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Abstract: The selective oxidation of primary alcohols into their corresponding carbonyl compounds
is challenging because of the easy over oxidization to acids and esters. The traditional reaction
requires large amounts of solvent and oxidant, causing serious environmental issues. Recently,
several efforts have been made to transform the reaction into a more sustainable process. Here,
we investigated the solvent-free oxidation of benzyl alcohol using air as a green oxidant in the
presence of ruthenium supported on alumina and zirconia, thereby meeting atom economy and
environmental requirements. The materials were extensively characterized and, in addition to their
activity, selectivity, and reusability, the environmental sustainability of the process was assessed
according to green chemistry metrics. XRD, TEM, and XPS analyses suggest that the formation of
metallic Ru on the support plays a key role in the catalytic activity. Ru supported on alumina, after a
reduction treatment, achieves good activity (62% conversion) and a complete selectivity in a very
sustainable process (without a solvent and with air as oxidant), as indicated by the very low E-factor
value. The formulation is very stable and maintains high activity after recycling.

Keywords: ruthenium; heterogeneous catalysis; selective oxidation; sustainable process; E-factor;
benzyl alcohol

1. Introduction

Selective oxidation is a crucial process in the chemical industry due to the extensive use
of the produced intermediates as precursors of fine chemicals (e.g., fragrances, drugs, and
vitamins) [1–5]. Benzaldehyde is a precursor of several derivatives in the pharmaceutical
and agricultural industries, and its production from benzyl alcohol has been extensively
investigated [1,2,6,7]. Recently, heterogeneous catalysts have been proposed as substitutes
for use in homogeneous reactions [8–10] because they can be separated an recycled more
easily [4].

Specifically, the selective oxidation of alcohols into their corresponding carbonyl com-
pounds is challenging for several reasons. The first problem is selectivity due to the ease
by which aldehydes can be over oxidized into their corresponding acids and esters when
primary alcohols are used. Secondly, the classical oxidation reaction is not environmentally
friendly as it is carried out using organic solvents such as toluene, acetonitrile, and oth-
ers [11–13]. In addition, it uses non-green stoichiometric oxidants, such as permanganate,
chromate, organic peroxides, etc. [14–16], thus increasing the amount of harmful waste and
environmental pollution. Over the years, various heterogeneous metal-based catalysts (Pd,
Pt, Au, etc.) have been proposed for the selective oxidation of benzyl alcohol, but reactions
are usually carried out in an excess of solvent and with a strong oxidant [1,3,4,14,15,17–22].
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In recent decades, much attention has been paid to the sustainability of chemical reactions
and, from this point of view, attempts have been made to modify traditional syntheses
by favoring reactions in milder conditions, in the absence of solvents, and with greener
oxidants [1–3,16,19]. Concerning the oxidation of alcohol, particular attention is being paid
to the development of clean procedures that can save energy (mild conditions) and sol-
vents (solvent-free reactions or reactions using green solvents), and that can use molecular
oxygen, a greener, cheaper, and safer oxidant.

Ru-based catalysts are promising materials that may be used in several oxidation reac-
tions [23–30], and they have shown interesting activity in the selective oxidation of alcohols.
Several compositions have been investigated [31–36], and among these the effectiveness of
Ru/Al2O3 in the oxidation of activated and non-activated alcohols has been demonstrated
by Yamaguchi et al. [37], while Zhao et al. have developed a very efficient process involving
colloidal Ru nanoparticles [38]. The role of ruthenium is strictly dependent on the nature
of the support, the oxidation state of the Ru, and its particle size [38–41]. In previous
work [42], we investigated the catalytic activity of ruthenium supported on ceria-based
materials for the selective oxidation of benzyl alcohol into benzaldehyde. The activity was
mainly related to the strong interaction between RuO2 and the reducible support, and the
formation of highly mobile oxygen species. Ru supported on ceria-zirconia is very active,
but it undergoes a progressive decrease in conversion after several reaction cycles. Here,
we would like to study ruthenium supported on a different class of high-surface area metal
oxides, i.e., “non-reducible oxides” such as zirconia and alumina. Despite the great interest
in Ru-based formulations for the selective oxidation of alcohols, to the best of our knowl-
edge, this is the first application of Ru supported on Al2O3 for solvent-free reactions. The
investigated materials were characterized and the differences in activity were rationalized
in terms of the high dispersion of metallic ruthenium nanoparticles on the alumina support.
Particular attention was paid to the recyclability of the most promising formulation.

The main goal of this work is to achieve a more sustainable process, and for this reason,
in addition to the activity, selectivity, and reusability of the proposed formulations, the
environmental acceptability of the reaction was evaluated using green chemistry metrics.

In recent decades, the attention paid to the sustainability of processes has grown
considerably, and indicators have been developed to evaluate the sustainability of a reac-
tion [43–47]. In the general evaluation of a chemical process, therefore, parameters such as
the use of solvents and harmful reagents, the production of waste, and energy consumption
are considered. Over the years, numerous indicators have been developed to compare the
sustainability of processes, and among these, the E-factor and mass productivity (MP) play
an important role [48–50]. The E-factor is related to the amount of waste produced for a
given mass of a desired product (Equation (1)). Its evaluation is essential for minimizing
waste and improving resource efficiency; the lower the value, the lower the amount of
waste produced [43,51].

E − f actor =
mass waste

mass o f desired product
(1)

A second metric that is very useful in this kind of evaluation is mass productivity.
In this case, all the materials used in the process are taken into consideration (reagents,
solvents, catalysts, etc.) [49,51]. MP is the percentage ratio between the mass of the desired
product and the total mass of the materials used (Equation (2)).

MP (%) =
mass o f desired product × 100
total mass o f used materilas

(2)

Here, we assessed the sustainability of the proposed reaction using E-factor and
MP. Ruthenium supported on alumina shows a good activity, a complete selectivity, and
promising environmental sustainability.
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2. Results and Discussion

Two different high-surface area samples modified with Ru were investigated as cata-
lysts for the solvent-free selective oxidation of benzyl alcohol with air. The composition
and BET surface area of the investigated materials are reported in Table 1. Adsorption
isotherms are shown in Figure S1. The zirconia had a surface area of 64 m2/g, while the
alumina had higher surface area (around 180 m2/g). After impregnation, for both supports,
the surface area showed a slight decrease. The crystallite size obtained according to the
Scherrer equation was not affected by the impregnation of ruthenium salt and was around
14 nm for the Zr formulations and 10 nm for the alumina materials.

Table 1. Composition, textural characterization, and hydrogen consumption in H2-TPR (temperature-
programmed reduction experiment) profiles in the 50–200 ◦C region of the investigated samples.

Name Composition Surface Area
(m2/g)

Crystallite Size
(nm) a mmol H2/g

Al Al2O3 184 10 /
AlRu 2%Ru/Al2O3 176 10 0.37
AlRu-R b 2%Ru/Al2O3 175 10 /

Zr ZrO2 64 14 /
ZrRu 2%Ru/ZrO2 58 14 0.22
ZrRu-R b 2%Ru/ZrO2 58 14 /

a: calculated with Scherrer formula from X-ray diffraction patterns. b: after reduction at 300 ◦C for 2 h under
100 mL/min of 50% H2/N2 gas mixture.

The structural characteristics of zirconia- and alumina-based materials were investi-
gated using x-ray diffraction (XRD) measurements (Figure 1).
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For all the materials, the peaks belonging to the support are clearly observable. For the
zirconia catalyst, the RuO2 peaks are not visible because the ZrO2 peaks are superimposed,
while for the AlRu, the ruthenium oxide peaks are very well defined (2θ = 28.1, 35.1, 40.1,
40.7, and 54.5◦). The XRD profiles confirm the reduction of RuO2 to metallic Ru after
treatment in H2/N2. Indeed, a very low signal can be observed at 2θ = 44◦ in the ZrRu-R
due to the Ru. The presence of metallic Ru is better defined in the AlRu-R sample, with
peaks at 2θ = 38.4, 42.2, and 44◦.

The reducibility of the materials was also investigated using H2-temperature-programmed
reduction (Figure 2). The Zr and Al supports exhibited a flat signal, a conventional TPR
profile of “non reducible” materials. After the addition of the Ru, the TPR profiles showed a
low temperature peak, attributable to the reduction of RuO2, at around 115 ◦C for the AlRu
and around 140 ◦C for the ZrRu. After reduction, the ZrRu_R and AlRu_R showed only
two negligible peaks (at around 150 ◦C and 310 ◦C), which could be related to the support
or to some residual RuO2. The TPR measurements confirmed the formation of RuO2 in
the prepared materials and its subsequent transformation into metallic Ru after reduction
treatment. A quantitative analysis of the TPR profile in the 50–200 ◦C region (Table 1) for
the ZrRu and AlRu indicated a partial reduction of RuO2 for the ZrRu (0.22 mmol/gcat)
and an almost complete reduction for the AlRu (0.37 mmol/gcat) when compared with the
calculated amount of hydrogen consumption required for the complete reduction of RuO2
(0.39 mmol/gcat).
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Figure 2. H2-TPR profiles of investigated samples.

Figure 3 and Table S1 show the oxidation results for benzyl alcohol to benzaldehyde
in the presence of the alumina- and zirconia-based formulations under air at 90 ◦C for 24 h.
Preliminary tests without a catalyst and over bare supports did not result in any oxidation
into benzaldehyde, indicating that bare alumina and zirconia oxides are not active in this
temperature range. Furthermore, these results indicate that benzyl alcohol does not have
an adsorption effect on the support surface. When ruthenium was added to the support,
an increase in the benzaldehyde yield was observed. For all the Ru-based materials, the
selectivity to benzaldehyde was complete. The prepared catalysts were only moderately
active after 24 h in the oxidation of benzyl alcohol, with a 10% and 21% conversion for the
AlRu and ZrRu, respectively. When the reaction was carried out using reduced materials, a
higher conversion was obtained, with remarkable results for the AlRu-R (62%). For both
the supports, the conversion reached a maximum when the ruthenium was in a metallic
state, and when the RuO2 was formed on the surface, the conversion was lower.
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Figure 3. Selective conversion of benzyl alcohol to benzaldehyde (reaction conditions: 1 mL of benzyl
alcohol, 200 mg of catalyst, 90 ◦C for 24 h, 10 mg of hexamethylbenzene as internal standard).

In order to better elucidate the differences in catalytic activity, further characteriza-
tion was carried out. Specifically, X-ray photoelectron spectroscopy measurements and
transmission electron microscopy measurements were obtained.

XPS was performed to better investigate the Ru oxidation state in the prepared ma-
terials (Table 2). The chemical state of the surface Ru was analyzed by means of the Ru
3d5/2 signal to avoid overlapping with the C 1s signal. The ZrRu and AlRu displayed one
peak at 280.8 eV that could be assigned to the Ru4+ species, indicating that the Ru was
mainly in the oxidized state (RuO2) [30]. The in situ-treatment under the H2 atmosphere
induced a change in the chemical state of the surface ruthenium. Indeed, peaks due to RuO2
disappeared, and signals at 280.1 eV and 280.0 eV, due to the metallic Ru species, were
identified in the ZrRu-R and AlRu-R, respectively (Figure S2). For both the supports, the
initial ruthenium oxide was converted into a metallic state during the reduction treatment.
These results are in agreement with the XRD and H2-TPR analyses. It is important to
observe that metallic ruthenium is stable and it is not oxidized back to RuO2 when exposed
to air, as was confirmed by the fact that the metallic Ru peaks were found in the XRD
patterns of the reduced samples that were recorded under an air atmosphere.

Table 2. XPS results of materials as prepared and after in situ reduction with H2/Ar at 300 ◦C for 1 h.

Sample Ru/(Zr + Al)
% Atomic

Ru 3d5/2
eV

ZrRu 0.020 280.8 (RuO2)
ZrRu-R 0.022 280.1 (Ru)

AlRu 0.011 280.8 (RuO2)
AlRu-R 0.036 280.0 (Ru)

The Ru dispersion for the investigated formulations was estimated from the signal
ratio between the Ru and the Zr or Al. The Zr-based samples showed a rather stable
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dispersion before and after the reduction treatment (0.020 and 0.022, respectively), while
for the Al-based materials, the dispersion significantly increased after the in situ reduction
(0.011 versus 0.036). The activity seems to have been strictly related to the dispersion of
the Ru species (RuO2 or Ru) on the support surface (Figure S3). For similar surface Ru
dispersion values, the catalytic activity is significantly higher when the ruthenium is in a
metallic state (43%) with respect to the oxide (20%). Under the conditions of the alcohol
oxidation experiment, the catalytic activity was mainly due to the presence of metallic
ruthenium rather than RuO2.

Similar results were obtained by Grunwaldt et al. for Pd/Al2O3 catalysts in the
selective oxidation of alcohols [52]; the Pd supported formulations were more active after
reduction than before reduction. Ruthenium supported on alumina exhibits opposite
behavior compared with Ru supported on ceria-based oxides. In fact, in the case of
supports based on reducible oxides, ruthenium oxide favors their activity. In this regard, it
is important to remember the important role that metal–support interactions can have on a
reaction. Weak metal–support interactions are usually found in cases of metal nanoparticles
dispersed on non-reducible supports, whereas strong metal–support interactions occur
for reducible oxides [53]. The different metal–support interactions that occur between
Ru/Al2O3 and Ru/CeZrO2 affect the active form of the metal and its activity. When
ruthenium is deposited on ceria-based oxides, Run+ species, such as RuO2, can easily
interact with the support, increasing the concentration of oxygen vacancies [42,53]. In
several oxidation reactions, it has been observed that, when Ru is supported on “non-
reducible” oxides, the activity of metallic ruthenium is higher than that of RuO2 [54–59].

In summary, metallic Ru on AlRu-R shows higher activity in the oxidation of benzyl
alcohol, while RuO2 in AlRu is much less active. This suggests that the oxidation of the
alcohol occurs by a dehydrogenation mechanism (as is proposed in Scheme 1) similar to
what was obtained by Grunwaldt et al. with metallic Pd [52]. The proposed mechanism
is initiated by the dehydrogenation of the alcohol, the formation of the aldehyde, and the
adsorption of hydrogen on metallic Ru. The molecular oxygen then removes the hydrogen
from the Ru.
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The stability of AlRu-R was investigated for several repeated reaction cycles, and no
significant change in conversion was observed after three cycles (Figure 4).
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Figure 4. Reusability of AlRu-R (selectivity is 100%). Reaction conditions: 1 mL of benzyl alcohol,
200 mg of catalyst, 90 ◦C for 24 h, 10 mg of hexamethylbenzene as internal standard.

Because of the higher activity of ruthenium supported on alumina compared with
zirconia-based catalysts, STEM-HAADF and HRTEM analyses were been carried out to
further investigate the materials. Specifically, these observations can highlight variations in
the morphology and size of the prepared materials and the reduced alumina-based samples.

Figure 5A shows a STEM-HAADF image of the AlRu. Bright particles of about 12 nm
in size are recognizable (see red arrow). A STEM-HAADF image recorded at a higher
magnification is shown in Figure 5B. Three bright particles are seen in the upper left part of
the image. An EDX spectrum recorded in the area enclosed by the red circle is included.
In addition to the Al and O signals originating from the alumina support, Ru peaks are
also recorded, indicating that the bright particles contain Ru. High-resolution TEM images
(HRTEM) are shown in Figure 5C,D. In Figure 5C, the alumina support particles show
lattice fringes at 4.5 Å, which correspond well to the (111) crystallographic planes of Al2O3.
A Fourier transform analysis of the particle showing lattice fringes (area inside the red
square) shows spots at 3.2 Å, which can be ascribed to the (110) crystallographic planes of
RuO2. The circle at 2.4 Å in the FT image corresponds to the (311) planes of the alumina
support nanoparticles. In Figure 5D, (311) planes of alumina at 2.4 Å are identified with low
electron contrast. RuO2 particles in the range 5–15 nm are recognized by their characteristic
lattice spacing at 3.2 Å, corresponding to the (110) crystallographic planes.
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Figure 5. STEM-HAADF (A,B) and HRTEM (C,D) analyses of AlRu.

After reduction, the AlRu-R sample showed metal particles with different sizes.
Figure 6A shows a STEM-HAADF image in which very small nanoparticles of about
1–2 nm in size (see arrows) can be seen coexisting with large particles exceeding 50 nm
in size. The EDX analysis included in Figure 6A corresponds to the area enclosed in the
red circle which shows one of the bright particles. A prominent Ru signal indicates that
the particle is composed of Ru. Figure 6B shows an HRTEM image. Large Ru particles
cannot be imaged by HRTEM because they are too thick. The image in Figure 6B shows the
small Ru nanoparticles (see arrows). Given their small size (around 1 nm), it has been not
possible to record lattice fringe images.

General HRTEM images of the AlRu-R after the reaction are shown in Figure 6C,D.
In the HRTEM image shown in Figure 6C, several Ru nanoparticles are identified by their
dark contrast. They measure about 4–8 nm. This suggests that the sintering of the 1–2 nm
Ru nanoparticles seen in the sample after reduction may have occurred during the reaction.
The nature of these nanoparticles was determined using HRTEM. Figure 6D shows a
metallic Ru nanoparticle exhibiting lattice fringes at 1.4 Å, corresponding to the (110)
crystallographic planes. The Ru nanoparticles are in close contact with the alumina support
nanoparticles, identified in the image by their lattice fringes at 2.4 Å, and corresponding to
the (311) crystallographic planes.

In summary, the AlRu contained RuO2 nanoparticles in the 5–15 nm range, while the
AlRu-R, both before and after the reaction, showed the coexistence of large Ru particles
(50 nm) and small Ru nanoparticles (1–2 nm before the reaction and 4–8 after the reaction).
The stability of the AlRu-R after three cycles was probably due to the presence of small
crystallites of Ru, which, despite showing a tendency to sinter, remained very small
(4–8 nm).
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The AlRu-R showed a good conversion of 62% at 90 ◦C. A comparison with an
heterogenous catalyst reported in literature under solvent-free conditions suggests that
AlRu-R is an active heterogeneous catalyst (Table 3).

Table 3. Comparison of results for benzyl alcohol oxidation with heterogeneous catalyst in solvent-
free reaction.

Catalyst Catalyst
(mg)

Alcohol
(mmol) O2 T (◦C) Time (h) Conv (%) Select (%) Ref.

Pd/SiO2-Al2O3 100 48.5 3 mL/min 70 10 97 98 [17]
Ru 20 27.7 10 atm 100 5 93 90 [38]
Au-Pd/CeO2 rod 50 144 3 atm 120 3 78 88 [21]
Pd/CN-1.0/CeO2 50 51.2 20 mL/min 90 5 77 >99 [60]
AlRu-R 200 9.6 1 atm 90 24 62 100 this study
CZRu 200 9.6 1 atm 90 24 61 100 [42]
1%Au–Pd/TiO2 20 18.5 1 atm 120 1 56 74 [19]
1%Pd–Zn /TiO2 20 18.5 1 atm 120 1 55 81 [18]
PtRu/C 100 193 10 atm 100 8 17 99 [61]
Ru/TiO2 120 96.6 1 atm 110 3 10 98 [62]

A comparison between the studies reported in Table 3 is rather difficult due to the
great variability in the reaction parameters, in particular regarding the substrate/catalyst
ratio, the amount of O2, and the temperature. Formulations based on Pd, Au, and their
combination are widely used in the selective oxidation of alcohols. The most active cata-
lysts (Pd/SiO2-Al2O3, Ru, Au-Pd/CeO2 rod, and Pd/CN-1.0/CeO2) achieve a very high
conversion (in the 77–97% range), but only when the reactions are carried out at severe
conditions, e.g., under 3–10 atm of pure O2 or in O2 flow (3–20 mL/min), thus sustaining
the process [17,21,38,60]. It is easier to compare reactions carried out at atmospheric pres-
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sure. Bimetallic Pd catalysts with Au or Zn supported on TiO2 [18,19] show interesting
activity (55–56%) and selectivity (74–81%), while Ru supported on C [61,62] and TiO2
shows very high selectivity but low activity (10–17%). The catalytic activity of AlRu-R
developed here is comparable to that obtained with Ru supported on ceria-zirconia, a
reducible material [42]. The oxidation reactions were carried out under the same reaction
conditions, and consequently it is possible to make a precise comparison between the two
formulations. The main difference is the nature of the support; indeed, while ceria-zirconia
is a reducible material with a moderate surface area (80 m2/g) and high oxygen storage
capacity, Al2O3 is a non-reducible material with a very high surface area (180 m2/g). The
catalytic activity is strictly correlated to the different metal–support interactions (Figure 7).
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Figure 7. Selective conversion of benzyl alcohol to benzaldehyde for Ru supported on alumina and
ceria-zirconia (reaction conditions: 1 mL of benzyl alcohol, 200 mg of catalyst, 90 ◦C for 24 h, 10 mg
of hexamethylbenzene as internal standard).

For the reducible ceria-zirconia, higher activity was found when the ruthenium formed
RuO2 on the support surface. Indeed, the activity was strongly related to the increased
mobility of the surface oxygen resulting from the close interaction of the metal oxide
and the ceria-zirconia with the formation of the bridging oxygen Ru-O-Ce and the su-
peroxide species (O2−). For the non-reducible alumina support, the activity was higher
when the ruthenium was in a metallic state. In this case, the activity was related to the
formation of metallic Ru-species that enhanced the oxidation of the benzyl alcohol via a
dehydrogenation mechanism.

A great difference in reusability was found for the two formulations. While the CZRu
progressively decrease the activity, the AlRu-R was very stable after three cycles, confirming
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the attractiveness of this catalyst for the solvent-free selective oxidation of benzyl alcohol
to benzaldehyde.

For a better understanding of the sustainability of the process, we considered two green
chemistry metrics, the E-factor and the MP (mass productivity) of the catalytic reactions
from Table 3 carried out under atmospheric pressure (Figure 8). Assessing the potential
environmental impact of the entire process is complicated and requires a full life cycle
analysis, but this is beyond the scope of our study, which is only a preliminary investigation
intended to develop an understanding of the environmental acceptability of the reaction.
Therefore, here we used E-factor and mass productivity to carry out a direct comparison
with other formulations used in the same type of process (neat reaction). First of all, it
is important to note that the reaction temperature used for the oxidation on the AlRu-R
and CZRu was lower than that used in any of the other processes, resulting in energy
savings. The best sustainability results were obtained for the AlRu-R and CZRu, which
achieved excellent green chemistry metrics compared with the other selected formulations,
with an E-factor of less than 1 and an MP of approximately 50%. A E-factor of 0.95 is
typical in the bulk chemistry sector [50]. For the AlRu-R and CZRu, green metrics were also
calculated for the third recycle and, in this case, the AlRu-R shows better metrics (E-factor
0.51 and MP 66%) due to its stability over different reaction cycles. In summary, after a
detailed comparison with other formulations reported in the literature, we determined that
AlRu-R, as a material for use in the oxidation of benzyl alcohol, is interesting and has a low
environmental impact in terms not only of conversion, selectivity, and stability, but also in
terms of the sustainability of the process and the reduction of waste.
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Figure 8. Comparison of E-factor and mass productivity (MP) of selected heterogeneous catalysts
from Table 3 for benzyl alcohol oxidation.

3. Materials and Methods
3.1. Catalyst Preparation

A sample of commercial zirconium hydroxide (Mel chemicals) was calcined at 500 ◦C
for 3 h to obtain the zirconium oxide support. A sample of alumina (Sasol) was used as
received. The materials were prepared via incipient wetness impregnation (IW) of the
metal oxides with aqueous solutions of ruthenium nitrosyl nitrate (Sigma–Aldrich) in order
to obtain Ru(2%)/MxOy, with MxOy = Al2O3, and ZrO2. Samples were dried overnight at
100 ◦C and then calcined at 500 ◦C for 3 h (AlRu and ZrRu). All the materials were also
treated at 300 ◦C for 2 h under 100 mL/min of a 50% H2/N2 gas mixture (reduced samples
are indicated as AlRu-R and ZrRu-R).
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3.2. Catalyst Characterization

The textural characteristics were measured according to the B.E.T. method via nitrogen
adsorption at 77 K using a Tristar 3000 gas adsorption analyzer (Micromeritics, Norcross,
GA, USA). The structural features of the catalysts were investigated using X-ray diffraction.
The spectra were recorded on a Philips X’Pert diffractometer (equipped with a real-time
multiple-strip detector) operated at 40 kV and 40 mA using Ni-filtered Cu-Kα radiation
((PANalytical B.V., Almelo, The Netherlands). The spectra were collected using a step size
of 0.02◦ and a counting time of 40 s per angular abscissa in the range 20◦–145◦. The Philips
X’Pert HighScore software was used for phase identification. The mean crystalline size was
estimated from the full width at the half maximum (FWHM) of the X-ray diffraction peak
using the Scherrer [63].

The reducibility of the catalysts was studied via temperature-programmed reduction
(TPR) experiments (Autochem II 2920 Instrument, Micrometrics, Norcross, GA, USA).
The catalysts (40 mg) were heated without pretreatment at a constant rate (10 ◦C/min)
in a U-shaped quartz reactor from room to a temperature of 900 ◦C under a flowing
hydrogen/nitrogen mixture (35 mL/min, 4.5% H2 in N2). The hydrogen consumption
was monitored using a thermal conductivity detector (TCD). The quantification of the H2
consumption was carried out by calibrating the signal with the introduction of known
amounts of hydrogen.

X-ray photoelectron spectroscopy (XPS) was performed on a SPECS system equipped
with a XR50 source operating at 250 W and a Phoibos 150 MCD-9 detector (SPECS GmbH,
Berlin, Germany). The energy step of the high-resolution spectra was set at 0.05 eV. Atomic
fractions were calculated using peak areas normalized on the basis of acquisition parameters
after background subtraction, experimental sensitivity factors, and transmission factors
provided by the manufacturer. In situ reduction treatments were carried out at 300 ◦C and
1 bar for 3 h under a H2:Ar = 1:1 mixture. The sample was heated with an IR lamp and the
temperature was measured with a thermocouple in contact with the sample.

HRTEM and STEM-HAADF images were obtained using a field emission gun FEI
Tecnai F20 microscope (FEI Company, Hillsboro, Oregon, United States) equipped with a
field emission source at an accelerating voltage of 200 kV with a point-to-point resolution of
0.19 nm. The average particle diameter was calculated from the mean diameter frequency
distribution using the following formula: d = ∑ nidi/ ∑ ni, where ni is the number of
particles with a particle diameter of di in a certain range.

3.3. Alcohol Oxidation

The solvent-free oxidation of benzyl alcohol was carried out in a 5 mL round-bottom
flask equipped with a condenser under continuous stirring conditions. For a typical run,
0.2 g of catalyst, 1 mL of benzyl alcohol (9.7 mmol), and 0.01 g of hexamethylbenzene
(Sigma Aldrich) as the internal standard were placed in a flask and heated to 90 ◦C for
24 h under atmospheric pressure. In order to verify the stability of the hexamethylbenzene
during the reaction, black tests were carried out in the absence of the substrate using toluene
as a solvent. The spectra before and after the reaction did not show the modification or
presence of any degradation products.

The progress of the reaction was checked for 1H NMR using a Bruker Avance III HD
(Bruker Italia Srl, Milan, Italy) 400 MHz spectrometer at 298 K equipped with carousel of
24 samples and an automation program, IconNMR, which managed the analysis from the
insertion of the sample to the integration of the spectra signals. The deuterated solvent,
CDCl3 (Sigma Aldrich, Merk Life Science S.r.l., Milano, Italy), was used without any further
purification. The reaction mixture (10 µL) was taken with a syringe and dissolved in 500 µL
of anhydrous CDCl3. The conversion was calculated from the integral area of the singlet at
4.72 ppm, corresponding to the -CH2 protons of the benzyl alcohol, and compared with the
hexamethylbenzene signals (2.30 ppm) as internal references. After the reaction, a signal
at 10 ppm was attributed to the proton resonance of the aldehyde group (Figure S4). The
reported conversions are an average of three runs, and the resulting errors were within
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3%. The selectivity was evaluated through the analysis of the products obtained after
the reaction.

The recycling of the catalyst was investigated in multiple runs. After the first catalytic
run, the catalyst was recovered via evaporation, dried under vacuum at 150 ◦C for 10 min,
and then reused in the next run under the same conditions. After each recovery, a loss of
about 2.5% of the catalyst was observed

4. Conclusions

The work reported here shows the good activity of ruthenium supported on alu-
mina for the solvent-free selective oxidation of benzyl alcohol into benzaldehyde, i.e., a
conversion of 62% and complete selectivity. The activity is related to the formation of
metallic ruthenium nanoparticles on the support surface, and the higher the dispersion,
the higher the activity. Furthermore, the catalyst was found to be very stable after several
reaction cycles.

The proposed reaction follows the principles of green chemistry; indeed, no solvents
were used, and the oxidant was air. The green chemistry metrics calculated for the AlRu-R
indicated an environmentally friendly procedure (E-factor 0.51 and MP 66%), confirming
the sustainability of the process. This is a preliminary study on the possibility of using
heterogeneous catalysts for the oxidation of alcohols in more sustainable reaction conditions
(compared with traditional reactions), and without the use of solvents. The next step of
this work will be the optimization of the proposed catalytic formulations to improve the
catalytic performance in terms of conversion.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics11050177/s1, Figure S1: Adsorption measurements. Table S1: TOF
values. Figure S2: XPS spectra. Figure S3: Dependence of conversion of benzyl alcohol to benzalde-
hyde on ruthenium dispersion on the support. Figure S4: 1H-NMR spectra.
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