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Figure 1: (a) High level view of the proposed method. It includes an automatic optimization constraint proposer, which
automatically separates the apartments under analysis into three classes of similarity, useful for suggesting customized
constraints for the learning procedure. (b) Given a user query, the system recommends the most fitting apartment.

ABSTRACT
Nowadays, it is common for workers to relocate to new coun-
tries while seeking better job opportunities, or to live as digital
nomads. While doing so, they face the problem of finding a new
place to call home, requiring them to trust online advertisements
or to physically visit the apartment. Recently, the research com-
munity investigated the possibility of performing the search on
the Metaverse, hence reducing time and costs related to traveling
and limiting carbon emissions. The methods available are based
on state-of-the-art cross-modal retrieval techniques, which learn a
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joint embedding space by mapping apartment-descriptions pairs
close. However, these methodologies push all the other pairs far
away in the embedding space. In this paper, we identify this deci-
sion as a limitation, since different apartments are likely to share
many aspects. To overcome it, we propose AdOCTeRA, which auto-
matically separates the apartments into three classes – very similar,
slightly similar, and dissimilar – and proposes adaptive optimiza-
tion constraints for each of them. We validate our methodology
on a large dataset of more than 6000 apartments, obtaining con-
siderable relative improvements over the previous state-of-the-art
(+3.8% R@5 and +7.3% R@10), and consistent improvements over
the baseline across all the experiments. The source code is available
at https://github.com/aliabdari/AdOCTeRA.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.
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1 INTRODUCTION
It is becomingmore andmore common for workers, especially those
involved in tech jobs, to frequently relocate from one nation to
another while working remotely. These workers, known as “digital
nomads”, are as popular as ever, with about 17 million (11%) US
workers now describing themselves as one1, a number projected
to grow to more than 60 million by 20302. Not only tech workers,
more traditional jobs are also starting to pursue this new type of
living, such as lawyers and accountants. However, finding a new
place to call home can be tiresome, while requiring the workers
to either trust online advertisements or travel across countries to
visit the advertised locations. This leads to undesired expenses,
hours of traveling, and increased carbon emissions polluting the
environment. To support all of them in their search from the comfort
of their current location, a recent research field emerged, called
text-to-apartment recommendation [1].

In the text-to-apartment recommendation scenario, the users
interact with a system by querying it with a free-form description
of their desires, and the system builds a ranked recommendation
list of the most suitable apartments for their needs (Figure 1.b). To
obtain a system for this task, in our previous work [1], we collected
a dataset of virtual apartments, each paired to a textual description,
and proposed an apartment recommendation system built on top of
state-of-the-art cross-modal retrieval approaches, including CLIP
[29]. Using deep learning techniques, it is possible to automatically
learn two functions which map the input (apartment or description,
respectively) into a joint apartment-description space. To achieve
this goal, contrastive loss functions [15, 32] represent a key compo-
nent. Contrastive loss functions guide the training by quantifying
the distance between representations in the embedding space. No-
tably, the embedding space can capture relations between samples
coming from a single modality [7, 32] or from multiple modalities,
e.g., image-text [29], and video-text [27]. In these methodologies, it
is common to consider the paired inputs, such as an apartment and
its own description, relevant to each other, and completely irrele-
vant to any other example in the dataset. However, two apartments
may be organized in a similar way and share most of the furniture,
hence the training procedure should not treat them as completely
irrelevant to each other since their similarities make them suitable
for the same user query.

Therefore, in this paper, we propose an alternative learning
methodology emphasizing this important aspect. The proposed
method consists of a module which automatically creates learning

1https://www.mbopartners.com/state-of-independence/digital-nomads/
2https://www.wysetc.org/2023/01/growth-and-developments-in-the-digital-nomad-
market-since-covid-19/

constraints which are adaptive and dependent on the apartments
under analysis. By doing so, we obtain a customized training pro-
cedure which implements more flexible constraints, allowing the
model to grasp multiple levels of similarities between the examples.
We hypothesize that a model trained with our procedure learns
to distinguish between apartments which are very similar, par-
tially similar, and dissimilar, as shown in Figure 1.a, and that these
distinctions are fundamental to achieve better generalization. We
verify this hypothesis on a large public dataset of more than 6000
apartments, obtaining considerable relative improvements of 3.8%
and 7.3% in R@5 and R@10, respectively, demonstrating the effec-
tiveness of the proposed approach. These results and the design
choices made in our methodology are further corroborated by an
extensive experimental setting.

In summary, the main contributions of this study can be de-
scribed as follows:

• We identify an important shortcoming of previous approaches
in text-to-apartment recommendation affecting the ability of
models to properly separate apartments similar to each other
from those partially similar or entirely dissimilar. We intro-
duce a method, called AdOCTeRA, to overcome it by means
of a module which proposes adaptive learning constraints
at training time.

• We verify the effectiveness of the proposed approach on a
large scale dataset of more than 6000 virtual apartments,
obtaining considerable improvements (relative improvement
of 3.8% and 7.3% in text-to-apartment R@5 and R@10) on
previous state-of-the-art results.

The rest of the paper is organized as follows. Related works are
highlighted and contextualized in Section 2. The proposed method-
ology is thoroughly described in Section 3. Section 4 explains the
experimental setting and the research questions identified and dis-
cussed in this work, along with those which remain open. Finally,
Section 5 draws the conclusion and plans the future work.

2 RELATEDWORK
2.1 Text-based ranking of complex 3d scenes
Retrieving and organizing information based on textual queries has
been a challenging research problem for many years. Specifically,
the research community focused on using text to rank 2d images
[9, 11, 20, 29] and videos [13, 23, 24, 27]. These efforts led to multi-
ple advancements benefiting many other cross-modal applications,
such as captioning [14, 37] and question answering [19, 26]. How-
ever, only recently the research community started to investigate
the problem of ranking complex 3d scenes based on a textual query,
drawing inspiration from the many advancements of cross-modal
retrieval technologies [1–3, 38]. In fact, prior to these works, the
retrieval of 3d scenes was guided by using several formats of visual
information, e.g. images or sketches [4, 5, 39]. Single 3d objects,
on the other hand, were retrieved both by using 2d or 3d artifacts
[21, 25, 28] or, very recently, by text [22, 31]. However, ranking
complex scenes is much more challenging than working on single
objects, as the former includes tens or hundreds of objects, each of
which may affect the relevance of the scene to the user query.
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2.2 Contrastive loss functions
The recent approaches available in the literature to solve cross-
modal tasks rely on learning to map the data under analysis into a
joint embedding space. Contrastive loss functions, which represent
a key component to achieve this objective, have been around for
several years [6, 15] although they recently became more popular
thanks to the impact obtained by SimCLR [7], MoCo [17], and
CLIP [29]. By optimizing a contrastive loss function, models are
incentivized to learn discriminative representations where paired
examples in the dataset (e.g., an apartment and its description) are
clustered together and unpaired ones are separated. This is done by
working on two examples (paired or unpaired) at a time [15], three
[32], four [8], or even more [35], looking to model increasingly
complex inter- and intra-class relations. A frequent ingredient in
these losses is the use of amargin hyperparameter, which constrains
the desired distance between the examples in the embedding space.
Although this margin is typically fixed and decided empirically,
variable and adaptive solutions were also proposed. Zhang et al.
proposed to start from a small margin and increase it monotonically
during training to capture varying inter-class relations [40]. Hu
et al. used the distance between paired and unpaired examples as
the loss [18]. Semedo and Magalhaes linked the margin both to the
epoch number and to the paired-unpaired distance [34]. Instead, He
et al. proposed to define the margin in terms of a combination of
similarity scores computed by frozen, pretrainedmodels and trained
models, giving more weight to the former in early training stages
and more to the latter in later stages [16]. Falcon et al. proposed to
define the margin in terms of a relevance score computed through
part-of-speech tagging [12]. Differently from previous works, we
introduce a method to automatically separate the examples into
three similarity classes – very similar, slightly similar, and dissimilar
– and vary the margin based on the selected class.

3 PROPOSED METHODOLOGY
An overview of the proposed methodology, AdOCTeRA, is shown in
Figure 2. It is made of various components, including the apartment
and textual representation modules, used to compute the text-vision
representations; our Adaptive Optimization Constraints Proposer
module; and finally the customized contrastive learning framework.
The modules are thoroughly described in the following subsections.

3.1 Modeling the apartments and the
descriptions

The apartment and textual representation modules are based on the
state-of-the-art cross-modal retrieval approach CLIP [29]. To model
the apartment, we learn a function 𝑓 by using a Vision Transformer
[10], followed by a one-dimensional convolutional neural network
and a shallow MLP. To model the descriptions, we learn a function
𝑔 by extracting for each of the sentences a representation by using
a 12-layer Transformer [36], followed by a bidirectional GRU. This
is done because the descriptions of the apartment can become very
long, as they need to describe each room, and the furniture present
in each of them. Note that both Transformers are jointly pretrained
and frozen. A similar approach was followed in our previous work
[1].

3.2 Adaptive Optimization Constraints Proposer
As shown in Figure 2, two main submodules compose our Adaptive
Optimization Constraints Proposer: a textual-based apartments
similarity function 𝑆 , and the adaptive constraints proposer 𝑀 .
Both are described in the following subsections.

3.2.1 Textual-based similarity function 𝑆 . The first component in-
troduced in our methodology is a textual-based apartments sim-
ilarity function, 𝑆 (·, ·). Let 𝑥1 and 𝑥2 be the description of two
apartments. To capture their similarity, we use a distilled version
of RoBERTa trained for sentence similarity [30], obtaining a value
representing the cosine similarity of 𝑥1 and 𝑥2. While its codomain
is [0, 1], the distribution of the similarity values is data-dependent
and may not span across that range completely, requiring a def-
inition of the thresholds based on the dataset. To avoid this, a
further normalization step is added to map the output values of
the RoBERTa-based model 𝑆 ′ such that the minimum similarity
score is 0 and the maximum is 1. To do so, we apply a minmax
normalization as follows:

𝑆 (𝑥1, 𝑥2) =
𝑆 ′ (𝑥1, 𝑥2) −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛
(1)

where𝑚𝑖𝑛 and𝑚𝑎𝑥 are the minimum and maximum values of 𝑆 ′
computed on all the possible pairs from the training dataset.

3.2.2 The constraints proposer 𝑀𝜏𝐿,𝜏𝑈 . Once the similarity scores
are computed, a new learning constraint can be proposed. A popular
method frequently used in the literature is the triplet loss [32],
which is formulated as follows:

𝐿𝑇 (𝑥𝑎, 𝑥𝑝 , 𝑥𝑛) =𝑚𝑎𝑥 (0,Δ + 𝑠 (𝑟𝑛, 𝑟𝑎) − 𝑠 (𝑟𝑝 , 𝑟𝑎)) (2)

where Δ is a fixed real value, called margin, and 𝑟∗ represents the
representation extracted using 𝑓 (respectively, 𝑔) for the apartment
(resp., description). In particular, 𝑥𝑎 , 𝑥𝑝 , and 𝑥𝑛 are respectively the
anchor, the positive, and the negative elements of the triplet loss.
The anchor and the positive are paired samples from the dataset
(e.g., an apartment and its description), whereas the negative is
another sample in the batch not related to them. However, this
means that the same margin is enforced in all the constraints, hence
all the negatives are considered equally, neglecting that different
apartments may be almost identical or completely dissimilar.

Differently, we create adaptive constraints by establishing a re-
lation between the margin in the contrastive loss function and the
apartments/descriptions under analysis. In particular, as shown
in Figure 1, we consider three similarity classes—namely, “very
similar”, “slightly similar”, and “dissimilar”—in which the training
samples are placed based on the similarity between the sample and
the anchor using Eq. 1. We introduce two thresholds to characterize
the classes, meaning that samples with a similarity greater than the
“upper” threshold 𝜏𝑈 belong to the “very similar” class, those with
a similarity smaller than the “lower” threshold 𝜏𝐿 belong to the
“dissimilar” class, and finally the other samples fall into the “slightly
similar” class. For each class, a different value for the margin will be
proposed and used to define the optimization constraint. Formally,
we define a function 𝑀𝜏𝐿,𝜏𝑈 (·, ·) which is parameterized by two
threshold values, 𝜏𝐿 and 𝜏𝑈 , and returns a value for the margin, as
follows:
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Figure 2: Overview of the proposed methodology. The apartment and textual representation modules, used to compute the
input representations, are not shown here for simplicity. Details in Section 3.

𝑀𝜏𝐿,𝜏𝑈 (𝑥1, 𝑥2) =


𝑚1, if 𝑆 (𝑥1, 𝑥2) > 𝜏𝑈

𝑚2, if 𝜏𝑈 > 𝑆 (𝑥1, 𝑥2) > 𝜏𝐿

𝑚3, if 𝜏𝐿 > 𝑆 (𝑥1, 𝑥2)
(3)

where𝑚1,𝑚2, and𝑚3 represent the three values for the margin
used in the three similarity classes.

3.3 Contrastive learning framework
After defining𝑀 , each of the optimization constraints is formalized
as follows, following a similar structure as the one used in the triplet
loss:

𝐿𝜏𝐿,𝜏𝑈 (𝑥𝑎, 𝑥𝑝 , 𝑥𝑛) =𝑚𝑎𝑥 (0, 𝑀𝜏𝐿,𝜏𝑈 (𝑥𝑎, 𝑥𝑛) + 𝑠 (𝑟𝑛, 𝑟𝑎) − 𝑠 (𝑟𝑝 , 𝑟𝑎))
(4)

By doing so, we obtain a customized learning framework, in
which every constraint is personalized for the apartments under
analysis. Finally, the overall learning procedure introduces a con-
straint via Eq. 4 for each pair of samples from the dataset and one
negative sample used for training, as in the following definition:

𝐿𝐴𝐷 ;𝜏𝐿,𝜏𝑈 = 1
|𝐵 |

∑
𝐴𝑎,𝐷𝑝 ,𝐷𝑛∈𝐵 𝐿𝜏𝐿,𝜏𝑈 (𝐴𝑎, 𝐷𝑝 , 𝐷𝑛) (5)

𝐿𝐷𝐴;𝜏𝐿,𝜏𝑈 = 1
|𝐵 |

∑
𝐷𝑎,𝐴𝑝 ,𝐴𝑛∈𝐵 𝐿𝜏𝐿,𝜏𝑈 (𝐷𝑎, 𝐴𝑝 , 𝐴𝑛) (6)

L𝜏𝐿,𝜏𝑈 = 𝐿𝐴𝐷 ;𝜏𝐿,𝜏𝑈 + 𝐿𝐷𝐴;𝜏𝐿,𝜏𝑈 (7)

where B represents the batch of samples randomly chosen from the
full dataset to perform training, 𝐴 and 𝐷 are the sets of apartments
and descriptions which provide the sampling pool for the anchors
(𝐴𝑎 and 𝐷𝑎), positives (𝐴𝑝 and 𝐷𝑝 ), and negatives (𝐴𝑛 and 𝐷𝑛).

4 EXPERIMENTAL RESULTS
4.1 Dataset, baseline method, and evaluation

metrics
The dataset under analysis [1] consists of more than 6000 apart-
ments. Each apartment is paired to a textual paragraph describing
the number and type of rooms, and the furniture in each of them.
Hence, the paragraphs can be quite long and detailed, containing
on average 16 sentences and 319 words. Each apartment can be ac-
cessed as a 3d scene or as a set of pre-extracted images. An example
is shown in Figure 3.

The baseline method used in our methodology is taken from
the one adopted in our previous paper [1], called CNV. CNV uses
the same visual and textual representation modules detailed in our
methodology (Sec. 3.1), but uses a standard triplet loss function to
learn the joint embedding space. In our implementation, we use
the same hyperparameters chosen by the previous authors to have
more comparable results. Apart from CNV, other three methods
introduced in [1] are considered for state-of-the-art comparison,
including two simple baselines comparing pooled descriptors ei-
ther without performing any learning (NLB) or by learning a MLP
(AFN), and a method performing multitask learning on top of CNV
(FaRMaRE).

We follow the same split used in our previous work, resulting in
4256, 912, and 913 apartments for train, validation, and test sets. We
select the best model on the validation set and use it to assess the
performance on the test set, including standard metrics commonly
used in cross-modal retrieval scenarios. The recall rates, R@k, with
k set to 1, 5, and 10, quantify how frequently the groundtruth is
found within the top k elements of the ranked list. The sum of
recalls (Rsum) is also reported. The median rank measures the
position of the groundtruth in the ranked list. While in the first
experiments, we only report the text-to-apartment retrieval perfor-
mance for simplicity, the comparison to state-of-the-art methods
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This house contains six rooms. More specifically, it has 
one living dining room, one kitchen, one bedroom, one 
balcony, and two bathrooms. Regarding the living dining 
room, it includes four dining chair with Modern style, with 
Smooth Net theme. Also, it contains one pendant lamp 
with Modern style. Also, it comprises one coffee table 
with European Classic style, with Smooth Net theme, 
and Wood material. Additionally, …

…

Figure 3: An example taken from the dataset under analysis. It includes the 3d scene (shown here from above), a few examples
of the pre-extracted images, and a few sentences from the full description.

also reports the apartment-to-text retrieval performance for com-
prehensiveness. Notably, all the experiments are repeated three
times and the average performance is reported.

4.2 Implementation details
In the proposed method, 𝜏𝐿 and 𝜏𝑈 are set to 35% and 75%, whereas
the margins𝑚1,𝑚2, and𝑚3 are set to 0.25, 0.30, and 0.35, respec-
tively. The Vision Transformer used to implement 𝑓 consists of a
ViT-B-32 [10], and it is jointly pretrained with the 12-layer Trans-
former (learning function 𝑔) via CLIP on the LAION-2B dataset, a
subset of the bigger 5-billions images dataset [33]. To implement
𝑆 ′, we use the ‘paraphrase-distilroberta-base-v2’ model from the
SentenceTransformers environment.

We use PyTorch 2.2.0 for the implementation and run all the
experiments on a machine using an RTX A5000 GPU, 32 GB of
RAM, and an Intel Core i7-9700K. The batch size is 64 and the
training can last for 50 epochs, while an early stopping mechanism
has been considered to stop the training procedure if the loss does
not decrease by at least .0001 on the validation set for 25 epochs.
The Adam optimizer has been used, and the learning rate starts
from .008 and is decayed by a factor of 25% after 27 epochs.

4.3 How impactful are the thresholds 𝜏𝐿 and 𝜏𝑈 ?
The two thresholds introduced in our methodology represent an
important hyperparameter, as they decide how to separate the apart-
ments into the three classes under analysis, that is “very similar”,
“slightly similar”, and “dissimilar”. We investigate the importance of
these thresholds both in a qualitative and quantitative way. First, in
Figure 4 we report the frequency of the similarity values computed
with 𝑆 during one epoch of training, with random batches of size
64. It can be seen that most of the apartments are quite similar to
each other, hence the thresholds should also try to separate them
accordingly while capturing fine grained details which discriminate

them. To make a precise decision, we fix the margins𝑚1,𝑚2, and
𝑚3 to 0.25, 0.30, 0.35 respectively and empirically evaluate different
values for both thresholds, starting by using [25%, 35%, 45%, 55%]
for 𝜏𝐿 and then using [50%, 75%, 90%] for 𝜏𝑈 after fixing 𝜏𝐿 . The
results are presented in Table 1.

Varying 𝜏𝐿 has a considerable effect on the performance (e.g.
R@10 varies from 50.6 to 53.0), capturing from about 1% of the
training samples, when 𝜏𝐿 = 25% to about 17% when 𝜏𝐿 = 55%
(Fig. 4). While the two extremes (𝜏𝐿 = 25% and 𝜏𝐿 = 55%) lead
to small improvements (+1.0% R@5 and +0.7% R@10, +1.3% R@5
and +0.5% R@10, respectively), the intermediate values lead to
much better results. In particular, +3.7% R@5 and +4.1% R@10 are
obtained on top of the baseline when 𝜏𝐿 = 35%. This suggests
that identifying the apartments which are very different from the
anchor (i.e., their descriptions have a 𝑆-similarity lower than 𝜏𝐿)
and treating them differently than those which are “slightly similar”
or “very similar” during training has a positive effect, compared
to treating all the apartments in the same way (i.e., enforcing the
same distance, represented by the fixed margin Δ) as done by the
baseline.

Looking at the upper threshold, both 50% and 90% do not lead to
improved performance compared to using 𝜏𝑈 = 75%. A small value
for 𝜏𝑈 (e.g. 50%) leads to worse performance, possibly because too
many apartments are identified as very similar (almost 90%, see Fig.
4). On the other hand, 𝜏𝑈 = 90% is too strict, and very few additional
apartments are identified as very similar (about 4%). While it leads
to better results than the baseline (e.g. median rank goes from 11
to 8.7), the performance is not as good as when 𝜏𝑈 = 75%.

4.4 What happens if the margins are varied?
After fixing the thresholds to 𝜏𝐿 = 35% and 𝜏𝑈 = 75%, this experi-
ment investigates the effect of varying the margins. In particular,
we explore different combinations of margins by keeping m1 fixed,
increasing m2 by 0.03, 0.05, .10, and .15, and by increasing m3 with
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Figure 4: Distribution of similarity values computed with 𝑆

during one epoch of training. Details in Sec. 4.3.

Text-Apartment
R1 R5 R10 MedR

baseline 23.7 40.6 48.9 11
𝜏𝐿 𝜏𝑈
25% 75% 22.9 41.6 50.6 10.0
35% 75% 24.5 44.3 53.0 8.3
45% 75% 25.0 43.9 52.2 9.0
55% 75% 23.7 41.9 50.5 10.0
35% 50% 22.3 40.7 49.6 10.7
35% 75% 24.5 44.3 53.0 8.3
35% 90% 23.0 42.9 53.1 8.7

Table 1: Performance observed varying the thresholds 𝜏𝐿 and
𝜏𝑈 used during training to separate the samples in different
similarity classes. Discussion in Sec. 4.3.

either the same increments as m2 or greater than that (e.g. when
increasing m2 by .05, m3 is increased by .10 with respect to m2).
The results, measured with the median rank, are reported in Table
2.

Overall, it can be seen that almost all the different combinations
achieve a lowermedian rank (as low as 8.3) compared to the baseline
(11). Note that the baseline follows the standard triplet loss, using
a fixed value for the margin Δ which is used in every optimization
constraint (refer to Eq. 2). Differently, our methodology adapts the
margin to the samples under analysis, as described in Section 3. The
results in Table 2 suggest that having different margins to separate
the apartments in multiple similarity classes is indeed useful for
capturing fine grained details. In particular, we find the best result
using𝑚1 = 0.25,𝑚2 = 0.30,𝑚3 = 0.35, 𝜏𝐿 = 25%, and 𝜏𝑈 = 75%,
obtaining a median rank of 8.3 (-2.7 compared to the baseline, a
relative improvement of 24.5%).

4.5 How impactful is the definition of 𝑆?
In the methodology, the similarity of the descriptions of the apart-
ments is captured by a function 𝑆 , implemented with recent NLP
techniques. In this experiment, we investigate a different definition
for such an important function. In particular, we define it in terms of

Text-Apartment (MedR)
𝜏𝐿 25% 35% 45% 35%
𝜏𝑈 75% 50% 75% 90%

baseline (Δ = 0.25) 11
𝑚1 𝑚2 𝑚3
0.25 0.28 0.31 10.0 8.7 8.7 9.0 8.7 10.0
0.25 0.30 0.35 10.0 8.3 9.0 10.7 8.3 8.7
0.25 0.30 0.40 9.0 10.3 11.7 9.0 10.3 10.3
0.25 0.35 0.45 9.0 9.7 9.3 11.7 9.7 9.0
0.25 0.35 0.50 10.0 9.3 8.7 9.7 9.3 8.7
0.25 0.40 0.55 9.3 8.7 11.0 8.3 8.7 10.3
0.25 0.40 0.60 9.3 10.7 9.3 10.7 10.7 10.3

Table 2: Performance observed varying the margins𝑚1,𝑚2,
and𝑚3 used in the optimization constraints during training.
The baseline follows standard triplet loss with a fixed value
(0.25) for the margin Δ. Discussion in Sec. 4.3.

Text-Apartment
R1 R5 R10 MedR

baseline 23.7 40.6 48.9 11
𝑆2 23.4 42.2 51.4 9.7

𝑆 (ours) 24.5 44.3 53.0 8.3
Table 3: Performance observed varying the definition of the
similarity function 𝑆 . Discussion in Sec. 4.5.

Intersection-over-Union (IoU) of the rooms of the two apartments
under analysis as follows:

𝑆2 (𝑥1, 𝑥2) =
|𝑅(𝑥1) ∩ 𝑅(𝑥2) |

|𝑅(𝑥1) | + |𝑅(𝑥2) | − |𝑅(𝑥1) ∩ 𝑅(𝑥2) |
(8)

where 𝑅(·) extracts a list of the type of rooms within the apartment.
For instance, if the description contains “In this apartment, there
are three bedrooms, one kitchen, one dining room, one bathroom,
and one living room” then, 𝑅(·) is the list containing “(Bedrooms,
3)”, “(Kitchen, 1)”, “(Dining room, 1)”, “(Bathroom, 1)”, and “(Living
room, 1)”. The results are reported in Table 3.

Two results are outlined. First, the proposed approach (𝑆) achieves
better performance than the alternative function analyzed in this
experiment (𝑆2), obtaining for instance 53.0% R@10 compared to
51.4%. Second, even though 𝑆2 achieves lower results than 𝑆 , it still
leads to better results compared to the baseline, obtaining 51.4%
R@10 compared to 48.9%. This result further highlights the effec-
tiveness of the proposed method in capturing finer-grained details
of the apartments and their descriptions.

4.6 How does AdOCTeRA compare to the
state-of-the-art?

In this analysis, we compare the results obtained by the proposed
methodology to those tested in our previous paper [1]. In particular,
NLB is a simple baseline which extracts CLIP features for both
the visual and textual data and compares their similarity to obtain
a ranking. AFN learns a simple function through an MLP after
pooling the visual descriptors obtained for the apartment. CNV is
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the baseline used in our method. Finally, FaRMaRE uses a multitask
learning setting, combining ranking and classification objectives to
learn better descriptors for the apartments.

As can be seen in Table 4, FaRMaRE obtains slightly better R@1
in both text-to-apartment (24.8 compared to 24.5) and apartment-
to-text scenarios (25.7 compared to 25.0). However, all the other
metrics show a significant improvement compared to it, obtaining
for instance +3.9% R@10 (53.0 compared to 49.1) and 2.7 lower
median rank.

4.7 Limitations and future work
An important limitation of this work consists of the usage of textual-
only information to quantify the similarity of the two apartments.
In fact, spatial information may also be important to capture finer
grained details of the furniture and their placement within the
apartment. We performed some early experimentation with cross-
modal models, like CLIP, as the key component of the similarity
function 𝑆 , but we observed unreliable similarity values. While we
did not report results in this regard, the effect on the performance
is considerable, as can also be observed in the retrieval results ob-
tained by the NLB baseline (Sec. 4.6). Notably, this problem may
be related to the large number of tokens in the descriptions of the
apartments, which lead to noisy representations when pooled to-
gether. Therefore, further research is required to better understand
how to implement a reliable cross-modal similarity function.

As for the future work, we identify two main directions. First, in
this work, we divided the available scenes into three categories, each
with its own margin and related optimization constraint. However,
in future work we also plan to investigate the effect of incorporat-
ing fewer classes, leading to a coarser and more inclusive approach;
and, vice versa, more classes, aiming at capturing finer grained dif-
ferences. Second, while considerable improvements were obtained
by using RoBERTa as the base model for our similarity function,
newer methods were developed over the years, further pushing
the potential of models intended for sentence similarity. Therefore,
their integration could prove very effective. Nonetheless, further
research should also be done in this regard, as these models are
often limited in the number of tokens they can effectively pro-
cess and understand, which may affect the effectiveness of longer
descriptions.

5 CONCLUSIONS
The ability of finding apartments fitting the user interests is gaining
interest as it raises the possibility of visiting apartments virtually,
in the Metaverse, without needing to physically move. This is both
comfortable, as it avoids hours of traveling, and a green solution,
reducing the carbon emissions otherwise inevitable. Previous works
on this problem adapted state-of-the-art solutions typically used
in cross-modal retrieval approaches, such as CLIP [29]. However,
different apartments may share lots of characteristics, hence lim-
iting the effectiveness of popular solutions based on contrastive
learning, in which paired (cross-modal) examples in the dataset
are pulled closer in the embedding space whereas unpaired ones
are pushed far away. To overcome this limitation, we proposed a
methodology, AdOCTeRA, which automatically separates training
samples into three separate classes – very similar, slightly similar,

and dissimilar – and proposes adaptive optimization constraints.
By doing so, AdOCTeRA promotes a more structured organization
of the embedding space, and the experimental results demonstrate
the effectiveness of its design. In fact, on a large dataset of more
than 6000 apartments, it obtains large relative improvements on the
previous state-of-the-art, e.g., +3.8% R@5 and +7.3% R@10. More-
over, the extensive experimental setting provided evidence of its
robustness to changes in the main hyperparameters and consistent
improvements over the baseline.
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