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Abstract: This paper proposes a technique to control a cable robot in the total absence of a model and
its parameters. The cable robot is actuated by three motors whose data, including exact positions, pulley
diameters, and nominal cable length, are unknown. We just assume to have a very rough knowledge
of lower and upper bounds for the partial derivatives of the relation between the cable lengths and the
end-effector space coordinates. A structured-light sensor measures the end-effector position, and the
goal is to drive it to a designated point. An algorithm is proposed with guaranteed convergence based on
the so-called model-free plant tuning approach. No learning stage is required. Experimental results are
reported.
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1. INTRODUCTION

Model-free plant tuning aims to determine the input vector
of a static plant, governed by a smooth function, so that the
output vector assumes prescribed values, in the absence of a
model. The only required information is the sign of the partial
derivatives of the unknown input-output function, along with
(even rough) upper and lower bounds. More in general, it is
sufficient to know that the Jacobian of the unknown function is
confined to a given polytope.

Tuning a plant whose model is not known exactly often requires
a frustrating trial-and-error approach, and, for example, when
attempting to set an output to the desired value, the unknown
interactions among the variables can unpredictably drive the
other outputs out of tune.

Under the assumption that the Jacobian is confined in a poly-
tope (or, more in general, in a convex and compact set) and that
it is robustly non-singular, a tuning scheme with guaranteed
convergence has been proposed in our previous work (Blan-
chini et al. 2015, 2017). The results technically rely on the min-
max theorem (Luenberger 1969) and on a suitable Lyapunov-
like function.
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Similar approaches have been previously proposed in the liter-
ature for robust stabilisation (Gutman & Leitmann 1976; Gut-
man 1979; Meılakhs 1979; Blanchini 2000; Blanchini & Pe-
senti 2001). However, in the model-free plant-tuning case there
is nothing to be stabilised and the Lyapunov-like function is
not defined in the state-space. Possible analogies with methods
for parameter tuning (Åström 1983; Fradkov 1980), iterative
learning control (Ahn et al. 2007; Bristow et al. 2006), multi-
dimensional extremum-seeking techniques (Tan et al. 2006;
Khong et al. 2013; Nešić et al. 2013) and robust optimisation
(Beyer & Sendhoff 2007) are thoroughly discussed by Blan-
chini et al. (2017). The case of plants with parasitic dynamics
has been considered by Blanchini et al. 2017b. A discrete-
time iteration technique has been proposed by Blanchini et al.
(2017a).

In this paper, we consider the specific problem of controlling
a cable robot (see Fig. 1) whose model is unknown. There is
no information about the exact position of the actuators, the
nominal cable length, and the pulley diameters. We only require
that a suitably placed vision sensor detects the current position
of the end-effector. Based on a rough knowledge of the Jacobian
entry bounds, we prove that our model-free plant tuning scheme
ensures exact convergence to the target. The essential advantage
is that no learning phase is necessary and the convergence is
ensured at the first shot.

We provide experimental results. Accompanying videos are
available online.

2. PROBLEM STATEMENT

The terms of our problem are the following.
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1. INTRODUCTION

Model-free plant tuning aims to determine the input vector
of a static plant, governed by a smooth function, so that the
output vector assumes prescribed values, in the absence of a
model. The only required information is the sign of the partial
derivatives of the unknown input-output function, along with
(even rough) upper and lower bounds. More in general, it is
sufficient to know that the Jacobian of the unknown function is
confined to a given polytope.

Tuning a plant whose model is not known exactly often requires
a frustrating trial-and-error approach, and, for example, when
attempting to set an output to the desired value, the unknown
interactions among the variables can unpredictably drive the
other outputs out of tune.

Under the assumption that the Jacobian is confined in a poly-
tope (or, more in general, in a convex and compact set) and that
it is robustly non-singular, a tuning scheme with guaranteed
convergence has been proposed in our previous work (Blan-
chini et al. 2015, 2017). The results technically rely on the min-
max theorem (Luenberger 1969) and on a suitable Lyapunov-
like function.

⋆ This work has been partially supported by the Italian Ministry for Research in
the framework of the 2017 Program for Research Projects of National Interest
(PRIN), Grant no. 2017YKXYXJ.
⋆⋆This study was carried out within the PNRR research activities of the
consortium iNEST (Interconnected North-Est Innovation Ecosystem) funded
by the European Union Next-GenerationEU (Piano Nazionale di Ripresa e
Resilienza (PNRR) – Missione 4 Componente 2, Investimento 1.5 – D.D. 1058
23/06/2022, ECS 00000043). This manuscript reflects only the Authors’ views
and opinions, neither the European Union nor the European Commission can
be considered responsible for them.

Similar approaches have been previously proposed in the liter-
ature for robust stabilisation (Gutman & Leitmann 1976; Gut-
man 1979; Meılakhs 1979; Blanchini 2000; Blanchini & Pe-
senti 2001). However, in the model-free plant-tuning case there
is nothing to be stabilised and the Lyapunov-like function is
not defined in the state-space. Possible analogies with methods
for parameter tuning (Åström 1983; Fradkov 1980), iterative
learning control (Ahn et al. 2007; Bristow et al. 2006), multi-
dimensional extremum-seeking techniques (Tan et al. 2006;
Khong et al. 2013; Nešić et al. 2013) and robust optimisation
(Beyer & Sendhoff 2007) are thoroughly discussed by Blan-
chini et al. (2017). The case of plants with parasitic dynamics
has been considered by Blanchini et al. 2017b. A discrete-
time iteration technique has been proposed by Blanchini et al.
(2017a).

In this paper, we consider the specific problem of controlling
a cable robot (see Fig. 1) whose model is unknown. There is
no information about the exact position of the actuators, the
nominal cable length, and the pulley diameters. We only require
that a suitably placed vision sensor detects the current position
of the end-effector. Based on a rough knowledge of the Jacobian
entry bounds, we prove that our model-free plant tuning scheme
ensures exact convergence to the target. The essential advantage
is that no learning phase is necessary and the convergence is
ensured at the first shot.

We provide experimental results. Accompanying videos are
available online.
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(2017a).

In this paper, we consider the specific problem of controlling
a cable robot (see Fig. 1) whose model is unknown. There is
no information about the exact position of the actuators, the
nominal cable length, and the pulley diameters. We only require
that a suitably placed vision sensor detects the current position
of the end-effector. Based on a rough knowledge of the Jacobian
entry bounds, we prove that our model-free plant tuning scheme
ensures exact convergence to the target. The essential advantage
is that no learning phase is necessary and the convergence is
ensured at the first shot.

We provide experimental results. Accompanying videos are
available online.

2. PROBLEM STATEMENT

The terms of our problem are the following.

Fig. 1. The experimental setup consists of a 3D sensor (specif-
ically, an RGB-D camera) and a cable robot, having three
motors and a red ball end-effector.

• The end-effector is connected via cables to three motors
located in A, B, and C, whose angular speed can be
controlled.

• The pulley diameters are not known.
• The position of each motor is unknown, but we assume

that they are all at the same level with respect to the
ground.

• The reference frame has the z axis orthogonal to the
ground, with positive direction toward the motors, while
the x and y axes are parallel to the ground (as in Figure 2).

• A vision system reveals the coordinates x, y, and z of the
end-effector (i.e. the center of the red ball in Figure 2) in
the reference frame.

• The vision system allows to measure the positioning error
x−xr, y−yr, z−zr, where xr, yr, and zr are the coordinates
of a reference point.

• The y axis is parallel to the line connecting the position of
motors A and B, with positive direction from B to A.

• The triangle drawn by the motors is acute, i.e., yB < yC <
yA.

• We can control the motors’ speed, proportional to the
cable length derivatives.

• The end-effector lies below the level of the motors, and
its projection is located within a bounded region inside
the triangle resulting from the projection of the motors’
position on the ground.

The configuration is represented in Figure 2. The goal is to
steer the robot end-effector to a reference point, in a model-free
fashion.

3. PRELIMINARY THEORETICAL RESULTS

Given an unknown function that relates the output y to the input
u, we aim at driving the output to a desired value (which we can
set to zero without loss of generality) by means of a suitable
input sequence u. A crucial assumption is that the updating of
u is performed at discrete time instants: uk.
Problem 1. Given the static plant

e = g(u), (1)
where e∈Rp is the error, g :Rm →Rp, p≤m, is a continuously
differentiable function, and g(ū) = 0 for some unique unknown
ū, find a dynamic algorithm such that, as t → ∞:

e(t)→ 0, (2)

•

•
•

•

C

A

B

lC lA

lB

y
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Fig. 2. Setup scheme: the motors are located in A, B and C;
lA is the distance from the motor located in A to the end-
effector. Similarly, lB and lC are, respectively, the distances
from the motors located in B and C to the end-effector.

u(t)→ ū, (3)
where ū solves the equation

0 = g(u). (4)
⋄

Assumption 2. The following inclusion holds:

Gu
.
=

[
∂g
∂u

]
∈ G (5)

where G is a known polytope of matrices, with vertices Gi:

G =

{
G =

r

∑
i=1

Giαi, αi ≥ 0,
r

∑
i=1

αi = 1

}
. (6)

Theorem 1. (Blanchini et al. (2017)) Assume that the polytope
G is nonsingular. Then, there exists a function Φ(e) such that
the control scheme

u̇ = Φ(e)
drives e to 0 (the reference point). The function can be chosen
as

Φ(e) =−γv∗, (7)
where γ > 0 regulates the convergence speed, and

v∗ = arg min
M∈G

∥y⊤M∥. (8)

In general, to apply the control, namely, to compute Φ, we need
to solve the optimization problem (8), online. This reduces to
linear quadratic optimization.

4. PROBLEM SOLUTION

To find the solution, as a first step, we need to check that the
following unknown function, which gives the position error
e = [x− xr, y− yr, z− zr]

⊤ as a function of the cable lengths
u = [lA, lB, lC]⊤, has a Jacobian that can be included in a
robustly non-singular polytope:

x− xr = gx(lA, lB, lC) (9)
y− yr = gy(lA, lB, lC) (10)
z− zr = gz(lA, lB, lC). (11)
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It is important to note that the Jacobian has the following sign
pattern matrix 1

Σ =

− − +
− + 0
− − −


, (12)

meaning that sign(Jik) = Σik. No sophisticated analysis is
needed (but we provide it later anyhow) to see that z is a
decreasing function of lA, lB, and lC, which explains the − signs
on the last row. Any variation of lC does not change y, which
explains Σ23 = 0. Increasing lA decreases y, and increasing lB
increases y, which explains the − and + signs on the second
row, respectively. Finally, observing the first row of Σ, x is
negatively affected by an increase of lA and lB, and positively
affected by an increase of lC.

Then, assuming to have upper and lower bounds on the deriva-
tives:

0 < α ≤ |Jik| ≤ β (13)
we see that the Jacobian belongs to an interval family

J ∈


[−β ,−α] [−β ,−α] [+α ,+β ]
[−β ,−α] [+α ,+β ] 0
[−β ,−α] [−β ,−α] [−β ,−α]


. (14)

Proposition 1. The interval family (14) is robustly non–singular.

Proof. It is an immediate consequence of the fact the determi-
nant

det(J) = J11J22J33 + J13J21J32 − J31J22J13 − J33J21J12

is strictly positive, as can be seen by taking into account the sign
of the entries Jik. By continuity, det(J) has a positive minimum.
□

To derive the extrema α and β , we first notice that the result
does not depend on their magnitude, which, consequently, can
be set very roughly.

In addition, it is also important to note that finding the exact
values for α and β is not crucial, while the β/α ratio of the
adopted bounds must be greater than that of the “true” α̂ and β̂
bounds.

Assume that the “true” positive bounds are α̂ and β̂ (unknown),
and that α and β are the problem bounds imposed in (14). Then,
the proposed approach works, as long as:

β̂
α̂

≤ β
α
. (15)

This property follows from the fact that γ > 0 is arbitrary.
Indeed, if the derivatives are not in the adopted bounds (13),
then if (15) holds, and

α̂ ≤ |Jik| ≤ β̂ ,
for some unknown σ > 0, we have also:

α ≤ |σJik|=
Ĵik

≤ β ,
leading to:

ė =
1
σ


σ

∂g
∂u


u̇ = Ĵ

−γv
σ

= Ĵv̂.

Since the entries of Ĵ are in the interval [α̂, β̂ ], we just need to
consider the scaled input v̂ and apply the theory. Actually, we
apply v, not v̂, but, since γ is arbitrary, the input can be scaled
without affecting the final result.

1 see Van den Driessche et al. (2018) for a formal definition.

Proposition 2. For any adopted bounds [α,β ], the proposed
approach converges provided that the true bounds [α̂, β̂ ], satisfy
(15).
Remark 1. Note that Σ23 = 0 is crucial, and it is ensured by the
assumption that the y axis is parallel to the line connecting the
positions of motors A and B, and that the z-coordinates of these
two motors are the same (i.e., xA = xB, and zA = zB).

Although bounds [α,β ] on the derivative can be practically
found, later on, we will provide some additional considerations
on the Jacobian, useful to derive these bounds.

Finally, we have to discuss the fact that the pulleys have
unknown diameters, hence we cannot govern directly the inputs
(lA, lB, lC). Precisely, we have assumed:

d
dt
(lA, lB, lC) = (v1,v2,v3).

If the true control variables are the motors’ speeds, clearly we
have that:

d
dt
(lA, lB, lC) = r(ωA,ωB,ωC),

where r is the unknown pulleys radius, while ωA, ωB, and
ωC are the angular speeds of the motors A, B, and C, respec-
tively. But, again, by considering a scaled input (v̂1, v̂2, v̂3) =
r(ωA,ωB,ωC), with unknown r > 0, the final result is not af-
fected by this choice, and the approach applies.

4.1 An explicit formula for control

We have seen that, in order to implement the control, we need
to solve, online, the minimum Euclidean norm problem:

min
M∈M

∥y⊤M∥.
Since M is an interval matrix, the above problem is decoupled
into three sub-problems, one for each component of v:

v j = y1m1 j + y2m2 j + y3m3 j,

where:
v2 = min

m1 j ,m2 j ,m3 j
(y1m1 j + y2m2 j + y3m3 j)

2, j = 1,2,3.

Let us consider the equivalent problem of minimizing | · |
instead of (·)2:

v = y1z1 + y2z2 + y3z3, |v|= min
z−i ≤zi≤z+i

|y1z1 + y2z2 + y3z3|.

The resulting domain is a box.

Consider, now, the following two linear programming prob-
lems:

η = min
z−i ≤zi≤z+i

y1z1 + y2z2 + y3z3

µ = max
z−i ≤zi≤z+i

y1z1 + y2z2 + y3z3,

and note that η < µ . Then:

v =




η if 0 < η < µ
0 if η ≤ 0 ≤ µ
µ if η < µ < 0

.

For the proof, we just need to observe that if the two linear
programming problems have opposite signs at the optimum,
then there is a choice of z for which y1z1 + y2z2 + y3z3 = 0.
Otherwise, if they have the same sign, we take the minimum in
absolute value.

• • • • •

•
•

•

• • •
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Fig. 3. The projection of the cable robot in Fig. 2 on the z− x, z− y, and x− y planes.

The computation of η and µ is trivial. Consider the function:

σi(yi) =

{
z+i if yi > 0
z−i if yi < 0

,

where σi(yi) is inside [z−i ,z
+
i ] if yi = 0. Then:

µ = y1σ1(y1)+ y2σ2(y2)+ y3σ3(y3)

and
η = y1σ1(−y1)+ y2σ2(−y2)+ y3σ3(−y3).

5. ANALYSIS OF THE JACOBIAN AND ITS BOUNDS

As mentioned before, we analyse the Jacobian to prove the
heuristic considerations in Section 4.

Unfortunately, we do not have g explicitly, so we resort to the
inverse function h .

= g−1, compute its Jacobian, and find the
inverse, since:

∂g
∂u

=

[
∂h
∂e

]−1

.

We can write (9)–(11) as:
x = gx(lA, lB, lC)+ xr (16)
y = gy(lA, lB, lC)+ yr (17)
z = gz(lA, lB, lC)+ zr, (18)

and note that the Jacobian does not change, because xr, yr, and
zr are constant reference values. The inverse function is:

lA = hA(x,y,z) =
√
(x− xA)2 +(y− yA)2 +(z− zA)2 (19)

lB = hB(x,y,z) =
√
(x− xB)2 +(y− yB)2 +(z− zB)2 (20)

lC = hC(x,y,z) =
√
(x− xC)2 +(y− yC)2 +(z− zC)2, (21)

having an inverse Jacobian:

J−1 =

[lA 0 0
0 lB 0
0 0 lC

]−1[(x− xA) (y− yA) (z− zA)
(x− xB) (y− yB) (z− zB)
(x− xC) (y− yC) (z− zC)

]
.

Now we remind that
(z− zA) = (z− zB) = (z− zC), and (x− xA) = (x− xB).

As a consequence, we have:

det[J−1] = (lAlBlC)−1(yA − yB)(xA − xC)(zA − z),
which is strictly positive as expected. Consequently, the Jaco-
bian matrix takes the form:

J =
1

(yA − yB)(xA − xC)(zA − z)

[φ11 φ12 φ13
φ21 φ22 0
φ31 φ32 φ33

][lA 0 0
0 lB 0
0 0 lC

]
.

Applying elementary algebra, we see that the term φik is the
signed magnitude of the cross-product among vectors, which
are projections on the principal 2-dimensional spaces (the men-
tioned projections are depicted in Fig. 3).

More precisely, we have:

φ11 = (−1)1+1

(
±
∥∥∥∥∥

[ 0
(y− yB)
(z− zB)

]
×
[ 0
(y− yC)
(z− zC)

]∥∥∥∥∥

)
,

φ21 = (−1)2+1

(
±
∥∥∥∥∥

[
(x− xB)

0
(z− zB)

]
×
[
(x− xC)

0
(z− zC)

]∥∥∥∥∥

)

and so on, where the sign depends on the angle between the
vectors.

Examining these vector products, the signs in (12) can be
verified. In particular, since x−xA = x−xB and z− zA = z− zB,
we have

φ23 = 0,
which ensures the structural non-singularity.

5.1 Bounds for the Jacobian entries

To provide bounds for the entries of J we remind that the signed
magnitude of the cross product is given by ±∥vk∥∥vh∥sin(ϕhk),
hence the magnitude of φhk is:

|φhk| ≤ ∥vk∥∥vh∥|sin(ϕhk)|,
where ϕhk is the angle formed by the vectors. The generic entry
of the Jacobian is

Jhk =
ℓ

(yA − yB)(xA − xC)(zA − z)
φhk

where ℓ equals lA for k = 1, lB for k = 2, and lC for k = 3, hence

|Jhk|=
ℓ

(yA − yB)(xA − xC)(zA − z)
∥vk∥∥vh∥|sin(ϕhk)| .

We can reasonably assume bounds:
0 < σmin ≤ sin(ϕhk)≤ 1.

The length of the projected vectors can be bounded as follows:
(zA − zmax)≤ ∥vk∥ ≤ lmax,

where zmax is the maximum level of the end-effector, and lmax
is the maximum cable length (an overbound). A bound for the
determinant can be derived by (rough) bounds on the geometry
of the work-space:

(yA − yB)min · (xA − xC)min · (zA − zmax)≤ det[J−1]

≤ (yA − yB)max · (xA − xC)max · lmax. (22)
The adjoint terms, with the exception of φ23 = 0, are all
bounded as:
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The computation of η and µ is trivial. Consider the function:

σi(yi) =

{
z+i if yi > 0
z−i if yi < 0

,

where σi(yi) is inside [z−i ,z
+
i ] if yi = 0. Then:

µ = y1σ1(y1)+ y2σ2(y2)+ y3σ3(y3)

and
η = y1σ1(−y1)+ y2σ2(−y2)+ y3σ3(−y3).

5. ANALYSIS OF THE JACOBIAN AND ITS BOUNDS
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= g−1, compute its Jacobian, and find the
inverse, since:

∂g
∂u

=

[
∂h
∂e

]−1

.
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lA = hA(x,y,z) =
√

(x− xA)2 +(y− yA)2 +(z− zA)2 (19)

lB = hB(x,y,z) =
√

(x− xB)2 +(y− yB)2 +(z− zB)2 (20)

lC = hC(x,y,z) =
√

(x− xC)2 +(y− yC)2 +(z− zC)2, (21)

having an inverse Jacobian:

J−1 =

[lA 0 0
0 lB 0
0 0 lC

]−1[(x− xA) (y− yA) (z− zA)
(x− xB) (y− yB) (z− zB)
(x− xC) (y− yC) (z− zC)

]
.
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J =
1

(yA − yB)(xA − xC)(zA − z)
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φ21 φ22 0
φ31 φ32 φ33

][lA 0 0
0 lB 0
0 0 lC

]
.
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tioned projections are depicted in Fig. 3).

More precisely, we have:

φ11 = (−1)1+1

(
±
∥∥∥∥∥

[ 0
(y− yB)
(z− zB)

]
×
[ 0
(y− yC)
(z− zC)

]∥∥∥∥∥

)
,

φ21 = (−1)2+1

(
±
∥∥∥∥∥

[
(x− xB)

0
(z− zB)

]
×
[
(x− xC)

0
(z− zC)

]∥∥∥∥∥

)

and so on, where the sign depends on the angle between the
vectors.

Examining these vector products, the signs in (12) can be
verified. In particular, since x−xA = x−xB and z− zA = z− zB,
we have

φ23 = 0,
which ensures the structural non-singularity.

5.1 Bounds for the Jacobian entries

To provide bounds for the entries of J we remind that the signed
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hence the magnitude of φhk is:

|φhk| ≤ ∥vk∥∥vh∥|sin(ϕhk)|,
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Jhk =
ℓ

(yA − yB)(xA − xC)(zA − z)
φhk

where ℓ equals lA for k = 1, lB for k = 2, and lC for k = 3, hence

|Jhk|=
ℓ

(yA − yB)(xA − xC)(zA − z)
∥vk∥∥vh∥|sin(ϕhk)| .

We can reasonably assume bounds:
0 < σmin ≤ sin(ϕhk)≤ 1.

The length of the projected vectors can be bounded as follows:
(zA − zmax)≤ ∥vk∥ ≤ lmax,

where zmax is the maximum level of the end-effector, and lmax
is the maximum cable length (an overbound). A bound for the
determinant can be derived by (rough) bounds on the geometry
of the work-space:

(yA − yB)min · (xA − xC)min · (zA − zmax)≤ det[J−1]

≤ (yA − yB)max · (xA − xC)max · lmax. (22)
The adjoint terms, with the exception of φ23 = 0, are all
bounded as:
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Fig. 4. End-effector trajectory (coordinate by coordinate), from P0 to PT , under the proposed control law. Starting from the left: the
step-by-step behaviour of the end-effector x-coordinate, y-coordinate, z-coordinate, and finally of the error norm ||e|| (blue
lines). The dotted orange lines represent the coordinate targets and the error norm threshold.

(zA − zmax)
2σmin ≤ φik ≤ l2

max, (23)
and hence, along with (22), we can determine the lower and
upper bound for the entries of J.

In the experimental setup (Fig. 1) we take: (yA−yB)min = 0.5m,
(yA−yB)max = 1.5m, (xA−xC)min = 0.5m, (xA−xC)max = 1.5m,
(zA − zmax = 0.10m, (zA − z)max = 1.0m, σmin = 0.1.
Remark 2. It is immediate to see that sin(ϕhk) = 0 is a singular
configuration to be avoided.

6. LABORATORY RESULTS

As an application of the proposed technique, let us consider the
experimental setup in Fig. 1.
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Fig. 5. 3D view of the experimental result: the end-effector
initial and final positions are represented by the green and
orange spheres, respectively, while the yellow cylindrical
trajectory indicates the different positions assumed by the
end-effector during the experiment. The initial and final
configuration of the robot cables are represented as green
and orange dashed lines, respectively. Finally, the small
green and orange dots on the x − y plane indicate the
projections on the plane of the initial and final position
of the sphere, respectively.

It consists of:

• three stepper motors, with 200steps/ rev and 12V rated
voltage, connected with nylon cables to a red ball acting
as the end-effector of the resulting cable robot;

• a Raspberry Pi 3 B, running Raspbian OS (a Linux OS
distribution, based on Debian and optimized for the Rasp-

berry Pi), and equipped with two Adafruit Motor HAT
boards, used to drive the motors;

• a 3D sensor PrimeSense Carmine v. 1.09, handled by
the Raspberry Pi using OpenNI and PrimeSense Sensor
libraries (respectively v. 1.5.7 and v. 5.1.6.6), which cap-
tures real-time images of the red ball in the 3D space.

Each motor is attached to a 1.20m-long ThorLabs Construction
rail 2 (see Fig. 1), and the whole structure has been assembled
on a Breadboard ThorLabs table 3 .

The rails (three in total) are located in accordance with the
scheme reported in Fig. 2. In particular, in compliance with
the reference frame depicted in Fig. 2, and the requirements
xA = xB, zA = zB = zC, and yB < yC < yA, the motors are located
at:

A : (0.850, 0.610, 0.665) m
B : (0.850, 0.000, 0.665) m
C : (0.000, 0.240, 0.665) m.

We denote by working area the triangular region obtained by
projecting the motor pillars onto the x− y plane.

The vision sensor is instead located at (1.737, 0.286, 0.225) m,
with respect to the same reference frame.

The Raspberry Pi runs in real-time two different algorithms:
(i) the one acting as the model-free plant tuning controller,
and (ii) the one used to extract the end-effector position in
the 3D-space. The latter is pretty straightforward: first, the ball
is detected in the RGB image by applying a Difference of
Gaussian filter of appropriate size to the red channel only, and
searching for the local maxima in the filtered image. Then, the
depth image is read in correspondence of the detected position
in the filtered image, to obtain the 3D coordinates of the ball.
We have performed different experiments whose results are
available at https://youtube.com/playlist?list=PL
FFRkiZTiAiTAW49lTc7VGOAsUZZfJhCz. Here we report
only one of them.

For all the performed experiments we set the following lower
and upper bounds on the derivatives defined in Eq. 13: α = 5.0 ·
10−3, β = 5.0 ·10−1.

The experiment consists of a positioning end-effector task in
which we want to bring the red ball centre of the cable robot in
Fig. 1 from the initial position 4 P0 = (0.540, 0.220, 0.459) m,
to the target position PT = (0.400, 0.400, 0.150) m. The algo-

2 https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_i
d=194 .
3 https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_i
d=7091 .
4 all the coordinates are expressed with respect to the above-defined reference
frame.

rithm is supposed to reach the target when the position error
norm is below a selected threshold: 10mm.

Notice that the starting point P0 of the end-effector trajectory
has been chosen such that its projection on the x− y lies in the
working zone of the proposed setup (the green dot in Fig. 5).
The target PT (the orange dot in Fig. 5) was instead placed on
an edge of the same area.

In Figures 5 and 4, we report the 3D and 2D trajectories,
respectively, obtained by performing the proposed model-free
plant tuning control approach.

As already mentioned in the previous sections, the controller
ignores the exact position of the actuators, the nominal cable
lengths, and the pulley diameters, and can only rely on the
knowledge of an approximation of α and β for each Jacobian
entry, and of the estimated position of the end-effector resulting
from image processing of the camera output.

In detail, in Fig. 5 the green ball represents the initial position of
the cable robot end-effector, while the orange ball is the target.
The yellow cylinder represents the ball trajectory performed
by the proposed controller. In Fig. 4, instead, the first three
subfigures show the trajectory of the end-effector centre along
each axis of the reference fame, under the proposed control law,
and with respect to the target coordinate (orange dashed line).
In the last subfigure of Fig. 4 we report the norm of the position
error.

Analysing the reported results, in particular observing Fig. 4,
we can notice that initially (during the first 100 steps of the al-
gorithm) the y-coordinate of the end-effector position is brought
quickly to the target value and then kept close to it, whereas the
x and the z coordinates of the end-effector move more slowly
toward their respective target values. This particular choice of
the proposed controller led consequently to the ”elbow” in the
yellow trajectory of Fig. 5.

7. CONCLUDING DISCUSSION

We proposed a model-free plant tuning approach for the con-
trol of a properly designed cable robot. We performed several
experiments on a real platform, highlighting the effectiveness
of our solution. The strengths of the proposed controller are
twofold: it does not require any robot structural details (i.e., no
information is needed on the exact position of the actuators,
nominal cable length, and pulley diameters), it requires only
a well-placed vision sensor to detect the position of the end-
effector, and an approximate knowledge of the Jacobian entry
bounds. Under proper non-singularity assumptions, we prove
that the presented model-free plant tuning leads to the target
achievement. This paper is an example of how the technique
proposed in Blanchini et al. (2015, 2017) is able to solve dif-
ferent control problems involving different types of dynamical
systems. Investigations to validate the proposed technique in
addressing visual servoing problems in robotics are already
underway.
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