancing core) was provided and confirmed by expert
neuroradiologists (Menze et al., 2014). Out of 369 subjects, 76 are
low-grade gliomas (LGGs) and 293 are HGGs. Out of 293 HGGs,
complete survival information was provided for 236 subjects and
GTR was provided only for 118 subjects. Of the 118 subjects, 42
are short-term survivors, 30 are medium-term survivors, and 46
are long-term survivors.

The validation cohort consists of 125 subjects and GTR
status is provided for 29 subjects only. Unlike the training
cohort, the validation cohort only contained preoperative 3D
multiparametric MRI scans (including T1, T2, T1ce, and FLAIR
sequences) and did not include manual segmentation of tumor
subregions or survival information. Predictions on the validation
cohort can only be evaluated online on the CBICA portal1. The
challenge cohort consists of 166 subjects and is not publicly
available for experiments and evaluation.

The BraTS 2020 dataset also includes subjects from The
Cancer Imaging Archive (TCIA) (Clark et al., 2013; Scarpace
et al., 2016) and provides a name mapping file that matches
the BraTS 2020 subject IDs with the TCIA subject IDs. With
the help of matched TCIA subject IDs, we managed to extract
survival information and clinical variables of an additional 31
HGGs from the validation cohort of the BraTS 2020 dataset. Of
the 31 subjects, 16 are short-term survivors, 3 are medium-term
survivors, and 12 are long-term survivors.

To summarize, we used the following data cohorts in our
experiments:

(1) Training cohort comprising 118 subjects,
(2) Testing cohort A comprising 31 subjects, and
(3) Testing cohort B comprising 29 subjects.

Manual segmentation of tumor subregions is only available
for the training cohort. Survival information is only available for
the training cohort and testing cohort A. Table 1 summarizes
the demographic and clinical characteristics of the training and
testing cohorts.

The 3D MRI scans for each subject were already skull-
stripped, registered to the SRI24 template, and resampled to an
isotropic 1 mm× 1 mm× 1 mm resolution (Bakas et al., 2017c).
The 3D MRI T1 scan for each subject was preprocessed using
the N4ITK bias field correction algorithm (Tustison et al., 2010),
which is a recommended pre-processing step before performing
any medical image processing task such as image registration
(Moradmand et al., 2020)2.

1CBICA Image Processing Portal: https://ipp.cbica.upenn.edu/
2N4-bias correction is not recommended for FLAIR sequence (Bakas et al., 2017c).
To the best of our knowledge, no such behavior has been reported with T1

TABLE 1 | Summary of training and testing cohorts (A and B) used in the overall
survival classification task.

Characteristics Training
cohort

Testing
cohort A

Testing
cohort B

Patient demographic

No. of patients 118 31 29

Patient distribution

CBICA UPenn 94 – 15

TCIA 17 31 –

Others 7 – 14

Imaging data

3D multiparametric MRI scans
(T1, T1ce, T2, and FLAIR)

√ √ √

Ground truth Segmentation
masks

√
× ×

Clinical information

Age (years) (p = 0.252)1 (p = 0.115)2

Range 27.8− 86.6 17.0− 80.0 21.7− 85.6

Mean 61.9 58.4 57.3

Median 63.5 58 58

1-Standard deviation 12.0 15.5 14.3

Survival groups (p = 0.40)3

Range (days) 12− 1767 16− 1215 –

Mean (days) 446.4 390.8 –

Median (days) 374.5 293.7 –

1-Standard deviation (days) 343.8 314.4 –

Short-term [10 months] 42 16 –

Medium-term
[10− 15months]

30 3 –

Long-term [> 15months] 46 12 –

1p-value for statistical comparison of age between training cohort and
testing cohort A.
2p-value for statistical comparison of age between training cohort and
testing cohort B.
3p-value for statistical comparison of survival between training cohort and
testing cohort A.

Convolutional Neural Networks-Based
Segmentation of Brain Tumor Volume
Segmentation of brain tumor volume in 3D multi-parametric
MRI scans is the penultimate step in radiomics of brain
gliomas. Brain tumor volume can be partitioned into three non-
overlapping or three overlapping subregions. The three non-
overlapping subregions of brain tumor volume are peritumoral
edema (PTE), non-enhancing core (NEC), and enhancing core
(ENC). These non-overlapping subregions are combined in
various ways to generate three overlapping subregions of brain
tumor volume. The whole tumor (WT) is a combination of
PTE, NEC, and ENC subregions. The tumor core (TC) is a
combination of NEC and ENC. The active tumor (EC) only
contains the enhancing core (ENC).

Manual segmentation of tumor subregions are already
provided for the training cohort by BraTS challenge organizers.

sequence. In our study, we used the T1 sequence for image registration and, hence,
employed N4-bias correction without hesitation. Moreover, radiomic features
(such as shape and volumetric features) were only extracted from segmentation
masks.
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For testing cohorts (A and B), segmentation of brain tumor
volume is automatically generated using convolutional neural
networks (CNNs) trained on the BraTS 2020 training data
(369 subjects). To study segmentation-induced variability in
radiomics performance, we employed five state-of-the-art CNNs
for brain tumor segmentation, namely, Dong 2D U-Net (Dong
et al., 2017), Wang 2.5D CNN (Wang F. et al., 2019), Isensee
3D U-Net (Isensee et al., 2021), HDC-Net (Luo et al., 2020), and
E1D3 3D U-Net (Talha Bukhari and Mohy-ud-Din, 2021).

Dong 2D U-Net has shown superior performance on the
BraTS 2015 dataset (274 subjects). Wang 2.5D CNN and HDC
Net have shown superior performance on the BraTS 2017 (487
subjects) and BraTS 2018 (542 subjects) datasets. Isensee 3D
U-Net has shown superior performance on the BraTS 2018
dataset. E1D3 3D U-Net has shown superior performance on
BraTS 2018 and BraTS 2021 (2040 subjects) datasets. E1D3
3D U-Net, Isensee 3D U-Net, and Wang 2.5D CNN yield
overlapping subregions (WT, TC, and EC), and Dong 2D U-Net
and HDC-Net provide non-overlapping subregions (PTE, NEC,
and ENC) of brain tumor volume. It must be noted that one can
easily obtain non-overlapping subregions from overlapping ones
via set-subtraction.

Dong et al. (2017) proposed a slice-based 2D U-Net to
segment tumor sub-regions on volumetric MRI scans. Only
two MRI sequences were used, namely FLAIR and T1ce.
The FLAIR sequence was used to delineate WT and TC
subregions and the T1ce sequence was used to segment the
EC subregion. An extensive data augmentation pipeline was
employed to improve the generalization performance of 2D
U-Net. Wang F. et al. (2019) developed a hierarchical region-
based tumor segmentation approach by using a cascade of
2.5D CNN networks. Each CNN used anisotropic pseudo-
3D convolution kernels with multi-scale prediction and used
multi-view fusion (along axial, coronal, and sagittal directions)
to generate segmentation of a tumor sub-region. Three such
segmentation frameworks, namely W-Net, T-Net, and E-Net,
were combined in a cascade where one works on the output
of the previous one to yield a multi-class segmentation
map. Isensee et al. (2021) used a meticulously tuned 3D
U-Net architecture for brain tumor segmentation. In addition
to empirically tuned hyperparameters, it included instance
normalization, region-based prediction, data augmentation, and
post-processing. Isensee 3D U-Net yields a non-overlapping
segmentation of brain tumor subregions (PTE, NEC, ENC).
Luo et al. (2020) proposed a hierarchically decoupled CNN
(HDC-Net) by replacing standard convolution blocks in a
3D U-Net with new lightweight HDC blocks composed of
carefully arranged 2D convolutions. HDC blocks have a small
parameter count and work simultaneously for the channel
and spatial dimensions. Talha Bukhari and Mohy-ud-Din
(2021) proposed a modification of the 3D U-Net inspired by
the concept of TreeNets and Region-based prediction. The
proposal, named E1D3, is a single encoder multi-decoder
architecture, where each decoder segments one of the three
hierarchical tumor sub-regions: WT, TC, and EC. The three
binary segmentation maps are then fused together through a
combination of morphological processing, cluster thresholding,

and hierarchy imposing operations to generate a multi-class
segmentation map.

We also employed the STAPLE-fusion method (Rohlfing et al.,
2004) to fuse the segmentation labels obtained from Dong 2D
U-Net, Wang 2.5D CNN, Isensee 3D U-Net, HDC-Net, and
E1D3 3D U-Net. Overall, we used six segmentation schemes,
five CNNs, and one STAPLE-fusion method. Configuration and
hyperparameters for the five segmentation architectures are
presented in Table 2.

Tumor Subregion Segmentation Models
We focused on two models for the segmentation of tumor
subregions in brain gliomas: (1) physiology-based segmentation
and (2) anatomy-based segmentation.

Physiology-Based Segmentation Model
The brain tumor is divided into three non-overlapping
subregions (PTE, NEC, and ENC). We hypothesized that features
from tumor subregions are localized as compared to the whole
tumor region. Tumor subregions can potentially provide better
features that are consistent with the prognosis of the tumor
(Macyszyn et al., 2015; Li, 2018). In this study, the physiology-
guided overlapping segmentation model is referred to as the
3-subregions model.

Anatomy-Based Segmentation Models
The brain tumor is subdivided into anatomical regions with
the help of a pre-defined Harvard-Oxford subcortical atlas
with 21 labeled anatomical regions (Desikan et al., 2006).
Anatomy-based segmentation is obtained in four steps: (1)
Harvard-Oxford subcortical atlas is registered into subject space
using diffeomorphic registration. To do this, we used the
SyNOnly algorithm as implemented in the ANTs (Advanced
Normalization Tools) package (Avants et al., 2009). SyNOnly was
initialized with the output of affine registration and used mutual
information as a cost function. (2) The whole tumor (WT) mask
is overlaid with the registered atlas to extract the tumor-affected
anatomical regions. (3) Volumes of tumor-affected anatomical
regions are computed and then ranked in descending order. (4)
Finally, the top-K anatomical subregions that combine to occupy
more than 85% of WT volume are retained. In this study, we refer
to this segmentation scheme as 6-subregions segmentation model
where 6 (= K) is the number of subregions selected in step 4. For
comparison, we also used the 21-subregions segmentation model
obtained in step 2.

Given a segmentation model, i.e., 3-subregions, 6-subregions,
or 21-subregions, one can extract region-specific radiomic
features for classification.

Radiomic Feature Extraction
To compare the power of region-specific radiomic models, we
extracted radiomic features, using the PyRadiomics software
package (Van Griethuysen et al., 2017), from WT only (referred
to as the WT radiomics model), from three non-overlapping
subregions, i.e., PTE, NEC, and ENC (referred to as the 3-
subregions radiomics model), from six anatomical subregions, i.e.,
left and right cerebral cortex, left and right cerebral white matter,
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TABLE 2 | Configuration and hyperparameters of five CNNs used for automatic segmentation of brain tumor volume.

Network Dong 2D U-Net Wang 2.5D CNN Isensee 3D U-Net HDC-Net E1D3 3D U-Net

Architecture 2D U-Net Three 2.5D Anisotropic CNNs
(W-Net, T-Net, and E-Net) in
cascade

3D U-Net with
Deep supervision

2.5D U-Net 3D U-Net

Activation ReLU P-ReLU Leaky-ReLU (0.01) ReLU Leaky-ReLU (0.01)

Batch size 10 5
(Same for three CNNs in
cascade)

2 8 2

Initialization He-normal Truncated Normal He-normal He-normal He-normal

Input size / Output size 2402/2402 W-Net: 19× 1442 /11× 1442

T-Net: 19× 642 /11× 642

E-Net: 19× 642 /11× 642

1283/1283 1283/1283 963/963

Learning Rate policy1 Polynomial Decay
(batch-wise)
η0 = 10−4

ηend = 10−7

γ = 1.2

Constant (10−3 ) Polynomial decay
(epoch-wise)
η0 = 0.01
γ = 0.9

Polynomial decay
(epoch-wise)
η0 = 10−3

γ = 0.9

Polynomial decay
(epoch-wise)
η0 = 10−2

γ = 0.9

Optimizer Adam Adam SGD + Nesterov
(0.99)

Adam (AMSGrad
variant)

SGD + Nesterov
(0.99)

Loss Soft Dice Soft Dice Soft Dice + Cross
Entropy

Generalized Soft Dice Soft Dice + Cross
Entropy

Regularization – L2 (10−7) L2 (3× 10−5) L2 (10−5) L2
(
10−6)

Total Training iterations
(Gradient-Decent updates)

50k
(100 epochs)

20k (per network) 250k
(1000 epochs)

37.35k
(900 epochs)

125k
(500 epochs)

# Parameters 34.5 million W-Net: 0.21 million
T-Net: 0.21 million
E-Net: 0.20 million

31.2 million 0.29 million 34.9 million

Training Time2
∼110 h W-Net (single-view): ∼84 h

T-Net (single-view): ∼84 h
E-Net (single-view): ∼20 h

∼101 h ∼110 h ∼48 h

Test-time Augmentation
√

×
√ √ √

Morphological
Post-processing

Morphological
closing, cluster
thresholding

× × ×
√

1For definition of variables consult Table 1 in Bukhari and Mohy-ud-Din (2021).
2The training time also depends on the GPU system used for training. HDC-Net was trained on a dual-GPU system, whereas the remaining CNNs were trained on a
single-GPU system.

and left and right lateral ventricle (referred to as the 6-subregions
radiomics model), and from 21 anatomical subregions provided
by the registered Harvard-Oxford subcortical atlas (referred to as
the 21-subregions radiomics model). We extracted the following
set of (radiomic) features:

Shape Features
Shape features include volume and surface area of each
subregion. For instance, in a 3-subregions radiomics model, we
extract the volume and surface area of the peritumoral edema,
the non-enhancing core, and the enhancing core. In the OS
classification task, shape features have been shown to provide
insights into tumor behavior (Puybareau et al., 2018; Agravat and
Raval, 2020; Bommineni, 2020; Pei et al., 2020; Parmar, 2021).
Several studies reported that tumor volume and surface area
are strong predictors of survival in patients with glioblastoma
(Menze et al., 2014; Wang G. et al., 2019; Bommineni, 2020; Feng
et al., 2020). A large tumor volume reflects the severity of the
tumor and is associated with poor prognosis and shorter survival

times (Menze et al., 2014; Feng et al., 2020). We extracted 2 shape
features for the WT radiomics model, 6 shape features for the 3-
subregions radiomics model, 12 for the 6-subregions radiomics
model, and 42 shape features for the 21-subregions radiomics
model.

Spatial Features
Spatial features capture the location of the tumor within the
brain. More specifically, we extract (1) coordinates (in 3D) of
the centroid of the WT with respect to the brain mask and (2)
the Euclidean distance between the centroid of the WT and the
centroid of the brain mask. A brain mask is defined as the non-
zero region in the 3D FLAIR sequence. Spatial features have been
shown to be predictive for survival prediction tasks (Carver et al.,
2018; Puybareau et al., 2018; Bommineni, 2020).

Demographic Feature
We include age (in years), which is provided for each subject in
the BraTS 2020 dataset.
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Combined with the spatial and clinical features, a total of 7
features were obtained for the WT radiomics model, 11 features
for the 3-subregions radiomics model, 17 for the 6-subregions
radiomics model, and 47 features for the 21-subregions radiomics
model. A summary of the radiomic features is provided in
Table 3.

For the training cohort, shape and spatial features were
extracted from manual segmentations provided with the BraTS
2020 dataset. For testing cohorts (A and B), shape and
spatial features were extracted from predicted segmentations
obtained using six segmentation schemes (five CNNs and one
STAPLE-fused segmentation) elaborated in Section “CNN-based
Segmentation of Brain Tumor Volume.”

Training and Inference
Every feature vector, from the training cohort, was independently
normalized (i.e., transformed to z-scores) by subtracting the
mean and dividing by the standard deviation. Features from
testing cohorts A and B were normalized using the mean and
standard deviation of the training cohort. For the radiomic
models (i.e., WT radiomics model, 3-subregions radiomics model,
6-subregions radiomics model, and 21-subregions radiomics
model), no feature selection was performed.

For the training phase, random forest classifiers (N =
100) were trained on the training cohort comprising 118
subjects with GTR status. No synthetic data oversampling
was performed because the training cohort was well-balanced
across the three survival classes (Shannon’s entropy = 0.97).
Hyperparameters of each random forest classifier were set

TABLE 3 | Summary of radiomic features extracted for four radiomic models,
namely, the WT radiomics model, the 3-subregions radiomics model, the
6-subregions radiomics model, and the 21-subregions radiomics model.

Feature types Feature names No of features

Clinical features Age 1

Spatial features Centroid of the WT, (Euclidean)
Distance between the (centroid
of) WT and the (centroid of) the
brain

4

Shape features
(WT radiomics model)

Volume and Surface Area of
Whole Tumor

2

Shape features
(3-subregions
radiomics model)

Volume and Surface Area of
Peritumoral Edema (PTE),
Enhancing Core (ENC), and
Non-Enhancing Core (NEC)

6
(2 features × 3
subregions)

Shape features
(6-subregions
radiomics model)

Volume and Surface Area of
Right Cerebral Cortex (RCC),
Left Cerebral Cortex (LCC), Left
Lateral Ventricle (LLV), Right
Lateral Ventricle (RLV), Left
Cerebral White Matter (LCWM),
Right Cerebral White Matter
(RCWM)

12
(2 features × 6
subregions)

Shape features
(21-subregions
radiomics model)

Volume and Surface Area of 21
Subcortical Regions defined by
a registered Harvard-Oxford
subcortical atlas (see
Appendix)

42
(2 features × 21
subregions)

as follows: no_of_estimators = 200, max_features = auto,
class_weight = balanced, and criterion = gini. For the inference
phase, a soft voting method was adopted to unify the outputs of
N random forest classifiers (with a uniform weighting scheme)
and generate a single prediction of OS class for each subject. To
monitor the overfitting of the radiomic models in the inference
phase, we also evaluated predictive performance with 200 times
repeated stratified splitting (70− 30%) of the training cohort
(118 subjects).

Evaluation Criteria
The performance of the six segmentation schemes (five CNNs
and one STAPLE-fusion method) was quantified using Dice
Similarity Coefficient (DSC) (Dice, 1945) and Hausdorff distance
metric (HD-95) (Huttenlocher et al., 1993). The six segmentation
schemes were ranked based on the Final Ranking Score (FRS),
and statistical significance (of ranking) was calculated using a
random permutation test (Bukhari and Mohy-ud-Din, 2021). In
testing cohort A (31 subjects), the predictive performance of
radiomic models was quantified using the area under the receiver
operating curve (AUC) and the area under the precision-recall
curve (AUPRC). In testing cohort B (29 subjects), the predictive
performance of radiomic models could only be quantified with
the accuracy metric on the CBICA online portal. The stability
of the radiomic models was quantified with relative standard
deviation (RSD) calculated as a ratio of standard deviation
to the mean of AUC. A lower value of RSD corresponds to
the higher stability of the radiomic models. Statistical analysis
of demographic data (in Table 1) was performed using the
student t-test. A p− value < 0.05 was considered statistically
significant and a p− value < 0.001 was considered statistically
highly significant.

System Specifications
All experiments were implemented in Python 3.6 using the
following open-source packages: scikit-learn (Pedregosa et al.,
2011), N4ITK bias field correction (Tustison et al., 2010), ANTs
(Avants et al., 2009), PyRadiomics3 (Van Griethuysen et al.,
2017), Pandas (McKinney, 2010), Nibabel4, and STAPLE-fusion5

(Rohlfing et al., 2004).

RESULTS

Clinical Characteristics
Table 1 displays the clinical characteristics of the training cohort
and testing cohorts. The median age of the training cohort, testing
cohort A, and testing cohort B were 63.5, 58, and 58 years,
respectively. No statistical difference was found in age between
the training cohort and the testing cohort A (p = 0.252) and
the training cohort and the testing cohort B (p = 0.115). The
median OS (in days) for the training cohort and the testing cohort
A were 375 days and 294 days, respectively. While the training

3https://pyradiomics.readthedocs.io
4https://github.com/nipy/nibabel
5https://github.com/FETS-AI/LabelFusion
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TABLE 4 | Performance of six segmentation schemes, including five CNNs and one STAPLE-fusion method, on testing cohorts A and B (60 subjects).

Segmentation network Dice similarity coefficient (%) Hausdorff distance (mm) Final Ranking
Score (FRS)

WT TC EC WT TC EC

Dong 2D U-Net 90.4± 6.5 87.3± 9.9 84.1± 9.4 5.8± 9.0 6.5± 8.6 3.2± 5.5 6**

Wang 2.5D CNN 90.6± 5.5 89.3± 8.7 85.2± 10.0 6.6± 10.0 5.7± 8.7 2.9± 4.8 5**

Isensee 3D U-Net 91.5 ± 5.5 90.9 ± 6.7 87.0 ± 7.3 4.4± 5.6 4.4± 8.5 2.1± 1.9 1

HDC-Net 90.8± 5.4 90.1± 7.3 85.9± 8.4 4.3± 4.4 4.5± 8.0 2.1± 1.3 3**

E1D3 3D U-Net 91.4± 4.9 89.7± 9.0 85.9± 9.1 5.5± 7.8 5.6± 10.0 3.4± 6.3 4**

STAPLE-Fusion 91.4± 4.8 90.6± 7.6 86.7;±7.7 4.1 ± 3.4 4.4 ± 8.1 2.0 ± 1.3 2

Bold font indicates best scores for overlapping subregions (WT, TC, and EC).
**Indicates that the segmentation network is ranked significantly lower (p < 0.001) in comparison to the top-ranked method Isensee 3D U-Net (FRS = 1).

cohort was balanced across three survival groups, i.e., short-
term (42 subjects), medium-term (30 subjects), and long-term
(46 subjects) survivors, testing cohort A had a sparse presence
of medium-term survivors – only 3 subjects out of 31. No
statistical difference was found in OS days between the training
cohort and testing cohort A (p = 0.40). Survival information was
not made publicly available for testing cohort B by the BraTS
2020 organizers.

Brain Tumor Segmentation
The performance of the six segmentation schemes (five CNNs
and one STAPLE-fusion method), for testing cohorts A and
B combined (60 subjects), is summarized in Table 4. We
used Final Ranking Score (FRS) to unify the six segmentation
performance metrics (i.e., DSC and HD-95 scores for three
subregions each) for each subject in testing cohorts A and B
(Bukhari and Mohy-ud-Din, 2021).

In terms of FRS, Isensee 3D U-Net was ranked significantly
higher (p < 0.001) in comparison to the remaining CNNs for
brain tumor segmentation. Isensee 3D U-Net obtained the
highest DSC scores for WT (DSC = 91.5), TC (DSC = 90.9),
and EC (DSC = 87.0) subregions which quantify overlap with
manual segmentation maps. In terms of the HD-95 metric,
Isensee 3D U-Net was quite close in performance to HDC-
Net (1HDavg = 0.07) and much better than E1D3 3D U-Net
(1HDavg = 1.2), Wang 2.5D CNN (1HDavg = 1.43), and Dong
2D U-Net (1HD avg = 1.53).

The STAPLE-fusion method ranked second, in terms of
FRS, but not significantly lower than Isensee 3D U-Net
(p = 0.205). However, the STAPLE-fusion method was ranked
significantly higher than Dong 2D U-Net (p < 0.001), Wang
2.5D CNN (p < 0.001), HDC-Net (p < 0.001), and E1D3 3D
U-Net (p < 0.001). Compared to the five CNNs (individually),
the STAPLE-fusion method reported the lowest HD-95 scores
which measure the degree of mismatch between manual and
predicted segmentation maps. Figure 1 shows the predicted
multi-class segmentation maps obtained with six segmentation
schemes for three subjects, one from each survival class, in testing
cohort A.

Evaluation on Training Cohort
The four radiomic models, i.e., the WT radiomics model, the 3-
subregions radiomics model, the 6-subregions radiomics model,

and the 21-subregions radiomics model, reported the following
predictive performance in the training cohort: (1) The WT
radiomics model reported an AUC = 0.63± 0.06 and AUPRC =
0.49± 0.07, (2) The 3-subregions radiomics model reported
an AUC = 0.68± 0.05 and AUPRC = 0.53± 0.07, (3) The 6-
subregions radiomics model reported an AUC = 0.61± 0.06
and AUPRC = 0.45± 0.06, and (4) The 21-subregions radiomics
model reported an AUC = 0.58± 0.05 and AUPRC = 0.42±
0.06. The predictive performance of each radiomics model was
averaged over 200 times by repeated stratified splitting of the
training cohort (70− 30%).

Evaluation on Testing Cohort A (31
Subjects)
Performance measures (AUC, AUPRC, and RSD) for the
four radiomic models, i.e., WT radiomics model, 3-subregions
radiomics model, 6-subregions radiomics models, and 21-
subregions radiomics model, are summarized in Table 5.

Note: For compactness of description, we refer to the radiomics
model, trained with features extracted from the segmentation map
generated by a particular segmentation scheme, by the specific
name of the segmentation scheme.

Whole Tumor Radiomics Model
Our results showed that Dong 2D U-Net and Isensee 3D
U-Net showed the highest predictive performance (AUC = 0.70
and AUPRC = 0.58) and E1D3 3D U-Net showed the lowest
predictive performance (AUC = 0.67 and AUPRC = 0.54).
While Isensee 3D U-Net showed strong predictive power for
short-term survivors (AUC = 0.72) and long-term survivors
(AUC = 0.72), its performance dropped considerably for
medium-term survivors (AUC = 0.38). Dong 2D U-Net
displayed the best predictive performance for medium-term
survivors (AUC = 0.66) while maintaining high predictive
performance on short-term survivors (AUC = 0.71) and
long-term survivors (AUC = 0.69). The stability of the
WT radiomics model was 1.52 as measured with RSD,
across the six segmentation methods. The STAPLE-fusion
method marginally exceeded the predictive performance
of E1D3 3D U-Net and was inferior to the remaining
segmentation schemes.
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FIGURE 1 | Automatically segmented tumor subregions from six segmentation schemes including five CNNs and one STAPLE fusion method. Peritumoral edema,
enhancing core, non-enhancing core. Peritumoral edema (Green) enhancing core (Yellow) and non-enhancing core (Orange).
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TABLE 5 | Quantitative analysis of four radiomic models, namely, the WT radiomics model, the 3-subregions radiomics model, the 6-subregions radiomics model, and
the 21-subregions radiomics model on testing cohort A (31 subjects).

Segmentation
network

Performance
metric

WT
radiomics model

3-Subregions
radiomics model

6-Subregions
radiomics model

21-Subregions
radiomics model

Dong 2D U-Net AUC 0.70
(0.71, 0.66, 0.69)

0.75
(0.75, 0.46, 0.77)

0.71
(0.77, 0.48, 0.70)

0.70
(0.68, 0.43, 0.78)

AUPRC 0.58 0.66 0.51 0.57

Wang 2.5D CNN AUC 0.68
(0.68, 0.44, 0.7)

0.75
(0.66, 0.48, 0.87)

0.70
(0.71, 0.42, 0.74)

0.70
(0.65, 0.43, 0.78)

AUPRC 0.53 0.68 0.51 0.56

Isensee 3D U-Net AUC 0.70
(0.72, 0.38, 0.72)

0.71
(0.7, 0.31, 0.75)

0.73
(0.75, 0.44, 0.78)

0.72
(0.69, 0.45, 0.78)

AUPRC 0.57 0.62 0.56 0.61

HDC-Net AUC 0.69
(0.68, 0.45, 0.72)

0.73
(0.67, 0.53, 0.82)

0.71
(0.71, 0.45, 0.75)

0.71
(0.67, 0.45, 0.78)

AUPRC 0.54 0.61 0.53 0.58

E1D3 3D U-Net AUC 0.67
(0.68, 0.36, 0.69)

0.72
(0.71, 0.35, 0.8)

0.71
(0.73, 0.42, 0.76)

0.72
(0.69, 0.51, 0.79)

AUPRC 0.54 0.64 0.57 0.60

STAPLE Fusion AUC 0.68
(0.69, 0.42, 0.71)

0.74
(0.7, 0.45, 0.82)

0.70
(0.75, 0.40, 0.74)

0.71
(0.69, 0.43, 0.77)

AUPRC 0.55 0.64 0.51 0.59

Bold font indicates the best performance achieved for each radiomics model.
The micro-AUC of the three classes is displayed as an ordered triplet (short-term survivor, medium-term survivor, and long-term survivor) below the weighted
average AUC value.

3-Subregions Radiomics Model
Our results showed that Wang 2.5D CNN and Dong 2D
U-Net showed the highest predictive performance (AUC =
0.75 and AUPRC = 0.68) and Isensee 3D U-Net showed the
lowest predictive performance (AUC = 0.71 and AUPRC =
0.62). While Dong 2D U-Net showed strong predictive
power for short-term survivors (AUC = 0.75) and long-term
survivors (AUC = 0.77), its performance dropped considerably
for medium-term survivors (AUC = 0.46). HDC-Net displayed
the best predictive performance for medium-term survivors
(AUC = 0.53) while maintaining high predictive performance
on long-term survivors (AUC = 0.82) and short-term survivors
(AUC = 0.67). The stability of the 3-subregions radiomics
model was 1.99 as measured with RSD, across the six
segmentation methods. The STAPLE-fusion method exceeded
the predictive performance of E1D3 3D U-Net, HDC-Net,
and Isensee 3D U-Net and was inferior to the remaining
segmentation schemes.

6-Subregions Radiomics Model
Our results showed that Isensee 3D U-Net showed the highest
predictive performance (AUC = 0.73 and AUPRC = 0.56) and
Wang 2.5D CNN showed the lowest predictive performance
(AUC = 0.70 and AUPRC = 0.51). Dong 2D U-Net showed the
best predictive performance for medium-term survivors (AUC =
0.48) while maintaining strong performance on short-term
survivors (AUC = 0.77) and long-term survivors (AUC = 0.70).
The stability of the 6-subregions radiomics model, across the six
segmentation methods, was 1.48. The predictive performance of
the STAPLE-fusion method was similar to Wang 2.5D U-Net and
inferior to the remaining segmentation schemes.

21-Subregions Radiomics Model
Our results showed that Isensee 3D U-Net and E1D3 3D
U-Net showed the highest predictive performance (AUC =
0.72 and AUPRC = 0.61) and Dong 2D U-Net and Wang
2.5D CNN showed the lowest predictive performance (AUC =
0.70 and AUPRC = 0.57). E1D3 3D U-Net showed the best
predictive performance for medium-term survivors (AUC =
0.51) while maintaining strong performance on short-term
survivors (AUC = 0.69) and long-term survivors (AUC = 0.79).
The stability of the 21-subregions radiomics model, across the
six segmentation methods, was 1.39. STAPLE-fusion method
marginally exceeded the predictive performance of Dong 2D
U-Net and Wang 2.5D U-Net and was inferior to the remaining
segmentation schemes.

Failure Analysis
We performed failure analysis by studying subjects that were
misclassified by the radiomic models trained on features
extracted from the segmentation maps obtained with six
segmentation schemes (five CNNs and one STAPLE-fusion
method). More specifically, for each radiomics model, we
identified subjects misclassified with (a) all six segmentation
schemes (0− 6), (b) five segmentation schemes (1− 5), and (c)
four segmentation schemes (2− 4).

Our analysis with WT radiomics model, the 3-subregions
radiomics model and the 6-subregions radiomics model revealed
that 16 (distinct) subjects were misclassified for at least one
radiomics model. Out of 16 subjects, 8 were short-term survivors,
3 were medium-term survivors, and 5 were long-term survivors.
Figure 2A shows a Venn diagram that distributes the 16
misclassified subjects across three radiomic models. It also
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shows that 8 out of 16 subjects were misclassified by all three
radiomic models.

Our analysis with the WT radiomics model, the 3-subregions
radiomics model, and the 21-subregions radiomics model
revealed that 17 (distinct) subjects were misclassified for at least
one radiomics model. Out of 17 subjects, nine were short-term
survivors, three were medium-term survivors, and five were long-
term survivors. Figure 2B shows a Venn diagram that distributes
the 17 misclassified subjects across three radiomic models. It also
shows that 8 out of 17 subjects were misclassified by all three
radiomic models.

Our analysis with the 6-subregions radiomics model and the
21-subregions radiomics model revealed that 16 (distinct) subjects
were misclassified for at least one radiomics model. Out of 16
subjects, nine were short-term survivors, two were medium-term
survivors, and five were long-term survivors. Figure 2C shows
a Venn diagram that distributes the misclassified subjects across
the WT radiomics model, the 6-subregions radiomics model,
and the 21-subregions radiomics model. Most subjects (11 out
of 12) misclassified by the WT radiomics model also failed
with the 6-subregions radiomics model and the 21-subregions
radiomics model.

Evaluation on Testing Cohort B (29
Subjects)
Classification accuracy for the four radiomic models, i.e., WT
radiomics model, 3-subregions radiomics model, 6-subregions
radiomics model, and 21-subregions radiomics model, is
summarized in Table 6. Testing cohort B could only be
evaluated online on the CBICA portal, which only reported
classification accuracy.

In terms of accuracy, the four radiomic models reported
superior (and matched) performance with multiple segmentation
schemes. For the WT radiomics model, HDC-Net, E1D3 3D
U-Net, and STAPLE-fusion obtained the highest accuracy
(48.3%). For the 3-subregions radiomics model, the highest
accuracy (44.8%) was obtained with E1D3 3D U-Net. For the
6-subregions radiomics model, the highest accuracy of 48.3%
was obtained with Dong 2D U-Net, Isensee 3D U-Net, E1D3
3D U-Net, and STAPLE-fusion. For the 21-subregions radiomics
model, the highest accuracy of 51.7% was obtained with Dong 2D
U-Net and E1D3 3D U-Net.

Amongst the six segmentation schemes, E1D3 3D U-Net
obtained the highest accuracy for the WT radiomics model
(48.3%), the 3-subregions radiomics model (44.8%), the 6-
subregions radiomics model (48.3%), and the 21-subregions
radiomics model (51.7%).

DISCUSSION

In this study, we explored the efficacy of four radiomic
models – the WT radiomics model, the 3-subregions radiomics
model, the 6-subregions radiomics model, and the 21-subregions
radiomics model–for OS classification task in brain gliomas.
The WT radiomics model extracts features from the WT
region only. The 3-subregions radiomics model extracts features

from three non-overlapping subregions of WT i.e., PTE, NEC,
and ENC. The 6-subregions radiomics model extracts features
from six anatomical regions overlapping with WT volume
including left and right cerebral cortex, the left and right
cerebral white matter, and the left and right lateral ventricle
subregions. The 21-subregions radiomics model extracts features
from 21 anatomical regions provided with the Harvard-Oxford
subcortical atlas (see Appendix for the names of 21 anatomical
regions). We also quantified the stability of radiomic models
across six segmentation schemes–five CNNs and one STAPLE-
fusion method. The five CNNs include three 3D CNNs –
Isensee 3D U-Net, E1D3 3D U-Net, and HDC-Net– one 2.5D
CNN, Wang 2.5D CNN, and one 2D CNN, Dong 2D U-Net.
For each subject in testing cohorts A and B, the predicted
segmentation maps from five CNNs were fused using the
STAPLE-fusion method.

We benefitted from the publicly available BraTS 2020 and
TCIA datasets and extracted three data cohorts – training cohort
(118 subjects), testing cohort A (31 subjects), and testing cohort
B (29 subjects). The training cohort comprised of HGGs with
3D multiparametric MRI scans and manual segmentation of
brain tumor volume into three non-overlapping subregions, i.e.,
PTE, NEC, and ENC. Testing cohorts A and B also comprised
of HGGs but only included 3D multiparametric MRI scans.
While the training cohort was reasonably balanced for the
three survival classes – short-term survivors (42), medium-term
survivors (30), and long-term survivors (46) – testing cohort A
had a sparse representation of medium-term survivors with only
3 subjects out of 31. OS information for testing cohort B was not
available offline.

Segmentation of brain tumor volume is the penultimate
step in any radiomics framework for brain gliomas. For each
subject in testing cohorts A and B, the brain tumor volume
was segmented into three non-overlapping regions (PTE, NEC,
and ENC) using the aforementioned six segmentation schemes.
Our results showed that 3D CNNs, including Isensee 3D
U-Net, HDC-Net, and E1D3 3D U-Net, provided superior
segmentation of brain tumor subregions by utilizing 3D
contextual information in volumetric scans. Among the five
CNNs employed for brain tumor segmentation, E1D3 3D U-Net
had a large memory footprint (35 million trainable parameters)
and the shortest training time (48 h), and HDC-Net had the
fewest trainable parameter (0.29 million trainable parameters)
with the long training time (110 hours). The STAPLE-fusion
method significantly outperformed four (of the five) CNNs (p <
0.001) except for Isensee 3D U-Net, which was ranked higher
(p = 0.205). Moreover, the STAPLE-fusion method reported
the lowest HD-95 scores, which has been observed previously
with ensemble methods (Fidon et al., 2020; Ghaffari et al.,
2020; Nguyen et al., 2020; Yang et al., 2020). Isensee 3D
U-Net superior performance is attributed to the fact that the
underlying 3D U-Net architecture was carefully optimized by
empirically tuning network and training parameters on the
BraTS dataset.

The WT radiomics model, the 6-subregions radiomics model,
and the 21-subregions radiomics model required accurate
segmentation of WT volume which, in terms of Dice score,
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FIGURE 2 | Distribution of misclassified subjects in (A) the WT radiomics model, the 3-subregions radiomics model, and the 6-subregions radiomics model (B) the
WT radiomics model, the 3-subregions radiomics model, and the 21-subregions radiomics model (C) the WT radiomics model, the 6-subregions radiomics model,
and the 21-subregions radiomics model, on testing cohort A (31 subjects). For instance, 11 subjects were misclassified by the WT, 6-subregions, and 21-subregions
radiomics models.

TABLE 6 | Quantitative analysis of four radiomic models, namely, the WT radiomics model, the 3-subregions radiomics model, the 6-subregions radiomics model, and
the 21-subregions radiomics model, on testing cohort B (29 subjects).

Segmentation network Accuracy (%)

WT
radiomics model

3-Subregions
radiomics model

6-Subregions
radiomics model

21-Subregions
radiomics model

Dong 2D U-Net 44.8 41.4 48.3 51.7

Wang 2.5D CNN 44.8 41.4 41.4 37.9

Isensee 3D U-Net 44.8 41.4 48.3 44.8

HDC-Net 48.3 37.9 44.8 44.8

E1D3 3D U-Net 48.3 44.8 48.3 51.7

STAPLE Fusion 48.3 41.4 48.3‘ 41.4

was performed quite similarly by the six segmentation schemes
(DSC: 90.4− 91.5 %). However, in terms of Hausdorff distance –
which measures the largest segmentation error – segmentation
of WT volume had a large variability across six segmentation
schemes (HD-95: 4.1− 6.6 mm). The 3-subregions radiomics
model required accurate delineation of additional subregions
including tumor core (TC) and active tumor (EC). The
segmentation of the TC subregion varied substantially across
the six segmentation schemes, in terms of DSC (87.3− 90.9 %)
and HD-95 (4.4− 6.5 mm) metrics. The segmentation of the
EC subregion is increasingly difficult because of poor contrast
and fragmented (physiologic) structure. This was exhibited by
reduced segmentation accuracy (DSC: 84.1− 87.0 %) across the
six segmentation schemes.

The four radiomic models were obtained by training random
forest classifiers (N = 100 for each radiomics model) using
shape, volumetric, spatial, and demographic features. Our
results showed that the 3-subregions radiomics model reported
superior predictive performance (mean AUC = 0.73), across the
six segmentation schemes, compared to the WT radiomics
model (mean AUC = 0.69), the 6-subregions radiomics
model (mean AUC = 0.71), and the 21-subregions radiomics
model (mean AUC = 0.71). This implied that a physiological
segmentation of brain tumor volume into three subregions (WT,
TC, and EC) played a pivotal role in the OS classification of
brain gliomas. The 21-subregions radiomics model reported the
most stable predictions (RSD = 1.39), across six segmentation

schemes, compared to the 6-subregions radiomics model
(RSD = 1.48), the WT radiomics model (RSD = 1.52), and the
3-subregions radiomics model (RSD = 1.99). The stability of the
21-subregions radiomics model and the 6-subregions radiomics
model, over the 3-subregions radiomics model, is attributed to
the sole dependence on the segmentation of WT volume, which
is more accurately generated by CNNs compared to TC and EC
subregions. It should be noted that physiological segmentation
of WT volume (into three non-overlapping subregions) led to
more predictive radiomic models and anatomical segmentation
of WT volume (into 21 non-overlapping anatomical regions) led
to more stable radiomic models.

Our failure analysis with the WT radiomics model, the 3-
subregions radiomics model, the 6-subregions radiomics model,
and the 21-subregions radiomics model revealed that 18 (distinct)
subjects were misclassified by at least one radiomic model for a
majority of segmentation schemes. We found that the Hausdorff
distance metric could be used to explain the aforementioned
phenomena. More specifically, we focused on the HD-95 metric
for WT segmentation which is common to the three radiomic
models. Our analysis showed that the mean HD-95 metric
(for WT segmentation), across six segmentation schemes, for
13 correctly classified subjects (by a majority of segmentation
schemes) was HDWT

avg = 2.52± 0.22 and for 18 misclassified
subjects was HDWT

avg = 5.92± 1.17. Moreover, 8 (out of 16)
subjects that were misclassified by all radiomic models had large
segmentation errors (HDWT

avg = 7.09± 1.32). This empirically
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demonstrated that a strong predictive performance on OS
classification of brain gliomas requires accurate segmentation of
brain tumor volume with small segmentation errors.

We also found that most subjects that failed on at least one
radiomics model were short-term survivors (8 subjects out of 31).
Short-term survivors are typically associated with aggressive and
heterogeneous tumor expressions (Beig et al., 2018) and, hence,
one needs to augment the current feature set with appropriate
measures of tumor heterogeneity for improved classification.
Our analysis also revealed that the WT radiomics model, the
6-subregions radiomics model, and the 21-subregions radiomics
model simultaneously misclassified 11 (out of 12) subjects. This is
attributed to the common requirement of accurate segmentation
of WT volume for feature extraction and classification.

There are several limitations in our study as well. Of which,
foremost is the limited dataset publicly available for an empirical
study on OS classification tasks in brain gliomas, which is
an often-encountered problem in clinical and translational
imaging research. A large and balanced dataset would ideally
help generalize the findings in this study to diverse tumor
manifestations, gender, and demographics. While we employed
shape, volumetric, and spatial features for radiomics-based
prediction of OS in brain gliomas, augmenting the current feature
set with more stable and predictive features and capturing tumor
heterogeneity and aggressiveness may improve the classification
of short-term survivors in brain gliomas. Combining the
radiomics-based prediction of OS with explainable artificial
intelligence (XAI) would be interesting as well. The five CNNs
were trained using various combinations of Soft Dice and Cross
Entropy loss functions. It would be interesting to see the impact
of other loss functions, optimization schemes, and architectural
engineering on segmentation accuracy and associated radiomic
performance for OS classification in brain gliomas.
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APPENDIX

TABLE A1 | The 21 subregions defined by the Harvard-Oxford subcortical atlas are tabulated below.

Label Anatomical Region

1 Left Cerebral White Matter

2 Left Cerebral Cortex

3 Left Lateral Ventricle

4 Left Thalamus

5 Left Caudate

6 Left Putamen

7 Left Pallidum

8 Brainstem

9 Left Hippocampus

10 Left Amygdala

11 Left Accumbens

12 Right Cerebral White Matter

13 Right Cerebral Cortex

14 Right Lateral Ventricle

15 Right Thalamus

16 Right Caudate

17 Right Putamen

18 Right Pallidum

19 Right Hippocampus

20 Right Amygdala

21 Right Accumbens
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