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Abstract
Cauchy-like matrices arise often as building blocks in decomposition formulas and
fast algorithms for various displacement-structured matrices. A complete character-
ization for orthogonal Cauchy-like matrices is given here. In particular, we show
that orthogonal Cauchy-like matrices correspond to eigenvector matrices of certain
symmetric matrices related to the solution of secular equations. Moreover, the con-
struction of orthogonal Cauchy-like matrices is related to that of orthogonal rational
functions with variable poles.
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1 Introduction

A matrix C ∈ R
n×n is of Cauchy type if its entries Cij have the form

Cij = 1

xi − yj

, i, j = 1, . . . , n, (1)

where xi, yj for i, j = 1, . . . , n are mutually distinct real numbers, called nodes.
Besides their pervasive occurrence in computations with rational functions [1],
Cauchy matrices play an important role in deriving algebraic and computational
properties of many relevant structured matrix classes. For example, they occur as fun-
damental blocks (together with trigonometric transforms) in decomposition formulas
and fast solvers for Toeplitz, Hankel, and related matrices, see, e.g., [2].
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The main goal of this contribution is to provide a complete answer to the following
question: can the rows and columns of a Cauchy matrix be scaled so that the matrix
becomes orthogonal? Interest in this question arises from the paper [3], where orthog-
onal matrices obtained by scaling rows and columns of Cauchy matrices are needed in
the design of all-pass filters for signal processing purposes. Moreover, in [4] Cauchy
matrices have been characterized as transition matrices between eigenbases of cer-
tain pairs of diagonalizable matrices, as better described below. Thus, it is interesting
to characterize Cauchy matrices that can be orthogonalized by a row/column scaling,
as the related eigenbases are similarly conditioned.

Matrices obtained by scaling rows and columns of a Cauchy matrix of order n can
be parametrized by about 4n coefficients. On the other hand, an invertible matrix X

is orthogonal if and only if it fulfills the identity XT X = I , which boils down to
about n2/2 quadratic scalar equations. It may therefore seem that orthogonalization
of a Cauchy matrix by scaling its rows and columns is feasible only for small n: the
number of constraints grows faster than that of free variables. Instead, the main result
of this paper shows that, for any fixed order n, there is an infinite number of Cauchy
matrices that can be orthogonalized in the way said before.

Let us briefly explain the structure of the paper. A few basic facts and concepts on
Cauchy matrices are recalled in the next section. Section 3 contains the main results
of this paper, namely, the complete description of the set of orthogonal Cauchy-like
matrices, that is, the orthogonal matrices obtained by diagonal scalings of Cauchy
matrices, of any order n. Section 4 is devoted to displaying various algebraic and
computational properties of orthogonal Cauchy-like matrices. There, we illustrate
their relationships with secular equations, the diagonalization of a subclass of sym-
metric quasiseparable matrices and the construction of orthogonal rational functions
with free poles. Moreover, in that section we specialize to orthogonal Cauchy-like
matrices the characterization of Cauchy matrices obtained in [4], and provide a com-
plete description of matrix sets that are simultaneously diagonalized by orthogonal
Cauchy-like matrices. Finally, Section 5 exhibits a particular sequence of orthogonal
Cauchy-like matrices of arbitrary order, whose nodes are based on Chebyshev points.

In the sequel, we adopt the following notation. The matrix in (1) is referred to
simply as Cauchy(x, y). Let Rn

0 be the set of vectors in R
n without null entries. We

denote by 1 the all-ones vector in R
n. For 0 �= x ∈ R we set sign(x) = 1 if x ≥ 0

and sign(x) = −1 if x < 0. For any z = (z1, . . . , zn)
T ∈ R

n let Dz ∈ R
n×n be a

diagonal matrix with the diagonal entries z1, . . . , zn.

2 Cauchymatrices and their properties

Algebraic and computational properties of Cauchy matrices are better understood by
making use of the so-called displacement operators. Let M, N ∈ R

n×n and define

DM,N : Rn×n �→ R
n×n, DM,N(X) = MX − XN .
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The matrix operator DM,N is widely known as a (Sylvester-type) displacement opera-
tor [5]. The map DM,N is invertible if and only if the spectra of M and N are disjoint.
For any nonnegative integer r the set

Sr
M,N = {X ∈ R

n×n : rankDM,N(X) ≤ r}
is a displacement-structured matrix space. Various interesting matrix sets, such as
circulant, Toeplitz, Vandermonde, Hankel, and also Cauchy matrices, are actually
subsets of displacement-structured matrix spaces with a small rank k. These spaces
share two important features: first, matrices in Sr

M,N can be parametrized by a small
set of coefficients (typically, their number is O(nr)) by means of appropriate inver-
sion formulas for the related displacement operator. Furthermore, if an invertible
matrix belongs to Sr

M,N then its inverse belongs to Sr
N,M . By means of these simple

facts, linear systems and least squares problems with displacement-structured matri-
ces can be solved by means of fast algorithms, requiring O(n2) arithmetic operations
or even less [6–8].

Cauchy matrices are very special displacement-structured matrices. For x, y ∈ R
n

we adopt the simplified notations Dx,y and Sr
x,y for the displacement operator

Dx,y(X) = DxX − XDy and the related displacement-structured matrix space,
respectively. If the numbers x1, . . . , xn, y1, . . . , yn are all distinct then the operator
Dx,y is invertible. Indeed, for any given matrix A ∈ R

n×n the solution of the matrix
equation Dx,y(X) = A is Xij = Aij /(xi − yj ). It is immediate to see that the matrix
C in (1) is characterized as the solution of the matrix equation Dx,y(C) = 11T , hence
C ∈ S1

x,y . More generally, a matrix A ∈ R
n×n belonging to a Sr

x,y space with r � n

is said to possess a Cauchy-like displacement structure [5–7]. In this work, we term
Cauchy-like matrix any matrix that belongs to some S1

x,y space.

Definition 1 Let xi, yj ∈ R be pairwise distinct numbers, for i, j = 1, . . . , n. A
Cauchy-like matrix with nodes x1, . . . , xn and y1, . . . , yn is any matrix K ∈ R

n×n

such that Dx,y(K) = vwT for some v, w ∈ R
n, i.e.,

Kij = viwj

xi − yj

, i, j = 1, . . . , n. (2)

The matrices of the previous definition are also called generalized Cauchy matri-
ces by some authors, see, e.g., [9]. It is immediate to observe that the vector
parameters x, y, v and w in (2) are not unique. Indeed, adding a constant vector to
both x and y does not modify the denominators in (2). Moreover, the vectors v and w

are defined apart of a nonzero constant. However, this ambiguity does not harm the
following. The lemma below, whose proof is immediate, provides a useful factored
form for Cauchy-like matrices.

Lemma 1 A Cauchy-like matrix with nodes x1, . . . , xn and y1, . . . , yn can be fac-
tored as K = DvCDw where C = Cauchy(x, y) and v, w ∈ R

n are such that
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Dx,y(K) = vwT . Conversely, a matrix factored as K = DvCDw where C =
Cauchy(x, y) and v, w ∈ R

n is Cauchy-like.

A notable feature of the set of Cauchy-like matrices is the invariance under row
and column permutation. This fact is at the basis of stable numerical methods for
solving linear systems with Cauchy-like matrices and, more generally, matrices with
a Cauchy-like displacement structure [6, 7]. Indeed, let K be the matrix in (2) and
let P, Q be two permutation matrices. Introduce the permuted vectors v̂ = Pv and
ŵ = Qw. Direct inspection proves the identity

PKQT = Dv̂ Cauchy(Px, Qy)Dŵ. (3)

Hence, when dealing with Cauchy-like matrices there is no loss of generality in
supposing that the vectors x and y are ordered monotonically, i.e.,

x1 < x2 < · · · < xn, y1 < y2 < · · · < yn. (4)

Such an ordering can always be obtained by a row and column permutation of the
matrix.

2.1 The inverse and determinant of a Cauchymatrix

The invertibility of Cauchy matrices is a well-known fact which has been rediscov-
ered many times. We refer to [10] for an earlier exposition of explicit formulas for
the determinant and inverse of a generic Cauchy matrix. For example, the formula

det
(

Cauchy(x, y)
) =

∏

i>j (xi − xj )(yj − yi)
∏

i,j (xi − yj )
(5)

shows that every Cauchy matrix is nonsingular. To illustrate the convenience of
displacement operators, we recall hereafter a simple displacement-based derivation
of the structure of the inverse of a Cauchy matrix. Let C = Cauchy(x, y). From
Dx,y(C) = 11T we derive

C−1(DxC − CDy)C
−1 = C−111T C−1.

Thus Dy,x(C
−1) = DyC

−1 − C−1Dx = −C−111T C−1, that is, C−1 ∈ S1
y,x . Let

a = C−11 and b = C−T 1. Then we conclude Dy,x(C
−1) = −abT and, by Lemma

1,
C−1 = −DaCauchy(y, x)Db = DaC

T Db. (6)

The last passages exploits the identity Cauchy(x, y)T = −Cauchy(y, x). Inciden-
tally, (6) inspired the authors of the paper [9] to investigate nonsingular matrices X

such that X−1 = DaX
T Db for some diagonal matrices Da and Db, particularly about

the sign patterns that appear in these matrices.
Clearly, equation (6) implies that a, b ∈ R

n
0. In fact, explicit expressions for

the vectors a and b above can be obtained from the solution of certain polynomial
interpolation problems, see, e.g., [10, 11]. In particular, for i = 1, . . . , n,

ai = − p(yi)

q ′(yi)
, bi = q(xi)

p′(xi)
, (7)
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where p(x) and q(x) are the polynomials

p(x) =
n

∏

i=1

(x − xi), q(x) =
n

∏

i=1

(x − yi). (8)

3 Main results

On the basis of the facts recalled in the previous section, the construction of orthog-
onal Cauchy-like matrices with given poles x1, . . . , xn and y1, . . . , yn amounts to
solving the quadratic matrix equation KT K − I = O under the constraint K ∈ S1

x,y .
In this section, we provide necessary and sufficient conditions for the solvability
of this problem, together with a complete description of the solution set. First, we
characterize the Cauchy matrices that can be diagonally scaled to orthogonality. Sub-
sequently, we describe all orthogonal Cauchy-like matrices with prescribed nodes.
Later, we solve the inverse problem of choosing a set of nodes given the other set, so
that the resulting Cauchy matrix can be scaled to have its columns be orthogonal.

Definition 2 Let Kn be the set of Cauchy matrices C ∈ R
n×n such that there exist

v, w ∈ R
n
0 such that DvCDw is orthogonal.

Thus, Kn consists of all Cauchy matrices that can be made orthogonal by scaling
rows and columns. Owing to (3), the set Kn is closed under row/column permutations,
i.e., permuting rows and columns of a Cauchy matrix has no effect on whether the
matrix belongs to Kn or not. We formalize this fact in the next proposition.

Proposition 2 Let C = Cauchy(x, y) and let P, Q be two arbitrary permutation
matrices. Then PCQT ∈ Kn if and only if C ∈ Kn.

Hence, to characterize the matrices in Kn we can restrict our attention to Cauchy
matrices whose nodes verify the inequalities (4). The following results provide nec-
essary and sufficient conditions for an n × n Cauchy matrix to belong to Kn. The
condition in the forthcoming Lemma 3 concerns the signs of the numbers ai and bi

defined in (7), while that in Theorem 4 only involves the nodes position on the real
line.

Lemma 3 The matrix C = Cauchy(x, y) belongs to Kn if and only if the numbers
a1, . . . , an and b1, . . . , bn from (7) are either all positive or all negative.

Proof From (6) we have C−1 = DaC
T Db with a, b ∈ R

n
0 given by (7). Furthermore,

C ∈ Kn if and only if there exist v, w ∈ R
n
0 such that the Cauchy-like matrix K =

DvCDw is orthogonal. The latter factorization yields the representation

K−1 = D−1
w C−1D−1

v = D−1
w DaC

T DbD
−1
v .

On the other hand, KT = DwCT Dv . Thus K−1 = KT if and only if

DwCT Dv = D−1
w DaC

T DbD
−1
v ,
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or, equivalently,
D2

wCT D2
v = DaC

T Db.

Comparing entrywise the matrices in the two sides of the latter equation, we see that
the identity KT = K−1 holds if and only if w2

i v
2
j = aibj , in particular aibj > 0, for

all i, j = 1, . . . , n.
Conversely, let aibj > 0. Then let σ = sign(ai), wi = ±√

σai and vi = ±√
σbi

for i = 1, . . . , n and define K = DvCDw. We obtain w2
i v

2
j = aibj and the identity

KT = K−1 can be derived by reversing the order of the previous arguments.

Theorem 4 Let C = Cauchy(x, y) where the vectors x and y fulfill (4). Then, C ∈
Kn if and only if the nodes xi and yj interlace, that is, either x1 < y1 < x2 < y2 <

· · · < xn < yn or y1 < x1 < y2 < x2 < · · · < yn < xn. More precisely, we have the
first sequence of inequalities when the numbers ai, bi in (7) are all negative and the
second sequence when they are all positive.

Proof Firstly, we prove that the node interlacing condition is necessary for having
C ∈ Kn. Arguing by contradiction, let v, w ∈ R

n
0 be such that K = DvCDw is

orthogonal and suppose that the nodes xi and yj do not interlace. Then at least one of
the following conditions is true: (1) for some i = 1, . . . , n − 1 the interval [xi, xi+1]
contains none of y1, . . . , yn; (2) for some i = 1, . . . , n − 1 the interval [yi, yi+1]
contains none of x1, . . . , xn. In the first case consider the identity

0 = (KKT )i,i+1 =
n

∑

j=1

KijKi+1,j = vivi+1

n
∑

j=1

w2
j

1

xi − yj

1

xi+1 − yj

.

By hypothesis, yj < xi if and only if yj < xi+1. Hence, the terms 1/(xi − yj )

and 1/(xi+1 − yj ) have the same sign for j = 1, . . . , n. Consequently, the right-
most expression in the previous equation is nonzero and we have a contradiction.
Case (2) can be treated analogously by considering the formula for (KT K)i,i+1 and
interchanging the role of x and y.

Conversely, suppose that the entries of x and y interlace as follows:

x1 < y1 < x2 < y2 < · · · < xn < yn. (9)

Let p(x) = ∏

i (x − xi) and q(x) = ∏

i (x − yi) be as in (8). Then

p′(x) =
n

∑

i=1

∏

j �=i

(x − xj ), q ′(x) =
n

∑

i=1

∏

j �=i

(x − yj ).

Consequently,
sign(p′(xi)) = sign(q ′(yi)) = (−1)n−i .

Furthermore,

sign(p(yi)) = (−1)n−i , sign(q(xi)) = (−1)n−i+1.

From (7) we obtain sign(ai) = sign(bi) = −1 and the claim follows from Lemma 3.
The case where y1 < x1 < y2 < x2 < · · · < yn < xn can be treated analogously by
interchanging the role of x and y. Here we have sign(ai) = sign(bi) = +1, and this
completes the proof.
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Remark 1 As shown in the preceding theorem, the set Kn splits into two disjoint
subsets, Kn = K1

n ∪ K2
n and K1

n ∩ K2
n = ∅, where K1

n contains all Cauchy matrices
whose nodes (reordered as in (4)) fulfill the inequalities x1 < y1 < · · · < xn < yn

and Kn
2 consists of the Cauchy matrices such that y1 < x1 < · · · < yn < xn. Thus,

up to permutations of rows and column, the sign patterns of matrices in K1
n and K2

n

are
⎛

⎜

⎜

⎜

⎜

⎜

⎝

− − − · · · −
+ − − · · · −
+ + − · · · −
...

...
. . .

. . .
...

+ + · · · + −

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

+ − − · · · −
+ + − · · · −
+ + + . . .

...
...

...
...

. . . −
+ + + · · · +

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

respectively. Any sign pattern that can be traced to one of the above by permuting
rows and columns can be realized by a Cauchy matrix in Kn

1 or Kn
2, respectively.

Observing these patterns it is not difficult to realize that these two sets are invariant
under matrix transposition, that is, C ∈ Ki

n ⇔ CT ∈ Ki
n for i = 1, 2. Furthermore,

using the inversion formula (6) and Lemma 3, we also conclude C ∈ Kn
i ⇔ C−1 ∈

Kn
i for i = 1, 2. On the other hand, C ∈ K1

n ⇔ −C ∈ K2
n.

The next result characterizes all orthogonal Cauchy-like matrices having pre-
scribed nodes xi and yi that verify the interlacing inequalities in Theorem 4.

Corollary 5 Let C = Cauchy(x, y) ∈ Kn, and let ai, bi be as in (7). The Cauchy-
like matrix K = DvCDw is orthogonal if and only if there exists a scalar α �= 0 such
that

v2
i = αbi, w2

i = ai/α, i = 1, . . . , n. (10)

Proof The equations above can be rewritten as D2
v = αDb and D2

w = 1
α
Da . Since

v, w ∈ R
n
0 by construction, the matrices Dv and Dw are invertible and condition (10)

implies the identity KT = K−1. Indeed,

DwKT Dv = D2
wCT D2

v = DaC
T Db = C−1 = DwK−1Dv .

Conversely, if KT = K−1 then, using the identity K = DvCDw we obtain

D2
wCT D2

v = DwKT Dv = DwK−1Dv = C−1 = DaC
T Db.

By matching the (i, j)-entry of the leftmost and rightmost matrices in the previous
equation we find w2

i v
2
j /(xi −yj ) = aibj /(xi −yj ) for i, j = 1, . . . , n, which implies

(10).

4 Supplementary results

This section is divided into sub-sections dedicated to showing various algebraic and
computational properties of orthogonal Cauchy-like matrices. First, we illustrate their
relationships with secular equations and a family of quasiseparable matrices. Next,
we show their occurrence in the construction of orthogonal rational functions with
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free poles, and specialize to orthogonal Cauchy-like matrices the characterization
of Cauchy matrices obtained in [4]. Lastly, we extend results from [12, 13] to pro-
vide a complete description of matrix sets that are simultaneously diagonalized by
orthogonal Cauchy-like matrices.

4.1 Secular equations and quasiseparable matrices

Let An ⊂ R
n×n be the set of all matrices A ∈ R

n×n that admit the decomposition

A = Dx + αvvT

for some x ∈ R
n, v ∈ R

n
0 and 0 �= α ∈ R, where in addition the entries of

x = (x1, . . . , xn)
T are pairwise distinct. Thus An consists of particular symmet-

ric, irreducible matrices that can be decomposed into the sum of a diagonal and a
rank-one matrix. Our next goal is to prove that orthogonal Cauchy-like matrices are
exactly the eigenvector matrices of matrices belonging to An. One part of this claim
is actually known. Indeed, consider the following theorem.

Theorem 6 Let A = Dx + αvvT ∈ An. The eigenvalues of A are equal to the n

roots y1, . . . , yn of the rational function

r(t) = 1 + α

n
∑

i=1

v2
i

xi − t
. (11)

The corresponding normalized eigenvectors k1, . . . , kn are given by

ki = (Dx − yiI )−1v/‖(Dx − yiI )−1v‖2. (12)

The preceding theorem merely restates results of Golub [14] and of Bunch,
Nielsen and Sorensen [15] who added formula (12); see also [16, Lemma 10.3]. The
nonlinear equation r(t) = 0 with r(t) as in (11) is known as a secular equation and
recurs in a variety of modified matrix eigenvalue problems [14, 15]. A close look
at (12) shows that the eigenvector matrix of A is an orthogonal Cauchy-like matrix.
Indeed, the vector ki is the i-th column of the matrix K = Dv Cauchy(x, y)Dw where
wi = 1/‖(Dx − yiI )−1v‖2 normalizes the i-th column of K to unit 2-norm. We
prove hereafter that this result can be somewhat reversed, that is, every orthogonal
Cauchy-like matrix is the eigenvector matrix of some matrix A ∈ An.

Theorem 7 Let K = DvCDw be an orthogonal Cauchy-like matrix, with C =
Cauchy(x, y). Then K is the eigenvector matrix of the matrix A = Dx +αvvT where

α =
∑n

i=1 yi − ∑n
i=1 xi

vT v
. (13)

Proof From the displacement equation DxK − KDy = vwT we easily get

KDyK
T = Dx − vwT KT .

The left-hand side of this equation is symmetric. Hence, the rank-one term vwT KT

must be symmetric too, that is, we can set Kw = −αv for some scalar α �= 0.
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Actually, the value of α can be obtained from the identity αvvT = KDyK
T − Dx as

follows:

α(vT v) = trace
(

αvvT
)

= trace
(

KDyK
T − Dx

)

= trace
(

KDyK
T
)

− trace(Dx) =
∑n

i=1
yi −

∑n

i=1
xi .

Hence (13) follows. We conclude that KDyK
T is the spectral factorization of A =

Dx + αvvT ∈ An.

Remark 2 Theorem 7 proves that the orthogonal matrix K = DvCDw with C =
Cauchy(x, y) ∈ Kn diagonalizes the matrix A = Dx +αvvT . In view of the splitting
Kn = Kn

1 ∪ Kn
2 shown in Remark 1, it is worth pointing out that the sign of α

determines whether C belongs to K1
n or K2

n. Indeed, from (13) we have sign(α) =
sign

(∑n
i=1(yi −xi)

)

. Owing to the interlacing conditions in Theorem 4, we conclude
that C ∈ K1

n ⇔ α > 0.

4.2 An inverse problem for orthogonal rational functions

The QR factorization of Cauchy-like matrices can be performed in O(n2) arithmetic
operations by taking advantage of the displacement structure, and allows to effi-
ciently orthogonalize a given set of rational functions with respect to a discrete inner
product [17, 18]. In fact, the numerical computation of rational orthogonal functions
with prescribed poles is an interesting problem related to the numerical solution of
inverse eigenvalue problems with quasiseparable matrices and of secular equations,
see Chapter 14 of [16]. In this section, we propose a different approach to the con-
struction of orthogonal rational functions, considering the poles as variables. More
precisely, we want to solve the following problem.

Problem 1 Given a discrete inner product,

〈f, g〉 =
n

∑

k=1

ω2
kf (xk)g(xk),

with ωk �= 0 and pairwise distinct real nodes x1 < · · · < xn, construct ratio-
nal functions ϕj (t) = 1/(t − yj ) for j = 1, . . . , n, with pairwise distinct poles
y1, . . . , yn ∈ R such that the functions ϕ1(t), . . . , ϕn(t) are mutually orthogonal, that
is, 〈ϕi, ϕj 〉 = 0 for i �= j .

Let ω = (ω1, . . . , ωn)
T ∈ R

n
0, C = Cauchy(x, y) and consider the Cauchy-like

matrix K = DωC, i.e.,

Kij = ωi

xi − yj

. (14)

It is readily seen that the inner product 〈ϕi, ϕj 〉 coincides with the (i, j)-entry of
the matrix KT K . Hence, solving Problem 1 amounts to constructing the matrix K
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so that its columns are orthogonal, given the coefficients ωi and xi . In what fol-
lows, we present a complete description of the set of solutions to Problem 1 that is
also amenable to numerical methods for computing the required poles y1, . . . , yn.
Introduce the rational function

f (t) =
n

∑

k=1

ω2
k

xk − t
. (15)

Note that this function depends only on the data x, ω ∈ R
n of Problem 1. In particu-

lar, its poles are the nodes of the discrete inner product and not the poles of the sought
functions ϕ1(t), . . . , ϕn(t). As the following result shows, the latter are the solutions
of the secular equation f (t) = α for some α �= 0.

Theorem 8 If y1, . . . , yn are the poles of a solution to Problem 1 then there exists a
scalar α �= 0 such that f (yi) = α, i = 1, . . . , n. Conversely, let y1, . . . , yn be the
solutions of the equation f (t) = α for some α �= 0. Then y1, . . . , yn are the poles of
a solution to Problem 1.

Proof In the above notations, the matrix K = DωC in (14) has orthogonal columns
if and only if there exist a diagonal matrix � such that K� has orthonormal columns.
From Corollary 5 we derive that the matrix K has orthogonal columns if and only
if ω2

i = αbi for some scalar α �= 0, where b = (b1, . . . , bn)
T is the solution of the

linear system CT b = 1. Equivalently, CT D2
ω1 = αCT b = α1, hence

α =
(

CT D2
ω1

)

i
=

n
∑

k=1

ω2
k

xk − yi

= f (yi),

for i = 1, . . . , n. This proves that the numbers y1, . . . , yn solve Problem 1 if and
only if they verify the equation f (yi) = α for some α �= 0.

To prove that this equation admits exactly n real solutions it suffices to note
that f (t) is strictly increasing in every open interval contained in its domain and,
for every i = 1, . . . , n we have f (x−

i ) = +∞ and f (x+
i ) = −∞. Furthermore,

limt=±∞ f (t) = 0. Hence, for any fixed nonzero scalar α there exist distinct num-
bers y1, . . . , yn such that f (yi) = α. Figure 1 illustrates a scenario where α > 0 (left
panel) or α < 0 (right panel). In particular, if α < 0 then the numbers xi and yi can
be reordered so that

x1 < y1 < x2 < y2 < · · · < xn < yn

while for α > 0 we obtain the other inequalities in the claim of Theorem 4.

The solutions of the secular equation f (x) = α with α �= 0 and f (t) as in (15)
generally have no closed form. However, due to the relevance of the secular equation
in numerical linear algebra, a wealth of efficient and accurate numerical methods are
available to solve it, see, e.g., [19, 20]. In particular, it is worth noting that the matri-
ces in An also belong to the wider class of quasiseparable matrices, for which very
efficient methods of computing eigenvalues are available, see [16]. The equivalence
of the eigenproblem for matrices in An, the solution of the secular equation and the
construction of orthogonal Cauchy-like matrices have been developed in the previous
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Fig. 1 Solution of the secular equation f (t) = α with f (t) = ∑6
i=1 1/(cos(iπ/6) − t). Black line:

graph of the function y = f (x). Diamonds indicate the position of the poles of f (x). Circles mark the
intersection of the graph of y = f (t) with the y = α line. Left panel: α = 10. Right panel: α = −10

sections. To complete this circle of ideas, the next results show that solving Problem
1 is equivalent to computing the eigenvalues of a matrix in An.

Corollary 9 Let y1, . . . , yn be the set of poles of a solution to Problem 1. Then
y1, . . . , yn are the eigenvalues of the matrix A = Dx + βωωT where

β = 1

ωT ω

n
∑

i=1

(yi − xi).

Conversely, let y1, . . . , yn be the eigenvalues of A = Dx + βωωT where β �= 0 is
arbitrary. Then y1, . . . , yn are the poles of a solution to Problem 1.

Proof If y1, . . . , yn solve Problem 1 then the matrix K in (14) has orthogonal
columns. Hence there exists a vector w ∈ R

n
0 such that ̂K = KDw is an orthogo-

nal matrix. By Theorem 7, there exists A ∈ An such that A = ̂KDy
̂KT , namely,

A = Dx + βωωT with β = ∑n
i=1(yi − xi)/ω

T ω.
Conversely, let y1, . . . , yn be the eigenvalues of A = Dx +βωωT for some β �= 0.

From Theorem 6 we have

f (yj ) =
n

∑

i=1

ω2
i

xi − yj

= − 1

β
, j = 1, . . . , n,

where f (t) is as in (15). We only need to apply Theorem 8 with α = −1/β to get
that the poles y1, . . . , yn solve Problem 1, and the proof is complete.

4.3 Characterization ofKn in terms of Cauchy pairs

We borrow from [4] the following definition.
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Definition 3 Let A, B ∈ R
n×n be two diagonalizable matrices. Let α1, . . . , αn and

β1, . . . , βn the the eigenvalues of A and B, respectively. The pair (A, B) is a Cauchy
pair if rank(A − B) = 1 and the numbers αi, βj are pairwise distinct, for i, j =
1, . . . , n.

Actually, the original definition in the paper cited above is stated in terms of invari-
ant subspaces rather than eigenvalues and applies to arbitrary fields. The one given
here is equivalent to the real-valued case of that in [4]. The main result in that paper
characterizes Cauchy matrices in terms of Cauchy pairs. More precisely, the pair
(A, B) is a Cauchy pair if and only if the matrices A and B admit diagonalizations
A = XDαX−1 and B = YDβY−1 such that X−1Y = Cauchy(α, β). This fact allows
the author of [4] to derive a bijection between suitably defined equivalence classes
of Cauchy pairs and permutationally equivalent Cauchy matrices. The goal of this
section is to prove a similar characterization for matrices in Kn.

Lemma 10 Let (A, B) be a Cauchy pair where A, B ∈ R
n×n are symmetric matri-

ces. Let α1, . . . , αn and β1, . . . , βn be the eigenvalues of A and B, respectively. Then
C = Cauchy(α, β) ∈ Kn. Moreover, there exist diagonalizations A = XDαX−1 and
B = YDβY−1 such that C = X−1Y .

Proof Let A = UDαUT and B = V DβV T be spectral factorizations of the given
matrices A and B where U and V are orthogonal matrices. Since rank(A − B) = 1,
there exists z ∈ R

n and a scalar σ �= 0 such that A − B = σzzT , implying that

DαUT V − UT V Dβ = σUT zzT V .

Now, let K = UT V , p = σUT z and q = V T z. It is immediate to see that K

is an orthogonal matrix that verifies the identity Dα,β(K) = pqT , that is, K is an
orthogonal Cauchy-like matrix. By Lemma 1, that matrix admits the factorization
K = DvCDw where C = Cauchy(α, β) and v, w ∈ R

n
0. In particular, C ∈ Kn.

Finally, define X = UDv and Y = V D−1
w . Note that X and Y are invertible. Since

diagonal matrices commute, we have

XDαX−1 = UDvDαD−1
v UT = UDαUT = A

and, with similar passages, YDβY−1 = B. Moreover,

X−1Y = D−1
v UT V D−1

w = D−1
v DvCDwD−1

w = C,

and the proof is complete.

Lemma 11 Let C = Cauchy(α, β) ∈ Kn. For any given symmetric matrix A ∈
R

n×n with eigenvalues α1, . . . , αn there exists a symmetric matrix B ∈ R
n×n with

eigenvalues β1, . . . , βn such that (A, B) is a Cauchy pair.

Proof By assumption, there exist v, w ∈ R
n
0 such that K = DvCDw is orthogonal.

From the displacement equation DαK − KDβ = vwT we get

KDβKT = Dα − vwT KT .
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Thus (Dα, KDβKT ) is a Cauchy pair of symmetric matrices. Now, consider a
spectral factorization A = UDαUT with an orthogonal matrix U . Define B =
UKDβKT UT and the claim follows.

Putting the previous two lemmas together, we easily get our next result.

Corollary 12 Let C be a Cauchy matrix. We have C ∈ Kn if and only if there
is a Cauchy pair of symmetric matrices (A, B) admitting diagonalizations A =
XDαX−1 and B = YDβY−1 such that X−1Y = C.

4.4 Relatedmatrix algebras

Previous results show that every matrix in the set An is diagonalized by an orthogonal
Cauchy-like matrix. Equivalently, for any given orthogonal Cauchy-like matrix K

there exists a diagonal matrix 	 such that K	KT belongs to An. The goal of this
section is to characterize all matrices that are diagonalized by a given orthogonal
Cauchy-like matrix. More precisely, for a given orthogonal matrix X ∈ R

n×n let

L(X) =
{

A ∈ R
n×n : A = X	XT , 	 diagonal

}

.

This set is a commutative matrix algebra, that is, a vector space that is closed under
matrix multiplication, of dimension n. If X is an orthogonal Cauchy-like matrix then
Theorem 7 proves that L(X) has nonempty intersection with An.

Corollary 13 below provides a complete description of L(X) when X is an orthog-
onal Cauchy-like matrix. A similar characterization has been carried out in [12, 13]
in the case where X = DvCDw is an orthogonal Cauchy-like matrix such that v = 1
or, more generally, v = α1 for some α �= 0. The interest in that special case arises in
the construction of matrix algebras of Loewner matrices.

Corollary 13 Let K = DvCDw be an orthogonal Cauchy-like matrix where C =
Cauchy(x, y) ∈ Kn and v and w are normalized so that the constant α in (10) equals
1. Then A ∈ L(K) if and only if

Dx,x(A) = vzT − zvT (16)

where Av = z. In this case, the eigenvalues of A are the entries of the vector λ =
CT Dvz.

Proof Let A = K	KT be the spectral factorization of an arbitrary matrix A ∈
L(K). Then A is a symmetric matrix such that

DxA − ADx = (

DxK − KDy

)

	KT + K	
(

DyK
T − KT Dx

)

= vwT 	KT − K	wvT = vzT − zvT ,

where we set z = K	w. By assumption and (7),

KT v = DwCT Dvv = DwCT b = Dw1 = w.

Hence z = K	w = K	KT v = Av.
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To prove the formula for the eigenvalues, let λ = 	1 be the vector containing
the eigenvalues of A. By the previous arguments we have the identity z = K	w =
KDwλ. Then λ = D−1

w KT z = CT Dvz, as claimed. Moreover, this identity shows
that the linear map z �→ λ is invertible. Noting that the map λ �→ KDλK

T is linear
and invertible, we conclude that the compound map z �→ KDλK

T is a vector space
isomorphism between R

n and L(K), and the proof is complete.

The characterization provided by the corollary above allows to recover the entries
of a generic matrix A ∈ L(K) from the knowledge of the vectors x, v and z. Indeed,
let 1 ≤ i, j ≤ n be distinct integers. The displacement formula (16) yields

xiAij − Aijxj = vizj − zivj .

Thus the off-diagonal entries of A admit the expression

Aij = vizj − zivj

xi − xj

(i �= j).

The diagonal entries of A cannot be retrieved from the previous formula, since the
displacement operator Dx,x is singular and its kernel consists precisely of the diag-
onal matrices. However, the matrix A can be identified by means of the additional
information provided by the identity Av = z. In fact, with the previous notation we
have

Aii = 1

vi

⎛

⎝zi −
∑

j �=i

Aij vj

⎞

⎠ = 1

vi

⎛

⎝zi −
∑

j �=i

vizj − zivj

xi − xj

vj

⎞

⎠ .

Recall that vi �= 0 due to the nonsingularity of K = DvCDw. Finally, the identity
Av = z suggests a method for calculating eigenvalues of A other than the one in the
theorem. From K	KT v = z we obtain KT z = 	KT v. Hence, the i-th eigenvalue
of A is λi = (KT z)i/(K

T v)i , for i = 1, . . . , n.

5 A numerical example

In this section, we consider a sequence of orthogonal Cauchy-like matrices of arbi-
trary order n. The construction is based on properties of Chebyshev polynomials,
which make the matrices easily computable.

Let Tn(x) and Un(x) denote the n-th degree Chebyshev polynomials of the first
and second kind, respectively: for x ∈ [−1, 1],

Tn(x) = cos(n arccos x), Un(x) = sin((n + 1) arccos x)

sin(arccos x)
.

For any fixed integer n ≥ 1, define the polynomials p(x) and q(x) in (8) as
follows:

p(x) = Tn(x), q(x) = (x + 1)Un−1(x).

Actually, the polynomials in (8) are monic, while these are not. However our con-
struction does not depend on p(x) and q(x) being monic. Indeed, the products aibj

entering the expression of the entries of the sought orthogonal matrix are unaffected
by scaling p(x) and q(x) by arbitrary (nonzero) constants, as a consequence of (7).
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Fig. 2 Orthogonality loss ‖KT K−I‖ due to finite precision computation. Orthogonal matrices K ∈ R
n×n

with n = 2, 4, 8 . . . 4096 are computed via the original formulas in Corollary 14 (blue diamonds) or
(19)–(20) (red circles). Left panel: ‖KT K − I‖∞. Right panel: ‖KT K − I‖F

Consider the roots of p(x) and q(x) as nodes of a Cauchy matrix. Numbering
them in ascending order, we have

xi = cos

(

(n − i + 1
2 )π

n

)

, yi = cos

(

(n − i + 1)π

n

)

, (17)

respectively, for i = 1, . . . , n. Hence −1 = y1 < x1 < y2 < x2 < · · · < xn < 1.
Furthermore,

p(yi) = Tn(yi) = (−1)n−i+1,

q(xi) = (xi + 1)Un−1(xi) = (xi + 1)(−1)n−i+1

sin((i − 1
2 )π/n)

.

Using known formulas for the differentiation of Chebyshev polynomials, after some
simplification we get

p′(xi) = nUn−1(xi) = n
(−1)n−i+1

sin((i − 1
2 )π/n)

and

q ′(yi) = nTn(yi) − Un−1(yi)

yi − 1
=

{

(−1)nn i = 1

(−1)n−i+1n/(yi − 1) i = 2, . . . , n.

By (7), the coefficients of the vectors a and b are

ai = − p(yi)

q ′(yi)
=

{

1/n i = 1

(1 − yi)/n i = 2, . . . , n,
bi = q(xi)

p′(xi)
= xi + 1

n
. (18)

Note that ai > 0 and bi > 0 for i = 1, . . . , n, as expected from Theorem 4. The
aforementioned construction of orthogonal Cauchy-like matrices is described in the
following statement.
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Corollary 14 For any fixed integer n ≥ 1 and i = 1, . . . , n let xi, yi, ai, bi be as in
(17) and (18). Moreover, let vi = √

bi and wi = √
ai for i = 1, . . . , n.

• The Cauchy-like matrix K = (viwj/(xi − yj )) is orthogonal.
• The matrixA = Dx −vvT ∈ An admits the spectral factorizationA = KDyK

T .
Moreover, the matrix B = Dy + wwT ∈ An admits the spectral factorization
B = KT DxK .

Proof The first claim follows from (6) and Corollary 5. The first part of the last
claim is a consequence of Theorem 7. Indeed, we have

∑

i yi − xi = −1 and
vT v = ∑

i bi = 1, thus α = −1 in (13). The second part can be deduced from
the previous one by noting that B = KT (A + vvT )K = Dy + KT vvT K and
KT v = DwCT Dvv = DwCT b = Dw1 = w.

To avoid numerical cancellation, the denominators xi −yj appearing in the entries
in the matrix Cauchy(x, y) can be computed using the right-hand side of the formula

xi − yj = 2 sin

(

(i + j − 3
2 )π

2n

)

sin

(

(i − j + 1
2 )π

2n

)

, (19)

which do not involve subtraction of similar quantities, thus avoiding numerical
cancellation. Analogously, the formulas for ai and bi in (18) can be revised as
follows:

ai =
{

1/n i = 1
2
n

sin2
(

(n−i+1)π
2n

)

i = 2, . . . , n,
bi = 2

n
cos2

(

(n − i + 1
2 )π

2n

)

.

(20)
These alternative formulas provide a significant improvement on the quality of calcu-
lations in machine arithmetic. Figure 2 illustrates the growth of ‖KT K −I‖ where K

is the orthogonal Cauchy-like matrix defined in Corollary 14 with respect to n = 2k

for k = 2, . . . , 12. This measurement quantifies the lack of orthogonality of K due to
finite precision computations. Matrix norms are the ∞-norm (left panel) and Frobe-
nius norm (right panel). The results obtained using the formulas in Corollary 14 are
graphed with blue diamonds, while the red circles represent the results obtained with
the subtraction-free formulas (19) and (20). Dotted lines plot the functions y = nu

and y = n2u, where u ≈ 2.2 · 10−16 is the machine precision, and are included
for eye guidance. Computations are performed in standard floating-point arithmetic
using MATLAB© R2021a on a computer equipped with a 1.4GHz Intel i5 dual-core
processor and 8GB RAM. The similarity of the two graphs seems to indicate that the
errors in forming KT K due to computer arithmetics are strongly localized. Actually,
close observations show that errors accumulate mainly on the computed diagonal
entries of the matrix product. Anyway, errors arising from the use of the modified
formulas (19) and (20) are consistent with a relative perturbation of the order of u in
the entries of K .
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6 Discussion

In this work, we have provided a complete characterization of orthogonal matrices
with a Cauchy-like structure. Moreover, we have highlighted their relationships with
the solution of secular equations, the diagonalization of symmetric quasiseparable
matrices, and the computation of orthogonal rational functions with free poles. Fur-
thermore, we have found all matrices that are diagonalized by matrices of that type.
These results were obtained by making extensive use of the displacement structure
of the matrices involved.

Interest in orthogonal Cauchy-like matrices originally stemmed from their appear-
ance in the design of special filters for signal processing purposes [3]. However, our
results may have more than just theoretical interest. In fact, linear systems with vari-
ous displacement-structured matrices can be solved in numerically efficient ways by
means of algorithms built around so-called fast orthogonal transforms, i.e., matrix-
vector products with orthogonal matrices that can be performed with algorithms
using O(n log n) arithmetic operations [2, 5, 21]. Using the notation introduced in
Section 2, the basic technique is as follows. Let A ∈ Sr

M,N and let U, V be invertible

matrices. Then, UAV ∈ Sr
P,Q where P = UMU−1 and Q = V −1NV . In this way,

different displacement-structured matrix spaces can be transformed into each other.
This technique is at the basis of viable numerical algorithms for numerical linear
algebra with displacement-structured matrices. Indeed, the matrices U and V above
are often related to Fourier-type trigonometric transforms, which are fast, numer-
ically stable and allow their effective parallelization. Matrix-vector products with
Cauchy-like matrices can also be performed in comparable polylogarithmic arith-
metic complexity, see, e.g., [21, 22] owing to the diagonally scaled form of those
matrices. Therefore, fast transforms based on orthogonal Cauchy-like matrices could
be considered in the design of new structured linear solvers, transforming matri-
ces through different structures. Admittedly, the issue of numerical stability of this
kind of calculation is quite controversial. While some authors claim that in practice
fast algorithms for matrix-vector multiplication with Cauchy-like matrices perform
satisfactorily [21], known error analyses are not always supportive. On the other
hand, a possible decrease in numerical stability of fast linear solvers can be com-
pensated for by iterative refinement techniques as suggested in, e.g., [7]. In addition,
the knowledge of matrix algebras that are simultaneously diagonalized by orthogonal
Cauchy-like matrices could be exploited for structured eigensolvers.

Finally, it seems appropriate to shed light on the possible construction of orthog-
onal Cauchy-like matrices with displacement rank greater than 1 and other dis-
placement structures, making room for further work. For this purpose, it is helpful
to recall more properties of the displacement operators DM,N and their associated
rank-structured spaces Sr

M,N introduced in Section 2. A matrix having displacement
rank r > 1 can be written as the sum of (at most) r matrices having displace-
ment rank 1. However, this decomposition is unsuitable for the numerical treatment
of orthogonal matrices. On the other hand, higher displacement-rank matrices can
be factored in terms of low displacement-rank factors, by considering appropriate
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displacement operators. Indeed, let X and Y be two displacement-structured matri-
ces, X ∈ Sp

M,N and Y ∈ Sq
N,P . It is not difficult to verify that DM,P (XY) =

DM,N(X)Y + XDN,P (Y ). Hence XY ∈ Sp+q
M,P . An immediate consequence of this is

that the product of k orthogonal Cauchy-like matrices is an orthogonal matrix with
displacement rank k. Accordingly, the orthogonal Cauchy-like matrices discussed in
this paper can be used to build higher displacement-rank orthogonal matrices in fac-
torized form. Conversion to other displacement-structured spaces can be carried out
as mentioned above.
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