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A B S T R A C T

Forests play a crucial role in storing much of the world’s carbon (C). Accurately estimating C sequestration is
essential for addressing and mitigating the impacts of global warming. While many studies have used machine
learning models to estimate carbon storage (CS) in forests based on remote sensing data, this research further
examines C sequestration (i.e., the annual carbon uptake by trees; CSE). The objectives of this study are two-fold:
firstly, to identify the best models for estimating CSE and CS by testing various methods, and secondly, to
examine the effect of climatic data and the canopy height model (CHM) on the estimation of CSE. To achieve the
first objective, we will compare the performance of fourteen models, including twelve machine learning models,
one deep learning model, and an ensemble model that combines the top four independent models. For the second
objective, we study the effect of four input configurations: the first is a baseline configuration based solely on
attributes extracted from satellite images (Sentinel-2) and geomorphology; the second combines satellite features
with climatic data; the third uses a CHM derived from LiDAR instead of climatic data; and the fourth combines all
available features: satellite images, climatic data, and CHM. The results show that adding climatic data does not
improve the estimation of CSE and CS. However, adding CHM features significantly improves the models’ per-
formance for both targets. The implemented ensemble model demonstrated the best performance across all
configurations.

1. Introduction

Forests play a fundamental role in the global carbon (C) cycle,
storing 861 ± 66 Pg C, of which 363 ± 28 Pg C (42 %) in live biomass
(above and below ground) (Pan et al., 2011). Forests are key natural C
sinks, playing a vital role in diminishing atmospheric C levels (Rehman
and Lal, 2023) (Carbon Storage by Urban Forests (U.S. National Park
Service), 2024) even though their C storage has been estimated to be
under the natural potential (Mo et al., 2023). Annually, over 65 % of
terrestrial C sequestration (CSE) takes place in these ecosystems (Post
et al., 1982). Therefore, accurate estimation of C storage (CS) and CSE in
forests can provide policymakers with valuable insights into the best
strategies to address greenhouse gas emissions, contributing to current
and future climate change mitigation (Dai et al., 2021). According to the

Intergovernmental Panel on Climate Change (IPCC), various C pools
have been recognized (Pan et al., 2011). Notably, plant biomass,
encompassing both above-ground and below-ground components,
serves as the primarymeans for removing CO2 from the atmosphere (Pan
et al., 2011).

Biomass derived from forests can be quantified through field mea-
surements, utilizing both destructive methods (which involve tree har-
vesting, as seen in references (Goetz et al., 2007; Konda et al., 2017))
and non-destructive approaches. The latter relies on allometric equa-
tions to convert diameter and height to volume, biomass, and subse-
quently to C. The C sequestration effect resulting from tree growth can
be gauged through periodic field surveys (i.e. repeated forest in-
ventories) or through tree rings analysis (i.e. dendro-chronology), where
the annual volume increment is measured and converted into C
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sequestered by tree growth (Krug et al., n.d.). However, the methods
currently employed by National Forestry Inventories, though accurate,
are not practical for extensive assessments of large areas as they allow
estimation of growth at forest category level, only. Consequently,
remote sensing has emerged as a crucial tool for estimating and mapping
forest biomass, rapidly becoming a widely recognized tool for moni-
toring sustainability in forestry (Fardusi et al., 2017; Estoque, 2020).

Remote sensing techniques use satellites, aircraft, and unmanned
vehicles to observe and analyze qualitative and quantitative character-
istics from a distance (What is Remote Sensing and What is it Used for? | U.
S. Geological Survey, 2024), providing data over large areas and enabling
access to inaccessible places. Optical sensors, radar, and LiDAR systems
are among the technologies employed for this purpose (Zhao et al.,
2016). In this regard, the estimation of biomass C with LiDAR is
considered more accurate when compared to passive sensors
(Stelmaszczuk-Górska et al., 2015). However, LiDAR data availability is
still limited in spatial and temporal coverage due to the high acquisition
costs, data volumes, and high data pre-processing requirements (Zhu
and Liu, 2015). Therefore, it is crucial to investigate the CSE and CS
estimation capabilities of cheaper yet accurate systems, such as optical
sensors, and systematically compare them to LiDAR.

The usage of remote sensing data to estimate forest attributes, such
as CS, has sparked ample research interest in recent years thanks to
machine learning techniques (Zhang et al., 2022) (Dai et al., 2021).
Indeed, machine learning methods can better capture non-linear re-
lationships between biomass and multiple environmental covariates, if
compared to parametric approaches (e.g., logistic regression and per-
ceptron) (Gao and Hailu, 2012). However, there is still a lack of exten-
sive research on applying machine learning methods to estimate CSE,
despite some relevant studies being conducted in agricultural or urban
contexts (e.g., (Wang et al., 2022); (Uniyal et al., 2022)). In this regard, a
major issue is also the choice of the prediction method for CS or CSE
estimation (Safari et al., 2017a). Indeed, although some algorithms such
as Random Forest demonstrated to be very promising (Chirici et al.,
2020), there is no definitive consensus on the most suitable method, as
algorithm performance can vary based on sample size, location, and
validation procedures (Safari et al., 2017a; Zhu and Liu, 2015).

Bearing in mind all these considerations, this paper aims at (i)
identifying the most suitable model for estimating CS and CSE at a large
scale in the Friuli Venezia Giulia region (Italy), and (ii) examining the
effect of different combinations of input features on the estimation of the
target variables.

For the first objective, we selected a total of fourteen algorithms.
Among these algorithms, there are twelve machine learning models,
specifically: Support Vector Regression (SVR), K-Nearest Neighbors
(KNN), Multilayer Perceptron (MLP), Random Forest (RF), Gradient
Boosting Decision Tree (GBDT), extreme Gradient Boosting (XGBoost),
Categorical Boosting (CatBoost), Bayesian Neural Network (Baye-
sianNN), Stack Ensemble (StackEns), Light Gradient Boosting
(LightGBM), Adaptive Boosting (AdaBoost), and Bagged Decision Trees
(BaggedDT). In addition to experimenting with machine learning
models, we also tested several standard deep learning models for image
processing. Among these, the VGG16 model delivered the best perfor-
mance, and we refer to this model as DeepCNN in our presentation of the
results. Finally, we developed a model called “Ensemble,” which com-
bines the best four singular models: RF, CatBoost, AdaBoost, and
StackEns.

To address the second objective, we created four different configu-
rations of input features. The first input configuration serves as a base-
line and consists of features extracted from geomorphology data and
satellite images only. The second configuration combines the satellite
features with the ones derived from climatic data, under the hypothesis
that climatic conditions influence both CS and CSE. The third configu-
ration uses satellite features and CHM derived from high-resolution
LiDAR data, to understand to what extent LiDAR data can improve re-
sults of CS and CSE estimations over the whole region. Finally, the fourth

configuration employs all the previously mentioned features, to study
their overall interaction.

This study makes four primary contributions. Firstly, it offers a
comprehensive comparison of fourteen competitive models for CS and
CSE estimation. Secondly, it introduces a new ensemble method for CS
and CSE estimation that surpasses the performance of most of the
models. Thirdly, it underscores the necessity of tailored model selection
based on specific site characteristics and data inputs, emphasizing the
context-dependent nature of model performance. Lastly, the research
highlights the significance of integrating diverse input configurations,
such as satellite features, climatic data, and CHM derived from LiDAR,
providing valuable insights for enhancing the precision of carbon esti-
mation for operational purposes.

2. Materials and methods

2.1. Study area

The research was conducted in the Autonomous Region of Friuli
Venezia Giulia in North-East Italy (Fig. 1). The study area spans a total
area of 3273 km2, accounting for approximately 41 % of the region’s
surface. Within this region, most of the forests are situated in hilly and
mountainous areas. However, since 1861, the forested area has doubled
due to depopulation and the subsequent abandonment of traditional
agro-forestry practices. In contrast, the presence of woods in the plains
area is relatively lower, primarily due to the intensification of agricul-
tural activities over time. Land reorganization and reclamation efforts
have significantly reduced the semi-natural areas in the plain, which are
now predominantly found along rivers or in the Karst region, sharing
similarities with the hilly area.

2.2. Data

2.2.1. Dependent variables
The objective of this study is to estimate CS and CSE. The reference

data for these two variables were obtained from the Third Italian Na-
tional Forest Inventory (INFC) conducted in 2015, which employed a
three-phase systematic sampling design, and the data was collected
locally between 2017 and 2019 (Gasparini and Papitto, 2022). The INFC
consists of three phases. The first phase regards the preliminary classi-
fication of land use and land cover through the photointerpretation of
orthophotos at over 301,000 points, one for each mesh of the 1 km × 1
km grid in which the national territory has been divided. The second
sampling phase involves a subsample of the first phase points, selected
according to a sampling stratified by region and class of land use and
land cover. In the third phase, strata are identified by the forest type
assigned in the second phase together with the land use and cover class,
and the region. For each forest stratum, a subsample of points is
extracted to carry out field measurements. For the Third INFC, these
field data were collected between 2017 and 2019. Dendrometric data
are collected in two concentric plots (4 and 13 m-radius depending on
tree diameter) to derive quantitative parameters, including, among
others, annual volume increment (m3 ha− 1 y− 1), CS in both living and
dead biomass (tC ha− 1), and CSE by living trees (tC ha− 1 yr− 1). In
particular, CSE was derived from annual volume increment, which was
measured on a sub-sample of trees in each survey plot. Such trees were
cored with an increment borer 1.30 m from the ground. Only one core is
taken per tree and the diameter increment in the last five annual rings
(excluding the current year ring) was measured with a ruler and then
converted into volume increment using allometric Eqs. (Gasparini and
Papitto, 2022). Finally, the increment of volume was converted into C
uptake according to IPCC guidelines (Krug et al., n.d.). Table 1 provides
the statistical distribution of the CSE and CS variables in the 279 in-
ventory plots that comprise our dataset.

M. Fasihi et al. Ecological Informatics 83 (2024) 102828 

2 



2.2.2. Predictors
We considered twelve predictors (Table 2) for the estimation of the

target variables. Fig. 2 shows the flowchart for how the predictors were
extracted from the input data. The spatial indexes have been produced in
Google Earth Engine, while the other data are managed through the
cartographic software QGIS. Particularly, the input data have been
sampled on the National inventory plot of 13 m of radius. So, the dataset
contains both the ground truth of forestry inventory and the values of
each predictor. In detail, the twelve variables can be categorized into
three groups.

The first group, called “Satellite” comprises four spectral indices
commonly used in forestry research, namely Vegetation Indices. These
are derived from remote sensing data and provide effective and

Table 1
Statistics related to the distribution of target variables in the data. The table
reports the average value (avg), standard deviation (std), minimum (min),
maximum (max), 25th, 50th, and 75th percentiles (Q1, Q2, Q3).

Statistic CSE (tC ha− 1 yr− 1) CS (tC ha− 1)

Avg 1.68 76.80
Std 1.21 61.63
Min 0.01 0.20
Max 6.50 294.04
Q1 0.74 30.54
Q2 1.44 60.33
Q3 2.37 107.57

Table 2
Names and descriptions of the twelve input features. The table reports the average value (avg), standard deviation (std), median (med), and maximum (max).

Type Name Meaning Statistics

Satellite -Sentinel-2

NDVI
Normalized Difference Vegetation Index
(NIR − Red)/(NIR+ Red)

max, med,
avg., std.

NDII
Normalized Difference Infrared Index
(NIR − SWIR)/(NIR+ SWIR)

max, med,
avg., std.

GNDVI Green-NDVI
(NIR − Green)/(NIR+ Green)

max, med,
avg., std.

EVI Enhanced Vegetation Index (EVI (Enhanced Vegetation Index) | Sentinel Hub Custom Scripts, 2024)
2.5*((NIR − Read)/(NIR+ 6*Red − 7.5*Blue+ 1) )

max, med,
avg., std.

DEM and derivative

ELE Digital Terrain Model at 10 m
max, med,
avg., std.

SLO Slope (percentage)
max, med,
avg., std.

ASP Aspect (degree) max, med,
avg., std.

CHM Canopy Height Model (DSM first - DTM) max, med,
avg., std.

Climatic - EURO-CORDEX project.
Data 2019–2015

TEMP
summer Average temperature at soil during summer months (June, July, August) max, min, avg.

TEMP
spring

Average temperature at soil during spring months (March, April, May) max, min, avg.

PREC
summer

Average precipitation during summer months (June, July, August) avg

PREC
spring

Average precipitation during spring months (March, April, May) avg

Fig. 1. The Friuli Venezia Giulia region is in the northeast of Italy, and the forest surface covers over 327.000 ha. The original 279 sampling plots of the National
Forest inventory used are represented with red dots. Reference system RDN2008 / UTM zone 33 N (EPSG 6708). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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straightforward algorithms for assessing vegetation cover, vigor, and
growth dynamics (Xue and Su, 2017). To obtain these indices, we uti-
lized the Google Earth Engine (Gorelick et al., 2017) platform to create a
median dataset using spectral bands from June, July, and August within
the 2019–2021 timeframe, with a resolution of 10 m. While this time-
frame extends slightly beyond the one covered by the dependent vari-
ables in the forest inventory, it was selected to address gaps resulting
from cloud coverage. NDVI is the most widespread spectral index used in
the biological field and can be used to estimate various vegetation
properties, including biomass and plant productivity (Huang et al.,
2021). NDII is a water-sensitive index designed to detect changes in the
water content of plant canopies. As the water content increases, the
index values also rise accordingly (Landsat Enhanced Vegetation Index | U.
S. Geological Survey, 2024). GNDVI is a modified version of NDVI, more
sensitive to variation in chlorophyll content than NDVI (NDII (Normal-
ized Difference 819/1600) | Sentinel Hub Custom Scripts, 2024). EVI is
similar to NDVI and can be used to quantify vegetation greenness; it is
more sensitive in areas with dense vegetation. (Landsat Enhanced Vege-
tation Index | U.S. Geological Survey, 2024).

The second group of predictors pertains to three geomorphological
parameters: elevation (ELE), obtained from a Digital Terrain Model
(DTM) (Chirici et al., 2020) with a resolution of 10 m, and its two de-
rivatives, percentage slope (SLO) and aspect expressed in degrees (ASP).
Additionally, we utilized a Canopy Height Model (CHM) with a resolu-
tion of 0.5 m, which represents the vegetation height above the ground.
In this case, the CHM was calculated by subtracting the Digital Surface
Model (DSM) derived from the first LiDAR pulse that records the top of
objects from the DTM (Guth et al., 2021) with data collected between
2017 and 2020 through an Aerial Laser Scanning (ALS) survey. This
calculation was performed only for wooded areas - defined by the
regional map of forest categories (Friuli Venezia Giulia Autonomous
Region, 2024) - as a convenient method to obtain the information
without processing all the original LiDAR data.

The third group of predictors focuses on climatic parameters, spe-
cifically temperature, and rainfall, generated through the EURO-
CORDEX project. These parameters represent the latest advancements
in regional climate models (RCM) at a European scale, offering high
spatial resolution. For our study, we utilized the RCP4.5 scenario for the
2015–2019 timeframe, which was provided by the Regional Environ-
mental Protection Agency of Friuli Venezia Giulia. The data was pro-
vided in the form of NetCDF files, with temperature represented at a grid
resolution of 500 m and rainfall at 5000 m.

To obtain the predictors statistics outlined in Table 2, we utilized the
Geographic Information System (GIS) software QGIS. Using a buffer

with a radius of 13 m, we sampled the statistics starting from the co-
ordinates of the INFC inventory points. This buffer ensured that the
sampled surface matched the inventory surface, which was 530 m2. The
initial dataset consisted of 284 inventory points. We then removed areas
where any of the variables listed in Table 2 were unavailable or could
potentially provide misleading results. Additionally, we excluded areas
affected by the 2018 storm Vaia (Chirici et al., 2019), as the sample
within those areas would not align with the remote sensing data,
particularly the CHM derived from LiDAR data. After these exclusions,
the final dataset, therefore, comprised a total of 279 points distributed
across the entire region, as shown in Fig. 1.

In addition to the tabular dataset, we also created an image-based
dataset to train the deep learning models. The original data for all pre-
dictors described above have been upscaled or downscaled to a resolu-
tion of 10 m, and their grids have been aligned. Then, for each of the 279
inventory points, we extracted an input patch of 32× 32 pixels centered
on the point itself to be used as input for the model. The resolution and
input size were chosen to provide enough contextual information to
enhance the model’s ability to capture and learn spatial patterns, while
also maintaining focus on the inventory area.

According to the twelve predictors listed above, four input configu-
rations were investigated to evaluate the impact of various input fea-
tures on the estimation of CSE and CS:

• Configuration 1 (Conf1): Includes NDVI, NDII, GNDVI, EVI, ELE,
SLO, and ASP.

• Configuration 2 (Conf2): Contains all the features from Conf1 along
with additional climatic features.

• Configuration 3 (Conf3): Encompasses all the features from Conf1
along with the CHM (Canopy Height Model) feature.

• Configuration 4 (Conf4): Utilizes all the available features without
any specific constraints.

2.3. Methodology

In this research, we aim to provide a comprehensive comparison of
machine learning and deep learning models for the estimation of CSE
and CS. To achieve this, we implemented twelve different algorithms
from the literature, including ensemble models, and developed a new
ensemble model. Additionally, we utilized a DeepCNN model on an
image-based version of the dataset. This thorough examination of the
models’ performance allows us to accurately select the most suitable one
for this study’s final analysis and conclusion.

Fig. 2. Flowchart for input data production, and the software involved.
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2.3.1. Support vector regression (SVR)
SVR is a machine learning model based on Vapnik–Chervonenkis

dimension theory, which aims to strike a balance between the
complexity of the model and its learning ability to achieve optimal
performance. Nevertheless, selecting the appropriate kernel function
poses a significant hurdle when aiming to accurately estimate CSE. To
tackle this challenge, we employed a grid-search technique to determine
the most suitable kernel function, along with other essential parameters
like SVR type and penalty parameters.

2.3.2. K-nearest neighbors (KNN)
KNN determines the output by averaging the values of its k “nearest

neighbors” for the given input object (k-nearest neighbors algorithm -
Wikipedia, 2024). These “nearest neighbors” are k objects with the most
similar features to the input object. The value of k is a crucial parameter
in achieving an accurate estimation of CSE. Greater values of k decrease
the impact of noise on estimation, yet they can also result in less well-
defined boundaries between classes, ultimately causing suboptimal
performance (Xue and Su, 2017). To determine the optimal value of k,
we employed the grid-search technique. This involved evaluating
different values of k to identify the one that yields the highest
performance.

2.3.3. Multilayer perceptron (MLP)
We selected the MLP model from the family of artificial neural net-

works as the most representative one. The MLP is a feedforward neural
network that includes an input layer, an output layer, and one or more
hidden layers. In this model, we applied the Rectified Linear Activation
Function (ReLU) as a standard approach to introduce nonlinearity into
the network, allowing it to learn more complex features. During the
training stage, the model tries to output a value that is close to the target
value and then updates the weight matrix accordingly. The main
objective of this model is to find a relationship between the input vari-
able and the output variable (Gao et al., 2018).

2.3.4. Random forest (RF)
RF stands as an ensemble learning technique pivotal for classification

and regression tasks. This method coordinates a multitude of decision
trees during training, each constructed on a random subset of features.
Employing a technique called bootstrap aggregating (bagging), RF
generates diverse training datasets by repeatedly sampling from the
original data (Breiman, 2001). The core strength of RF lies in its ability
to blend the predictions of these individual trees through either majority
voting (for classification) or averaging (for regression), thus enhancing
overall predictive accuracy and resilience against overfitting (Breiman,
2001). Moreover, RF offers tunable parameters such as the number of
trees in the forest and the maximum depth of each tree. Skillful
parameter tuning is vital to balancing model complexity and perfor-
mance (Feurer and Hutter, 2019). RF’s capacity to handle high-
dimensional data, mitigate overfitting, and provide valuable insights
into feature importance renders it indispensable in predictive modeling
endeavors (Obata et al., 2021).

2.3.5. Gradient boosting decision tree (GBDT)
GBDT is a popular machine learning technique used for both

regression and classification tasks. It is an ensemble learning method
that combines the predictions of multiple weak learners, typically de-
cision trees, to create a strong learner. In GBDT, the weak learners are
typically shallow decision trees, also called decision stumps, which are
simple decision trees with a single split (Friedman, 2001). The algorithm
works by sequentially adding these weak learners to the ensemble, with
each subsequent learner focusing on the mistakes made by the previous
ones (Friedman, 2001). The term “gradient boosting” refers to the
optimization algorithm used in GBDT to minimize the loss function of
the model. It works by iteratively fitting new models to the residuals or
errors made by the previous models in the ensemble (Friedman, 2002).

This iterative process continues until a specified number of weak
learners have been added or until a certain level of performance is
achieved (Friedman, 2002).

2.3.6. eXtreme gradient boosting (XGBoost)
XGBoost is an extension of GBDT that uses distributed multiple de-

cision trees for solving classification or regression problems (Chen and
Guestrin, 2016). One of the key advantages of this algorithm over
traditional GBDT is the introduction of a regularization term in the
objective function. This term applies a generalization performance
constraint, which helps to reduce overfitting, thereby improving the
model’s ability to generalize to new data (Huang et al., 2022). As a
result, XGBoost has become a popular choice for various applications,
including image and speech recognition, natural language processing,
and financial modeling.

2.3.7. Categorical boosting (CatBoost)
CatBoost is a popular member of the boosting algorithm family and is

considered an alternative to XGBoost. One of the main features of Cat-
Boost is its ability to handle categorical features by using a permutation-
driven approach, which can lead to better accuracy than traditional
algorithms (Prokhorenkova et al., 2017). CatBoost also offers several
other improvements over previous boosting models, including simpler
hyperparameter tuning and faster processing times than XGBoost
(Huang et al., 2022). These advantages make CatBoost also another
useful tool for a variety of applications.

2.3.8. Bayesian neural network (BayesianNN)
BayesianNN is a type of neural network that uses Bayesian inference

to estimate the probability distributions of the network’s weights
instead of fixed values (Izmailov et al., 2021). This approach allows the
network to measure the uncertainty in its predictions, making it more
robust and reliable, especially with limited or noisy data (Izmailov et al.,
2021). BayesianNNs are particularly useful in applications where un-
derstanding prediction confidence is crucial, such as medical diagnosis
and autonomous driving (Sagi and Rokach, 2018).

2.3.9. Stack Ensemble (StackEns)
StackEns is an advanced machine-learning technique that combines

multiple base models to improve predictive performance. In StackEns,
the predictions of individual models are used as inputs for a meta-model,
which learns to make the final prediction (Faska et al., 2023). This
method leverages the strengths of different models and mitigates their
weaknesses, leading to more accurate and robust results (Faska et al.,
2023). StackEns is particularly useful in competitions and complex
predictive tasks where maximizing model performance is crucial.

2.3.10. Light gradient boosting machine (LightGBM)
LightGBM is a highly efficient and scalable gradient-boosting

framework designed by Microsoft. It is particularly well-suited for
handling large-scale data and high-dimensional features due to its
innovative techniques like Gradient-based one-sided sampling (GOSS)
and Exclusive Feature Bundling (EFB) (Ke et al., n.d.). It supports
various advanced functionalities such as categorical feature handling
and parallel learning, making it a popular choice for competitive ma-
chine learning tasks and real-world applications (Ke et al., n.d.).

2.3.11. Adaptive boosting (AdaBoost)
AdaBoost is a powerful ensemble learning algorithm developed by

Yoav Freund and Robert Schapire (Schapire, 2003). It enhances weak
classifiers by combining them sequentially to form a strong classifier.
AdaBoost adjusts the weights of training examples, focusing on those
misclassified in previous rounds, and iteratively improves the model’s
accuracy (Schapire, 2003). This method is particularly effective in
boosting the performance of binary classifiers.
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2.3.12. Bagged decision trees (BaggedDT)
BaggedDT is an ensemble learning method that improves decision

tree performance and robustness by reducing variance and preventing
overfitting (Bbeiman, 1996). Through bagging (Bootstrap Aggregating),
multiple decision trees are trained on random subsets of the training
data. The final prediction is an average of the trees’ outputs (regression)
or a majority vote (classification), resulting in more accurate and stable
predictions than a single decision tree (Bbeiman, 1996).

2.3.13. Deep convolutional neural network (DeepCNN)
The literature offers a wide range of deep learning models based on

convolutional neural networks (DeepCNN), trained on image inputs.
Since the dataset contains a limited number of samples, we focused on
pre-trained models. Preliminary experiments were performed using
VGG11 (Simonyan and Zisserman, 2014), VGG16 (Simonyan and Zis-
serman, 2014), ResNet18 (He et al., 2015), ResNet50 (He et al., 2015),
MobileNet_V3_Small (Howard et al., 2019), and EfficientNet_V2_S (Tan
and Le, 2021). VGG16 showed the best performance and was therefore
selected as the representative DeepCNN for the following experiments.

VGG is a CNN-based architecture available in various depths,
including 11 and 16 layers. The initial part of the architecture comprises
a stack of convolutional layers (thirteen for VGG16) designed to identify
spatial patterns in images. These convolutional layers are followed by
three fully connected layers that learn a mapping function to solve the
prediction problem. VGGwas originally designed for classification tasks,
so the last fully connected layer has one neuron for each output class.
Since VGG was developed for RGB images (three input channels), the
first convolutional layer was modified to accommodate a larger number
of inputs depending on the input configuration (e.g., seven input
channels for Conf1 and twelve input channels for Conf4). Additionally,
the last fully connected layer was modified to output a single value (CS
or CSE) to adapt the model for regression tasks.

The VGG16 model can be initialized either with random weights or
with pre-trained weights, tuned on the large-scale image dataset
ImageNet. The pre-trained weights provide a more stable initial model
for further training on small-sized datasets. Furthermore, the pre-trained
weights can either be frozen, preserving them and preventing further
updates, or left unfrozen to allow further training on the new data.

2.3.14. Ensemble model
Averaging predictions is a widely accepted method for creating

ensemble models, where the predictions of multiple individual models
are combined to produce a single, robust prediction. This technique le-
verages the strengths of each model, mitigating individual weaknesses
and reducing overall prediction variance. The ensemble prediction for a
given data point is calculated by taking the mean of the predictions from
all constituent models. Mathematically, this can be expressed as follows
(Eq. (1)):

ỹensemble,i =
1
N

∑N

j=1
ỹj,i (1)

where ỹensemble,i is the ensemble prediction for the i − th data point, N is
the number of models, and ỹj,i is the prediction of j − th the model for the
i − th data point. By averaging these predictions, the ensemble model
aims to provide more accurate and reliable predictions compared to any
single model, effectively capturing the underlying patterns in the data
more comprehensively. Based on the Friedman test (Section 3.1.2), this
research selected the following top four models for the ensemble: RF,
CatBoost, AdaBoost, and StackEns. These models showed superior in-
dividual performance, and their combined predictions create a robust
ensemble model.

2.4. Experimental setup

We employed a spatial block hold-out strategy (Roberts et al., 2017)

to address the challenge of spatial autocorrelation in our predictive
modeling. This method involves partitioning the study area into ten
distinct spatial blocks, which were selected using the K-means clustering
algorithm. Fig. 3 shows the resulting spatial clusters. After generating
these ten blocks, they are divided into five folds, with each fold con-
taining two blocks. We use 5-fold cross-validation to evaluate all models,
where each iteration involves training the model on four folds
(comprising eight blocks) and testing on the remaining fold (comprising
two blocks). This operation is performed five times, with different blocks
designated for training and testing in each iteration. By averaging the
performance metrics across these five iterations, we obtained a robust
and reliable estimate of the model’s accuracy and generalization capa-
bilities. This approach minimizes the risk of overfitting and provides a
more realistic estimate of how the model will perform on new, unseen
spatial data (Roberts et al., 2017). The block hold-out strategy thus
enhances the model’s ability to generalize and ensures that its predictive
accuracy is not biased by spatial dependencies within the dataset.

Furthermore, we employ the grid search method (Feurer and Hutter,
2019) to maximize the performance of our models and enhance our
estimates for CS and CSE. Grid search involves creating a grid of
hyperparameter values and fitting the models according to every
possible combination (Feurer and Hutter, 2019). This approach is
beneficial as it systematically explores various hyperparameter combi-
nations, allowing us to identify the optimal configuration for our
models. Grid search was also performed employing a separate 5-fold
cross-validation on the spatial blocks to identify the overall best
hyperparameters. Appendix A contains details regarding the range of
hyperparameter values explored, as well as the optimal hyper-
parameters for all models.

2.5. Evaluation metrics

We consider three error measurements for the evaluation of the
models, including coefficient of determination (R2), root-mean-square
error (RMSE), and root-mean-square error percentage (%RMSE).
Generally, the lower values of RMSE and %RMSE show a better per-
formance while a better estimation performance happens for a higher
R2. Eqs. (2)–(4) show R2, RMSE, and %RMSE respectively. In these
Equations, ŷ refers to the predicted value, yi is the measured observed
value, ȳ represents the mean of the observed values, and n is the test

Fig. 3. The ten clusters used for the spatial block hold-out training strategy.
Each block contains between 13 and 41 inventory points.
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sample size.

R2 = 1 −

∑n

i=1
(yi − ŷ)2

∑n

i=1
(yi − ȳ)2

(2)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷ)2

√

(3)

%RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1
(yi − ŷ)2

√

ȳ
× 100 (4)

3. Results

In this section, we present a detailed analysis of the model’s per-
formance by comparing four configurations for the target variables, CSE
and CS. Table 3 outlines the performance related to the target variable

Table 3
Performance of the considered models for the target variable CS, over all input configurations. The reported metrics are R2 (higher is better), RMSE (lower is better),
and %RMSE (lower is better). The best result is bolded. Average is the average performance of 13 models for each metric.

Input Features Model R2 RMSE %RMSE

Conf1
(Sentinel-2)

AdaBoost 0.32 ± 0.09 49.82 ± 11.06 65.08 ± 15.61
BaggedDT 0.31 ± 0.08 50.11 ± 9.59 65.44 ± 13.82
BayesianNN 0.11 ± 0.10 57.06 ± 12.68 74.58 ± 18.20
CatBoost 0.32 ± 0.07 49.64 ± 9.95 64.86 ± 14.44
DeepCNN 0.23 ± 0.11 53.04 ± 12.64 69.23 ± 18.18
GBDT 0.29 ± 0.14 50.49 ± 10.45 66.00 ± 15.46
KNN 0.16 ± 0.21 53.86 ± 6.93 70.33 ± 10.98
LightGBM 0.31 ± 0.11 49.70 ± 9.38 64.87 ± 13.34
MLP 0.07 ± 0.01 58.36 ± 14.99 76.36 ± 21.34
RF 0.34 ± 0.07 49.24 ± 10.61 64.34 ± 15.10
SVR 0.08 ± 0.05 56.50 ± 6.91 73.76 ± 11.13
StackEns 0.33 ± 0.08 49.42 ± 9.83 64.53 ± 14.03
XGBoost 0.30 ± 0.10 50.03 ± 9.24 65.33 ± 13.41
▸ Average 0.24 ± 0.13 52.02 ± 10.14 67.96 ± 14.74
▸ Ensemble 0.34 ± 0.08 48.91 ± 10.43 63.90 ± 14.83

Conf2
(Sentinel-2 + Climatic)

AdaBoost 0.30 ± 0.06 50.36 ± 10.53 65.80 ± 15.14
BaggedDT 0.31 ± 0.09 49.84 ± 8.97 65.07 ± 13.01
BayesianNN 0.12 ± 0.10 56.91 ± 13.32 74.41 ± 19.04
CatBoost 0.28 ± 0.14 50.87 ± 9.38 66.44 ± 13.90
DeepCNN 0.27 ± 0.15 51.96 ± 14.93 68.31 ± 20.91
GBDT 0.28 ± 0.12 50.91 ± 9.97 66.51 ± 14.56
KNN 0.17 ± 0.23 53.46 ± 5.99 69.79 ± 9.93
LightGBM 0.33 ± 0.06 49.37 ± 9.44 64.47 ± 13.61
MLP 0.06 ± 0.30 58.38 ± 15.62 76.39 ± 21.88
RF 0.32 ± 0.05 49.86 ± 10.48 65.16 ± 15.10
SVR 0.13 ± 0.19 55.34 ± 7.81 72.31 ± 12.45
StackEns 0.30 ± 0.06 50.29 ± 9.73 65.68 ± 13.99
XGBoost 0.28 ± 0.11 50.88 ± 8.53 66.46 ± 12.78
▸ Average 0.24 ± 0.13 52.21 ± 9.98 68.21 ± 14.62
▸ Ensemble 0.33 ± 0.05 49.36 ± 9.86 64.49 ± 14.24

Conf3
(Sentinel-2 + CHM)

AdaBoost 0.71 ± 0.09 32.72 ± 10.67 42.78 ± 14.66
BaggedDT 0.71 ± 0.08 32.49 ± 9.22 42.40 ± 12.44
BayesianNN 0.68 ± 0.08 34.34 ± 10.00 44.86 ± 13.71
CatBoost 0.70 ± 0.07 33.48 ± 9.72 43.79 ± 13.72
DeepCNN 0.22 ± 0.12 53.59 ± 13.87 70.46 ± 20.03
GBDT 0.68 ± 0.07 34.01 ± 8.77 44.42 ± 12.21
KNN 0.18 ± 0.18 53.50 ± 7.21 69.84 ± 11.22
LightGBM 0.69 ± 0.05 33.77 ± 8.28 44.12 ± 11.63
MLP 0.63 ± 0.08 36.81 ± 9.95 48.16 ± 14.06
RF 0.71 ± 0.06 32.44 ± 8.94 42.38 ± 12.29
SVR 0.34 ± 0.10 49.21 ± 10.67 64.29 ± 15.16
StackEns 0.72 ± 0.09 31.91 ± 9.21 41.61 ± 12.24
XGBoost 0.68 ± 0.11 33.98 ± 11.14 44.41 ± 15.16
▸ Average 0.59 ± 0.09 37.86 ± 9.81 49.50 ± 13.73
▸ Ensemble 0.73 ± 0.07 31.55 ± 9.35 41.22 ± 12.82

Conf4
(Sentinel-2

+ Climatic+ CHM)

AdaBoost 0.70 ± 0.10 33.42 ± 11.35 43.69 ± 15.41
BaggedDT 0.69 ± 0.08 33.64 ± 9.71 43.93 ± 13.27
BayesianNN 0.67 ± 0.06 34.98 ± 9.85 45.74 ± 13.79
CatBoost 0.71 ± 0.07 32.58 ± 9.62 42.58 ± 13.30
DeepCNN 0.30 ± 0.11 50.87 ± 12.84 66.45 ± 18.49
GBDT 0.67 ± 0.06 35.06 ± 9.20 45.83 ± 12.99
KNN 0.14 ± 0.26 54.17 ± 5.09 70.68 ± 8.61
LightGBM 0.69 ± 0.05 33.88 ± 8.69 44.27 ± 12.15
MLP 0.53 ± 0.07 41.53 ± 10.01 54.21 ± 13.72
RF 0.69 ± 0.05 33.70 ± 8.98 44.03 ± 12.43
SVR 0.17 ± 0.17 53.85 ± 7.88 70.37 ± 12.47
StackEns 0.70 ± 0.08 32.83 ± 9.25 42.84 ± 12.42
XGBoost 0.66 ± 0.11 35.21 ± 11.77 46.08 ± 16.35
▸ Average 0.56 ± 0.10 30.98 ± 9.56 50.82 ± 13.49
▸ Ensemble 0.72 ± 0.07 31.89 ± 9.81 41.66 ± 13.35

M. Fasihi et al. Ecological Informatics 83 (2024) 102828 

7 



CS, while Table 4 focuses on the performance related to the target var-
iable CSE. The results for both variables are reported on the test set in
Tables 3 and 4. For simplicity, the training results for CS are included in
Appendix B for further reference. Additionally, all results are available
via the link mentioned in the Data Availability section of the paper.

In Table 3, our analysis reveals that the models which consistently
deliver robust performance across all configurations are: RF, StackEns,
LightGBM, and AdaBoost. They outperform other algorithms such as
GBDT, KNN, MLP, and SVR. The inclusion of CHM data in Conf3 results
in the highest R2 values observed, with StackEns achieving an R2 of 0.72,

RMSE of 31.91, and %RMSE of 41.61, closely followed by AdaBoost, RF,
and BaggedDT. In Conf4, which combines all input features, CatBoost
achieves the best R2 of 0.71.

The Ensemble model consistently outperforms individual models
across various configurations, demonstrating superior performance.
Specifically, in Conf3, the Ensemble model achieves an R2 of 0.73, RMSE
of 31.55, and %RMSE of 41.22. In Conf4, which includes all available
data, the model maintains high performance with an R2 of 0.72, RMSE of
31.89, and %RMSE of 41.66.

In Table 4, we observe CatBoost, LightGBM and RF consistently

Table 4
Performance of the considered models for the target variable CSE, over all input configurations. The reported metrics are R2 (higher is better), RMSE (lower is better),
and %RMSE (lower is better). The best result is bolded. Average is the average performance of 13 models for each metric.

Input Features Model R2 RMSE %RMSE

Conf1
(Sentinel-2)

AdaBoost 0.21 ± 0.13 1.04 ± 0.07 62.06 ± 5.25
BaggedDT 0.23 ± 0.16 1.03 ± 0.05 61.15 ± 4.61
BayesianNN − 0.06 ± 0.11 1.21 ± 0.11 72.24 ± 8.11
CatBoost 0.23 ± 0.16 1.02 ± 0.07 61.04 ± 5.80
DeepCNN 0.28 ± 0.11 0.99 ± 0.06 59.01 ± 5.14
GBDT 0.16 ± 0.11 1.08 ± 0.07 64.14 ± 5.35
KNN − 0.09 ± 0.21 1.22 ± 0.10 72.91 ± 7.85
LightGBM 0.25 ± 0.19 1.01 ± 0.05 60.12 ± 4.37
MLP − 0.03 ± 0.03 1.20 ± 0.14 71.67 ± 9.62
RF 0.25 ± 0.15 1.01 ± 0.05 60.18 ± 4.06
SVR − 0.02 ± 0.02 1.20 ± 0.15 71.32 ± 9.77
StackEns 0.20 ± 0.10 1.05 ± 0.07 62.44 ± 5.45
XGBoost 0.17 ± 0.21 1.06 ± 0.04 63.12 ± 3.39
▸ Average 0.14 ± 0.13 1.09 ± 0.08 64.72 ± 6.06
▸ Ensemble 0.25 ± 0.13 1.02 ± 0.06 60.46 ± 5.01

Conf2
(Sentinel-2 + Climatic)

AdaBoost 0.24 ± 0.17 1.02 ± 0.05 60.46 ± 4.42
BaggedDT 0.22 ± 0.19 1.03 ± 0.06 61.09 ± 5.07
BayesianNN − 0.03 ± 0.20 1.19 ± 0.08 70.74 ± 5.37
CatBoost 0.27 ± 0.17 1.00 ± 0.05 59.45 ± 4.01
DeepCNN 0.26 ± 0.16 1.00 ± 0.07 59.60 ± 4.57
GBDT 0.24 ± 0.10 1.02 ± 0.08 61.00 ± 5.72
KNN − 0.05 ± 0.28 1.19 ± 0.07 70.84 ± 5.99
LightGBM 0.25 ± 0.16 1.01 ± 0.04 60.11 ± 3.73
MLP − 0.03 ± 0.03 1.20 ± 0.14 71.64 ± 9.71
RF 0.26 ± 0.16 1.00 ± 0.05 59.67 ± 3.67
SVR − 0.05 ± 0.20 1.20 ± 0.08 71.53 ± 6.93
StackEns 0.22 ± 0.08 1.04 ± 0.08 61.80 ± 6.14
XGBoost 0.18 ± 0.20 1.05 ± 0.05 62.80 ± 4.94
▸ Average 0.15 ± 0.16 1.07 ± 0.07 63.90 ± 5.41
▸ Ensemble 0.26 ± 0.14 1.00 ± 0.05 59.79 ± 4.36

Conf3
(Sentinel-2 + CHM)

AdaBoost 0.39 ± 0.10 0.92 ± 0.11 54.89 ± 7.99
BaggedDT 0.37 ± 0.11 0.93 ± 0.10 55.36 ± 7.22
BayesianNN 0.32 ± 0.11 0.97 ± 0.13 58.00 ± 9.32
CatBoost 0.37 ± 0.11 0.94 ± 0.11 55.78 ± 7.89
DeepCNN 0.30 ± 0.11 0.98 ± 0.09 57.99 ± 5.35
GBDT 0.39 ± 0.07 0.93 ± 0.12 55.21 ± 8.52
KNN − 0.09 ± 0.21 1.22 ± 0.10 72.86 ± 7.87
LightGBM 0.40 ± 0.08 0.91 ± 0.09 54.30 ± 6.83
MLP − 0.03 ± 0.03 1.20 ± 0.15 71.56 ± 9.84
RF 0.41 ± 0.08 0.91 ± 0.08 53.94 ± 6.29
SVR − 0.01 ± 0.02 1.19 ± 0.14 70.99 ± 9.68
StackEns 0.39 ± 0.08 0.92 ± 0.11 54.97 ± 7.88
XGBoost 0.39 ± 0.11 0.92 ± 0.12 54.81 ± 8.00
▸ Average 0.28 ± 0.09 1.00 ± 0.11 59.28 ± 7.90
▸ Ensemble 0.41 ± 0.08 0.90 ± 0.10 53.85 ± 7.59

Conf4
(Sentinel-2

+ Climatic+ CHM)

AdaBoost 0.37 ± 0.11 0.93 ± 0.09 55.44 ± 7.11
BaggedDT 0.38 ± 0.10 0.93 ± 0.09 55.28 ± 7.00
BayesianNN 0.25 ± 0.18 1.01 ± 0.13 60.37 ± 8.49
CatBoost 0.42 ± 0.08 0.90 ± 0.08 53.40 ± 6.14
DeepCNN 0.29 ± 0.11 0.99 ± 0.09 58.99 ± 5.98
GBDT 0.40 ± 0.06 0.92 ± 0.09 54.60 ± 6.44
KNN − 0.08 ± 0.33 1.20 ± 0.07 71.66 ± 6.07
LightGBM 0.41 ± 0.09 0.90 ± 0.11 53.84 ± 8.05
MLP − 0.03 ± 0.04 1.20 ± 0.15 71.70 ± 10.35
RF 0.41 ± 0.08 0.90 ± 0.07 53.89 ± 5.57
SVR − 0.04 ± 0.20 1.19 ± 0.08 71.04 ± 6.95
StackEns 0.37 ± 0.08 0.93 ± 0.10 55.74 ± 7.44
XGBoost 0.39 ± 0.13 0.91 ± 0.11 54.33 ± 7.38
▸ Average 0.27 ± 0.12 0.99 ± 0.10 59.27 ± 7.25
▸ Ensemble 0.41 ± 0.08 0.90 ± 0.09 53.93 ± 6.54

M. Fasihi et al. Ecological Informatics 83 (2024) 102828 

8 



emerge among the top-performing models, demonstrating robust per-
formance across various configurations for CSE estimation. Interest-
ingly, DeepCNN is among the top-performing models for Conf1 and
Conf2, while it is surpassed by the other machine learning models for
Conf3 and Conf4. In Conf1, RF is the best machine learning model,
closely followed by LightGBM and BaggedDT. When Sentinel-2 data is
combined with climatic variables (Conf2), both RF and LightGBM
continue to show robust results, together with CatBoost and AdaBoost.
The same is true for Conf3, where other models also showcase a boost in
performance. In Conf4, which combines all input features, CatBoost

achieves the highest R2 value. Notably, the Ensemble model demon-
strates again a robust performance across all configurations, matching or
surpassing all the single machine learning models.

In summary, the Ensemble model achieves the highest predictive
accuracy overall, demonstrating the value of integrating multiple
models. The addition of climatic data shows minimal impact on esti-
mation accuracy, while the inclusion of CHM data significantly enhances
performance, underscoring its importance in achieving accurate
estimations.

We evaluate the predictions of the most effective method and input
configuration for the two tasks, concentrating on the Ensemble model
trained with Conf3. Figs. 4 and 5 illustrate the relationship between
actual data and model predictions for the target variables, featuring
marginal distribution bar charts. The thin diagonal line indicates the
perfect fit, while the thicker line shows the regression line from the
model.

3.1. Statistical comparison of model performance

3.1.1. Averaging performance diversity
To assess the performance and diversity of eachmodel, we calculated

the average performance of the individual models (reported in Table 3
and Table 4 as “Average”) and compared each model’s performance to
this average. Additionally, we compared the performance of the
Ensemble model with the average performance of the individual models.
For simplicity, here we only discuss the results for R2 in Conf3. Further

Fig. 4. Real data versus predicted values for the target variable CSE, for the
best model: Ensemble with input configuration Conf3.

Fig. 5. Real data versus predicted values for the target variable CS, for the best
model: Ensemble with input configuration Conf3.

Fig. 6. Difference in performance of all models for R2 in Conf3 for CS.

Fig. 7. Difference in performance of all models for R2 in Conf3 for CSE.
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plots can be accessed in the additional materials. As depicted in Figs. 6
and 7, for both targets (CS and CSE), the MLP, SVR, KNN, and DeepCNN
models performed close to or below the average, while the Ensemble
model consistently ranked among the top two. RF also consistently
performed above average. This pattern of performance is consistent
across all configurations.

3.1.2. Performance evaluation across all configuration
We perform further analyses to identify the most reliable models

across all input configurations. First, we calculate the average perfor-
mance of each model across the four configurations for all metrics (R2,
RMSE, and %RMSE). For simplicity, we focused on the target variable
CS. The following analysis combines the performance ranks across all
configurations to comprehensively compare the models. Table 5 pre-
sents the average ranks of models across all configurations for CS.

The Friedman test was conducted on these average ranks to deter-
mine if there were significant differences in the performance of the
models. The test yielded a Friedman statistic of 38.60, resulting in a p-
value of 0.00012. Since the p-value is significantly less than 0.05, we
reject the null hypothesis and conclude that there are significant dif-
ferences in model performance.

To further explore these differences, we look at the average ranks.
The StackEns and RF models consistently ranked high across all con-
figurations and metrics. AdaBoost and CatBoost also showed strong

performance, closely following the previous two models. BaggedDT
exhibited moderate performance, while other models were consistently
outperformed such as BayesianNN, DeepCNN, and KNN.

In conclusion, the StackEns and RF models demonstrated the best
overall performance, followed closely by AdaBoost and CatBoost. These
models are recommended for further applications and analysis due to
their superior performance across various configurations and evaluation
metrics.

3.2. Assessing the significance of input features using SHAP values

We further explored the significance of various input features across
different configurations using SHAP values for RF. In the context of CSE
estimation, as shown in Fig. 8, NDII and GNDVI emerge as crucial fea-
tures when using Conf1, consistently occupying top positions in the
plots. This is particularly evident in the bar plot (left), which highlights
their significant impact on the model’s output magnitude. NDII and
GNDVI are especially responsive to canopy moisture and vegetation
water stress, making them essential for accurately predicting CSE.

Additionally, the inclusion of climatic data in Conf2 maintains the
significance of Sentinel-2 features, while climatic factors, such as
maximum summer and spring temperatures, emerge among the top 15
contributors. Specifically, lower temperatures (represented by orange
and yellow in the central violin plot) are associated with higher CSE
values. When Sentinel-2 and CHM features are incorporated in Conf3,
CHM-related features become dominant, surpassing the influence of
vegetation indices. In Conf4, where all features are utilized, CHM re-
mains the most impactful, followed by GNDVI and NDII, while climatic
features, particularly average spring precipitation, and maximum sum-
mer temperature, show relatively low significance.

Fig. 9 extends the analysis of influential features impacting the target
variable CS across different configurations. In Conf1, the most signifi-
cant features include spectral indices such as GNDVI and NDII, alongside
topographical factors like slope (SLO) and elevation (ELE). Notably,
high values of average, maximum, and median elevation strongly
correlate with elevated CS values, as illustrated in the violin and sum-
mary plots for Conf1. In Conf2, the focus shifts to climatic features,
where lower maximum temperatures during Spring and Summer are
linked to higher CS values. Conf3 reveals that CHM-related features
become the most influential, significantly surpassing the impact of
satellite-derived features, with CHM max being three times more

Table 5
Average ranks of models across all configurations for CS.

Model Average R2

Rank
Average
RMSE Rank

Average %
RMSE Rank

Overall
Average Rank

StackEns 3.25 2.5 2.5 2.75
RF 3.5 3.5 3.5 3.5
AdaBoost 5.0 4.25 4.5 4.5
CatBoost 5.25 4.5 4.5 4.7
BaggedDT 5.0 4.75 4.75 4.8
LightGBM 5.5 5.0 5.0 5.1
XGBoost 7.75 6.0 6.0 6.5
GBDT 7.0 7.25 7.25 7.1
SVR 10.5 10.25 10.75 10.5
MLP 10.5 10.75 10.75 10.6
BayesianNN 11.0 11.5 11.5 11.3
DeepCNN 11.0 11.75 11.5 11.4
KNN 11.75 11.75 11.5 11.6

Fig. 8. Plots of the SHAP values for the 15 most influential features of the RF Model on CSE, for all input configurations. From left to right: bar plot showing the
average impact of the features on the magnitude of the output, violin plot, and summary plot showing the impact of the features on the output.
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significant than elevation max. This trend continues in Conf4, where
CHM remains the most critical factor, followed by climatic features and
elevation, reflecting a consistent pattern across the different
configurations.

Fig. 10 showcases a force plot for RF, Conf3 on CSE (top) and CS
(bottom), to further visualize the effect that the input features have on
the final prediction. The top half of the figure displays an example of a

correctly predicted sample on CSE. The high values of the CHM-related
variables (CHM avg. = 23.54, CHM med = 24.92, CHM max = 35.63)
push the model to predict a high CSE value, while the low values of the
GNDVI-related variables (GNDVI avg. = 0.71, GNDVI max = 0.73,
GNDVI med = 0.71) push towards a lower output value. This confirms
the trend seen in the violin and summary plots in Fig. 8, where high
values of vegetation indices were correlated with high outputs and vice

Fig. 8. (continued).
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versa. In the end, the RF predicted a CSE value of 2.10, which is very
close to the measured 2.12.

The lower half of Fig. 10 shows a similar plot for CS. The high values
of the vegetation indices (e.g. GNDVI med= 0.80) push the predicted CS
towards higher values, but extremely low CHM-related values (e.g.,
CHM avg. = 9.78, CHM max = 18.74) push it down to 60.57, which is
close to the real 60.25 value. Since CHM is the most important feature
for CS prediction, this is also aligned with the patterns observed in Fig. 9.

4. Discussion

In this study, we focused on estimating C storage and sequestration in
Friuli Venezia Giulia region (Italy) using various data combinations,
including remote sensing and geomorphologic data. We specifically
investigated the contributions of climatic data and the canopy height
model (CHM) to these estimations. Our analysis involved implementing
and evaluating fourteen different models across four configurations

Fig. 9. Plots of the SHAP values for the 15 most influential features of the RF Model on CS, for all input configurations. From left to right: bar plot showing the
average impact of the features on the magnitude of the output, violin plot, and summary plot showing the impact of the features on the output.
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based on combinations of Sentinel-2 satellite images, climatic data, and
CHM.

Among the tested models, the newly implemented Ensemble model
demonstrated the best performance regarding R2, RMSE, and %RMSE.
Our findings indicate that including climatic data did not improve
estimation accuracy in either regression task. However, combining sat-
ellite images with CHM significantly improved both CS and CSE esti-
mations. Interestingly, using all available features did not significantly
enhance model performance for either target.

In this study, the Ensemble method demonstrated superior perfor-
mance in estimating C storage (CS) for Conf3, achieving an R2 value of
0.73, a RMSE of 31.55, and a %RMSE of 41.20 %. Our findings indicate
significant advancements in CS estimation compared to previous
research. For instance, Safari et al. (Safari et al., 2017) exploredmethods
to enhance the estimation of aboveground C using Landsat 8 OLI data,
employing various machine learning algorithms. Among these, Random
Forest (RF) showed superior performance, with an RMSE (%) of
approximately 35 % and an R2 value of 0.65. Furthermore, Uniyal et al.
(Uniyal et al., 2022) highlighted the XGBoost algorithm’s superior
prediction accuracy in quantifying carbon storage in urban forests,
emphasizing the context-dependent nature of model performance. When
compared to other studies using machine learning approaches for

estimating forest parameters, particularly total aboveground biomass
(Du et al., 2010; Frazier et al., 2014; Labrecque et al., 2006), our results
show better performance, evidenced by a lower RMSE and a higher R2.
However, direct comparisons between studies with different forest
conditions, sampling methods, and modeling approaches are chal-
lenging (Safari et al., 2017; Zandler et al., 2015). This underscores the
importance of selecting models tailored to specific site characteristics
and data inputs.

Fig. 4 illustrates a comparable plot for the CS target variable, where
the trend line closely aligns with the diagonal, indicating a good model
fit. However, examining the marginal distributions reveals challenges in
predicting high CS values, potentially attributed to saturation effects in
input values, similar to those observed in the analysis of CSE. This issue
of underestimation for larger values of forest stand attributes like CSE
(and to a lesser extent, CS) is consistent with previous studies. Chirici
et al. (Chirici et al., 2020) highlighted this problem when estimating
stand volumes using RF models, attributing it to the low sensitivity of
spectral reflectance, especially in multi-layer canopy forests or dense
forests (Giannetti et al., 2018). Moreover, areas with complex topo-
graphic features, such as those in our case study ranging from flat terrain
to mountains up to 2000 m above sea level, can affect the spectral
signature and the data saturation values of forest aboveground biomass

Fig. 9. (continued).

Fig. 10. SHAP force plot for two predictions of the RF model, Conf3, for CSE (top) and CS (bottom).
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(Lu et al., 2014). This saturation effect has also been reported in studies
using LiDAR data (Giannetti et al., 2018; Nilsson et al., 2017).

In addition, this research offers a notable advantage through its
incorporation of diverse input configurations. By integrating satellite
features, climatic data, and the Canopy Height Model (CHM), the study
employs a meticulous methodology. A key component of this integration
is the thorough investigation into how LiDAR data can enhance the
precision of CSE and CS estimation, particularly when compared with
optical sensors. This exploration is especially critical for operational
purposes, where balancing accuracy with practical constraints is
essential.

5. Conclusions

This study demonstrates that the newly implemented model called
Ensemble is the most effective for estimating C sequestration (CSE) and
C storage (CS) in forests, utilizing machine learning and remote sensing
data. Integrating canopy height model (CHM) data from LiDAR signifi-
cantly enhances the accuracy of CS and CSE estimation. The combina-
tion of satellite features, climatic data, and CHM data offers valuable
insights into forest carbon dynamics. These findings provide practical
guidance on selecting the best ensemble models and input configura-
tions for accurate carbon estimation and creating high-detail maps of CS
and CSE. These maps are essential tools for identifying C sequestration
hotspots and coldspots, thus informing evidence-based forest policies,
planning, and management. However, the research is limited by the lack
of detailed soil data, which is crucial for a comprehensive understanding
of C sequestration dynamics. Incorporating soil data in future research
could improve the accuracy and reliability of estimates.
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Appendix A. Grid search method

Table A-1 reports the hyperparameters taken into consideration for each model, their meaning, and the range of search. The DeepCNN model was
trained for 50 epochs using early stopping to determine the best epoch at which to halt the training. Tables A-2 and A-3 report all the best hyper-
parameters selected for all the models and input configurations. Table A-2 refers to the CSE target variable and Table A-3 to the CS target variable.

Table A-1
List of the hyperparameters of the algorithms, their meaning, and the range explored during grid search.

Model Hyperparameter Meaning Range

AdaBoost
n_estimators The number of estimators in the ensemble [50, 100, 200]
learning_rate Weight applied to each regressor at each boosting iteration [0.01, 0.1, 1.0]

BaggedDT
n_estimators The number of estimators in the ensemble [50, 100, 200]
base_estimator__max_depth The maximum depth of the tree [4, 5, 10]

BayesianNN

n_iter Number of training iterations [100,200,300]

lambda_2 Inverse scale parameter (rate parameter) for the Gamma distribution prior over the
lambda parameter

[1e-6, 1e-5, 1e-4]

lambda_1 Shape parameter for the Gamma distribution prior over the lambda parameter [1e-6, 1e-5, 1e-4]
(continued on next page)
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Table A-1 (continued )

Model Hyperparameter Meaning Range

alpha_2 Inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha
parameter

[1e-6, 1e-5, 1e-4]

alpha_1 Shape parameter for the Gamma distribution prior over the alpha parameter [1e-6, 1e-5, 1e-4]

CatBoost

learning_rate Boosting learning rate [0.03, 0.1]
l2_leaf_reg Coefficient at the L2 regularization term of the cost function [0.2, 0.5, 1, 3, 4]
iterations Max count of trees [100, 150, 200, 250]
depth Depth of a tree [2, 4, 6, 8, 10]

DeepCNN

pretrained Whether to load the pretrained weights of the model (ImageNet) or initialize the model
with random weights

[False, True]

freeze Whether the weights of convolutional layers are frozen or allowed to be further trained [False, True]
batch_size Batch size used for the training procedure [4, 8, 16]
learning_rate Learning rate for the Stochastic Gradient Descent Optimizer [1e-4, 1e-3, 1e-2]

GBDT

subsample The fraction of samples to be used for fitting the individual base learners [0.5, 0.75, 1]

n_estimators The number of boosting stages to perform [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000,
2000]

max_leaf_nodes Grow trees with max_leaf_nodes in the best-first fashion. [2, 5, 10, 20, 50, 100]
max_depth Maximum depth of the individual regression estimators [1, 2, 4]
learning_rate Boosting learning rate [1, 0.1, 0.01,0.001]

KNN n_neighbors The number of neighbors [1, 2, …, 30]

LightGBM
n_estimators The number of estimators in the ensemble [50, 100, 200]
max_depth The maximum depth of the tree [4, 5, 10]
learning_rate Learning rate [0.05, 0.1, 0.2]

MLP
max_iter Number of training epochs [10, 20, 50]
learning_rate_init Initial learning rate [0.01, 0.10]
hidden_layer_sizes Number of neurons in the hidden layer [2, 4, 8, 64, 128]

RF

n_estimators The number of trees in the forest [200, 400, 600, 1000, 1200]
min_samples_split The minimum number of samples required to split an internal node [10, 12, 14, 16]
min_samples_leaf The minimum number of samples required to be at a leaf node [4–6, 8]
max_features The number of features to consider when looking for the best split [4–6]
max_depth The maximum depth of the tree [100, 110, 120, 130, 140, 150]

SVR gamma Kernel coefficient [1e-5, 1e-4, 1e-3, 1e-2]
C Regularization parameter [1000, 100, 10, 1, 0.01]

StackEns final_estimator__alpha Regularization strength for Ridge meta-model [0.1, 1.0, 10.0]

XGBoost
n_estimators The number of boosting stages to perform [500, 600, 700, 800]
max_depth Maximum tree depth for base learners [4, 5, 10]
learning_rate Boosting learning rate [0.01, 0.015, 0.02]

Table A-2
Best hyperparameters found for all the models, for all configurations, for the target variable CSE.

Model Hyperparameter Conf1 Conf2 Conf3 Conf4

AdaBoost
n_estimators 100 200 200 200
learning_rate 0.1 1.0 1.0 1.0

BaggedDT
n_estimators 100 100 100 100
base_estimator__max_depth 5 5 10 5

BayesianNN

n_iter 100 300 100 100
lambda_2 1e-4 1e-4 1e-4 1e-4
lambda_1 1e-6 1e-4 1e-6 1e-6
alpha_2 1e-6 1e-6 1e-6 1e-6
alpha_1 1e-4 1e-4 1e-4 1e-4

CatBoost

learning_rate 0.1 0.1 0.03 0.1
l2_leaf_reg 3 3 1 0.2
iterations 100 100 250 200
depth 2 2 4 4

DeepCNN

pretrained True True True True
freeze False False False False
batch_size 8 8 8 8
learning_rate 1e-3 1e-3 1e-3 1e-3

GBDT

subsample 1 1 0.5 0.5
n_estimators 50 50 200 200
max_leaf_nodes 100 100 100 100
max_depth 2 2 4 4
learning_rate 0.1 0.1 0.01 0.01

KNN n_neighbors 8 10 9 10

LightGBM
n_estimators 50 50 50 50
max_depth 4 10 4 10
learning_rate 0.05 0.05 0.1 0.1

MLP
max_iter 20 50 20 50
learning_rate_init 0.01 0.01 0.01 0.01
hidden_layer_sizes [64] [64] [128] [4]

RF n_estimators 600 200 600 600
min_samples_split 10 10 12 10

(continued on next page)
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Table A-2 (continued )

Model Hyperparameter Conf1 Conf2 Conf3 Conf4

min_samples_leaf 5 5 4 5
max_features 6 6 6 6
max_depth 100 150 140 100

SVR
gamma 1e-5 1e-5 1e-5 1e-5
C 10 10 100 100

StackEns final_estimator__alpha 10.0 10.0 0.1 0.1

XGBoost
n_estimators 500 500 500 700
max_depth 4 4 5 4
learning_rate 0.015 0.02 0.02 0.015

Table A-3
Best hyperparameters found for all the models, for all configurations, for the target variable CS.

Model Hyperparameter Conf1 Conf2 Conf3 Conf4

AdaBoost
n_estimators 100 200 200 200
learning_rate 0.1 1.0 1.0 1.0

BaggedDT n_estimators 100 100 100 100
base_estimator__max_depth 5 5 10 5

BayesianNN

n_iter 100 300 100 100
lambda_2 1e-4 1e-4 1e-4 1e-4
lambda_1 1e-6 0.0001 1e-6 1e-6
alpha_2 1e-6 1e-6 1e-6 1e-6
alpha_1 0.0001 0.0001 0.0001 0.0001

CatBoost

learning_rate 0.1 0.1 0.03 0.1
l2_leaf_reg 3 3 1 0.2
iterations 100 100 250 200
depth 2 2 4 4

DeepCNN

pretrained True True True True
freeze False False False False
batch_size 8 8 8 8
learning_rate 1e-3 1e-3 1e-3 1e-3

GBDT

subsample 1 1 0.5 0.5
n_estimators 50 50 200 200
max_leaf_nodes 100 100 100 100
max_depth 2 2 4 4
learning_rate 0.1 0.1 0.01 0.01

KNN n_neighbors 8 10 9 10

LightGBM
n_estimators 50 50 50 50
max_depth 4 10 4 10
learning_rate 0.05 0.05 0.1 0.1

MLP
max_iter 20 50 20 50
learning_rate_init 0.01 0.01 0.01 0.01
hidden_layer_sizes [64] [64] [128] [4]

RF

n_estimators 600 200 600 600
min_samples_split 10 10 12 10
min_samples_leaf 5 5 4 5
max_features 6 6 6 6
max_depth 100 150 140 100

SVR gamma 1e-5 1e-5 1e-5 1e-5
C 10 10 100 100

StackEns final_estimator__alpha 10.0 10.0 0.1 0.1

XGBoost
n_estimators 500 500 500 700
max_depth 4 4 5 4
learning_rate 0.015 0.02 0.02 0.015

Appendix B. Results of the training set

R2 (R-squared): Higher is better. R2 tends to be higher in training data than in test data, indicating that the model fits the training data more
closely. A higher R2 means that a larger proportion of the variance in the dependent variable is predictable from the independent variables.

RMSE (Root Mean Square Error): Lower is better. RMSE might be lower in the training data and higher in the test data, reflecting a tighter fit to
the training data and potentially larger errors on unseen data.

%RMSE (Percentage Root Mean Square Error): Lower is better. %RMSE might be lower in the training data and higher in the test data,
indicating that the relative prediction error is smaller in the training data compared to unseen data.
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Table B-1
Training results for CS estimation.

Input Features Model R2 RMSE %RMSE

Conf1
(Sentinel-2)

AdaBoost 0.91 ± 0.02 18.52 ± 1.32 24.10 ± 1.76
BaggedDT 0.90 ± 0.01 19.73 ± 0.76 25.69 ± 1.29
BayesianNN 0.19 ± 0.04 55.36 ± 3.64 72.01 ± 3.75
CatBoost 0.82 ± 0.01 26.26 ± 1.27 34.18 ± 1.66
DeepCNN 0.38 ± 0.30 47.72 ± 14.51 61.59 ± 17.37
GBDT 0.93 ± 0.00 16.07 ± 0.50 20.92 ± 0.64
KNN 0.41 ± 0.05 47.01 ± 1.27 61.17 ± 0.89
LightGBM 0.83 ± 0.01 25.18 ± 1.33 32.78 ± 1.56
MLP 0.18 ± 0.03 55.66 ± 3.31 72.42 ± 3.71
RF 0.69 ± 0.01 33.95 ± 1.29 44.19 ± 1.59
SVR 0.48 ± 0.04 44.19 ± 1.39 57.51 ± 1.30
StackEns 0.76 ± 0.03 30.29 ± 2.63 39.38 ± 2.56
XGBoost 1.00 ± 0.00 3.15 ± 0.56 4.11 ± 0.86
▸ Average 0.65 ± 0.04 32.54 ± 2.60 42.31 ± 2.99
▸ Ensemble 0.82 ± 0.01 25.94 ± 1.39 33.75 ± 1.46

Conf2
(Sentinel-2 + Climatic)

AdaBoost 0.93 ± 0.01 16.24 ± 0.82 21.15 ± 1.13
BaggedDT 0.90 ± 0.01 19.55 ± 0.62 25.45 ± 1.01
BayesianNN 0.20 ± 0.05 54.99 ± 3.85 71.52 ± 3.89
CatBoost 0.90 ± 0.00 19.03 ± 0.57 24.77 ± 0.85
DeepCNN 0.42 ± 0.18 46.36 ± 8.78 60.53 ± 10.33
GBDT 0.93 ± 0.00 15.76 ± 0.83 20.50 ± 0.90
KNN 0.44 ± 0.04 45.99 ± 1.17 59.85 ± 0.56
LightGBM 0.85 ± 0.00 24.13 ± 1.05 31.40 ± 0.90
MLP 0.19 ± 0.08 55.38 ± 5.39 71.99 ± 5.78
RF 0.68 ± 0.01 34.65 ± 1.31 45.10 ± 1.42
SVR 0.63 ± 0.02 37.55 ± 1.44 48.86 ± 1.00
StackEns 0.76 ± 0.03 29.81 ± 3.29 38.73 ± 3.33
XGBoost 0.99 ± 0.00 4.42 ± 0.70 5.77 ± 1.06
▸ Average 0.68 ± 0.03 31.07 ± 2.29 40.43 ± 2.47
▸ Ensemble 0.85 ± 0.01 23.67 ± 1.34 30.80 ± 1.24

Conf3
(Sentinel-2 + CHM)

AdaBoost 0.98 ± 0.00 8.95 ± 0.81 11.65 ± 1.14
BaggedDT 0.96 ± 0.01 12.33 ± 0.98 16.06 ± 1.51
BayesianNN 0.74 ± 0.02 31.57 ± 2.68 41.10 ± 3.49
CatBoost 0.97 ± 0.00 11.23 ± 1.02 14.61 ± 1.18
DeepCNN 0.55 ± 0.36 38.34 ± 19.05 50.16 ± 24.94
GBDT 1.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.00
KNN 0.39 ± 0.05 47.94 ± 1.44 62.39 ± 1.49
LightGBM 0.91 ± 0.01 18.22 ± 1.96 23.72 ± 2.50
MLP 0.69 ± 0.06 33.93 ± 4.14 44.17 ± 5.43
RF 0.86 ± 0.01 22.72 ± 1.67 29.59 ± 2.29
SVR 0.80 ± 0.02 27.31 ± 2.54 35.49 ± 2.58
StackEns 0.92 ± 0.02 17.22 ± 1.87 22.45 ± 2.89
XGBoost 0.99 ± 0.00 5.85 ± 0.50 7.63 ± 0.83
▸ Average 0.83 ± 0.04 21.20 ± 2.97 27.62 ± 3.87
▸ Ensemble 0.95 ± 0.01 13.58 ± 1.11 17.69 ± 1.59

Conf4
(Sentinel-2

+ Climatic+ CHM)

AdaBoost 0.98 ± 0.00 9.09 ± 0.80 11.84 ± 1.09
BaggedDT 0.96 ± 0.01 12.83 ± 1.16 16.71 ± 1.63
BayesianNN 0.74 ± 0.02 31.10 ± 2.63 40.49 ± 3.43
CatBoost 1.00 ± 0.00 3.60 ± 0.23 4.69 ± 0.35
DeepCNN 0.32 ± 0.11 50.48 ± 4.22 65.63 ± 6.24
GBDT 1.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00
KNN 0.55 ± 0.01 41.05 ± 2.04 53.41 ± 1.93
LightGBM 0.92 ± 0.01 17.51 ± 1.93 22.79 ± 2.43
MLP 0.62 ± 0.09 37.61 ± 4.24 48.89 ± 4.77
RF 0.87 ± 0.01 22.40 ± 1.68 29.16 ± 2.17
SVR 0.66 ± 0.01 36.03 ± 1.51 46.88 ± 1.16
StackEns 0.92 ± 0.02 17.43 ± 2.12 22.68 ± 2.63
XGBoost 1.00 ± 0.00 2.21 ± 0.36 2.88 ± 0.48
▸ Average 0.81 ± 0.02 21.64 ± 1.76 28.16 ± 2.18
▸ Ensemble 0.96 ± 0.00 11.82 ± 1.00 15.38 ± 1.28
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